summaryrefslogtreecommitdiffstats
path: root/Doc/library/itertools.rst
blob: 5846d784c88cccd6db7869ae49e7c84ba5ed2af9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
:mod:`itertools` --- Functions creating iterators for efficient looping
=======================================================================

.. module:: itertools
   :synopsis: Functions creating iterators for efficient looping.

.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>

.. testsetup::

   from itertools import *
   import collections
   import math
   import operator
   import random

--------------

This module implements a number of :term:`iterator` building blocks inspired
by constructs from APL, Haskell, and SML.  Each has been recast in a form
suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination.  Together, they form an "iterator
algebra" making it possible to construct specialized tools succinctly and
efficiently in pure Python.

For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``.  The same effect can be achieved in Python
by combining :func:`map` and :func:`count` to form ``map(f, count())``.

These tools and their built-in counterparts also work well with the high-speed
functions in the :mod:`operator` module.  For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
``sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))``.


**Infinite iterators:**

==================  =================       =================================================               =========================================
Iterator            Arguments               Results                                                         Example
==================  =================       =================================================               =========================================
:func:`count`       start, [step]           start, start+step, start+2*step, ...                            ``count(10) --> 10 11 12 13 14 ...``
:func:`cycle`       p                       p0, p1, ... plast, p0, p1, ...                                  ``cycle('ABCD') --> A B C D A B C D ...``
:func:`repeat`      elem [,n]               elem, elem, elem, ... endlessly or up to n times                ``repeat(10, 3) --> 10 10 10``
==================  =================       =================================================               =========================================

**Iterators terminating on the shortest input sequence:**

============================    ============================    =================================================   =============================================================
Iterator                        Arguments                       Results                                             Example
============================    ============================    =================================================   =============================================================
:func:`accumulate`              p [,func]                       p0, p0+p1, p0+p1+p2, ...                            ``accumulate([1,2,3,4,5]) --> 1 3 6 10 15``
:func:`batched`                 p, n                            (p0, p1, ..., p_n-1), ...                           ``batched('ABCDEFG', n=3) --> ABC DEF G``
:func:`chain`                   p, q, ...                       p0, p1, ... plast, q0, q1, ...                      ``chain('ABC', 'DEF') --> A B C D E F``
:func:`chain.from_iterable`     iterable                        p0, p1, ... plast, q0, q1, ...                      ``chain.from_iterable(['ABC', 'DEF']) --> A B C D E F``
:func:`compress`                data, selectors                 (d[0] if s[0]), (d[1] if s[1]), ...                 ``compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F``
:func:`dropwhile`               pred, seq                       seq[n], seq[n+1], starting when pred fails          ``dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1``
:func:`filterfalse`             pred, seq                       elements of seq where pred(elem) is false           ``filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8``
:func:`groupby`                 iterable[, key]                 sub-iterators grouped by value of key(v)
:func:`islice`                  seq, [start,] stop [, step]     elements from seq[start:stop:step]                  ``islice('ABCDEFG', 2, None) --> C D E F G``
:func:`pairwise`                iterable                        (p[0], p[1]), (p[1], p[2])                          ``pairwise('ABCDEFG') --> AB BC CD DE EF FG``
:func:`starmap`                 func, seq                       func(\*seq[0]), func(\*seq[1]), ...                 ``starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000``
:func:`takewhile`               pred, seq                       seq[0], seq[1], until pred fails                    ``takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4``
:func:`tee`                     it, n                           it1, it2, ... itn  splits one iterator into n
:func:`zip_longest`             p, q, ...                       (p[0], q[0]), (p[1], q[1]), ...                     ``zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-``
============================    ============================    =================================================   =============================================================

**Combinatoric iterators:**

==============================================   ====================       =============================================================
Iterator                                         Arguments                  Results
==============================================   ====================       =============================================================
:func:`product`                                  p, q, ... [repeat=1]       cartesian product, equivalent to a nested for-loop
:func:`permutations`                             p[, r]                     r-length tuples, all possible orderings, no repeated elements
:func:`combinations`                             p, r                       r-length tuples, in sorted order, no repeated elements
:func:`combinations_with_replacement`            p, r                       r-length tuples, in sorted order, with repeated elements
==============================================   ====================       =============================================================

==============================================   =============================================================
Examples                                         Results
==============================================   =============================================================
``product('ABCD', repeat=2)``                    ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD``
``permutations('ABCD', 2)``                      ``AB AC AD BA BC BD CA CB CD DA DB DC``
``combinations('ABCD', 2)``                      ``AB AC AD BC BD CD``
``combinations_with_replacement('ABCD', 2)``      ``AA AB AC AD BB BC BD CC CD DD``
==============================================   =============================================================


.. _itertools-functions:

Itertool functions
------------------

The following module functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.

.. function:: accumulate(iterable[, func, *, initial=None])

    Make an iterator that returns accumulated sums, or accumulated
    results of other binary functions (specified via the optional
    *func* argument).

    If *func* is supplied, it should be a function
    of two arguments. Elements of the input *iterable* may be any type
    that can be accepted as arguments to *func*. (For example, with
    the default operation of addition, elements may be any addable
    type including :class:`~decimal.Decimal` or
    :class:`~fractions.Fraction`.)

    Usually, the number of elements output matches the input iterable.
    However, if the keyword argument *initial* is provided, the
    accumulation leads off with the *initial* value so that the output
    has one more element than the input iterable.

    Roughly equivalent to::

        def accumulate(iterable, func=operator.add, *, initial=None):
            'Return running totals'
            # accumulate([1,2,3,4,5]) --> 1 3 6 10 15
            # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115
            # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
            it = iter(iterable)
            total = initial
            if initial is None:
                try:
                    total = next(it)
                except StopIteration:
                    return
            yield total
            for element in it:
                total = func(total, element)
                yield total

    There are a number of uses for the *func* argument.  It can be set to
    :func:`min` for a running minimum, :func:`max` for a running maximum, or
    :func:`operator.mul` for a running product.  Amortization tables can be
    built by accumulating interest and applying payments:

    .. doctest::

      >>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
      >>> list(accumulate(data, operator.mul))     # running product
      [3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
      >>> list(accumulate(data, max))              # running maximum
      [3, 4, 6, 6, 6, 9, 9, 9, 9, 9]

      # Amortize a 5% loan of 1000 with 10 annual payments of 90
      >>> account_update = lambda bal, pmt: round(bal * 1.05) + pmt
      >>> list(accumulate(repeat(-90, 10), account_update, initial=1_000))
      [1000, 960, 918, 874, 828, 779, 728, 674, 618, 559, 497]

    See :func:`functools.reduce` for a similar function that returns only the
    final accumulated value.

    .. versionadded:: 3.2

    .. versionchanged:: 3.3
       Added the optional *func* parameter.

    .. versionchanged:: 3.8
       Added the optional *initial* parameter.


.. function:: batched(iterable, n)

   Batch data from the *iterable* into tuples of length *n*. The last
   batch may be shorter than *n*.

   Loops over the input iterable and accumulates data into tuples up to
   size *n*.  The input is consumed lazily, just enough to fill a batch.
   The result is yielded as soon as the batch is full or when the input
   iterable is exhausted:

   .. doctest::

      >>> flattened_data = ['roses', 'red', 'violets', 'blue', 'sugar', 'sweet']
      >>> unflattened = list(batched(flattened_data, 2))
      >>> unflattened
      [('roses', 'red'), ('violets', 'blue'), ('sugar', 'sweet')]

      >>> for batch in batched('ABCDEFG', 3):
      ...     print(batch)
      ...
      ('A', 'B', 'C')
      ('D', 'E', 'F')
      ('G',)

   Roughly equivalent to::

      def batched(iterable, n):
          # batched('ABCDEFG', 3) --> ABC DEF G
          if n < 1:
              raise ValueError('n must be at least one')
          it = iter(iterable)
          while batch := tuple(islice(it, n)):
              yield batch

   .. versionadded:: 3.12


.. function:: chain(*iterables)

   Make an iterator that returns elements from the first iterable until it is
   exhausted, then proceeds to the next iterable, until all of the iterables are
   exhausted.  Used for treating consecutive sequences as a single sequence.
   Roughly equivalent to::

      def chain(*iterables):
          # chain('ABC', 'DEF') --> A B C D E F
          for it in iterables:
              for element in it:
                  yield element


.. classmethod:: chain.from_iterable(iterable)

   Alternate constructor for :func:`chain`.  Gets chained inputs from a
   single iterable argument that is evaluated lazily.  Roughly equivalent to::

      def from_iterable(iterables):
          # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
          for it in iterables:
              for element in it:
                  yield element


.. function:: combinations(iterable, r)

   Return *r* length subsequences of elements from the input *iterable*.

   The combination tuples are emitted in lexicographic ordering according to
   the order of the input *iterable*. So, if the input *iterable* is sorted,
   the output tuples will be produced in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  So if the input elements are unique, there will be no repeated
   values in each combination.

   Roughly equivalent to::

        def combinations(iterable, r):
            # combinations('ABCD', 2) --> AB AC AD BC BD CD
            # combinations(range(4), 3) --> 012 013 023 123
            pool = tuple(iterable)
            n = len(pool)
            if r > n:
                return
            indices = list(range(r))
            yield tuple(pool[i] for i in indices)
            while True:
                for i in reversed(range(r)):
                    if indices[i] != i + n - r:
                        break
                else:
                    return
                indices[i] += 1
                for j in range(i+1, r):
                    indices[j] = indices[j-1] + 1
                yield tuple(pool[i] for i in indices)

   The code for :func:`combinations` can be also expressed as a subsequence
   of :func:`permutations` after filtering entries where the elements are not
   in sorted order (according to their position in the input pool)::

        def combinations(iterable, r):
            pool = tuple(iterable)
            n = len(pool)
            for indices in permutations(range(n), r):
                if sorted(indices) == list(indices):
                    yield tuple(pool[i] for i in indices)

   The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
   or zero when ``r > n``.

.. function:: combinations_with_replacement(iterable, r)

   Return *r* length subsequences of elements from the input *iterable*
   allowing individual elements to be repeated more than once.

   The combination tuples are emitted in lexicographic ordering according to
   the order of the input *iterable*. So, if the input *iterable* is sorted,
   the output tuples will be produced in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  So if the input elements are unique, the generated combinations
   will also be unique.

   Roughly equivalent to::

        def combinations_with_replacement(iterable, r):
            # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
            pool = tuple(iterable)
            n = len(pool)
            if not n and r:
                return
            indices = [0] * r
            yield tuple(pool[i] for i in indices)
            while True:
                for i in reversed(range(r)):
                    if indices[i] != n - 1:
                        break
                else:
                    return
                indices[i:] = [indices[i] + 1] * (r - i)
                yield tuple(pool[i] for i in indices)

   The code for :func:`combinations_with_replacement` can be also expressed as
   a subsequence of :func:`product` after filtering entries where the elements
   are not in sorted order (according to their position in the input pool)::

        def combinations_with_replacement(iterable, r):
            pool = tuple(iterable)
            n = len(pool)
            for indices in product(range(n), repeat=r):
                if sorted(indices) == list(indices):
                    yield tuple(pool[i] for i in indices)

   The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.

   .. versionadded:: 3.1


.. function:: compress(data, selectors)

   Make an iterator that filters elements from *data* returning only those that
   have a corresponding element in *selectors* that evaluates to ``True``.
   Stops when either the *data* or *selectors* iterables has been exhausted.
   Roughly equivalent to::

       def compress(data, selectors):
           # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
           return (d for d, s in zip(data, selectors) if s)

   .. versionadded:: 3.1


.. function:: count(start=0, step=1)

   Make an iterator that returns evenly spaced values starting with number *start*. Often
   used as an argument to :func:`map` to generate consecutive data points.
   Also, used with :func:`zip` to add sequence numbers.  Roughly equivalent to::

      def count(start=0, step=1):
          # count(10) --> 10 11 12 13 14 ...
          # count(2.5, 0.5) --> 2.5 3.0 3.5 ...
          n = start
          while True:
              yield n
              n += step

   When counting with floating point numbers, better accuracy can sometimes be
   achieved by substituting multiplicative code such as: ``(start + step * i
   for i in count())``.

   .. versionchanged:: 3.1
      Added *step* argument and allowed non-integer arguments.

.. function:: cycle(iterable)

   Make an iterator returning elements from the iterable and saving a copy of each.
   When the iterable is exhausted, return elements from the saved copy.  Repeats
   indefinitely.  Roughly equivalent to::

      def cycle(iterable):
          # cycle('ABCD') --> A B C D A B C D A B C D ...
          saved = []
          for element in iterable:
              yield element
              saved.append(element)
          while saved:
              for element in saved:
                    yield element

   Note, this member of the toolkit may require significant auxiliary storage
   (depending on the length of the iterable).


.. function:: dropwhile(predicate, iterable)

   Make an iterator that drops elements from the iterable as long as the predicate
   is true; afterwards, returns every element.  Note, the iterator does not produce
   *any* output until the predicate first becomes false, so it may have a lengthy
   start-up time.  Roughly equivalent to::

      def dropwhile(predicate, iterable):
          # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
          iterable = iter(iterable)
          for x in iterable:
              if not predicate(x):
                  yield x
                  break
          for x in iterable:
              yield x

.. function:: filterfalse(predicate, iterable)

   Make an iterator that filters elements from iterable returning only those for
   which the predicate is false. If *predicate* is ``None``, return the items
   that are false. Roughly equivalent to::

      def filterfalse(predicate, iterable):
          # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
          if predicate is None:
              predicate = bool
          for x in iterable:
              if not predicate(x):
                  yield x


.. function:: groupby(iterable, key=None)

   Make an iterator that returns consecutive keys and groups from the *iterable*.
   The *key* is a function computing a key value for each element.  If not
   specified or is ``None``, *key* defaults to an identity function and returns
   the element unchanged.  Generally, the iterable needs to already be sorted on
   the same key function.

   The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix.  It
   generates a break or new group every time the value of the key function changes
   (which is why it is usually necessary to have sorted the data using the same key
   function).  That behavior differs from SQL's GROUP BY which aggregates common
   elements regardless of their input order.

   The returned group is itself an iterator that shares the underlying iterable
   with :func:`groupby`.  Because the source is shared, when the :func:`groupby`
   object is advanced, the previous group is no longer visible.  So, if that data
   is needed later, it should be stored as a list::

      groups = []
      uniquekeys = []
      data = sorted(data, key=keyfunc)
      for k, g in groupby(data, keyfunc):
          groups.append(list(g))      # Store group iterator as a list
          uniquekeys.append(k)

   :func:`groupby` is roughly equivalent to::

      class groupby:
          # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
          # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D

          def __init__(self, iterable, key=None):
              if key is None:
                  key = lambda x: x
              self.keyfunc = key
              self.it = iter(iterable)
              self.tgtkey = self.currkey = self.currvalue = object()

          def __iter__(self):
              return self

          def __next__(self):
              self.id = object()
              while self.currkey == self.tgtkey:
                  self.currvalue = next(self.it)    # Exit on StopIteration
                  self.currkey = self.keyfunc(self.currvalue)
              self.tgtkey = self.currkey
              return (self.currkey, self._grouper(self.tgtkey, self.id))

          def _grouper(self, tgtkey, id):
              while self.id is id and self.currkey == tgtkey:
                  yield self.currvalue
                  try:
                      self.currvalue = next(self.it)
                  except StopIteration:
                      return
                  self.currkey = self.keyfunc(self.currvalue)


.. function:: islice(iterable, stop)
              islice(iterable, start, stop[, step])

   Make an iterator that returns selected elements from the iterable. If *start* is
   non-zero, then elements from the iterable are skipped until start is reached.
   Afterward, elements are returned consecutively unless *step* is set higher than
   one which results in items being skipped.  If *stop* is ``None``, then iteration
   continues until the iterator is exhausted, if at all; otherwise, it stops at the
   specified position.

   If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
   then the step defaults to one.

   Unlike regular slicing, :func:`islice` does not support negative values for
   *start*, *stop*, or *step*.  Can be used to extract related fields from
   data where the internal structure has been flattened (for example, a
   multi-line report may list a name field on every third line).

   Roughly equivalent to::

      def islice(iterable, *args):
          # islice('ABCDEFG', 2) --> A B
          # islice('ABCDEFG', 2, 4) --> C D
          # islice('ABCDEFG', 2, None) --> C D E F G
          # islice('ABCDEFG', 0, None, 2) --> A C E G
          s = slice(*args)
          start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
          it = iter(range(start, stop, step))
          try:
              nexti = next(it)
          except StopIteration:
              # Consume *iterable* up to the *start* position.
              for i, element in zip(range(start), iterable):
                  pass
              return
          try:
              for i, element in enumerate(iterable):
                  if i == nexti:
                      yield element
                      nexti = next(it)
          except StopIteration:
              # Consume to *stop*.
              for i, element in zip(range(i + 1, stop), iterable):
                  pass


.. function:: pairwise(iterable)

   Return successive overlapping pairs taken from the input *iterable*.

   The number of 2-tuples in the output iterator will be one fewer than the
   number of inputs.  It will be empty if the input iterable has fewer than
   two values.

   Roughly equivalent to::

        def pairwise(iterable):
            # pairwise('ABCDEFG') --> AB BC CD DE EF FG
            a, b = tee(iterable)
            next(b, None)
            return zip(a, b)

   .. versionadded:: 3.10


.. function:: permutations(iterable, r=None)

   Return successive *r* length permutations of elements in the *iterable*.

   If *r* is not specified or is ``None``, then *r* defaults to the length
   of the *iterable* and all possible full-length permutations
   are generated.

   The permutation tuples are emitted in lexicographic order according to
   the order of the input *iterable*. So, if the input *iterable* is sorted,
   the output tuples will be produced in sorted order.

   Elements are treated as unique based on their position, not on their
   value.  So if the input elements are unique, there will be no repeated
   values within a permutation.

   Roughly equivalent to::

        def permutations(iterable, r=None):
            # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
            # permutations(range(3)) --> 012 021 102 120 201 210
            pool = tuple(iterable)
            n = len(pool)
            r = n if r is None else r
            if r > n:
                return
            indices = list(range(n))
            cycles = list(range(n, n-r, -1))
            yield tuple(pool[i] for i in indices[:r])
            while n:
                for i in reversed(range(r)):
                    cycles[i] -= 1
                    if cycles[i] == 0:
                        indices[i:] = indices[i+1:] + indices[i:i+1]
                        cycles[i] = n - i
                    else:
                        j = cycles[i]
                        indices[i], indices[-j] = indices[-j], indices[i]
                        yield tuple(pool[i] for i in indices[:r])
                        break
                else:
                    return

   The code for :func:`permutations` can be also expressed as a subsequence of
   :func:`product`, filtered to exclude entries with repeated elements (those
   from the same position in the input pool)::

        def permutations(iterable, r=None):
            pool = tuple(iterable)
            n = len(pool)
            r = n if r is None else r
            for indices in product(range(n), repeat=r):
                if len(set(indices)) == r:
                    yield tuple(pool[i] for i in indices)

   The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
   or zero when ``r > n``.

.. function:: product(*iterables, repeat=1)

   Cartesian product of input iterables.

   Roughly equivalent to nested for-loops in a generator expression. For example,
   ``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.

   The nested loops cycle like an odometer with the rightmost element advancing
   on every iteration.  This pattern creates a lexicographic ordering so that if
   the input's iterables are sorted, the product tuples are emitted in sorted
   order.

   To compute the product of an iterable with itself, specify the number of
   repetitions with the optional *repeat* keyword argument.  For example,
   ``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.

   This function is roughly equivalent to the following code, except that the
   actual implementation does not build up intermediate results in memory::

       def product(*args, repeat=1):
           # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
           # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
           pools = [tuple(pool) for pool in args] * repeat
           result = [[]]
           for pool in pools:
               result = [x+[y] for x in result for y in pool]
           for prod in result:
               yield tuple(prod)

   Before :func:`product` runs, it completely consumes the input iterables,
   keeping pools of values in memory to generate the products.  Accordingly,
   it is only useful with finite inputs.

.. function:: repeat(object[, times])

   Make an iterator that returns *object* over and over again. Runs indefinitely
   unless the *times* argument is specified.

   Roughly equivalent to::

      def repeat(object, times=None):
          # repeat(10, 3) --> 10 10 10
          if times is None:
              while True:
                  yield object
          else:
              for i in range(times):
                  yield object

   A common use for *repeat* is to supply a stream of constant values to *map*
   or *zip*:

   .. doctest::

      >>> list(map(pow, range(10), repeat(2)))
      [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

.. function:: starmap(function, iterable)

   Make an iterator that computes the function using arguments obtained from
   the iterable.  Used instead of :func:`map` when argument parameters are already
   grouped in tuples from a single iterable (when the data has been
   "pre-zipped").

   The difference between :func:`map` and :func:`starmap` parallels the
   distinction between ``function(a,b)`` and ``function(*c)``. Roughly
   equivalent to::

      def starmap(function, iterable):
          # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
          for args in iterable:
              yield function(*args)


.. function:: takewhile(predicate, iterable)

   Make an iterator that returns elements from the iterable as long as the
   predicate is true.  Roughly equivalent to::

      def takewhile(predicate, iterable):
          # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
          for x in iterable:
              if predicate(x):
                  yield x
              else:
                  break


.. function:: tee(iterable, n=2)

   Return *n* independent iterators from a single iterable.

   The following Python code helps explain what *tee* does (although the actual
   implementation is more complex and uses only a single underlying
   :abbr:`FIFO (first-in, first-out)` queue)::

        def tee(iterable, n=2):
            it = iter(iterable)
            deques = [collections.deque() for i in range(n)]
            def gen(mydeque):
                while True:
                    if not mydeque:             # when the local deque is empty
                        try:
                            newval = next(it)   # fetch a new value and
                        except StopIteration:
                            return
                        for d in deques:        # load it to all the deques
                            d.append(newval)
                    yield mydeque.popleft()
            return tuple(gen(d) for d in deques)

   Once a :func:`tee` has been created, the original *iterable* should not be
   used anywhere else; otherwise, the *iterable* could get advanced without
   the tee objects being informed.

   ``tee`` iterators are not threadsafe. A :exc:`RuntimeError` may be
   raised when simultaneously using iterators returned by the same :func:`tee`
   call, even if the original *iterable* is threadsafe.

   This itertool may require significant auxiliary storage (depending on how
   much temporary data needs to be stored). In general, if one iterator uses
   most or all of the data before another iterator starts, it is faster to use
   :func:`list` instead of :func:`tee`.


.. function:: zip_longest(*iterables, fillvalue=None)

   Make an iterator that aggregates elements from each of the iterables. If the
   iterables are of uneven length, missing values are filled-in with *fillvalue*.
   Iteration continues until the longest iterable is exhausted.  Roughly equivalent to::

      def zip_longest(*args, fillvalue=None):
          # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
          iterators = [iter(it) for it in args]
          num_active = len(iterators)
          if not num_active:
              return
          while True:
              values = []
              for i, it in enumerate(iterators):
                  try:
                      value = next(it)
                  except StopIteration:
                      num_active -= 1
                      if not num_active:
                          return
                      iterators[i] = repeat(fillvalue)
                      value = fillvalue
                  values.append(value)
              yield tuple(values)

   If one of the iterables is potentially infinite, then the :func:`zip_longest`
   function should be wrapped with something that limits the number of calls
   (for example :func:`islice` or :func:`takewhile`).  If not specified,
   *fillvalue* defaults to ``None``.


.. _itertools-recipes:

Itertools Recipes
-----------------

This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.

The primary purpose of the itertools recipes is educational.  The recipes show
various ways of thinking about individual tools — for example, that
``chain.from_iterable`` is related to the concept of flattening.  The recipes
also give ideas about ways that the tools can be combined — for example, how
``compress()`` and ``range()`` can work together.  The recipes also show patterns
for using itertools with the :mod:`operator` and :mod:`collections` modules as
well as with the built-in itertools such as ``map()``, ``filter()``,
``reversed()``, and ``enumerate()``.

A secondary purpose of the recipes is to serve as an incubator.  The
``accumulate()``, ``compress()``, and ``pairwise()`` itertools started out as
recipes.  Currently, the ``sliding_window()`` and ``iter_index()`` recipes
are being tested to see whether they prove their worth.

Substantially all of these recipes and many, many others can be installed from
the `more-itertools project <https://pypi.org/project/more-itertools/>`_ found
on the Python Package Index::

    python -m pip install more-itertools

Many of the recipes offer the same high performance as the underlying toolset.
Superior memory performance is kept by processing elements one at a time
rather than bringing the whole iterable into memory all at once. Code volume is
kept small by linking the tools together in a functional style which helps
eliminate temporary variables.  High speed is retained by preferring
"vectorized" building blocks over the use of for-loops and :term:`generator`\s
which incur interpreter overhead.

.. testcode::

   import collections
   import functools
   import math
   import operator
   import random

   def take(n, iterable):
       "Return first n items of the iterable as a list"
       return list(islice(iterable, n))

   def prepend(value, iterator):
       "Prepend a single value in front of an iterator"
       # prepend(1, [2, 3, 4]) --> 1 2 3 4
       return chain([value], iterator)

   def tabulate(function, start=0):
       "Return function(0), function(1), ..."
       return map(function, count(start))

   def repeatfunc(func, times=None, *args):
       """Repeat calls to func with specified arguments.

       Example:  repeatfunc(random.random)
       """
       if times is None:
           return starmap(func, repeat(args))
       return starmap(func, repeat(args, times))

   def flatten(list_of_lists):
       "Flatten one level of nesting"
       return chain.from_iterable(list_of_lists)

   def ncycles(iterable, n):
       "Returns the sequence elements n times"
       return chain.from_iterable(repeat(tuple(iterable), n))

   def tail(n, iterable):
       "Return an iterator over the last n items"
       # tail(3, 'ABCDEFG') --> E F G
       return iter(collections.deque(iterable, maxlen=n))

   def consume(iterator, n=None):
       "Advance the iterator n-steps ahead. If n is None, consume entirely."
       # Use functions that consume iterators at C speed.
       if n is None:
           # feed the entire iterator into a zero-length deque
           collections.deque(iterator, maxlen=0)
       else:
           # advance to the empty slice starting at position n
           next(islice(iterator, n, n), None)

   def nth(iterable, n, default=None):
       "Returns the nth item or a default value"
       return next(islice(iterable, n, None), default)

   def quantify(iterable, pred=bool):
       "Given a predicate that returns True or False, count the True results."
       return sum(map(pred, iterable))

   def all_equal(iterable):
       "Returns True if all the elements are equal to each other"
       g = groupby(iterable)
       return next(g, True) and not next(g, False)

   def first_true(iterable, default=False, pred=None):
       """Returns the first true value in the iterable.

       If no true value is found, returns *default*

       If *pred* is not None, returns the first item
       for which pred(item) is true.

       """
       # first_true([a,b,c], x) --> a or b or c or x
       # first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
       return next(filter(pred, iterable), default)

   def iter_index(iterable, value, start=0, stop=None):
       "Return indices where a value occurs in a sequence or iterable."
       # iter_index('AABCADEAF', 'A') --> 0 1 4 7
       seq_index = getattr(iterable, 'index', None)
       if seq_index is None:
           # Slow path for general iterables
           it = islice(iterable, start, stop)
           for i, element in enumerate(it, start):
               if element is value or element == value:
                   yield i
       else:
           # Fast path for sequences
           stop = len(iterable) if stop is None else stop
           i = start - 1
           try:
               while True:
                   yield (i := seq_index(value, i+1, stop))
           except ValueError:
               pass

   def iter_except(func, exception, first=None):
       """ Call a function repeatedly until an exception is raised.

       Converts a call-until-exception interface to an iterator interface.
       Like builtins.iter(func, sentinel) but uses an exception instead
       of a sentinel to end the loop.

       Examples:
           iter_except(functools.partial(heappop, h), IndexError)   # priority queue iterator
           iter_except(d.popitem, KeyError)                         # non-blocking dict iterator
           iter_except(d.popleft, IndexError)                       # non-blocking deque iterator
           iter_except(q.get_nowait, Queue.Empty)                   # loop over a producer Queue
           iter_except(s.pop, KeyError)                             # non-blocking set iterator

       """
       try:
           if first is not None:
               yield first()            # For database APIs needing an initial cast to db.first()
           while True:
               yield func()
       except exception:
           pass

   def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
       "Collect data into non-overlapping fixed-length chunks or blocks"
       # grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx
       # grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError
       # grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF
       args = [iter(iterable)] * n
       if incomplete == 'fill':
           return zip_longest(*args, fillvalue=fillvalue)
       if incomplete == 'strict':
           return zip(*args, strict=True)
       if incomplete == 'ignore':
           return zip(*args)
       else:
           raise ValueError('Expected fill, strict, or ignore')

   def sliding_window(iterable, n):
       # sliding_window('ABCDEFG', 4) --> ABCD BCDE CDEF DEFG
       it = iter(iterable)
       window = collections.deque(islice(it, n-1), maxlen=n)
       for x in it:
           window.append(x)
           yield tuple(window)

   def roundrobin(*iterables):
       "roundrobin('ABC', 'D', 'EF') --> A D E B F C"
       # Recipe credited to George Sakkis
       num_active = len(iterables)
       nexts = cycle(iter(it).__next__ for it in iterables)
       while num_active:
           try:
               for next in nexts:
                   yield next()
           except StopIteration:
               # Remove the iterator we just exhausted from the cycle.
               num_active -= 1
               nexts = cycle(islice(nexts, num_active))

   def partition(pred, iterable):
       """Partition entries into false entries and true entries.

       If *pred* is slow, consider wrapping it with functools.lru_cache().
       """
       # partition(is_odd, range(10)) --> 0 2 4 6 8   and  1 3 5 7 9
       t1, t2 = tee(iterable)
       return filterfalse(pred, t1), filter(pred, t2)

   def subslices(seq):
       "Return all contiguous non-empty subslices of a sequence"
       # subslices('ABCD') --> A AB ABC ABCD B BC BCD C CD D
       slices = starmap(slice, combinations(range(len(seq) + 1), 2))
       return map(operator.getitem, repeat(seq), slices)

   def before_and_after(predicate, it):
       """ Variant of takewhile() that allows complete
           access to the remainder of the iterator.

           >>> it = iter('ABCdEfGhI')
           >>> all_upper, remainder = before_and_after(str.isupper, it)
           >>> ''.join(all_upper)
           'ABC'
           >>> ''.join(remainder)     # takewhile() would lose the 'd'
           'dEfGhI'

           Note that the first iterator must be fully
           consumed before the second iterator can
           generate valid results.
       """
       it = iter(it)
       transition = []
       def true_iterator():
           for elem in it:
               if predicate(elem):
                   yield elem
               else:
                   transition.append(elem)
                   return
       def remainder_iterator():
           yield from transition
           yield from it
       return true_iterator(), remainder_iterator()

   def unique_everseen(iterable, key=None):
       "List unique elements, preserving order. Remember all elements ever seen."
       # unique_everseen('AAAABBBCCDAABBB') --> A B C D
       # unique_everseen('ABBcCAD', str.lower) --> A B c D
       seen = set()
       if key is None:
           for element in filterfalse(seen.__contains__, iterable):
               seen.add(element)
               yield element
           # For order preserving deduplication,
           # a faster but non-lazy solution is:
           #     yield from dict.fromkeys(iterable)
       else:
           for element in iterable:
               k = key(element)
               if k not in seen:
                   seen.add(k)
                   yield element
           # For use cases that allow the last matching element to be returned,
           # a faster but non-lazy solution is:
           #      t1, t2 = tee(iterable)
           #      yield from dict(zip(map(key, t1), t2)).values()

   def unique_justseen(iterable, key=None):
       "List unique elements, preserving order. Remember only the element just seen."
       # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
       # unique_justseen('ABBcCAD', str.lower) --> A B c A D
       return map(next, map(operator.itemgetter(1), groupby(iterable, key)))


The following recipes have a more mathematical flavor:

.. testcode::

   def powerset(iterable):
       "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
       s = list(iterable)
       return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

   def sum_of_squares(it):
       "Add up the squares of the input values."
       # sum_of_squares([10, 20, 30]) -> 1400
       return math.sumprod(*tee(it))

   def transpose(it):
       "Swap the rows and columns of the input."
       # transpose([(1, 2, 3), (11, 22, 33)]) --> (1, 11) (2, 22) (3, 33)
       return zip(*it, strict=True)

   def matmul(m1, m2):
       "Multiply two matrices."
       # matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) --> (49, 80), (41, 60)
       n = len(m2[0])
       return batched(starmap(math.sumprod, product(m1, transpose(m2))), n)

   def convolve(signal, kernel):
       """Discrete linear convolution of two iterables.

       The kernel is fully consumed before the calculations begin.
       The signal is consumed lazily and can be infinite.

       Convolutions are mathematically commutative.
       If the signal and kernel are swapped,
       the output will be the same.

       Article:  https://betterexplained.com/articles/intuitive-convolution/
       Video:    https://www.youtube.com/watch?v=KuXjwB4LzSA
       """
       # convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
       # convolve(data, [1/2, 0, -1/2]) --> 1st derivative estimate
       # convolve(data, [1, -2, 1]) --> 2nd derivative estimate
       kernel = tuple(kernel)[::-1]
       n = len(kernel)
       padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))
       windowed_signal = sliding_window(padded_signal, n)
       return map(math.sumprod, repeat(kernel), windowed_signal)

   def polynomial_from_roots(roots):
       """Compute a polynomial's coefficients from its roots.

          (x - 5) (x + 4) (x - 3)  expands to:   x³ -4x² -17x + 60
       """
       # polynomial_from_roots([5, -4, 3]) --> [1, -4, -17, 60]
       factors = zip(repeat(1), map(operator.neg, roots))
       return list(functools.reduce(convolve, factors, [1]))

   def polynomial_eval(coefficients, x):
       """Evaluate a polynomial at a specific value.

       Computes with better numeric stability than Horner's method.
       """
       # Evaluate x³ -4x² -17x + 60 at x = 2.5
       # polynomial_eval([1, -4, -17, 60], x=2.5) --> 8.125
       n = len(coefficients)
       if not n:
           return type(x)(0)
       powers = map(pow, repeat(x), reversed(range(n)))
       return math.sumprod(coefficients, powers)

   def polynomial_derivative(coefficients):
       """Compute the first derivative of a polynomial.

          f(x)  =  x³ -4x² -17x + 60
          f'(x) = 3x² -8x  -17
       """
       # polynomial_derivative([1, -4, -17, 60]) -> [3, -8, -17]
       n = len(coefficients)
       powers = reversed(range(1, n))
       return list(map(operator.mul, coefficients, powers))

   def sieve(n):
       "Primes less than n."
       # sieve(30) --> 2 3 5 7 11 13 17 19 23 29
       if n > 2:
           yield 2
       start = 3
       data = bytearray((0, 1)) * (n // 2)
       limit = math.isqrt(n) + 1
       for p in iter_index(data, 1, start, limit):
           yield from iter_index(data, 1, start, p*p)
           data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
           start = p*p
       yield from iter_index(data, 1, start)

   def factor(n):
       "Prime factors of n."
       # factor(99) --> 3 3 11
       # factor(1_000_000_000_000_007) --> 47 59 360620266859
       # factor(1_000_000_000_000_403) --> 1000000000000403
       for prime in sieve(math.isqrt(n) + 1):
           while not n % prime:
               yield prime
               n //= prime
               if n == 1:
                   return
       if n > 1:
           yield n

   def nth_combination(iterable, r, index):
       "Equivalent to list(combinations(iterable, r))[index]"
       pool = tuple(iterable)
       n = len(pool)
       c = math.comb(n, r)
       if index < 0:
           index += c
       if index < 0 or index >= c:
           raise IndexError
       result = []
       while r:
           c, n, r = c*r//n, n-1, r-1
           while index >= c:
               index -= c
               c, n = c*(n-r)//n, n-1
           result.append(pool[-1-n])
       return tuple(result)


.. doctest::
    :hide:

    These examples no longer appear in the docs but are guaranteed
    to keep working.

    >>> amounts = [120.15, 764.05, 823.14]
    >>> for checknum, amount in zip(count(1200), amounts):
    ...     print('Check %d is for $%.2f' % (checknum, amount))
    ...
    Check 1200 is for $120.15
    Check 1201 is for $764.05
    Check 1202 is for $823.14

    >>> import operator
    >>> for cube in map(operator.pow, range(1,4), repeat(3)):
    ...    print(cube)
    ...
    1
    8
    27

    >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura', '', 'martin', '', 'walter', '', 'samuele']
    >>> for name in islice(reportlines, 3, None, 2):
    ...    print(name.title())
    ...
    Alex
    Laura
    Martin
    Walter
    Samuele

    >>> from operator import itemgetter
    >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
    >>> di = sorted(sorted(d.items()), key=itemgetter(1))
    >>> for k, g in groupby(di, itemgetter(1)):
    ...     print(k, list(map(itemgetter(0), g)))
    ...
    1 ['a', 'c', 'e']
    2 ['b', 'd', 'f']
    3 ['g']

    # Find runs of consecutive numbers using groupby.  The key to the solution
    # is differencing with a range so that consecutive numbers all appear in
    # same group.
    >>> data = [ 1,  4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
    >>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
    ...     print(list(map(operator.itemgetter(1), g)))
    ...
    [1]
    [4, 5, 6]
    [10]
    [15, 16, 17, 18]
    [22]
    [25, 26, 27, 28]

    Now, we test all of the itertool recipes

    >>> take(10, count())
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

    >>> list(prepend(1, [2, 3, 4]))
    [1, 2, 3, 4]

    >>> list(enumerate('abc'))
    [(0, 'a'), (1, 'b'), (2, 'c')]

    >>> list(islice(tabulate(lambda x: 2*x), 4))
    [0, 2, 4, 6]

    >>> list(tail(3, 'ABCDEFG'))
    ['E', 'F', 'G']

    >>> it = iter(range(10))
    >>> consume(it, 3)
    >>> next(it)
    3
    >>> consume(it)
    >>> next(it, 'Done')
    'Done'

    >>> nth('abcde', 3)
    'd'

    >>> nth('abcde', 9) is None
    True

    >>> [all_equal(s) for s in ('', 'A', 'AAAA', 'AAAB', 'AAABA')]
    [True, True, True, False, False]

    >>> quantify(range(99), lambda x: x%2==0)
    50

    >>> quantify([True, False, False, True, True])
    3

    >>> quantify(range(12), pred=lambda x: x%2==1)
    6

    >>> a = [[1, 2, 3], [4, 5, 6]]
    >>> list(flatten(a))
    [1, 2, 3, 4, 5, 6]

    >>> list(repeatfunc(pow, 5, 2, 3))
    [8, 8, 8, 8, 8]

    >>> take(5, map(int, repeatfunc(random.random)))
    [0, 0, 0, 0, 0]

    >>> list(ncycles('abc', 3))
    ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']

    >>> sum_of_squares([10, 20, 30])
    1400

    >>> list(transpose([(1, 2, 3), (11, 22, 33)]))
    [(1, 11), (2, 22), (3, 33)]

    >>> list(matmul([(7, 5), (3, 5)], [[2, 5], [7, 9]]))
    [(49, 80), (41, 60)]
    >>> list(matmul([[2, 5], [7, 9], [3, 4]], [[7, 11, 5, 4, 9], [3, 5, 2, 6, 3]]))
    [(29, 47, 20, 38, 33), (76, 122, 53, 82, 90), (33, 53, 23, 36, 39)]

    >>> data = [20, 40, 24, 32, 20, 28, 16]
    >>> list(convolve(data, [0.25, 0.25, 0.25, 0.25]))
    [5.0, 15.0, 21.0, 29.0, 29.0, 26.0, 24.0, 16.0, 11.0, 4.0]
    >>> list(convolve(data, [1, -1]))
    [20, 20, -16, 8, -12, 8, -12, -16]
    >>> list(convolve(data, [1, -2, 1]))
    [20, 0, -36, 24, -20, 20, -20, -4, 16]

    >>> from fractions import Fraction
    >>> from decimal import Decimal
    >>> polynomial_eval([1, -4, -17, 60], x=2)
    18
    >>> x = 2; x**3 - 4*x**2 -17*x + 60
    18
    >>> polynomial_eval([1, -4, -17, 60], x=2.5)
    8.125
    >>> x = 2.5; x**3 - 4*x**2 -17*x + 60
    8.125
    >>> polynomial_eval([1, -4, -17, 60], x=Fraction(2, 3))
    Fraction(1274, 27)
    >>> x = Fraction(2, 3); x**3 - 4*x**2 -17*x + 60
    Fraction(1274, 27)
    >>> polynomial_eval([1, -4, -17, 60], x=Decimal('1.75'))
    Decimal('23.359375')
    >>> x = Decimal('1.75'); x**3 - 4*x**2 -17*x + 60
    Decimal('23.359375')
    >>> polynomial_eval([], 2)
    0
    >>> polynomial_eval([], 2.5)
    0.0
    >>> polynomial_eval([], Fraction(2, 3))
    Fraction(0, 1)
    >>> polynomial_eval([], Decimal('1.75'))
    Decimal('0')
    >>> polynomial_eval([11], 7) == 11
    True
    >>> polynomial_eval([11, 2], 7) == 11 * 7 + 2
    True

    >>> polynomial_from_roots([5, -4, 3])
    [1, -4, -17, 60]
    >>> factored = lambda x: (x - 5) * (x + 4) * (x - 3)
    >>> expanded = lambda x: x**3 -4*x**2 -17*x + 60
    >>> all(factored(x) == expanded(x) for x in range(-10, 11))
    True

    >>> polynomial_derivative([1, -4, -17, 60])
    [3, -8, -17]

    >>> list(iter_index('AABCADEAF', 'A'))
    [0, 1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'B'))
    [2]
    >>> list(iter_index('AABCADEAF', 'X'))
    []
    >>> list(iter_index('', 'X'))
    []
    >>> list(iter_index('AABCADEAF', 'A', 1))
    [1, 4, 7]
    >>> list(iter_index(iter('AABCADEAF'), 'A', 1))
    [1, 4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 2))
    [4, 7]
    >>> list(iter_index(iter('AABCADEAF'), 'A', 2))
    [4, 7]
    >>> list(iter_index('AABCADEAF', 'A', 10))
    []
    >>> list(iter_index(iter('AABCADEAF'), 'A', 10))
    []
    >>> list(iter_index('AABCADEAF', 'A', 1, 7))
    [1, 4]
    >>> list(iter_index(iter('AABCADEAF'), 'A', 1, 7))
    [1, 4]
    >>> # Verify that ValueErrors not swallowed (gh-107208)
    >>> def assert_no_value(iterable, forbidden_value):
    ...     for item in iterable:
    ...         if item == forbidden_value:
    ...             raise ValueError
    ...         yield item
    ...
    >>> list(iter_index(assert_no_value('AABCADEAF', 'B'), 'A'))
    Traceback (most recent call last):
    ...
    ValueError
    >>> # Verify that both paths can find identical NaN values
    >>> x = float('NaN')
    >>> y = float('NaN')
    >>> list(iter_index([0, x, x, y, 0], x))
    [1, 2]
    >>> list(iter_index(iter([0, x, x, y, 0]), x))
    [1, 2]
    >>> # Test list input. Lists do not support None for the stop argument
    >>> list(iter_index(list('AABCADEAF'), 'A'))
    [0, 1, 4, 7]

    >>> list(sieve(30))
    [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
    >>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
    >>> all(list(sieve(n)) == [p for p in small_primes if p < n] for n in range(101))
    True
    >>> len(list(sieve(100)))
    25
    >>> len(list(sieve(1_000)))
    168
    >>> len(list(sieve(10_000)))
    1229
    >>> len(list(sieve(100_000)))
    9592
    >>> len(list(sieve(1_000_000)))
    78498
    >>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911}  # https://oeis.org/A002997
    >>> set(sieve(10_000)).isdisjoint(carmichael)
    True

    >>> list(factor(99))                    # Code example 1
    [3, 3, 11]
    >>> list(factor(1_000_000_000_000_007)) # Code example 2
    [47, 59, 360620266859]
    >>> list(factor(1_000_000_000_000_403)) # Code example 3
    [1000000000000403]
    >>> list(factor(0))
    []
    >>> list(factor(1))
    []
    >>> list(factor(2))
    [2]
    >>> list(factor(3))
    [3]
    >>> list(factor(4))
    [2, 2]
    >>> list(factor(5))
    [5]
    >>> list(factor(6))
    [2, 3]
    >>> list(factor(7))
    [7]
    >>> list(factor(8))
    [2, 2, 2]
    >>> list(factor(9))
    [3, 3]
    >>> list(factor(10))
    [2, 5]
    >>> list(factor(128_884_753_939))       # large prime
    [128884753939]
    >>> list(factor(999953 * 999983))       # large semiprime
    [999953, 999983]
    >>> list(factor(6 ** 20)) == [2] * 20 + [3] * 20   # large power
    True
    >>> list(factor(909_909_090_909))       # large multiterm composite
    [3, 3, 7, 13, 13, 751, 113797]
    >>> math.prod([3, 3, 7, 13, 13, 751, 113797])
    909909090909
    >>> all(math.prod(factor(n)) == n for n in range(1, 2_000))
    True
    >>> all(set(factor(n)) <= set(sieve(n+1)) for n in range(2_000))
    True
    >>> all(list(factor(n)) == sorted(factor(n)) for n in range(2_000))
    True

    >>> list(flatten([('a', 'b'), (), ('c', 'd', 'e'), ('f',), ('g', 'h', 'i')]))
    ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

    >>> random.seed(85753098575309)
    >>> list(repeatfunc(random.random, 3))
    [0.16370491282496968, 0.45889608687313455, 0.3747076837820118]
    >>> list(repeatfunc(chr, 3, 65))
    ['A', 'A', 'A']
    >>> list(repeatfunc(pow, 3, 2, 5))
    [32, 32, 32]

    >>> list(grouper('abcdefg', 3, fillvalue='x'))
    [('a', 'b', 'c'), ('d', 'e', 'f'), ('g', 'x', 'x')]

    >>> it = grouper('abcdefg', 3, incomplete='strict')
    >>> next(it)
    ('a', 'b', 'c')
    >>> next(it)
    ('d', 'e', 'f')
    >>> next(it)
    Traceback (most recent call last):
      ...
    ValueError: zip() argument 2 is shorter than argument 1

    >>> list(grouper('abcdefg', n=3, incomplete='ignore'))
    [('a', 'b', 'c'), ('d', 'e', 'f')]

    >>> list(sliding_window('ABCDEFG', 1))
    [('A',), ('B',), ('C',), ('D',), ('E',), ('F',), ('G',)]
    >>> list(sliding_window('ABCDEFG', 2))
    [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'F'), ('F', 'G')]
    >>> list(sliding_window('ABCDEFG', 3))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 4))
    [('A', 'B', 'C', 'D'), ('B', 'C', 'D', 'E'), ('C', 'D', 'E', 'F'), ('D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 5))
    [('A', 'B', 'C', 'D', 'E'), ('B', 'C', 'D', 'E', 'F'), ('C', 'D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 6))
    [('A', 'B', 'C', 'D', 'E', 'F'), ('B', 'C', 'D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 7))
    [('A', 'B', 'C', 'D', 'E', 'F', 'G')]
    >>> list(sliding_window('ABCDEFG', 8))
    []
    >>> try:
    ...     list(sliding_window('ABCDEFG', -1))
    ... except ValueError:
    ...     'zero or negative n not supported'
    ...
    'zero or negative n not supported'
    >>> try:
    ...     list(sliding_window('ABCDEFG', 0))
    ... except ValueError:
    ...     'zero or negative n not supported'
    ...
    'zero or negative n not supported'

    >>> list(roundrobin('abc', 'd', 'ef'))
    ['a', 'd', 'e', 'b', 'f', 'c']

    >>> def is_odd(x):
    ...     return x % 2 == 1

    >>> evens, odds = partition(is_odd, range(10))
    >>> list(evens)
    [0, 2, 4, 6, 8]
    >>> list(odds)
    [1, 3, 5, 7, 9]

    >>> it = iter('ABCdEfGhI')
    >>> all_upper, remainder = before_and_after(str.isupper, it)
    >>> ''.join(all_upper)
    'ABC'
    >>> ''.join(remainder)
    'dEfGhI'

    >>> list(subslices('ABCD'))
    ['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D']

    >>> list(powerset([1,2,3]))
    [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

    >>> all(len(list(powerset(range(n)))) == 2**n for n in range(18))
    True

    >>> list(powerset('abcde')) == sorted(sorted(set(powerset('abcde'))), key=len)
    True

    >>> list(unique_everseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D']
    >>> list(unique_everseen('ABBCcAD', str.lower))
    ['A', 'B', 'C', 'D']
    >>> list(unique_everseen('ABBcCAD', str.lower))
    ['A', 'B', 'c', 'D']

    >>> list(unique_justseen('AAAABBBCCDAABBB'))
    ['A', 'B', 'C', 'D', 'A', 'B']
    >>> list(unique_justseen('ABBCcAD', str.lower))
    ['A', 'B', 'C', 'A', 'D']
    >>> list(unique_justseen('ABBcCAD', str.lower))
    ['A', 'B', 'c', 'A', 'D']

    >>> d = dict(a=1, b=2, c=3)
    >>> it = iter_except(d.popitem, KeyError)
    >>> d['d'] = 4
    >>> next(it)
    ('d', 4)
    >>> next(it)
    ('c', 3)
    >>> next(it)
    ('b', 2)
    >>> d['e'] = 5
    >>> next(it)
    ('e', 5)
    >>> next(it)
    ('a', 1)
    >>> next(it, 'empty')
    'empty'

    >>> first_true('ABC0DEF1', '9', str.isdigit)
    '0'

    >>> population = 'ABCDEFGH'
    >>> for r in range(len(population) + 1):
    ...     seq = list(combinations(population, r))
    ...     for i in range(len(seq)):
    ...         assert nth_combination(population, r, i) == seq[i]
    ...     for i in range(-len(seq), 0):
    ...         assert nth_combination(population, r, i) == seq[i]

    >>> iterable = 'abcde'
    >>> r = 3
    >>> combos = list(combinations(iterable, r))
    >>> all(nth_combination(iterable, r, i) == comb for i, comb in enumerate(combos))
    True


.. testcode::
    :hide:

    # Old recipes and their tests which are guaranteed to continue to work.

    def sumprod(vec1, vec2):
        "Compute a sum of products."
        return sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))

    def dotproduct(vec1, vec2):
        return sum(map(operator.mul, vec1, vec2))

    def pad_none(iterable):
        """Returns the sequence elements and then returns None indefinitely.

        Useful for emulating the behavior of the built-in map() function.
        """
        return chain(iterable, repeat(None))

    def triplewise(iterable):
        "Return overlapping triplets from an iterable"
        # triplewise('ABCDEFG') --> ABC BCD CDE DEF EFG
        for (a, _), (b, c) in pairwise(pairwise(iterable)):
            yield a, b, c


.. doctest::
    :hide:

    >>> dotproduct([1,2,3], [4,5,6])
    32

    >>> sumprod([1,2,3], [4,5,6])
    32

    >>> list(islice(pad_none('abc'), 0, 6))
    ['a', 'b', 'c', None, None, None]

    >>> list(triplewise('ABCDEFG'))
    [('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E'), ('D', 'E', 'F'), ('E', 'F', 'G')]