summaryrefslogtreecommitdiffstats
path: root/Doc/library/math.rst
blob: b3a3d44592be2d27a94ee6d508fb744e22e35c51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
:mod:`!math` --- Mathematical functions
=======================================

.. module:: math
   :synopsis: Mathematical functions (sin() etc.).

.. testsetup::

   from math import fsum

--------------

This module provides access to the mathematical functions defined by the C
standard.

These functions cannot be used with complex numbers; use the functions of the
same name from the :mod:`cmath` module if you require support for complex
numbers.  The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers.  Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.

The following functions are provided by this module.  Except when explicitly
noted otherwise, all return values are floats.


Number-theoretic and representation functions
---------------------------------------------

.. function:: ceil(x)

   Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
   If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`,
   which should return an :class:`~numbers.Integral` value.


.. function:: comb(n, k)

   Return the number of ways to choose *k* items from *n* items without repetition
   and without order.

   Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
   to zero when ``k > n``.

   Also called the binomial coefficient because it is equivalent
   to the coefficient of k-th term in polynomial expansion of
   ``(1 + x)ⁿ``.

   Raises :exc:`TypeError` if either of the arguments are not integers.
   Raises :exc:`ValueError` if either of the arguments are negative.

   .. versionadded:: 3.8


.. function:: copysign(x, y)

   Return a float with the magnitude (absolute value) of *x* but the sign of
   *y*.  On platforms that support signed zeros, ``copysign(1.0, -0.0)``
   returns *-1.0*.


.. function:: fabs(x)

   Return the absolute value of *x*.


.. function:: factorial(n)

   Return *n* factorial as an integer.  Raises :exc:`ValueError` if *n* is not integral or
   is negative.

   .. deprecated:: 3.9
      Accepting floats with integral values (like ``5.0``) is deprecated.


.. function:: floor(x)

   Return the floor of *x*, the largest integer less than or equal to *x*.  If
   *x* is not a float, delegates to :meth:`x.__floor__ <object.__floor__>`, which
   should return an :class:`~numbers.Integral` value.


.. function:: fmod(x, y)

   Return ``fmod(x, y)``, as defined by the platform C library. Note that the
   Python expression ``x % y`` may not return the same result.  The intent of the C
   standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
   precision) equal to ``x - n*y`` for some integer *n* such that the result has
   the same sign as *x* and magnitude less than ``abs(y)``.  Python's ``x % y``
   returns a result with the sign of *y* instead, and may not be exactly computable
   for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
   the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
   represented exactly as a float, and rounds to the surprising ``1e100``.  For
   this reason, function :func:`fmod` is generally preferred when working with
   floats, while Python's ``x % y`` is preferred when working with integers.


.. function:: frexp(x)

   Return the mantissa and exponent of *x* as the pair ``(m, e)``.  *m* is a float
   and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
   returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``.  This is used to "pick
   apart" the internal representation of a float in a portable way.


.. function:: fsum(iterable)

   Return an accurate floating point sum of values in the iterable.  Avoids
   loss of precision by tracking multiple intermediate partial sums.

   The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
   typical case where the rounding mode is half-even.  On some non-Windows
   builds, the underlying C library uses extended precision addition and may
   occasionally double-round an intermediate sum causing it to be off in its
   least significant bit.

   For further discussion and two alternative approaches, see the `ASPN cookbook
   recipes for accurate floating point summation
   <https://code.activestate.com/recipes/393090-binary-floating-point-summation-accurate-to-full-p/>`_\.


.. function:: gcd(*integers)

   Return the greatest common divisor of the specified integer arguments.
   If any of the arguments is nonzero, then the returned value is the largest
   positive integer that is a divisor of all arguments.  If all arguments
   are zero, then the returned value is ``0``.  ``gcd()`` without arguments
   returns ``0``.

   .. versionadded:: 3.5

   .. versionchanged:: 3.9
      Added support for an arbitrary number of arguments. Formerly, only two
      arguments were supported.


.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)

   Return ``True`` if the values *a* and *b* are close to each other and
   ``False`` otherwise.

   Whether or not two values are considered close is determined according to
   given absolute and relative tolerances.

   *rel_tol* is the relative tolerance -- it is the maximum allowed difference
   between *a* and *b*, relative to the larger absolute value of *a* or *b*.
   For example, to set a tolerance of 5%, pass ``rel_tol=0.05``.  The default
   tolerance is ``1e-09``, which assures that the two values are the same
   within about 9 decimal digits.  *rel_tol* must be greater than zero.

   *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
   zero. *abs_tol* must be at least zero.

   If no errors occur, the result will be:
   ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.

   The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
   handled according to IEEE rules.  Specifically, ``NaN`` is not considered
   close to any other value, including ``NaN``.  ``inf`` and ``-inf`` are only
   considered close to themselves.

   .. versionadded:: 3.5

   .. seealso::

      :pep:`485` -- A function for testing approximate equality


.. function:: isfinite(x)

   Return ``True`` if *x* is neither an infinity nor a NaN, and
   ``False`` otherwise.  (Note that ``0.0`` *is* considered finite.)

   .. versionadded:: 3.2


.. function:: isinf(x)

   Return ``True`` if *x* is a positive or negative infinity, and
   ``False`` otherwise.


.. function:: isnan(x)

   Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.


.. function:: isqrt(n)

   Return the integer square root of the nonnegative integer *n*. This is the
   floor of the exact square root of *n*, or equivalently the greatest integer
   *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.

   For some applications, it may be more convenient to have the least integer
   *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
   the exact square root of *n*. For positive *n*, this can be computed using
   ``a = 1 + isqrt(n - 1)``.

   .. versionadded:: 3.8


.. function:: lcm(*integers)

   Return the least common multiple of the specified integer arguments.
   If all arguments are nonzero, then the returned value is the smallest
   positive integer that is a multiple of all arguments.  If any of the arguments
   is zero, then the returned value is ``0``.  ``lcm()`` without arguments
   returns ``1``.

   .. versionadded:: 3.9


.. function:: ldexp(x, i)

   Return ``x * (2**i)``.  This is essentially the inverse of function
   :func:`frexp`.


.. function:: modf(x)

   Return the fractional and integer parts of *x*.  Both results carry the sign
   of *x* and are floats.


.. function:: nextafter(x, y, steps=1)

   Return the floating-point value *steps* steps after *x* towards *y*.

   If *x* is equal to *y*, return *y*, unless *steps* is zero.

   Examples:

   * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity.
   * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity.
   * ``math.nextafter(x, 0.0)`` goes towards zero.
   * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero.

   See also :func:`math.ulp`.

   .. versionadded:: 3.9

   .. versionchanged:: 3.12
      Added the *steps* argument.

.. function:: perm(n, k=None)

   Return the number of ways to choose *k* items from *n* items
   without repetition and with order.

   Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
   to zero when ``k > n``.

   If *k* is not specified or is None, then *k* defaults to *n*
   and the function returns ``n!``.

   Raises :exc:`TypeError` if either of the arguments are not integers.
   Raises :exc:`ValueError` if either of the arguments are negative.

   .. versionadded:: 3.8


.. function:: prod(iterable, *, start=1)

   Calculate the product of all the elements in the input *iterable*.
   The default *start* value for the product is ``1``.

   When the iterable is empty, return the start value.  This function is
   intended specifically for use with numeric values and may reject
   non-numeric types.

   .. versionadded:: 3.8


.. function:: remainder(x, y)

   Return the IEEE 754-style remainder of *x* with respect to *y*.  For
   finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
   where ``n`` is the closest integer to the exact value of the quotient ``x /
   y``.  If ``x / y`` is exactly halfway between two consecutive integers, the
   nearest *even* integer is used for ``n``.  The remainder ``r = remainder(x,
   y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.

   Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
   *x* for any finite *x*, and ``remainder(x, 0)`` and
   ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
   If the result of the remainder operation is zero, that zero will have
   the same sign as *x*.

   On platforms using IEEE 754 binary floating-point, the result of this
   operation is always exactly representable: no rounding error is introduced.

   .. versionadded:: 3.7


.. function:: sumprod(p, q)

   Return the sum of products of values from two iterables *p* and *q*.

   Raises :exc:`ValueError` if the inputs do not have the same length.

   Roughly equivalent to::

       sum(itertools.starmap(operator.mul, zip(p, q, strict=True)))

   For float and mixed int/float inputs, the intermediate products
   and sums are computed with extended precision.

   .. versionadded:: 3.12


.. function:: trunc(x)

   Return *x* with the fractional part
   removed, leaving the integer part.  This rounds toward 0: ``trunc()`` is
   equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil`
   for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__
   <object.__trunc__>`, which should return an :class:`~numbers.Integral` value.

.. function:: ulp(x)

   Return the value of the least significant bit of the float *x*:

   * If *x* is a NaN (not a number), return *x*.
   * If *x* is negative, return ``ulp(-x)``.
   * If *x* is a positive infinity, return *x*.
   * If *x* is equal to zero, return the smallest positive
     *denormalized* representable float (smaller than the minimum positive
     *normalized* float, :data:`sys.float_info.min <sys.float_info>`).
   * If *x* is equal to the largest positive representable float,
     return the value of the least significant bit of *x*, such that the first
     float smaller than *x* is ``x - ulp(x)``.
   * Otherwise (*x* is a positive finite number), return the value of the least
     significant bit of *x*, such that the first float bigger than *x*
     is ``x + ulp(x)``.

   ULP stands for "Unit in the Last Place".

   See also :func:`math.nextafter` and :data:`sys.float_info.epsilon
   <sys.float_info>`.

   .. versionadded:: 3.9


Note that :func:`frexp` and :func:`modf` have a different call/return pattern
than their C equivalents: they take a single argument and return a pair of
values, rather than returning their second return value through an 'output
parameter' (there is no such thing in Python).

For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
necessarily has no fractional bits.


Power and logarithmic functions
-------------------------------

.. function:: cbrt(x)

   Return the cube root of *x*.

   .. versionadded:: 3.11


.. function:: exp(x)

   Return *e* raised to the power *x*, where *e* = 2.718281... is the base
   of natural logarithms.  This is usually more accurate than ``math.e ** x``
   or ``pow(math.e, x)``.


.. function:: exp2(x)

   Return *2* raised to the power *x*.

   .. versionadded:: 3.11


.. function:: expm1(x)

   Return *e* raised to the power *x*, minus 1.  Here *e* is the base of natural
   logarithms.  For small floats *x*, the subtraction in ``exp(x) - 1``
   can result in a `significant loss of precision
   <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
   function provides a way to compute this quantity to full precision:

      >>> from math import exp, expm1
      >>> exp(1e-5) - 1  # gives result accurate to 11 places
      1.0000050000069649e-05
      >>> expm1(1e-5)    # result accurate to full precision
      1.0000050000166668e-05

   .. versionadded:: 3.2


.. function:: log(x[, base])

   With one argument, return the natural logarithm of *x* (to base *e*).

   With two arguments, return the logarithm of *x* to the given *base*,
   calculated as ``log(x)/log(base)``.


.. function:: log1p(x)

   Return the natural logarithm of *1+x* (base *e*). The
   result is calculated in a way which is accurate for *x* near zero.


.. function:: log2(x)

   Return the base-2 logarithm of *x*. This is usually more accurate than
   ``log(x, 2)``.

   .. versionadded:: 3.3

   .. seealso::

      :meth:`int.bit_length` returns the number of bits necessary to represent
      an integer in binary, excluding the sign and leading zeros.


.. function:: log10(x)

   Return the base-10 logarithm of *x*.  This is usually more accurate
   than ``log(x, 10)``.


.. function:: pow(x, y)

   Return ``x`` raised to the power ``y``.  Exceptional cases follow
   the IEEE 754 standard as far as possible.  In particular,
   ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
   when ``x`` is a zero or a NaN.  If both ``x`` and ``y`` are finite,
   ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
   is undefined, and raises :exc:`ValueError`.

   Unlike the built-in ``**`` operator, :func:`math.pow` converts both
   its arguments to type :class:`float`.  Use ``**`` or the built-in
   :func:`pow` function for computing exact integer powers.

   .. versionchanged:: 3.11
      The special cases ``pow(0.0, -inf)`` and ``pow(-0.0, -inf)`` were
      changed to return ``inf`` instead of raising :exc:`ValueError`,
      for consistency with IEEE 754.


.. function:: sqrt(x)

   Return the square root of *x*.


Trigonometric functions
-----------------------

.. function:: acos(x)

   Return the arc cosine of *x*, in radians. The result is between ``0`` and
   ``pi``.


.. function:: asin(x)

   Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
   ``pi/2``.


.. function:: atan(x)

   Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
   ``pi/2``.


.. function:: atan2(y, x)

   Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
   The vector in the plane from the origin to point ``(x, y)`` makes this angle
   with the positive X axis. The point of :func:`atan2` is that the signs of both
   inputs are known to it, so it can compute the correct quadrant for the angle.
   For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
   -1)`` is ``-3*pi/4``.


.. function:: cos(x)

   Return the cosine of *x* radians.


.. function:: dist(p, q)

   Return the Euclidean distance between two points *p* and *q*, each
   given as a sequence (or iterable) of coordinates.  The two points
   must have the same dimension.

   Roughly equivalent to::

       sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

   .. versionadded:: 3.8


.. function:: hypot(*coordinates)

   Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
   This is the length of the vector from the origin to the point
   given by the coordinates.

   For a two dimensional point ``(x, y)``, this is equivalent to computing
   the hypotenuse of a right triangle using the Pythagorean theorem,
   ``sqrt(x*x + y*y)``.

   .. versionchanged:: 3.8
      Added support for n-dimensional points. Formerly, only the two
      dimensional case was supported.

   .. versionchanged:: 3.10
      Improved the algorithm's accuracy so that the maximum error is
      under 1 ulp (unit in the last place).  More typically, the result
      is almost always correctly rounded to within 1/2 ulp.


.. function:: sin(x)

   Return the sine of *x* radians.


.. function:: tan(x)

   Return the tangent of *x* radians.


Angular conversion
------------------

.. function:: degrees(x)

   Convert angle *x* from radians to degrees.


.. function:: radians(x)

   Convert angle *x* from degrees to radians.


Hyperbolic functions
--------------------

`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_functions>`_
are analogs of trigonometric functions that are based on hyperbolas
instead of circles.

.. function:: acosh(x)

   Return the inverse hyperbolic cosine of *x*.


.. function:: asinh(x)

   Return the inverse hyperbolic sine of *x*.


.. function:: atanh(x)

   Return the inverse hyperbolic tangent of *x*.


.. function:: cosh(x)

   Return the hyperbolic cosine of *x*.


.. function:: sinh(x)

   Return the hyperbolic sine of *x*.


.. function:: tanh(x)

   Return the hyperbolic tangent of *x*.


Special functions
-----------------

.. function:: erf(x)

   Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
   *x*.

   The :func:`erf` function can be used to compute traditional statistical
   functions such as the `cumulative standard normal distribution
   <https://en.wikipedia.org/wiki/Cumulative_distribution_function>`_::

     def phi(x):
         'Cumulative distribution function for the standard normal distribution'
         return (1.0 + erf(x / sqrt(2.0))) / 2.0

   .. versionadded:: 3.2


.. function:: erfc(x)

   Return the complementary error function at *x*.  The `complementary error
   function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
   ``1.0 - erf(x)``.  It is used for large values of *x* where a subtraction
   from one would cause a `loss of significance
   <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.

   .. versionadded:: 3.2


.. function:: gamma(x)

   Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
   *x*.

   .. versionadded:: 3.2


.. function:: lgamma(x)

   Return the natural logarithm of the absolute value of the Gamma
   function at *x*.

   .. versionadded:: 3.2


Constants
---------

.. data:: pi

   The mathematical constant *π* = 3.141592..., to available precision.


.. data:: e

   The mathematical constant *e* = 2.718281..., to available precision.


.. data:: tau

   The mathematical constant *τ* = 6.283185..., to available precision.
   Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
   its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
   Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
   `Tau day <https://tauday.com/>`_ by eating twice as much pie!

   .. versionadded:: 3.6


.. data:: inf

   A floating-point positive infinity.  (For negative infinity, use
   ``-math.inf``.)  Equivalent to the output of ``float('inf')``.

   .. versionadded:: 3.5


.. data:: nan

   A floating-point "not a number" (NaN) value. Equivalent to the output of
   ``float('nan')``. Due to the requirements of the `IEEE-754 standard
   <https://en.wikipedia.org/wiki/IEEE_754>`_, ``math.nan`` and ``float('nan')`` are
   not considered to equal to any other numeric value, including themselves. To check
   whether a number is a NaN, use the :func:`isnan` function to test
   for NaNs instead of ``is`` or ``==``.
   Example:

      >>> import math
      >>> math.nan == math.nan
      False
      >>> float('nan') == float('nan')
      False
      >>> math.isnan(math.nan)
      True
      >>> math.isnan(float('nan'))
      True

   .. versionadded:: 3.5

   .. versionchanged:: 3.11
      It is now always available.


.. impl-detail::

   The :mod:`math` module consists mostly of thin wrappers around the platform C
   math library functions.  Behavior in exceptional cases follows Annex F of
   the C99 standard where appropriate.  The current implementation will raise
   :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
   (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
   and :exc:`OverflowError` for results that overflow (for example,
   ``exp(1000.0)``).  A NaN will not be returned from any of the functions
   above unless one or more of the input arguments was a NaN; in that case,
   most functions will return a NaN, but (again following C99 Annex F) there
   are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
   ``hypot(float('nan'), float('inf'))``.

   Note that Python makes no effort to distinguish signaling NaNs from
   quiet NaNs, and behavior for signaling NaNs remains unspecified.
   Typical behavior is to treat all NaNs as though they were quiet.


.. seealso::

   Module :mod:`cmath`
      Complex number versions of many of these functions.

.. |nbsp| unicode:: 0xA0
   :trim: