summaryrefslogtreecommitdiffstats
path: root/Doc/library/stdtypes.rst
blob: 6701d794b5111bc16456c47c579016314849b29c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
.. XXX: reference/datamodel and this have quite a few overlaps!


.. _bltin-types:

**************
Built-in Types
**************

The following sections describe the standard types that are built into the
interpreter.

.. index:: pair: built-in; types

The principal built-in types are numerics, sequences, mappings, classes,
instances and exceptions.

Some collection classes are mutable.  The methods that add, subtract, or
rearrange their members in place, and don't return a specific item, never return
the collection instance itself but ``None``.

Some operations are supported by several object types; in particular,
practically all objects can be compared for equality, tested for truth
value, and converted to a string (with the :func:`repr` function or the
slightly different :func:`str` function).  The latter function is implicitly
used when an object is written by the :func:`print` function.


.. _truth:

Truth Value Testing
===================

.. index::
   statement: if
   statement: while
   pair: truth; value
   pair: Boolean; operations
   single: false

Any object can be tested for truth value, for use in an :keyword:`if` or
:keyword:`while` condition or as operand of the Boolean operations below.

.. index:: single: true

By default, an object is considered true unless its class defines either a
:meth:`__bool__` method that returns ``False`` or a :meth:`__len__` method that
returns zero, when called with the object. [1]_  Here are most of the built-in
objects considered false:

  .. index::
     single: None (Built-in object)
     single: False (Built-in object)

* constants defined to be false: ``None`` and ``False``.

* zero of any numeric type: ``0``, ``0.0``, ``0j``, ``Decimal(0)``,
  ``Fraction(0, 1)``

* empty sequences and collections: ``''``, ``()``, ``[]``, ``{}``, ``set()``,
  ``range(0)``

.. index::
   operator: or
   operator: and
   single: False
   single: True

Operations and built-in functions that have a Boolean result always return ``0``
or ``False`` for false and ``1`` or ``True`` for true, unless otherwise stated.
(Important exception: the Boolean operations ``or`` and ``and`` always return
one of their operands.)


.. _boolean:

Boolean Operations --- :keyword:`!and`, :keyword:`!or`, :keyword:`!not`
=======================================================================

.. index:: pair: Boolean; operations

These are the Boolean operations, ordered by ascending priority:

+-------------+---------------------------------+-------+
| Operation   | Result                          | Notes |
+=============+=================================+=======+
| ``x or y``  | if *x* is false, then *y*, else | \(1)  |
|             | *x*                             |       |
+-------------+---------------------------------+-------+
| ``x and y`` | if *x* is false, then *x*, else | \(2)  |
|             | *y*                             |       |
+-------------+---------------------------------+-------+
| ``not x``   | if *x* is false, then ``True``, | \(3)  |
|             | else ``False``                  |       |
+-------------+---------------------------------+-------+

.. index::
   operator: and
   operator: or
   operator: not

Notes:

(1)
   This is a short-circuit operator, so it only evaluates the second
   argument if the first one is false.

(2)
   This is a short-circuit operator, so it only evaluates the second
   argument if the first one is true.

(3)
   ``not`` has a lower priority than non-Boolean operators, so ``not a == b`` is
   interpreted as ``not (a == b)``, and ``a == not b`` is a syntax error.


.. _stdcomparisons:

Comparisons
===========

.. index::
   pair: chaining; comparisons
   pair: operator; comparison
   operator: ==
   operator: < (less)
   operator: <=
   operator: > (greater)
   operator: >=
   operator: !=
   operator: is
   operator: is not

There are eight comparison operations in Python.  They all have the same
priority (which is higher than that of the Boolean operations).  Comparisons can
be chained arbitrarily; for example, ``x < y <= z`` is equivalent to ``x < y and
y <= z``, except that *y* is evaluated only once (but in both cases *z* is not
evaluated at all when ``x < y`` is found to be false).

This table summarizes the comparison operations:

+------------+-------------------------+
| Operation  | Meaning                 |
+============+=========================+
| ``<``      | strictly less than      |
+------------+-------------------------+
| ``<=``     | less than or equal      |
+------------+-------------------------+
| ``>``      | strictly greater than   |
+------------+-------------------------+
| ``>=``     | greater than or equal   |
+------------+-------------------------+
| ``==``     | equal                   |
+------------+-------------------------+
| ``!=``     | not equal               |
+------------+-------------------------+
| ``is``     | object identity         |
+------------+-------------------------+
| ``is not`` | negated object identity |
+------------+-------------------------+

.. index::
   pair: object; numeric
   pair: objects; comparing

Objects of different types, except different numeric types, never compare equal.
The ``==`` operator is always defined but for some object types (for example,
class objects) is equivalent to :keyword:`is`. The ``<``, ``<=``, ``>`` and ``>=``
operators are only defined where they make sense; for example, they raise a
:exc:`TypeError` exception when one of the arguments is a complex number.

.. index::
   single: __eq__() (instance method)
   single: __ne__() (instance method)
   single: __lt__() (instance method)
   single: __le__() (instance method)
   single: __gt__() (instance method)
   single: __ge__() (instance method)

Non-identical instances of a class normally compare as non-equal unless the
class defines the :meth:`~object.__eq__` method.

Instances of a class cannot be ordered with respect to other instances of the
same class, or other types of object, unless the class defines enough of the
methods :meth:`~object.__lt__`, :meth:`~object.__le__`, :meth:`~object.__gt__`, and
:meth:`~object.__ge__` (in general, :meth:`~object.__lt__` and
:meth:`~object.__eq__` are sufficient, if you want the conventional meanings of the
comparison operators).

The behavior of the :keyword:`is` and :keyword:`is not` operators cannot be
customized; also they can be applied to any two objects and never raise an
exception.

.. index::
   operator: in
   operator: not in

Two more operations with the same syntactic priority, :keyword:`in` and
:keyword:`not in`, are supported by types that are :term:`iterable` or
implement the :meth:`__contains__` method.

.. _typesnumeric:

Numeric Types --- :class:`int`, :class:`float`, :class:`complex`
================================================================

.. index::
   object: numeric
   object: Boolean
   object: integer
   object: floating point
   object: complex number
   pair: C; language

There are three distinct numeric types: :dfn:`integers`, :dfn:`floating
point numbers`, and :dfn:`complex numbers`.  In addition, Booleans are a
subtype of integers.  Integers have unlimited precision.  Floating point
numbers are usually implemented using :c:expr:`double` in C; information
about the precision and internal representation of floating point
numbers for the machine on which your program is running is available
in :data:`sys.float_info`.  Complex numbers have a real and imaginary
part, which are each a floating point number.  To extract these parts
from a complex number *z*, use ``z.real`` and ``z.imag``. (The standard
library includes the additional numeric types :mod:`fractions.Fraction`, for
rationals, and :mod:`decimal.Decimal`, for floating-point numbers with
user-definable precision.)

.. index::
   pair: numeric; literals
   pair: integer; literals
   pair: floating point; literals
   pair: complex number; literals
   pair: hexadecimal; literals
   pair: octal; literals
   pair: binary; literals

Numbers are created by numeric literals or as the result of built-in functions
and operators.  Unadorned integer literals (including hex, octal and binary
numbers) yield integers.  Numeric literals containing a decimal point or an
exponent sign yield floating point numbers.  Appending ``'j'`` or ``'J'`` to a
numeric literal yields an imaginary number (a complex number with a zero real
part) which you can add to an integer or float to get a complex number with real
and imaginary parts.

.. index::
   single: arithmetic
   builtin: int
   builtin: float
   builtin: complex
   single: operator; + (plus)
   single: + (plus); unary operator
   single: + (plus); binary operator
   single: operator; - (minus)
   single: - (minus); unary operator
   single: - (minus); binary operator
   operator: * (asterisk)
   operator: / (slash)
   operator: //
   operator: % (percent)
   operator: **

Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the "narrower" type is
widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. A comparison between numbers of different types
behaves as though the exact values of those numbers were being compared. [2]_

The constructors :func:`int`, :func:`float`, and
:func:`complex` can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of
the operations, see :ref:`operator-summary`):

+---------------------+---------------------------------+---------+--------------------+
| Operation           | Result                          | Notes   | Full documentation |
+=====================+=================================+=========+====================+
| ``x + y``           | sum of *x* and *y*              |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``x - y``           | difference of *x* and *y*       |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``x * y``           | product of *x* and *y*          |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``x / y``           | quotient of *x* and *y*         |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``x // y``          | floored quotient of *x* and     | \(1)    |                    |
|                     | *y*                             |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``x % y``           | remainder of ``x / y``          | \(2)    |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``-x``              | *x* negated                     |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``+x``              | *x* unchanged                   |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``abs(x)``          | absolute value or magnitude of  |         | :func:`abs`        |
|                     | *x*                             |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``int(x)``          | *x* converted to integer        | \(3)\(6)| :func:`int`        |
+---------------------+---------------------------------+---------+--------------------+
| ``float(x)``        | *x* converted to floating point | \(4)\(6)| :func:`float`      |
+---------------------+---------------------------------+---------+--------------------+
| ``complex(re, im)`` | a complex number with real part | \(6)    | :func:`complex`    |
|                     | *re*, imaginary part *im*.      |         |                    |
|                     | *im* defaults to zero.          |         |                    |
+---------------------+---------------------------------+---------+--------------------+
|  ``c.conjugate()``  | conjugate of the complex number |         |                    |
|                     | *c*                             |         |                    |
+---------------------+---------------------------------+---------+--------------------+
| ``divmod(x, y)``    | the pair ``(x // y, x % y)``    | \(2)    | :func:`divmod`     |
+---------------------+---------------------------------+---------+--------------------+
| ``pow(x, y)``       | *x* to the power *y*            | \(5)    | :func:`pow`        |
+---------------------+---------------------------------+---------+--------------------+
| ``x ** y``          | *x* to the power *y*            | \(5)    |                    |
+---------------------+---------------------------------+---------+--------------------+

.. index::
   triple: operations on; numeric; types
   single: conjugate() (complex number method)

Notes:

(1)
   Also referred to as integer division.  The resultant value is a whole
   integer, though the result's type is not necessarily int.  The result is
   always rounded towards minus infinity: ``1//2`` is ``0``, ``(-1)//2`` is
   ``-1``, ``1//(-2)`` is ``-1``, and ``(-1)//(-2)`` is ``0``.

(2)
   Not for complex numbers.  Instead convert to floats using :func:`abs` if
   appropriate.

(3)
   .. index::
      module: math
      single: floor() (in module math)
      single: ceil() (in module math)
      single: trunc() (in module math)
      pair: numeric; conversions
      pair: C; language

   Conversion from floating point to integer may round or truncate
   as in C; see functions :func:`math.floor` and :func:`math.ceil` for
   well-defined conversions.

(4)
   float also accepts the strings "nan" and "inf" with an optional prefix "+"
   or "-" for Not a Number (NaN) and positive or negative infinity.

(5)
   Python defines ``pow(0, 0)`` and ``0 ** 0`` to be ``1``, as is common for
   programming languages.

(6)
   The numeric literals accepted include the digits ``0`` to ``9`` or any
   Unicode equivalent (code points with the ``Nd`` property).

   See https://www.unicode.org/Public/15.0.0/ucd/extracted/DerivedNumericType.txt
   for a complete list of code points with the ``Nd`` property.


All :class:`numbers.Real` types (:class:`int` and :class:`float`) also include
the following operations:

+--------------------+---------------------------------------------+
| Operation          | Result                                      |
+====================+=============================================+
| :func:`math.trunc(\| *x* truncated to :class:`~numbers.Integral` |
| x) <math.trunc>`   |                                             |
+--------------------+---------------------------------------------+
| :func:`round(x[,   | *x* rounded to *n* digits,                  |
| n]) <round>`       | rounding half to even. If *n* is            |
|                    | omitted, it defaults to 0.                  |
+--------------------+---------------------------------------------+
| :func:`math.floor(\| the greatest :class:`~numbers.Integral`     |
| x) <math.floor>`   | <= *x*                                      |
+--------------------+---------------------------------------------+
| :func:`math.ceil(x)| the least :class:`~numbers.Integral` >= *x* |
| <math.ceil>`       |                                             |
+--------------------+---------------------------------------------+

For additional numeric operations see the :mod:`math` and :mod:`cmath`
modules.

.. XXXJH exceptions: overflow (when? what operations?) zerodivision


.. _bitstring-ops:

Bitwise Operations on Integer Types
-----------------------------------

.. index::
   triple: operations on; integer; types
   pair: bitwise; operations
   pair: shifting; operations
   pair: masking; operations
   operator: | (vertical bar)
   operator: ^ (caret)
   operator: & (ampersand)
   operator: <<
   operator: >>
   operator: ~ (tilde)

Bitwise operations only make sense for integers. The result of bitwise
operations is calculated as though carried out in two's complement with an
infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric
operations and higher than the comparisons; the unary operation ``~`` has the
same priority as the other unary numeric operations (``+`` and ``-``).

This table lists the bitwise operations sorted in ascending priority:

+------------+--------------------------------+----------+
| Operation  | Result                         | Notes    |
+============+================================+==========+
| ``x | y``  | bitwise :dfn:`or` of *x* and   | \(4)     |
|            | *y*                            |          |
+------------+--------------------------------+----------+
| ``x ^ y``  | bitwise :dfn:`exclusive or` of | \(4)     |
|            | *x* and *y*                    |          |
+------------+--------------------------------+----------+
| ``x & y``  | bitwise :dfn:`and` of *x* and  | \(4)     |
|            | *y*                            |          |
+------------+--------------------------------+----------+
| ``x << n`` | *x* shifted left by *n* bits   | (1)(2)   |
+------------+--------------------------------+----------+
| ``x >> n`` | *x* shifted right by *n* bits  | (1)(3)   |
+------------+--------------------------------+----------+
| ``~x``     | the bits of *x* inverted       |          |
+------------+--------------------------------+----------+

Notes:

(1)
   Negative shift counts are illegal and cause a :exc:`ValueError` to be raised.

(2)
   A left shift by *n* bits is equivalent to multiplication by ``pow(2, n)``.

(3)
   A right shift by *n* bits is equivalent to floor division by ``pow(2, n)``.

(4)
   Performing these calculations with at least one extra sign extension bit in
   a finite two's complement representation (a working bit-width of
   ``1 + max(x.bit_length(), y.bit_length())`` or more) is sufficient to get the
   same result as if there were an infinite number of sign bits.


Additional Methods on Integer Types
-----------------------------------

The int type implements the :class:`numbers.Integral` :term:`abstract base
class`. In addition, it provides a few more methods:

.. method:: int.bit_length()

    Return the number of bits necessary to represent an integer in binary,
    excluding the sign and leading zeros::

        >>> n = -37
        >>> bin(n)
        '-0b100101'
        >>> n.bit_length()
        6

    More precisely, if ``x`` is nonzero, then ``x.bit_length()`` is the
    unique positive integer ``k`` such that ``2**(k-1) <= abs(x) < 2**k``.
    Equivalently, when ``abs(x)`` is small enough to have a correctly
    rounded logarithm, then ``k = 1 + int(log(abs(x), 2))``.
    If ``x`` is zero, then ``x.bit_length()`` returns ``0``.

    Equivalent to::

        def bit_length(self):
            s = bin(self)       # binary representation:  bin(-37) --> '-0b100101'
            s = s.lstrip('-0b') # remove leading zeros and minus sign
            return len(s)       # len('100101') --> 6

    .. versionadded:: 3.1

.. method:: int.bit_count()

    Return the number of ones in the binary representation of the absolute
    value of the integer. This is also known as the population count.
    Example::

        >>> n = 19
        >>> bin(n)
        '0b10011'
        >>> n.bit_count()
        3
        >>> (-n).bit_count()
        3

    Equivalent to::

        def bit_count(self):
            return bin(self).count("1")

    .. versionadded:: 3.10

.. method:: int.to_bytes(length=1, byteorder='big', *, signed=False)

    Return an array of bytes representing an integer.

        >>> (1024).to_bytes(2, byteorder='big')
        b'\x04\x00'
        >>> (1024).to_bytes(10, byteorder='big')
        b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'
        >>> (-1024).to_bytes(10, byteorder='big', signed=True)
        b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'
        >>> x = 1000
        >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
        b'\xe8\x03'

    The integer is represented using *length* bytes, and defaults to 1.  An
    :exc:`OverflowError` is raised if the integer is not representable with
    the given number of bytes.

    The *byteorder* argument determines the byte order used to represent the
    integer, and defaults to ``"big"``.  If *byteorder* is
    ``"big"``, the most significant byte is at the beginning of the byte
    array.  If *byteorder* is ``"little"``, the most significant byte is at
    the end of the byte array.

    The *signed* argument determines whether two's complement is used to
    represent the integer.  If *signed* is ``False`` and a negative integer is
    given, an :exc:`OverflowError` is raised. The default value for *signed*
    is ``False``.

    The default values can be used to conveniently turn an integer into a
    single byte object.  However, when using the default arguments, don't try
    to convert a value greater than 255 or you'll get an :exc:`OverflowError`::

        >>> (65).to_bytes()
        b'A'

    Equivalent to::

        def to_bytes(n, length=1, byteorder='big', signed=False):
            if byteorder == 'little':
                order = range(length)
            elif byteorder == 'big':
                order = reversed(range(length))
            else:
                raise ValueError("byteorder must be either 'little' or 'big'")

            return bytes((n >> i*8) & 0xff for i in order)

    .. versionadded:: 3.2
    .. versionchanged:: 3.11
       Added default argument values for ``length`` and ``byteorder``.

.. classmethod:: int.from_bytes(bytes, byteorder='big', *, signed=False)

    Return the integer represented by the given array of bytes.

        >>> int.from_bytes(b'\x00\x10', byteorder='big')
        16
        >>> int.from_bytes(b'\x00\x10', byteorder='little')
        4096
        >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True)
        -1024
        >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False)
        64512
        >>> int.from_bytes([255, 0, 0], byteorder='big')
        16711680

    The argument *bytes* must either be a :term:`bytes-like object` or an
    iterable producing bytes.

    The *byteorder* argument determines the byte order used to represent the
    integer, and defaults to ``"big"``.  If *byteorder* is
    ``"big"``, the most significant byte is at the beginning of the byte
    array.  If *byteorder* is ``"little"``, the most significant byte is at
    the end of the byte array.  To request the native byte order of the host
    system, use :data:`sys.byteorder` as the byte order value.

    The *signed* argument indicates whether two's complement is used to
    represent the integer.

    Equivalent to::

        def from_bytes(bytes, byteorder='big', signed=False):
            if byteorder == 'little':
                little_ordered = list(bytes)
            elif byteorder == 'big':
                little_ordered = list(reversed(bytes))
            else:
                raise ValueError("byteorder must be either 'little' or 'big'")

            n = sum(b << i*8 for i, b in enumerate(little_ordered))
            if signed and little_ordered and (little_ordered[-1] & 0x80):
                n -= 1 << 8*len(little_ordered)

            return n

    .. versionadded:: 3.2
    .. versionchanged:: 3.11
       Added default argument value for ``byteorder``.

.. method:: int.as_integer_ratio()

   Return a pair of integers whose ratio is exactly equal to the original
   integer and with a positive denominator. The integer ratio of integers
   (whole numbers) is always the integer as the numerator and ``1`` as the
   denominator.

   .. versionadded:: 3.8

Additional Methods on Float
---------------------------

The float type implements the :class:`numbers.Real` :term:`abstract base
class`. float also has the following additional methods.

.. method:: float.as_integer_ratio()

   Return a pair of integers whose ratio is exactly equal to the
   original float and with a positive denominator.  Raises
   :exc:`OverflowError` on infinities and a :exc:`ValueError` on
   NaNs.

.. method:: float.is_integer()

   Return ``True`` if the float instance is finite with integral
   value, and ``False`` otherwise::

      >>> (-2.0).is_integer()
      True
      >>> (3.2).is_integer()
      False

Two methods support conversion to
and from hexadecimal strings.  Since Python's floats are stored
internally as binary numbers, converting a float to or from a
*decimal* string usually involves a small rounding error.  In
contrast, hexadecimal strings allow exact representation and
specification of floating-point numbers.  This can be useful when
debugging, and in numerical work.


.. method:: float.hex()

   Return a representation of a floating-point number as a hexadecimal
   string.  For finite floating-point numbers, this representation
   will always include a leading ``0x`` and a trailing ``p`` and
   exponent.


.. classmethod:: float.fromhex(s)

   Class method to return the float represented by a hexadecimal
   string *s*.  The string *s* may have leading and trailing
   whitespace.


Note that :meth:`float.hex` is an instance method, while
:meth:`float.fromhex` is a class method.

A hexadecimal string takes the form::

   [sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional ``sign`` may by either ``+`` or ``-``, ``integer``
and ``fraction`` are strings of hexadecimal digits, and ``exponent``
is a decimal integer with an optional leading sign.  Case is not
significant, and there must be at least one hexadecimal digit in
either the integer or the fraction.  This syntax is similar to the
syntax specified in section 6.4.4.2 of the C99 standard, and also to
the syntax used in Java 1.5 onwards.  In particular, the output of
:meth:`float.hex` is usable as a hexadecimal floating-point literal in
C or Java code, and hexadecimal strings produced by C's ``%a`` format
character or Java's ``Double.toHexString`` are accepted by
:meth:`float.fromhex`.


Note that the exponent is written in decimal rather than hexadecimal,
and that it gives the power of 2 by which to multiply the coefficient.
For example, the hexadecimal string ``0x3.a7p10`` represents the
floating-point number ``(3 + 10./16 + 7./16**2) * 2.0**10``, or
``3740.0``::

   >>> float.fromhex('0x3.a7p10')
   3740.0


Applying the reverse conversion to ``3740.0`` gives a different
hexadecimal string representing the same number::

   >>> float.hex(3740.0)
   '0x1.d380000000000p+11'


.. _numeric-hash:

Hashing of numeric types
------------------------

For numbers ``x`` and ``y``, possibly of different types, it's a requirement
that ``hash(x) == hash(y)`` whenever ``x == y`` (see the :meth:`~object.__hash__`
method documentation for more details).  For ease of implementation and
efficiency across a variety of numeric types (including :class:`int`,
:class:`float`, :class:`decimal.Decimal` and :class:`fractions.Fraction`)
Python's hash for numeric types is based on a single mathematical function
that's defined for any rational number, and hence applies to all instances of
:class:`int` and :class:`fractions.Fraction`, and all finite instances of
:class:`float` and :class:`decimal.Decimal`.  Essentially, this function is
given by reduction modulo ``P`` for a fixed prime ``P``.  The value of ``P`` is
made available to Python as the :attr:`modulus` attribute of
:data:`sys.hash_info`.

.. impl-detail::

   Currently, the prime used is ``P = 2**31 - 1`` on machines with 32-bit C
   longs and ``P = 2**61 - 1`` on machines with 64-bit C longs.

Here are the rules in detail:

- If ``x = m / n`` is a nonnegative rational number and ``n`` is not divisible
  by ``P``, define ``hash(x)`` as ``m * invmod(n, P) % P``, where ``invmod(n,
  P)`` gives the inverse of ``n`` modulo ``P``.

- If ``x = m / n`` is a nonnegative rational number and ``n`` is
  divisible by ``P`` (but ``m`` is not) then ``n`` has no inverse
  modulo ``P`` and the rule above doesn't apply; in this case define
  ``hash(x)`` to be the constant value ``sys.hash_info.inf``.

- If ``x = m / n`` is a negative rational number define ``hash(x)``
  as ``-hash(-x)``.  If the resulting hash is ``-1``, replace it with
  ``-2``.

- The particular values ``sys.hash_info.inf`` and ``-sys.hash_info.inf``
  are used as hash values for positive
  infinity or negative infinity (respectively).

- For a :class:`complex` number ``z``, the hash values of the real
  and imaginary parts are combined by computing ``hash(z.real) +
  sys.hash_info.imag * hash(z.imag)``, reduced modulo
  ``2**sys.hash_info.width`` so that it lies in
  ``range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width -
  1))``.  Again, if the result is ``-1``, it's replaced with ``-2``.


To clarify the above rules, here's some example Python code,
equivalent to the built-in hash, for computing the hash of a rational
number, :class:`float`, or :class:`complex`::


   import sys, math

   def hash_fraction(m, n):
       """Compute the hash of a rational number m / n.

       Assumes m and n are integers, with n positive.
       Equivalent to hash(fractions.Fraction(m, n)).

       """
       P = sys.hash_info.modulus
       # Remove common factors of P.  (Unnecessary if m and n already coprime.)
       while m % P == n % P == 0:
           m, n = m // P, n // P

       if n % P == 0:
           hash_value = sys.hash_info.inf
       else:
           # Fermat's Little Theorem: pow(n, P-1, P) is 1, so
           # pow(n, P-2, P) gives the inverse of n modulo P.
           hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
       if m < 0:
           hash_value = -hash_value
       if hash_value == -1:
           hash_value = -2
       return hash_value

   def hash_float(x):
       """Compute the hash of a float x."""

       if math.isnan(x):
           return object.__hash__(x)
       elif math.isinf(x):
           return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
       else:
           return hash_fraction(*x.as_integer_ratio())

   def hash_complex(z):
       """Compute the hash of a complex number z."""

       hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
       # do a signed reduction modulo 2**sys.hash_info.width
       M = 2**(sys.hash_info.width - 1)
       hash_value = (hash_value & (M - 1)) - (hash_value & M)
       if hash_value == -1:
           hash_value = -2
       return hash_value

.. _typeiter:

Iterator Types
==============

.. index::
   single: iterator protocol
   single: protocol; iterator
   single: sequence; iteration
   single: container; iteration over

Python supports a concept of iteration over containers.  This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration.  Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide :term:`iterable`
support:

.. XXX duplicated in reference/datamodel!

.. method:: container.__iter__()

   Return an :term:`iterator` object.  The object is required to support the
   iterator protocol described below.  If a container supports different types
   of iteration, additional methods can be provided to specifically request
   iterators for those iteration types.  (An example of an object supporting
   multiple forms of iteration would be a tree structure which supports both
   breadth-first and depth-first traversal.)  This method corresponds to the
   :c:member:`~PyTypeObject.tp_iter` slot of the type structure for Python
   objects in the Python/C API.

The iterator objects themselves are required to support the following two
methods, which together form the :dfn:`iterator protocol`:


.. method:: iterator.__iter__()

   Return the :term:`iterator` object itself.  This is required to allow both
   containers and iterators to be used with the :keyword:`for` and
   :keyword:`in` statements.  This method corresponds to the
   :c:member:`~PyTypeObject.tp_iter` slot of the type structure for Python
   objects in the Python/C API.


.. method:: iterator.__next__()

   Return the next item from the :term:`iterator`.  If there are no further
   items, raise the :exc:`StopIteration` exception.  This method corresponds to
   the :c:member:`~PyTypeObject.tp_iternext` slot of the type structure for
   Python objects in the Python/C API.

Python defines several iterator objects to support iteration over general and
specific sequence types, dictionaries, and other more specialized forms.  The
specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator's :meth:`~iterator.__next__` method raises
:exc:`StopIteration`, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.


.. _generator-types:

Generator Types
---------------

Python's :term:`generator`\s provide a convenient way to implement the iterator
protocol.  If a container object's :meth:`__iter__` method is implemented as a
generator, it will automatically return an iterator object (technically, a
generator object) supplying the :meth:`__iter__` and :meth:`~generator.__next__`
methods.
More information about generators can be found in :ref:`the documentation for
the yield expression <yieldexpr>`.


.. _typesseq:

Sequence Types --- :class:`list`, :class:`tuple`, :class:`range`
================================================================

There are three basic sequence types: lists, tuples, and range objects.
Additional sequence types tailored for processing of
:ref:`binary data <binaryseq>` and :ref:`text strings <textseq>` are
described in dedicated sections.


.. _typesseq-common:

Common Sequence Operations
--------------------------

.. index:: object: sequence

The operations in the following table are supported by most sequence types,
both mutable and immutable. The :class:`collections.abc.Sequence` ABC is
provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority.  In the
table, *s* and *t* are sequences of the same type, *n*, *i*, *j* and *k* are
integers and *x* is an arbitrary object that meets any type and value
restrictions imposed by *s*.

The ``in`` and ``not in`` operations have the same priorities as the
comparison operations. The ``+`` (concatenation) and ``*`` (repetition)
operations have the same priority as the corresponding numeric operations. [3]_

.. index::
   triple: operations on; sequence; types
   builtin: len
   builtin: min
   builtin: max
   pair: concatenation; operation
   pair: repetition; operation
   pair: subscript; operation
   pair: slice; operation
   operator: in
   operator: not in
   single: count() (sequence method)
   single: index() (sequence method)

+--------------------------+--------------------------------+----------+
| Operation                | Result                         | Notes    |
+==========================+================================+==========+
| ``x in s``               | ``True`` if an item of *s* is  | \(1)     |
|                          | equal to *x*, else ``False``   |          |
+--------------------------+--------------------------------+----------+
| ``x not in s``           | ``False`` if an item of *s* is | \(1)     |
|                          | equal to *x*, else ``True``    |          |
+--------------------------+--------------------------------+----------+
| ``s + t``                | the concatenation of *s* and   | (6)(7)   |
|                          | *t*                            |          |
+--------------------------+--------------------------------+----------+
| ``s * n`` or             | equivalent to adding *s* to    | (2)(7)   |
| ``n * s``                | itself *n* times               |          |
+--------------------------+--------------------------------+----------+
| ``s[i]``                 | *i*\ th item of *s*, origin 0  | \(3)     |
+--------------------------+--------------------------------+----------+
| ``s[i:j]``               | slice of *s* from *i* to *j*   | (3)(4)   |
+--------------------------+--------------------------------+----------+
| ``s[i:j:k]``             | slice of *s* from *i* to *j*   | (3)(5)   |
|                          | with step *k*                  |          |
+--------------------------+--------------------------------+----------+
| ``len(s)``               | length of *s*                  |          |
+--------------------------+--------------------------------+----------+
| ``min(s)``               | smallest item of *s*           |          |
+--------------------------+--------------------------------+----------+
| ``max(s)``               | largest item of *s*            |          |
+--------------------------+--------------------------------+----------+
| ``s.index(x[, i[, j]])`` | index of the first occurrence  | \(8)     |
|                          | of *x* in *s* (at or after     |          |
|                          | index *i* and before index *j*)|          |
+--------------------------+--------------------------------+----------+
| ``s.count(x)``           | total number of occurrences of |          |
|                          | *x* in *s*                     |          |
+--------------------------+--------------------------------+----------+

Sequences of the same type also support comparisons.  In particular, tuples
and lists are compared lexicographically by comparing corresponding elements.
This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length.  (For full
details see :ref:`comparisons` in the language reference.)

.. index::
   single: loop; over mutable sequence
   single: mutable sequence; loop over

Forward and reversed iterators over mutable sequences access values using an
index.  That index will continue to march forward (or backward) even if the
underlying sequence is mutated.  The iterator terminates only when an
:exc:`IndexError` or a :exc:`StopIteration` is encountered (or when the index
drops below zero).

Notes:

(1)
   While the ``in`` and ``not in`` operations are used only for simple
   containment testing in the general case, some specialised sequences
   (such as :class:`str`, :class:`bytes` and :class:`bytearray`) also use
   them for subsequence testing::

      >>> "gg" in "eggs"
      True

(2)
   Values of *n* less than ``0`` are treated as ``0`` (which yields an empty
   sequence of the same type as *s*).  Note that items in the sequence *s*
   are not copied; they are referenced multiple times.  This often haunts
   new Python programmers; consider::

      >>> lists = [[]] * 3
      >>> lists
      [[], [], []]
      >>> lists[0].append(3)
      >>> lists
      [[3], [3], [3]]

   What has happened is that ``[[]]`` is a one-element list containing an empty
   list, so all three elements of ``[[]] * 3`` are references to this single empty
   list.  Modifying any of the elements of ``lists`` modifies this single list.
   You can create a list of different lists this way::

      >>> lists = [[] for i in range(3)]
      >>> lists[0].append(3)
      >>> lists[1].append(5)
      >>> lists[2].append(7)
      >>> lists
      [[3], [5], [7]]

   Further explanation is available in the FAQ entry
   :ref:`faq-multidimensional-list`.

(3)
   If *i* or *j* is negative, the index is relative to the end of sequence *s*:
   ``len(s) + i`` or ``len(s) + j`` is substituted.  But note that ``-0`` is
   still ``0``.

(4)
   The slice of *s* from *i* to *j* is defined as the sequence of items with index
   *k* such that ``i <= k < j``.  If *i* or *j* is greater than ``len(s)``, use
   ``len(s)``.  If *i* is omitted or ``None``, use ``0``.  If *j* is omitted or
   ``None``, use ``len(s)``.  If *i* is greater than or equal to *j*, the slice is
   empty.

(5)
   The slice of *s* from *i* to *j* with step *k* is defined as the sequence of
   items with index  ``x = i + n*k`` such that ``0 <= n < (j-i)/k``.  In other words,
   the indices are ``i``, ``i+k``, ``i+2*k``, ``i+3*k`` and so on, stopping when
   *j* is reached (but never including *j*).  When *k* is positive,
   *i* and *j* are reduced to ``len(s)`` if they are greater.
   When *k* is negative, *i* and *j* are reduced to ``len(s) - 1`` if
   they are greater.  If *i* or *j* are omitted or ``None``, they become
   "end" values (which end depends on the sign of *k*).  Note, *k* cannot be zero.
   If *k* is ``None``, it is treated like ``1``.

(6)
   Concatenating immutable sequences always results in a new object.  This
   means that building up a sequence by repeated concatenation will have a
   quadratic runtime cost in the total sequence length.  To get a linear
   runtime cost, you must switch to one of the alternatives below:

   * if concatenating :class:`str` objects, you can build a list and use
     :meth:`str.join` at the end or else write to an :class:`io.StringIO`
     instance and retrieve its value when complete

   * if concatenating :class:`bytes` objects, you can similarly use
     :meth:`bytes.join` or :class:`io.BytesIO`, or you can do in-place
     concatenation with a :class:`bytearray` object.  :class:`bytearray`
     objects are mutable and have an efficient overallocation mechanism

   * if concatenating :class:`tuple` objects, extend a :class:`list` instead

   * for other types, investigate the relevant class documentation


(7)
  Some sequence types (such as :class:`range`) only support item sequences
  that follow specific patterns, and hence don't support sequence
  concatenation or repetition.

(8)
   ``index`` raises :exc:`ValueError` when *x* is not found in *s*.
   Not all implementations support passing the additional arguments *i* and *j*.
   These arguments allow efficient searching of subsections of the sequence. Passing
   the extra arguments is roughly equivalent to using ``s[i:j].index(x)``, only
   without copying any data and with the returned index being relative to
   the start of the sequence rather than the start of the slice.


.. _typesseq-immutable:

Immutable Sequence Types
------------------------

.. index::
   triple: immutable; sequence; types
   object: tuple
   builtin: hash

The only operation that immutable sequence types generally implement that is
not also implemented by mutable sequence types is support for the :func:`hash`
built-in.

This support allows immutable sequences, such as :class:`tuple` instances, to
be used as :class:`dict` keys and stored in :class:`set` and :class:`frozenset`
instances.

Attempting to hash an immutable sequence that contains unhashable values will
result in :exc:`TypeError`.


.. _typesseq-mutable:

Mutable Sequence Types
----------------------

.. index::
   triple: mutable; sequence; types
   object: list
   object: bytearray

The operations in the following table are defined on mutable sequence types.
The :class:`collections.abc.MutableSequence` ABC is provided to make it
easier to correctly implement these operations on custom sequence types.

In the table *s* is an instance of a mutable sequence type, *t* is any
iterable object and *x* is an arbitrary object that meets any type
and value restrictions imposed by *s* (for example, :class:`bytearray` only
accepts integers that meet the value restriction ``0 <= x <= 255``).


.. index::
   triple: operations on; sequence; types
   triple: operations on; list; type
   pair: subscript; assignment
   pair: slice; assignment
   statement: del
   single: append() (sequence method)
   single: clear() (sequence method)
   single: copy() (sequence method)
   single: extend() (sequence method)
   single: insert() (sequence method)
   single: pop() (sequence method)
   single: remove() (sequence method)
   single: reverse() (sequence method)

+------------------------------+--------------------------------+---------------------+
| Operation                    | Result                         | Notes               |
+==============================+================================+=====================+
| ``s[i] = x``                 | item *i* of *s* is replaced by |                     |
|                              | *x*                            |                     |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j] = t``               | slice of *s* from *i* to *j*   |                     |
|                              | is replaced by the contents of |                     |
|                              | the iterable *t*               |                     |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j]``               | same as ``s[i:j] = []``        |                     |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j:k] = t``             | the elements of ``s[i:j:k]``   | \(1)                |
|                              | are replaced by those of *t*   |                     |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j:k]``             | removes the elements of        |                     |
|                              | ``s[i:j:k]`` from the list     |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.append(x)``              | appends *x* to the end of the  |                     |
|                              | sequence (same as              |                     |
|                              | ``s[len(s):len(s)] = [x]``)    |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.clear()``                | removes all items from *s*     | \(5)                |
|                              | (same as ``del s[:]``)         |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.copy()``                 | creates a shallow copy of *s*  | \(5)                |
|                              | (same as ``s[:]``)             |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.extend(t)`` or           | extends *s* with the           |                     |
| ``s += t``                   | contents of *t* (for the       |                     |
|                              | most part the same as          |                     |
|                              | ``s[len(s):len(s)] = t``)      |                     |
+------------------------------+--------------------------------+---------------------+
| ``s *= n``                   | updates *s* with its contents  | \(6)                |
|                              | repeated *n* times             |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.insert(i, x)``           | inserts *x* into *s* at the    |                     |
|                              | index given by *i*             |                     |
|                              | (same as ``s[i:i] = [x]``)     |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.pop()`` or ``s.pop(i)``  | retrieves the item at *i* and  | \(2)                |
|                              | also removes it from *s*       |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.remove(x)``              | remove the first item from *s* | \(3)                |
|                              | where ``s[i]`` is equal to *x* |                     |
+------------------------------+--------------------------------+---------------------+
| ``s.reverse()``              | reverses the items of *s* in   | \(4)                |
|                              | place                          |                     |
+------------------------------+--------------------------------+---------------------+


Notes:

(1)
   *t* must have the same length as the slice it is replacing.

(2)
   The optional argument *i* defaults to ``-1``, so that by default the last
   item is removed and returned.

(3)
   :meth:`remove` raises :exc:`ValueError` when *x* is not found in *s*.

(4)
   The :meth:`reverse` method modifies the sequence in place for economy of
   space when reversing a large sequence.  To remind users that it operates by
   side effect, it does not return the reversed sequence.

(5)
   :meth:`clear` and :meth:`!copy` are included for consistency with the
   interfaces of mutable containers that don't support slicing operations
   (such as :class:`dict` and :class:`set`). :meth:`!copy` is not part of the
   :class:`collections.abc.MutableSequence` ABC, but most concrete
   mutable sequence classes provide it.

   .. versionadded:: 3.3
      :meth:`clear` and :meth:`!copy` methods.

(6)
   The value *n* is an integer, or an object implementing
   :meth:`~object.__index__`.  Zero and negative values of *n* clear
   the sequence.  Items in the sequence are not copied; they are referenced
   multiple times, as explained for ``s * n`` under :ref:`typesseq-common`.


.. _typesseq-list:

Lists
-----

.. index:: object: list

Lists are mutable sequences, typically used to store collections of
homogeneous items (where the precise degree of similarity will vary by
application).

.. class:: list([iterable])

   Lists may be constructed in several ways:

   * Using a pair of square brackets to denote the empty list: ``[]``
   * Using square brackets, separating items with commas: ``[a]``, ``[a, b, c]``
   * Using a list comprehension: ``[x for x in iterable]``
   * Using the type constructor: ``list()`` or ``list(iterable)``

   The constructor builds a list whose items are the same and in the same
   order as *iterable*'s items.  *iterable* may be either a sequence, a
   container that supports iteration, or an iterator object.  If *iterable*
   is already a list, a copy is made and returned, similar to ``iterable[:]``.
   For example, ``list('abc')`` returns ``['a', 'b', 'c']`` and
   ``list( (1, 2, 3) )`` returns ``[1, 2, 3]``.
   If no argument is given, the constructor creates a new empty list, ``[]``.


   Many other operations also produce lists, including the :func:`sorted`
   built-in.

   Lists implement all of the :ref:`common <typesseq-common>` and
   :ref:`mutable <typesseq-mutable>` sequence operations. Lists also provide the
   following additional method:

   .. method:: list.sort(*, key=None, reverse=False)

      This method sorts the list in place, using only ``<`` comparisons
      between items. Exceptions are not suppressed - if any comparison operations
      fail, the entire sort operation will fail (and the list will likely be left
      in a partially modified state).

      :meth:`sort` accepts two arguments that can only be passed by keyword
      (:ref:`keyword-only arguments <keyword-only_parameter>`):

      *key* specifies a function of one argument that is used to extract a
      comparison key from each list element (for example, ``key=str.lower``).
      The key corresponding to each item in the list is calculated once and
      then used for the entire sorting process. The default value of ``None``
      means that list items are sorted directly without calculating a separate
      key value.

      The :func:`functools.cmp_to_key` utility is available to convert a 2.x
      style *cmp* function to a *key* function.

      *reverse* is a boolean value.  If set to ``True``, then the list elements
      are sorted as if each comparison were reversed.

      This method modifies the sequence in place for economy of space when
      sorting a large sequence.  To remind users that it operates by side
      effect, it does not return the sorted sequence (use :func:`sorted` to
      explicitly request a new sorted list instance).

      The :meth:`sort` method is guaranteed to be stable.  A sort is stable if it
      guarantees not to change the relative order of elements that compare equal
      --- this is helpful for sorting in multiple passes (for example, sort by
      department, then by salary grade).

      For sorting examples and a brief sorting tutorial, see :ref:`sortinghowto`.

      .. impl-detail::

         While a list is being sorted, the effect of attempting to mutate, or even
         inspect, the list is undefined.  The C implementation of Python makes the
         list appear empty for the duration, and raises :exc:`ValueError` if it can
         detect that the list has been mutated during a sort.


.. _typesseq-tuple:

Tuples
------

.. index:: object: tuple

Tuples are immutable sequences, typically used to store collections of
heterogeneous data (such as the 2-tuples produced by the :func:`enumerate`
built-in). Tuples are also used for cases where an immutable sequence of
homogeneous data is needed (such as allowing storage in a :class:`set` or
:class:`dict` instance).

.. class:: tuple([iterable])

   Tuples may be constructed in a number of ways:

   * Using a pair of parentheses to denote the empty tuple: ``()``
   * Using a trailing comma for a singleton tuple: ``a,`` or ``(a,)``
   * Separating items with commas: ``a, b, c`` or ``(a, b, c)``
   * Using the :func:`tuple` built-in: ``tuple()`` or ``tuple(iterable)``

   The constructor builds a tuple whose items are the same and in the same
   order as *iterable*'s items.  *iterable* may be either a sequence, a
   container that supports iteration, or an iterator object.  If *iterable*
   is already a tuple, it is returned unchanged. For example,
   ``tuple('abc')`` returns ``('a', 'b', 'c')`` and
   ``tuple( [1, 2, 3] )`` returns ``(1, 2, 3)``.
   If no argument is given, the constructor creates a new empty tuple, ``()``.

   Note that it is actually the comma which makes a tuple, not the parentheses.
   The parentheses are optional, except in the empty tuple case, or
   when they are needed to avoid syntactic ambiguity. For example,
   ``f(a, b, c)`` is a function call with three arguments, while
   ``f((a, b, c))`` is a function call with a 3-tuple as the sole argument.

   Tuples implement all of the :ref:`common <typesseq-common>` sequence
   operations.

For heterogeneous collections of data where access by name is clearer than
access by index, :func:`collections.namedtuple` may be a more appropriate
choice than a simple tuple object.


.. _typesseq-range:

Ranges
------

.. index:: object: range

The :class:`range` type represents an immutable sequence of numbers and is
commonly used for looping a specific number of times in :keyword:`for`
loops.

.. class:: range(stop)
           range(start, stop[, step])

   The arguments to the range constructor must be integers (either built-in
   :class:`int` or any object that implements the :meth:`~object.__index__` special
   method).  If the *step* argument is omitted, it defaults to ``1``.
   If the *start* argument is omitted, it defaults to ``0``.
   If *step* is zero, :exc:`ValueError` is raised.

   For a positive *step*, the contents of a range ``r`` are determined by the
   formula ``r[i] = start + step*i`` where ``i >= 0`` and
   ``r[i] < stop``.

   For a negative *step*, the contents of the range are still determined by
   the formula ``r[i] = start + step*i``, but the constraints are ``i >= 0``
   and ``r[i] > stop``.

   A range object will be empty if ``r[0]`` does not meet the value
   constraint. Ranges do support negative indices, but these are interpreted
   as indexing from the end of the sequence determined by the positive
   indices.

   Ranges containing absolute values larger than :data:`sys.maxsize` are
   permitted but some features (such as :func:`len`) may raise
   :exc:`OverflowError`.

   Range examples::

      >>> list(range(10))
      [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
      >>> list(range(1, 11))
      [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
      >>> list(range(0, 30, 5))
      [0, 5, 10, 15, 20, 25]
      >>> list(range(0, 10, 3))
      [0, 3, 6, 9]
      >>> list(range(0, -10, -1))
      [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
      >>> list(range(0))
      []
      >>> list(range(1, 0))
      []

   Ranges implement all of the :ref:`common <typesseq-common>` sequence operations
   except concatenation and repetition (due to the fact that range objects can
   only represent sequences that follow a strict pattern and repetition and
   concatenation will usually violate that pattern).

   .. attribute:: start

      The value of the *start* parameter (or ``0`` if the parameter was
      not supplied)

   .. attribute:: stop

      The value of the *stop* parameter

   .. attribute:: step

      The value of the *step* parameter (or ``1`` if the parameter was
      not supplied)

The advantage of the :class:`range` type over a regular :class:`list` or
:class:`tuple` is that a :class:`range` object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it
only stores the ``start``, ``stop`` and ``step`` values, calculating individual
items and subranges as needed).

Range objects implement the :class:`collections.abc.Sequence` ABC, and provide
features such as containment tests, element index lookup, slicing and
support for negative indices (see :ref:`typesseq`):

   >>> r = range(0, 20, 2)
   >>> r
   range(0, 20, 2)
   >>> 11 in r
   False
   >>> 10 in r
   True
   >>> r.index(10)
   5
   >>> r[5]
   10
   >>> r[:5]
   range(0, 10, 2)
   >>> r[-1]
   18

Testing range objects for equality with ``==`` and ``!=`` compares
them as sequences.  That is, two range objects are considered equal if
they represent the same sequence of values.  (Note that two range
objects that compare equal might have different :attr:`~range.start`,
:attr:`~range.stop` and :attr:`~range.step` attributes, for example
``range(0) == range(2, 1, 3)`` or ``range(0, 3, 2) == range(0, 4, 2)``.)

.. versionchanged:: 3.2
   Implement the Sequence ABC.
   Support slicing and negative indices.
   Test :class:`int` objects for membership in constant time instead of
   iterating through all items.

.. versionchanged:: 3.3
   Define '==' and '!=' to compare range objects based on the
   sequence of values they define (instead of comparing based on
   object identity).

.. versionadded:: 3.3
   The :attr:`~range.start`, :attr:`~range.stop` and :attr:`~range.step`
   attributes.

.. seealso::

   * The `linspace recipe <https://code.activestate.com/recipes/579000/>`_
     shows how to implement a lazy version of range suitable for floating
     point applications.

.. index::
   single: string; text sequence type
   single: str (built-in class); (see also string)
   object: string

.. _textseq:

Text Sequence Type --- :class:`str`
===================================

Textual data in Python is handled with :class:`str` objects, or :dfn:`strings`.
Strings are immutable
:ref:`sequences <typesseq>` of Unicode code points.  String literals are
written in a variety of ways:

* Single quotes: ``'allows embedded "double" quotes'``
* Double quotes: ``"allows embedded 'single' quotes"``
* Triple quoted: ``'''Three single quotes'''``, ``"""Three double quotes"""``

Triple quoted strings may span multiple lines - all associated whitespace will
be included in the string literal.

String literals that are part of a single expression and have only whitespace
between them will be implicitly converted to a single string literal. That
is, ``("spam " "eggs") == "spam eggs"``.

See :ref:`strings` for more about the various forms of string literal,
including supported escape sequences, and the ``r`` ("raw") prefix that
disables most escape sequence processing.

Strings may also be created from other objects using the :class:`str`
constructor.

Since there is no separate "character" type, indexing a string produces
strings of length 1. That is, for a non-empty string *s*, ``s[0] == s[0:1]``.

.. index::
   object: io.StringIO

There is also no mutable string type, but :meth:`str.join` or
:class:`io.StringIO` can be used to efficiently construct strings from
multiple fragments.

.. versionchanged:: 3.3
   For backwards compatibility with the Python 2 series, the ``u`` prefix is
   once again permitted on string literals. It has no effect on the meaning
   of string literals and cannot be combined with the ``r`` prefix.


.. index::
   single: string; str (built-in class)

.. class:: str(object='')
           str(object=b'', encoding='utf-8', errors='strict')

   Return a :ref:`string <textseq>` version of *object*.  If *object* is not
   provided, returns the empty string.  Otherwise, the behavior of ``str()``
   depends on whether *encoding* or *errors* is given, as follows.

   If neither *encoding* nor *errors* is given, ``str(object)`` returns
   :meth:`type(object).__str__(object) <object.__str__>`,
   which is the "informal" or nicely
   printable string representation of *object*.  For string objects, this is
   the string itself.  If *object* does not have a :meth:`~object.__str__`
   method, then :func:`str` falls back to returning
   :meth:`repr(object) <repr>`.

   .. index::
      single: buffer protocol; str (built-in class)
      single: bytes; str (built-in class)

   If at least one of *encoding* or *errors* is given, *object* should be a
   :term:`bytes-like object` (e.g. :class:`bytes` or :class:`bytearray`).  In
   this case, if *object* is a :class:`bytes` (or :class:`bytearray`) object,
   then ``str(bytes, encoding, errors)`` is equivalent to
   :meth:`bytes.decode(encoding, errors) <bytes.decode>`.  Otherwise, the bytes
   object underlying the buffer object is obtained before calling
   :meth:`bytes.decode`.  See :ref:`binaryseq` and
   :ref:`bufferobjects` for information on buffer objects.

   Passing a :class:`bytes` object to :func:`str` without the *encoding*
   or *errors* arguments falls under the first case of returning the informal
   string representation (see also the :option:`-b` command-line option to
   Python).  For example::

      >>> str(b'Zoot!')
      "b'Zoot!'"

   For more information on the ``str`` class and its methods, see
   :ref:`textseq` and the :ref:`string-methods` section below.  To output
   formatted strings, see the :ref:`f-strings` and :ref:`formatstrings`
   sections.  In addition, see the :ref:`stringservices` section.


.. index::
   pair: string; methods

.. _string-methods:

String Methods
--------------

.. index::
   module: re

Strings implement all of the :ref:`common <typesseq-common>` sequence
operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large
degree of flexibility and customization (see :meth:`str.format`,
:ref:`formatstrings` and :ref:`string-formatting`) and the other based on C
``printf`` style formatting that handles a narrower range of types and is
slightly harder to use correctly, but is often faster for the cases it can
handle (:ref:`old-string-formatting`).

The :ref:`textservices` section of the standard library covers a number of
other modules that provide various text related utilities (including regular
expression support in the :mod:`re` module).

.. method:: str.capitalize()

   Return a copy of the string with its first character capitalized and the
   rest lowercased.

   .. versionchanged:: 3.8
      The first character is now put into titlecase rather than uppercase.
      This means that characters like digraphs will only have their first
      letter capitalized, instead of the full character.

.. method:: str.casefold()

   Return a casefolded copy of the string. Casefolded strings may be used for
   caseless matching.

   Casefolding is similar to lowercasing but more aggressive because it is
   intended to remove all case distinctions in a string. For example, the German
   lowercase letter ``'ß'`` is equivalent to ``"ss"``. Since it is already
   lowercase, :meth:`lower` would do nothing to ``'ß'``; :meth:`casefold`
   converts it to ``"ss"``.

   The casefolding algorithm is described in section 3.13 of the Unicode
   Standard.

   .. versionadded:: 3.3


.. method:: str.center(width[, fillchar])

   Return centered in a string of length *width*. Padding is done using the
   specified *fillchar* (default is an ASCII space). The original string is
   returned if *width* is less than or equal to ``len(s)``.



.. method:: str.count(sub[, start[, end]])

   Return the number of non-overlapping occurrences of substring *sub* in the
   range [*start*, *end*].  Optional arguments *start* and *end* are
   interpreted as in slice notation.


.. method:: str.encode(encoding="utf-8", errors="strict")

   Return an encoded version of the string as a bytes object. Default encoding
   is ``'utf-8'``. *errors* may be given to set a different error handling scheme.
   The default for *errors* is ``'strict'``, meaning that encoding errors raise
   a :exc:`UnicodeError`. Other possible
   values are ``'ignore'``, ``'replace'``, ``'xmlcharrefreplace'``,
   ``'backslashreplace'`` and any other name registered via
   :func:`codecs.register_error`, see section :ref:`error-handlers`. For a
   list of possible encodings, see section :ref:`standard-encodings`.

   By default, the *errors* argument is not checked for best performances, but
   only used at the first encoding error. Enable the :ref:`Python Development
   Mode <devmode>`, or use a :ref:`debug build <debug-build>` to check
   *errors*.

   .. versionchanged:: 3.1
      Support for keyword arguments added.

   .. versionchanged:: 3.9
      The *errors* is now checked in development mode and
      in :ref:`debug mode <debug-build>`.


.. method:: str.endswith(suffix[, start[, end]])

   Return ``True`` if the string ends with the specified *suffix*, otherwise return
   ``False``.  *suffix* can also be a tuple of suffixes to look for.  With optional
   *start*, test beginning at that position.  With optional *end*, stop comparing
   at that position.


.. method:: str.expandtabs(tabsize=8)

   Return a copy of the string where all tab characters are replaced by one or
   more spaces, depending on the current column and the given tab size.  Tab
   positions occur every *tabsize* characters (default is 8, giving tab
   positions at columns 0, 8, 16 and so on).  To expand the string, the current
   column is set to zero and the string is examined character by character.  If
   the character is a tab (``\t``), one or more space characters are inserted
   in the result until the current column is equal to the next tab position.
   (The tab character itself is not copied.)  If the character is a newline
   (``\n``) or return (``\r``), it is copied and the current column is reset to
   zero.  Any other character is copied unchanged and the current column is
   incremented by one regardless of how the character is represented when
   printed.

      >>> '01\t012\t0123\t01234'.expandtabs()
      '01      012     0123    01234'
      >>> '01\t012\t0123\t01234'.expandtabs(4)
      '01  012 0123    01234'


.. method:: str.find(sub[, start[, end]])

   Return the lowest index in the string where substring *sub* is found within
   the slice ``s[start:end]``.  Optional arguments *start* and *end* are
   interpreted as in slice notation.  Return ``-1`` if *sub* is not found.

   .. note::

      The :meth:`~str.find` method should be used only if you need to know the
      position of *sub*.  To check if *sub* is a substring or not, use the
      :keyword:`in` operator::

         >>> 'Py' in 'Python'
         True


.. method:: str.format(*args, **kwargs)

   Perform a string formatting operation.  The string on which this method is
   called can contain literal text or replacement fields delimited by braces
   ``{}``.  Each replacement field contains either the numeric index of a
   positional argument, or the name of a keyword argument.  Returns a copy of
   the string where each replacement field is replaced with the string value of
   the corresponding argument.

      >>> "The sum of 1 + 2 is {0}".format(1+2)
      'The sum of 1 + 2 is 3'

   See :ref:`formatstrings` for a description of the various formatting options
   that can be specified in format strings.

   .. note::
      When formatting a number (:class:`int`, :class:`float`, :class:`complex`,
      :class:`decimal.Decimal` and subclasses) with the ``n`` type
      (ex: ``'{:n}'.format(1234)``), the function temporarily sets the
      ``LC_CTYPE`` locale to the ``LC_NUMERIC`` locale to decode
      ``decimal_point`` and ``thousands_sep`` fields of :c:func:`localeconv` if
      they are non-ASCII or longer than 1 byte, and the ``LC_NUMERIC`` locale is
      different than the ``LC_CTYPE`` locale.  This temporary change affects
      other threads.

   .. versionchanged:: 3.7
      When formatting a number with the ``n`` type, the function sets
      temporarily the ``LC_CTYPE`` locale to the ``LC_NUMERIC`` locale in some
      cases.


.. method:: str.format_map(mapping)

   Similar to ``str.format(**mapping)``, except that ``mapping`` is
   used directly and not copied to a :class:`dict`.  This is useful
   if for example ``mapping`` is a dict subclass:

   >>> class Default(dict):
   ...     def __missing__(self, key):
   ...         return key
   ...
   >>> '{name} was born in {country}'.format_map(Default(name='Guido'))
   'Guido was born in country'

   .. versionadded:: 3.2


.. method:: str.index(sub[, start[, end]])

   Like :meth:`~str.find`, but raise :exc:`ValueError` when the substring is
   not found.


.. method:: str.isalnum()

   Return ``True`` if all characters in the string are alphanumeric and there is at
   least one character, ``False`` otherwise.  A character ``c`` is alphanumeric if one
   of the following returns ``True``: ``c.isalpha()``, ``c.isdecimal()``,
   ``c.isdigit()``, or ``c.isnumeric()``.


.. method:: str.isalpha()

   Return ``True`` if all characters in the string are alphabetic and there is at least
   one character, ``False`` otherwise.  Alphabetic characters are those characters defined
   in the Unicode character database as "Letter", i.e., those with general category
   property being one of "Lm", "Lt", "Lu", "Ll", or "Lo".  Note that this is different
   from the "Alphabetic" property defined in the Unicode Standard.


.. method:: str.isascii()

   Return ``True`` if the string is empty or all characters in the string are ASCII,
   ``False`` otherwise.
   ASCII characters have code points in the range U+0000-U+007F.

   .. versionadded:: 3.7


.. method:: str.isdecimal()

   Return ``True`` if all characters in the string are decimal
   characters and there is at least one character, ``False``
   otherwise. Decimal characters are those that can be used to form
   numbers in base 10, e.g. U+0660, ARABIC-INDIC DIGIT
   ZERO.  Formally a decimal character is a character in the Unicode
   General Category "Nd".


.. method:: str.isdigit()

   Return ``True`` if all characters in the string are digits and there is at least one
   character, ``False`` otherwise.  Digits include decimal characters and digits that need
   special handling, such as the compatibility superscript digits.
   This covers digits which cannot be used to form numbers in base 10,
   like the Kharosthi numbers.  Formally, a digit is a character that has the
   property value Numeric_Type=Digit or Numeric_Type=Decimal.


.. method:: str.isidentifier()

   Return ``True`` if the string is a valid identifier according to the language
   definition, section :ref:`identifiers`.

   Call :func:`keyword.iskeyword` to test whether string ``s`` is a reserved
   identifier, such as :keyword:`def` and :keyword:`class`.

   Example:
   ::

      >>> from keyword import iskeyword

      >>> 'hello'.isidentifier(), iskeyword('hello')
      (True, False)
      >>> 'def'.isidentifier(), iskeyword('def')
      (True, True)


.. method:: str.islower()

   Return ``True`` if all cased characters [4]_ in the string are lowercase and
   there is at least one cased character, ``False`` otherwise.


.. method:: str.isnumeric()

   Return ``True`` if all characters in the string are numeric
   characters, and there is at least one character, ``False``
   otherwise. Numeric characters include digit characters, and all characters
   that have the Unicode numeric value property, e.g. U+2155,
   VULGAR FRACTION ONE FIFTH.  Formally, numeric characters are those with the property
   value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.


.. method:: str.isprintable()

   Return ``True`` if all characters in the string are printable or the string is
   empty, ``False`` otherwise.  Nonprintable characters are those characters defined
   in the Unicode character database as "Other" or "Separator", excepting the
   ASCII space (0x20) which is considered printable.  (Note that printable
   characters in this context are those which should not be escaped when
   :func:`repr` is invoked on a string.  It has no bearing on the handling of
   strings written to :data:`sys.stdout` or :data:`sys.stderr`.)


.. method:: str.isspace()

   Return ``True`` if there are only whitespace characters in the string and there is
   at least one character, ``False`` otherwise.

   A character is *whitespace* if in the Unicode character database
   (see :mod:`unicodedata`), either its general category is ``Zs``
   ("Separator, space"), or its bidirectional class is one of ``WS``,
   ``B``, or ``S``.


.. method:: str.istitle()

   Return ``True`` if the string is a titlecased string and there is at least one
   character, for example uppercase characters may only follow uncased characters
   and lowercase characters only cased ones.  Return ``False`` otherwise.


.. method:: str.isupper()

   Return ``True`` if all cased characters [4]_ in the string are uppercase and
   there is at least one cased character, ``False`` otherwise.

      >>> 'BANANA'.isupper()
      True
      >>> 'banana'.isupper()
      False
      >>> 'baNana'.isupper()
      False
      >>> ' '.isupper()
      False



.. _meth-str-join:

.. method:: str.join(iterable)

   Return a string which is the concatenation of the strings in *iterable*.
   A :exc:`TypeError` will be raised if there are any non-string values in
   *iterable*, including :class:`bytes` objects.  The separator between
   elements is the string providing this method.


.. method:: str.ljust(width[, fillchar])

   Return the string left justified in a string of length *width*. Padding is
   done using the specified *fillchar* (default is an ASCII space). The
   original string is returned if *width* is less than or equal to ``len(s)``.


.. method:: str.lower()

   Return a copy of the string with all the cased characters [4]_ converted to
   lowercase.

   The lowercasing algorithm used is described in section 3.13 of the Unicode
   Standard.


.. method:: str.lstrip([chars])

   Return a copy of the string with leading characters removed.  The *chars*
   argument is a string specifying the set of characters to be removed.  If omitted
   or ``None``, the *chars* argument defaults to removing whitespace.  The *chars*
   argument is not a prefix; rather, all combinations of its values are stripped::

      >>> '   spacious   '.lstrip()
      'spacious   '
      >>> 'www.example.com'.lstrip('cmowz.')
      'example.com'

   See :meth:`str.removeprefix` for a method that will remove a single prefix
   string rather than all of a set of characters.  For example::

      >>> 'Arthur: three!'.lstrip('Arthur: ')
      'ee!'
      >>> 'Arthur: three!'.removeprefix('Arthur: ')
      'three!'


.. staticmethod:: str.maketrans(x[, y[, z]])

   This static method returns a translation table usable for :meth:`str.translate`.

   If there is only one argument, it must be a dictionary mapping Unicode
   ordinals (integers) or characters (strings of length 1) to Unicode ordinals,
   strings (of arbitrary lengths) or ``None``.  Character keys will then be
   converted to ordinals.

   If there are two arguments, they must be strings of equal length, and in the
   resulting dictionary, each character in x will be mapped to the character at
   the same position in y.  If there is a third argument, it must be a string,
   whose characters will be mapped to ``None`` in the result.


.. method:: str.partition(sep)

   Split the string at the first occurrence of *sep*, and return a 3-tuple
   containing the part before the separator, the separator itself, and the part
   after the separator.  If the separator is not found, return a 3-tuple containing
   the string itself, followed by two empty strings.


.. method:: str.removeprefix(prefix, /)

   If the string starts with the *prefix* string, return
   ``string[len(prefix):]``. Otherwise, return a copy of the original
   string::

      >>> 'TestHook'.removeprefix('Test')
      'Hook'
      >>> 'BaseTestCase'.removeprefix('Test')
      'BaseTestCase'

   .. versionadded:: 3.9


.. method:: str.removesuffix(suffix, /)

   If the string ends with the *suffix* string and that *suffix* is not empty,
   return ``string[:-len(suffix)]``. Otherwise, return a copy of the
   original string::

      >>> 'MiscTests'.removesuffix('Tests')
      'Misc'
      >>> 'TmpDirMixin'.removesuffix('Tests')
      'TmpDirMixin'

   .. versionadded:: 3.9


.. method:: str.replace(old, new[, count])

   Return a copy of the string with all occurrences of substring *old* replaced by
   *new*.  If the optional argument *count* is given, only the first *count*
   occurrences are replaced.


.. method:: str.rfind(sub[, start[, end]])

   Return the highest index in the string where substring *sub* is found, such
   that *sub* is contained within ``s[start:end]``.  Optional arguments *start*
   and *end* are interpreted as in slice notation.  Return ``-1`` on failure.


.. method:: str.rindex(sub[, start[, end]])

   Like :meth:`rfind` but raises :exc:`ValueError` when the substring *sub* is not
   found.


.. method:: str.rjust(width[, fillchar])

   Return the string right justified in a string of length *width*. Padding is
   done using the specified *fillchar* (default is an ASCII space). The
   original string is returned if *width* is less than or equal to ``len(s)``.


.. method:: str.rpartition(sep)

   Split the string at the last occurrence of *sep*, and return a 3-tuple
   containing the part before the separator, the separator itself, and the part
   after the separator.  If the separator is not found, return a 3-tuple containing
   two empty strings, followed by the string itself.


.. method:: str.rsplit(sep=None, maxsplit=-1)

   Return a list of the words in the string, using *sep* as the delimiter string.
   If *maxsplit* is given, at most *maxsplit* splits are done, the *rightmost*
   ones.  If *sep* is not specified or ``None``, any whitespace string is a
   separator.  Except for splitting from the right, :meth:`rsplit` behaves like
   :meth:`split` which is described in detail below.


.. method:: str.rstrip([chars])

   Return a copy of the string with trailing characters removed.  The *chars*
   argument is a string specifying the set of characters to be removed.  If omitted
   or ``None``, the *chars* argument defaults to removing whitespace.  The *chars*
   argument is not a suffix; rather, all combinations of its values are stripped::

      >>> '   spacious   '.rstrip()
      '   spacious'
      >>> 'mississippi'.rstrip('ipz')
      'mississ'

   See :meth:`str.removesuffix` for a method that will remove a single suffix
   string rather than all of a set of characters.  For example::

      >>> 'Monty Python'.rstrip(' Python')
      'M'
      >>> 'Monty Python'.removesuffix(' Python')
      'Monty'

.. method:: str.split(sep=None, maxsplit=-1)

   Return a list of the words in the string, using *sep* as the delimiter
   string.  If *maxsplit* is given, at most *maxsplit* splits are done (thus,
   the list will have at most ``maxsplit+1`` elements).  If *maxsplit* is not
   specified or ``-1``, then there is no limit on the number of splits
   (all possible splits are made).

   If *sep* is given, consecutive delimiters are not grouped together and are
   deemed to delimit empty strings (for example, ``'1,,2'.split(',')`` returns
   ``['1', '', '2']``).  The *sep* argument may consist of multiple characters
   (for example, ``'1<>2<>3'.split('<>')`` returns ``['1', '2', '3']``).
   Splitting an empty string with a specified separator returns ``['']``.

   For example::

      >>> '1,2,3'.split(',')
      ['1', '2', '3']
      >>> '1,2,3'.split(',', maxsplit=1)
      ['1', '2,3']
      >>> '1,2,,3,'.split(',')
      ['1', '2', '', '3', '']

   If *sep* is not specified or is ``None``, a different splitting algorithm is
   applied: runs of consecutive whitespace are regarded as a single separator,
   and the result will contain no empty strings at the start or end if the
   string has leading or trailing whitespace.  Consequently, splitting an empty
   string or a string consisting of just whitespace with a ``None`` separator
   returns ``[]``.

   For example::

      >>> '1 2 3'.split()
      ['1', '2', '3']
      >>> '1 2 3'.split(maxsplit=1)
      ['1', '2 3']
      >>> '   1   2   3   '.split()
      ['1', '2', '3']


.. index::
   single: universal newlines; str.splitlines method

.. method:: str.splitlines(keepends=False)

   Return a list of the lines in the string, breaking at line boundaries.  Line
   breaks are not included in the resulting list unless *keepends* is given and
   true.

   This method splits on the following line boundaries.  In particular, the
   boundaries are a superset of :term:`universal newlines`.

   +-----------------------+-----------------------------+
   | Representation        | Description                 |
   +=======================+=============================+
   | ``\n``                | Line Feed                   |
   +-----------------------+-----------------------------+
   | ``\r``                | Carriage Return             |
   +-----------------------+-----------------------------+
   | ``\r\n``              | Carriage Return + Line Feed |
   +-----------------------+-----------------------------+
   | ``\v`` or ``\x0b``    | Line Tabulation             |
   +-----------------------+-----------------------------+
   | ``\f`` or ``\x0c``    | Form Feed                   |
   +-----------------------+-----------------------------+
   | ``\x1c``              | File Separator              |
   +-----------------------+-----------------------------+
   | ``\x1d``              | Group Separator             |
   +-----------------------+-----------------------------+
   | ``\x1e``              | Record Separator            |
   +-----------------------+-----------------------------+
   | ``\x85``              | Next Line (C1 Control Code) |
   +-----------------------+-----------------------------+
   | ``\u2028``            | Line Separator              |
   +-----------------------+-----------------------------+
   | ``\u2029``            | Paragraph Separator         |
   +-----------------------+-----------------------------+

   .. versionchanged:: 3.2

      ``\v`` and ``\f`` added to list of line boundaries.

   For example::

      >>> 'ab c\n\nde fg\rkl\r\n'.splitlines()
      ['ab c', '', 'de fg', 'kl']
      >>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
      ['ab c\n', '\n', 'de fg\r', 'kl\r\n']

   Unlike :meth:`~str.split` when a delimiter string *sep* is given, this
   method returns an empty list for the empty string, and a terminal line
   break does not result in an extra line::

      >>> "".splitlines()
      []
      >>> "One line\n".splitlines()
      ['One line']

   For comparison, ``split('\n')`` gives::

      >>> ''.split('\n')
      ['']
      >>> 'Two lines\n'.split('\n')
      ['Two lines', '']


.. method:: str.startswith(prefix[, start[, end]])

   Return ``True`` if string starts with the *prefix*, otherwise return ``False``.
   *prefix* can also be a tuple of prefixes to look for.  With optional *start*,
   test string beginning at that position.  With optional *end*, stop comparing
   string at that position.


.. method:: str.strip([chars])

   Return a copy of the string with the leading and trailing characters removed.
   The *chars* argument is a string specifying the set of characters to be removed.
   If omitted or ``None``, the *chars* argument defaults to removing whitespace.
   The *chars* argument is not a prefix or suffix; rather, all combinations of its
   values are stripped::

      >>> '   spacious   '.strip()
      'spacious'
      >>> 'www.example.com'.strip('cmowz.')
      'example'

   The outermost leading and trailing *chars* argument values are stripped
   from the string. Characters are removed from the leading end until
   reaching a string character that is not contained in the set of
   characters in *chars*. A similar action takes place on the trailing end.
   For example::

      >>> comment_string = '#....... Section 3.2.1 Issue #32 .......'
      >>> comment_string.strip('.#! ')
      'Section 3.2.1 Issue #32'


.. method:: str.swapcase()

   Return a copy of the string with uppercase characters converted to lowercase and
   vice versa. Note that it is not necessarily true that
   ``s.swapcase().swapcase() == s``.


.. method:: str.title()

   Return a titlecased version of the string where words start with an uppercase
   character and the remaining characters are lowercase.

   For example::

      >>> 'Hello world'.title()
      'Hello World'

   The algorithm uses a simple language-independent definition of a word as
   groups of consecutive letters.  The definition works in many contexts but
   it means that apostrophes in contractions and possessives form word
   boundaries, which may not be the desired result::

        >>> "they're bill's friends from the UK".title()
        "They'Re Bill'S Friends From The Uk"

   The :func:`string.capwords` function does not have this problem, as it
   splits words on spaces only.

   Alternatively, a workaround for apostrophes can be constructed using regular
   expressions::

        >>> import re
        >>> def titlecase(s):
        ...     return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
        ...                   lambda mo: mo.group(0).capitalize(),
        ...                   s)
        ...
        >>> titlecase("they're bill's friends.")
        "They're Bill's Friends."


.. method:: str.translate(table)

   Return a copy of the string in which each character has been mapped through
   the given translation table.  The table must be an object that implements
   indexing via :meth:`__getitem__`, typically a :term:`mapping` or
   :term:`sequence`.  When indexed by a Unicode ordinal (an integer), the
   table object can do any of the following: return a Unicode ordinal or a
   string, to map the character to one or more other characters; return
   ``None``, to delete the character from the return string; or raise a
   :exc:`LookupError` exception, to map the character to itself.

   You can use :meth:`str.maketrans` to create a translation map from
   character-to-character mappings in different formats.

   See also the :mod:`codecs` module for a more flexible approach to custom
   character mappings.


.. method:: str.upper()

   Return a copy of the string with all the cased characters [4]_ converted to
   uppercase.  Note that ``s.upper().isupper()`` might be ``False`` if ``s``
   contains uncased characters or if the Unicode category of the resulting
   character(s) is not "Lu" (Letter, uppercase), but e.g. "Lt" (Letter,
   titlecase).

   The uppercasing algorithm used is described in section 3.13 of the Unicode
   Standard.


.. method:: str.zfill(width)

   Return a copy of the string left filled with ASCII ``'0'`` digits to
   make a string of length *width*. A leading sign prefix (``'+'``/``'-'``)
   is handled by inserting the padding *after* the sign character rather
   than before. The original string is returned if *width* is less than
   or equal to ``len(s)``.

   For example::

      >>> "42".zfill(5)
      '00042'
      >>> "-42".zfill(5)
      '-0042'



.. _old-string-formatting:

``printf``-style String Formatting
----------------------------------

.. index::
   single: formatting, string (%)
   single: interpolation, string (%)
   single: string; formatting, printf
   single: string; interpolation, printf
   single: printf-style formatting
   single: sprintf-style formatting
   single: % (percent); printf-style formatting

.. note::

   The formatting operations described here exhibit a variety of quirks that
   lead to a number of common errors (such as failing to display tuples and
   dictionaries correctly).  Using the newer :ref:`formatted string literals
   <f-strings>`, the :meth:`str.format` interface, or :ref:`template strings
   <template-strings>` may help avoid these errors.  Each of these
   alternatives provides their own trade-offs and benefits of simplicity,
   flexibility, and/or extensibility.

String objects have one unique built-in operation: the ``%`` operator (modulo).
This is also known as the string *formatting* or *interpolation* operator.
Given ``format % values`` (where *format* is a string), ``%`` conversion
specifications in *format* are replaced with zero or more elements of *values*.
The effect is similar to using the :c:func:`sprintf` in the C language.

If *format* requires a single argument, *values* may be a single non-tuple
object. [5]_  Otherwise, *values* must be a tuple with exactly the number of
items specified by the format string, or a single mapping object (for example, a
dictionary).

.. index::
   single: () (parentheses); in printf-style formatting
   single: * (asterisk); in printf-style formatting
   single: . (dot); in printf-style formatting

A conversion specifier contains two or more characters and has the following
components, which must occur in this order:

#. The ``'%'`` character, which marks the start of the specifier.

#. Mapping key (optional), consisting of a parenthesised sequence of characters
   (for example, ``(somename)``).

#. Conversion flags (optional), which affect the result of some conversion
   types.

#. Minimum field width (optional).  If specified as an ``'*'`` (asterisk), the
   actual width is read from the next element of the tuple in *values*, and the
   object to convert comes after the minimum field width and optional precision.

#. Precision (optional), given as a ``'.'`` (dot) followed by the precision.  If
   specified as ``'*'`` (an asterisk), the actual precision is read from the next
   element of the tuple in *values*, and the value to convert comes after the
   precision.

#. Length modifier (optional).

#. Conversion type.

When the right argument is a dictionary (or other mapping type), then the
formats in the string *must* include a parenthesised mapping key into that
dictionary inserted immediately after the ``'%'`` character. The mapping key
selects the value to be formatted from the mapping.  For example:

   >>> print('%(language)s has %(number)03d quote types.' %
   ...       {'language': "Python", "number": 2})
   Python has 002 quote types.

In this case no ``*`` specifiers may occur in a format (since they require a
sequential parameter list).

The conversion flag characters are:

.. index::
   single: # (hash); in printf-style formatting
   single: - (minus); in printf-style formatting
   single: + (plus); in printf-style formatting
   single: space; in printf-style formatting

+---------+---------------------------------------------------------------------+
| Flag    | Meaning                                                             |
+=========+=====================================================================+
| ``'#'`` | The value conversion will use the "alternate form" (where defined   |
|         | below).                                                             |
+---------+---------------------------------------------------------------------+
| ``'0'`` | The conversion will be zero padded for numeric values.              |
+---------+---------------------------------------------------------------------+
| ``'-'`` | The converted value is left adjusted (overrides the ``'0'``         |
|         | conversion if both are given).                                      |
+---------+---------------------------------------------------------------------+
| ``' '`` | (a space) A blank should be left before a positive number (or empty |
|         | string) produced by a signed conversion.                            |
+---------+---------------------------------------------------------------------+
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will precede the conversion   |
|         | (overrides a "space" flag).                                         |
+---------+---------------------------------------------------------------------+

A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
is not necessary for Python -- so e.g. ``%ld`` is identical to ``%d``.

The conversion types are:

+------------+-----------------------------------------------------+-------+
| Conversion | Meaning                                             | Notes |
+============+=====================================================+=======+
| ``'d'``    | Signed integer decimal.                             |       |
+------------+-----------------------------------------------------+-------+
| ``'i'``    | Signed integer decimal.                             |       |
+------------+-----------------------------------------------------+-------+
| ``'o'``    | Signed octal value.                                 | \(1)  |
+------------+-----------------------------------------------------+-------+
| ``'u'``    | Obsolete type -- it is identical to ``'d'``.        | \(6)  |
+------------+-----------------------------------------------------+-------+
| ``'x'``    | Signed hexadecimal (lowercase).                     | \(2)  |
+------------+-----------------------------------------------------+-------+
| ``'X'``    | Signed hexadecimal (uppercase).                     | \(2)  |
+------------+-----------------------------------------------------+-------+
| ``'e'``    | Floating point exponential format (lowercase).      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'E'``    | Floating point exponential format (uppercase).      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'f'``    | Floating point decimal format.                      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'F'``    | Floating point decimal format.                      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'g'``    | Floating point format. Uses lowercase exponential   | \(4)  |
|            | format if exponent is less than -4 or not less than |       |
|            | precision, decimal format otherwise.                |       |
+------------+-----------------------------------------------------+-------+
| ``'G'``    | Floating point format. Uses uppercase exponential   | \(4)  |
|            | format if exponent is less than -4 or not less than |       |
|            | precision, decimal format otherwise.                |       |
+------------+-----------------------------------------------------+-------+
| ``'c'``    | Single character (accepts integer or single         |       |
|            | character string).                                  |       |
+------------+-----------------------------------------------------+-------+
| ``'r'``    | String (converts any Python object using            | \(5)  |
|            | :func:`repr`).                                      |       |
+------------+-----------------------------------------------------+-------+
| ``'s'``    | String (converts any Python object using            | \(5)  |
|            | :func:`str`).                                       |       |
+------------+-----------------------------------------------------+-------+
| ``'a'``    | String (converts any Python object using            | \(5)  |
|            | :func:`ascii`).                                     |       |
+------------+-----------------------------------------------------+-------+
| ``'%'``    | No argument is converted, results in a ``'%'``      |       |
|            | character in the result.                            |       |
+------------+-----------------------------------------------------+-------+

Notes:

(1)
   The alternate form causes a leading octal specifier (``'0o'``) to be
   inserted before the first digit.

(2)
   The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
   the ``'x'`` or ``'X'`` format was used) to be inserted before the first digit.

(3)
   The alternate form causes the result to always contain a decimal point, even if
   no digits follow it.

   The precision determines the number of digits after the decimal point and
   defaults to 6.

(4)
   The alternate form causes the result to always contain a decimal point, and
   trailing zeroes are not removed as they would otherwise be.

   The precision determines the number of significant digits before and after the
   decimal point and defaults to 6.

(5)
   If precision is ``N``, the output is truncated to ``N`` characters.

(6)
   See :pep:`237`.

Since Python strings have an explicit length, ``%s`` conversions do not assume
that ``'\0'`` is the end of the string.

.. XXX Examples?

.. versionchanged:: 3.1
   ``%f`` conversions for numbers whose absolute value is over 1e50 are no
   longer replaced by ``%g`` conversions.


.. index::
   single: buffer protocol; binary sequence types

.. _binaryseq:

Binary Sequence Types --- :class:`bytes`, :class:`bytearray`, :class:`memoryview`
=================================================================================

.. index::
   object: bytes
   object: bytearray
   object: memoryview
   module: array

The core built-in types for manipulating binary data are :class:`bytes` and
:class:`bytearray`. They are supported by :class:`memoryview` which uses
the :ref:`buffer protocol <bufferobjects>` to access the memory of other
binary objects without needing to make a copy.

The :mod:`array` module supports efficient storage of basic data types like
32-bit integers and IEEE754 double-precision floating values.

.. _typebytes:

Bytes Objects
-------------

.. index:: object: bytes

Bytes objects are immutable sequences of single bytes. Since many major
binary protocols are based on the ASCII text encoding, bytes objects offer
several methods that are only valid when working with ASCII compatible
data and are closely related to string objects in a variety of other ways.

.. class:: bytes([source[, encoding[, errors]]])

   Firstly, the syntax for bytes literals is largely the same as that for string
   literals, except that a ``b`` prefix is added:

   * Single quotes: ``b'still allows embedded "double" quotes'``
   * Double quotes: ``b"still allows embedded 'single' quotes"``
   * Triple quoted: ``b'''3 single quotes'''``, ``b"""3 double quotes"""``

   Only ASCII characters are permitted in bytes literals (regardless of the
   declared source code encoding). Any binary values over 127 must be entered
   into bytes literals using the appropriate escape sequence.

   As with string literals, bytes literals may also use a ``r`` prefix to disable
   processing of escape sequences. See :ref:`strings` for more about the various
   forms of bytes literal, including supported escape sequences.

   While bytes literals and representations are based on ASCII text, bytes
   objects actually behave like immutable sequences of integers, with each
   value in the sequence restricted such that ``0 <= x < 256`` (attempts to
   violate this restriction will trigger :exc:`ValueError`). This is done
   deliberately to emphasise that while many binary formats include ASCII based
   elements and can be usefully manipulated with some text-oriented algorithms,
   this is not generally the case for arbitrary binary data (blindly applying
   text processing algorithms to binary data formats that are not ASCII
   compatible will usually lead to data corruption).

   In addition to the literal forms, bytes objects can be created in a number of
   other ways:

   * A zero-filled bytes object of a specified length: ``bytes(10)``
   * From an iterable of integers: ``bytes(range(20))``
   * Copying existing binary data via the buffer protocol:  ``bytes(obj)``

   Also see the :ref:`bytes <func-bytes>` built-in.

   Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
   numbers are a commonly used format for describing binary data. Accordingly,
   the bytes type has an additional class method to read data in that format:

   .. classmethod:: fromhex(string)

      This :class:`bytes` class method returns a bytes object, decoding the
      given string object.  The string must contain two hexadecimal digits per
      byte, with ASCII whitespace being ignored.

      >>> bytes.fromhex('2Ef0 F1f2  ')
      b'.\xf0\xf1\xf2'

      .. versionchanged:: 3.7
         :meth:`bytes.fromhex` now skips all ASCII whitespace in the string,
         not just spaces.

   A reverse conversion function exists to transform a bytes object into its
   hexadecimal representation.

   .. method:: hex([sep[, bytes_per_sep]])

      Return a string object containing two hexadecimal digits for each
      byte in the instance.

      >>> b'\xf0\xf1\xf2'.hex()
      'f0f1f2'

      If you want to make the hex string easier to read, you can specify a
      single character separator *sep* parameter to include in the output.
      By default, this separator will be included between each byte.
      A second optional *bytes_per_sep* parameter controls the spacing.
      Positive values calculate the separator position from the right,
      negative values from the left.

      >>> value = b'\xf0\xf1\xf2'
      >>> value.hex('-')
      'f0-f1-f2'
      >>> value.hex('_', 2)
      'f0_f1f2'
      >>> b'UUDDLRLRAB'.hex(' ', -4)
      '55554444 4c524c52 4142'

      .. versionadded:: 3.5

      .. versionchanged:: 3.8
         :meth:`bytes.hex` now supports optional *sep* and *bytes_per_sep*
         parameters to insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes
object *b*, ``b[0]`` will be an integer, while ``b[0:1]`` will be a bytes
object of length 1.  (This contrasts with text strings, where both indexing
and slicing will produce a string of length 1)

The representation of bytes objects uses the literal format (``b'...'``)
since it is often more useful than e.g. ``bytes([46, 46, 46])``.  You can
always convert a bytes object into a list of integers using ``list(b)``.


.. _typebytearray:

Bytearray Objects
-----------------

.. index:: object: bytearray

:class:`bytearray` objects are a mutable counterpart to :class:`bytes`
objects.

.. class:: bytearray([source[, encoding[, errors]]])

   There is no dedicated literal syntax for bytearray objects, instead
   they are always created by calling the constructor:

   * Creating an empty instance: ``bytearray()``
   * Creating a zero-filled instance with a given length: ``bytearray(10)``
   * From an iterable of integers: ``bytearray(range(20))``
   * Copying existing binary data via the buffer protocol:  ``bytearray(b'Hi!')``

   As bytearray objects are mutable, they support the
   :ref:`mutable <typesseq-mutable>` sequence operations in addition to the
   common bytes and bytearray operations described in :ref:`bytes-methods`.

   Also see the :ref:`bytearray <func-bytearray>` built-in.

   Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
   numbers are a commonly used format for describing binary data. Accordingly,
   the bytearray type has an additional class method to read data in that format:

   .. classmethod:: fromhex(string)

      This :class:`bytearray` class method returns bytearray object, decoding
      the given string object.  The string must contain two hexadecimal digits
      per byte, with ASCII whitespace being ignored.

      >>> bytearray.fromhex('2Ef0 F1f2  ')
      bytearray(b'.\xf0\xf1\xf2')

      .. versionchanged:: 3.7
         :meth:`bytearray.fromhex` now skips all ASCII whitespace in the string,
         not just spaces.

   A reverse conversion function exists to transform a bytearray object into its
   hexadecimal representation.

   .. method:: hex([sep[, bytes_per_sep]])

      Return a string object containing two hexadecimal digits for each
      byte in the instance.

      >>> bytearray(b'\xf0\xf1\xf2').hex()
      'f0f1f2'

      .. versionadded:: 3.5

      .. versionchanged:: 3.8
         Similar to :meth:`bytes.hex`, :meth:`bytearray.hex` now supports
         optional *sep* and *bytes_per_sep* parameters to insert separators
         between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a
bytearray object *b*, ``b[0]`` will be an integer, while ``b[0:1]`` will be
a bytearray object of length 1.  (This contrasts with text strings, where
both indexing and slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format
(``bytearray(b'...')``) since it is often more useful than e.g.
``bytearray([46, 46, 46])``.  You can always convert a bytearray object into
a list of integers using ``list(b)``.


.. _bytes-methods:

Bytes and Bytearray Operations
------------------------------

.. index:: pair: bytes; methods
           pair: bytearray; methods

Both bytes and bytearray objects support the :ref:`common <typesseq-common>`
sequence operations. They interoperate not just with operands of the same
type, but with any :term:`bytes-like object`. Due to this flexibility, they can be
freely mixed in operations without causing errors. However, the return type
of the result may depend on the order of operands.

.. note::

   The methods on bytes and bytearray objects don't accept strings as their
   arguments, just as the methods on strings don't accept bytes as their
   arguments.  For example, you have to write::

      a = "abc"
      b = a.replace("a", "f")

   and::

      a = b"abc"
      b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible
binary formats, and hence should be avoided when working with arbitrary
binary data. These restrictions are covered below.

.. note::
   Using these ASCII based operations to manipulate binary data that is not
   stored in an ASCII based format may lead to data corruption.

The following methods on bytes and bytearray objects can be used with
arbitrary binary data.

.. method:: bytes.count(sub[, start[, end]])
            bytearray.count(sub[, start[, end]])

   Return the number of non-overlapping occurrences of subsequence *sub* in
   the range [*start*, *end*].  Optional arguments *start* and *end* are
   interpreted as in slice notation.

   The subsequence to search for may be any :term:`bytes-like object` or an
   integer in the range 0 to 255.

   .. versionchanged:: 3.3
      Also accept an integer in the range 0 to 255 as the subsequence.


.. method:: bytes.removeprefix(prefix, /)
            bytearray.removeprefix(prefix, /)

   If the binary data starts with the *prefix* string, return
   ``bytes[len(prefix):]``. Otherwise, return a copy of the original
   binary data::

      >>> b'TestHook'.removeprefix(b'Test')
      b'Hook'
      >>> b'BaseTestCase'.removeprefix(b'Test')
      b'BaseTestCase'

   The *prefix* may be any :term:`bytes-like object`.

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.

   .. versionadded:: 3.9


.. method:: bytes.removesuffix(suffix, /)
            bytearray.removesuffix(suffix, /)

   If the binary data ends with the *suffix* string and that *suffix* is
   not empty, return ``bytes[:-len(suffix)]``.  Otherwise, return a copy of
   the original binary data::

      >>> b'MiscTests'.removesuffix(b'Tests')
      b'Misc'
      >>> b'TmpDirMixin'.removesuffix(b'Tests')
      b'TmpDirMixin'

   The *suffix* may be any :term:`bytes-like object`.

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.

   .. versionadded:: 3.9


.. method:: bytes.decode(encoding="utf-8", errors="strict")
            bytearray.decode(encoding="utf-8", errors="strict")

   Return a string decoded from the given bytes.  Default encoding is
   ``'utf-8'``. *errors* may be given to set a different
   error handling scheme.  The default for *errors* is ``'strict'``, meaning
   that encoding errors raise a :exc:`UnicodeError`.  Other possible values are
   ``'ignore'``, ``'replace'`` and any other name registered via
   :func:`codecs.register_error`, see section :ref:`error-handlers`. For a
   list of possible encodings, see section :ref:`standard-encodings`.

   By default, the *errors* argument is not checked for best performances, but
   only used at the first decoding error. Enable the :ref:`Python Development
   Mode <devmode>`, or use a :ref:`debug build <debug-build>` to check *errors*.

   .. note::

      Passing the *encoding* argument to :class:`str` allows decoding any
      :term:`bytes-like object` directly, without needing to make a temporary
      bytes or bytearray object.

   .. versionchanged:: 3.1
      Added support for keyword arguments.

   .. versionchanged:: 3.9
      The *errors* is now checked in development mode and
      in :ref:`debug mode <debug-build>`.


.. method:: bytes.endswith(suffix[, start[, end]])
            bytearray.endswith(suffix[, start[, end]])

   Return ``True`` if the binary data ends with the specified *suffix*,
   otherwise return ``False``.  *suffix* can also be a tuple of suffixes to
   look for.  With optional *start*, test beginning at that position.  With
   optional *end*, stop comparing at that position.

   The suffix(es) to search for may be any :term:`bytes-like object`.


.. method:: bytes.find(sub[, start[, end]])
            bytearray.find(sub[, start[, end]])

   Return the lowest index in the data where the subsequence *sub* is found,
   such that *sub* is contained in the slice ``s[start:end]``.  Optional
   arguments *start* and *end* are interpreted as in slice notation.  Return
   ``-1`` if *sub* is not found.

   The subsequence to search for may be any :term:`bytes-like object` or an
   integer in the range 0 to 255.

   .. note::

      The :meth:`~bytes.find` method should be used only if you need to know the
      position of *sub*.  To check if *sub* is a substring or not, use the
      :keyword:`in` operator::

         >>> b'Py' in b'Python'
         True

   .. versionchanged:: 3.3
      Also accept an integer in the range 0 to 255 as the subsequence.


.. method:: bytes.index(sub[, start[, end]])
            bytearray.index(sub[, start[, end]])

   Like :meth:`~bytes.find`, but raise :exc:`ValueError` when the
   subsequence is not found.

   The subsequence to search for may be any :term:`bytes-like object` or an
   integer in the range 0 to 255.

   .. versionchanged:: 3.3
      Also accept an integer in the range 0 to 255 as the subsequence.


.. method:: bytes.join(iterable)
            bytearray.join(iterable)

   Return a bytes or bytearray object which is the concatenation of the
   binary data sequences in *iterable*.  A :exc:`TypeError` will be raised
   if there are any values in *iterable* that are not :term:`bytes-like
   objects <bytes-like object>`, including :class:`str` objects.  The
   separator between elements is the contents of the bytes or
   bytearray object providing this method.


.. staticmethod:: bytes.maketrans(from, to)
                  bytearray.maketrans(from, to)

   This static method returns a translation table usable for
   :meth:`bytes.translate` that will map each character in *from* into the
   character at the same position in *to*; *from* and *to* must both be
   :term:`bytes-like objects <bytes-like object>` and have the same length.

   .. versionadded:: 3.1


.. method:: bytes.partition(sep)
            bytearray.partition(sep)

   Split the sequence at the first occurrence of *sep*, and return a 3-tuple
   containing the part before the separator, the separator itself or its
   bytearray copy, and the part after the separator.
   If the separator is not found, return a 3-tuple
   containing a copy of the original sequence, followed by two empty bytes or
   bytearray objects.

   The separator to search for may be any :term:`bytes-like object`.


.. method:: bytes.replace(old, new[, count])
            bytearray.replace(old, new[, count])

   Return a copy of the sequence with all occurrences of subsequence *old*
   replaced by *new*.  If the optional argument *count* is given, only the
   first *count* occurrences are replaced.

   The subsequence to search for and its replacement may be any
   :term:`bytes-like object`.

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. method:: bytes.rfind(sub[, start[, end]])
            bytearray.rfind(sub[, start[, end]])

   Return the highest index in the sequence where the subsequence *sub* is
   found, such that *sub* is contained within ``s[start:end]``.  Optional
   arguments *start* and *end* are interpreted as in slice notation. Return
   ``-1`` on failure.

   The subsequence to search for may be any :term:`bytes-like object` or an
   integer in the range 0 to 255.

   .. versionchanged:: 3.3
      Also accept an integer in the range 0 to 255 as the subsequence.


.. method:: bytes.rindex(sub[, start[, end]])
            bytearray.rindex(sub[, start[, end]])

   Like :meth:`~bytes.rfind` but raises :exc:`ValueError` when the
   subsequence *sub* is not found.

   The subsequence to search for may be any :term:`bytes-like object` or an
   integer in the range 0 to 255.

   .. versionchanged:: 3.3
      Also accept an integer in the range 0 to 255 as the subsequence.


.. method:: bytes.rpartition(sep)
            bytearray.rpartition(sep)

   Split the sequence at the last occurrence of *sep*, and return a 3-tuple
   containing the part before the separator, the separator itself or its
   bytearray copy, and the part after the separator.
   If the separator is not found, return a 3-tuple
   containing two empty bytes or bytearray objects, followed by a copy of the
   original sequence.

   The separator to search for may be any :term:`bytes-like object`.


.. method:: bytes.startswith(prefix[, start[, end]])
            bytearray.startswith(prefix[, start[, end]])

   Return ``True`` if the binary data starts with the specified *prefix*,
   otherwise return ``False``.  *prefix* can also be a tuple of prefixes to
   look for.  With optional *start*, test beginning at that position.  With
   optional *end*, stop comparing at that position.

   The prefix(es) to search for may be any :term:`bytes-like object`.


.. method:: bytes.translate(table, /, delete=b'')
            bytearray.translate(table, /, delete=b'')

   Return a copy of the bytes or bytearray object where all bytes occurring in
   the optional argument *delete* are removed, and the remaining bytes have
   been mapped through the given translation table, which must be a bytes
   object of length 256.

   You can use the :func:`bytes.maketrans` method to create a translation
   table.

   Set the *table* argument to ``None`` for translations that only delete
   characters::

      >>> b'read this short text'.translate(None, b'aeiou')
      b'rd ths shrt txt'

   .. versionchanged:: 3.6
      *delete* is now supported as a keyword argument.


The following methods on bytes and bytearray objects have default behaviours
that assume the use of ASCII compatible binary formats, but can still be used
with arbitrary binary data by passing appropriate arguments. Note that all of
the bytearray methods in this section do *not* operate in place, and instead
produce new objects.

.. method:: bytes.center(width[, fillbyte])
            bytearray.center(width[, fillbyte])

   Return a copy of the object centered in a sequence of length *width*.
   Padding is done using the specified *fillbyte* (default is an ASCII
   space). For :class:`bytes` objects, the original sequence is returned if
   *width* is less than or equal to ``len(s)``.

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.


.. method:: bytes.ljust(width[, fillbyte])
            bytearray.ljust(width[, fillbyte])

   Return a copy of the object left justified in a sequence of length *width*.
   Padding is done using the specified *fillbyte* (default is an ASCII
   space). For :class:`bytes` objects, the original sequence is returned if
   *width* is less than or equal to ``len(s)``.

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.


.. method:: bytes.lstrip([chars])
            bytearray.lstrip([chars])

   Return a copy of the sequence with specified leading bytes removed.  The
   *chars* argument is a binary sequence specifying the set of byte values to
   be removed - the name refers to the fact this method is usually used with
   ASCII characters.  If omitted or ``None``, the *chars* argument defaults
   to removing ASCII whitespace.  The *chars* argument is not a prefix;
   rather, all combinations of its values are stripped::

      >>> b'   spacious   '.lstrip()
      b'spacious   '
      >>> b'www.example.com'.lstrip(b'cmowz.')
      b'example.com'

   The binary sequence of byte values to remove may be any
   :term:`bytes-like object`. See :meth:`~bytes.removeprefix` for a method
   that will remove a single prefix string rather than all of a set of
   characters.  For example::

      >>> b'Arthur: three!'.lstrip(b'Arthur: ')
      b'ee!'
      >>> b'Arthur: three!'.removeprefix(b'Arthur: ')
      b'three!'

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.


.. method:: bytes.rjust(width[, fillbyte])
            bytearray.rjust(width[, fillbyte])

   Return a copy of the object right justified in a sequence of length *width*.
   Padding is done using the specified *fillbyte* (default is an ASCII
   space). For :class:`bytes` objects, the original sequence is returned if
   *width* is less than or equal to ``len(s)``.

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.


.. method:: bytes.rsplit(sep=None, maxsplit=-1)
            bytearray.rsplit(sep=None, maxsplit=-1)

   Split the binary sequence into subsequences of the same type, using *sep*
   as the delimiter string. If *maxsplit* is given, at most *maxsplit* splits
   are done, the *rightmost* ones.  If *sep* is not specified or ``None``,
   any subsequence consisting solely of ASCII whitespace is a separator.
   Except for splitting from the right, :meth:`rsplit` behaves like
   :meth:`split` which is described in detail below.


.. method:: bytes.rstrip([chars])
            bytearray.rstrip([chars])

   Return a copy of the sequence with specified trailing bytes removed.  The
   *chars* argument is a binary sequence specifying the set of byte values to
   be removed - the name refers to the fact this method is usually used with
   ASCII characters.  If omitted or ``None``, the *chars* argument defaults to
   removing ASCII whitespace.  The *chars* argument is not a suffix; rather,
   all combinations of its values are stripped::

      >>> b'   spacious   '.rstrip()
      b'   spacious'
      >>> b'mississippi'.rstrip(b'ipz')
      b'mississ'

   The binary sequence of byte values to remove may be any
   :term:`bytes-like object`. See :meth:`~bytes.removesuffix` for a method
   that will remove a single suffix string rather than all of a set of
   characters.  For example::

      >>> b'Monty Python'.rstrip(b' Python')
      b'M'
      >>> b'Monty Python'.removesuffix(b' Python')
      b'Monty'

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.


.. method:: bytes.split(sep=None, maxsplit=-1)
            bytearray.split(sep=None, maxsplit=-1)

   Split the binary sequence into subsequences of the same type, using *sep*
   as the delimiter string. If *maxsplit* is given and non-negative, at most
   *maxsplit* splits are done (thus, the list will have at most ``maxsplit+1``
   elements).  If *maxsplit* is not specified or is ``-1``, then there is no
   limit on the number of splits (all possible splits are made).

   If *sep* is given, consecutive delimiters are not grouped together and are
   deemed to delimit empty subsequences (for example, ``b'1,,2'.split(b',')``
   returns ``[b'1', b'', b'2']``).  The *sep* argument may consist of a
   multibyte sequence (for example, ``b'1<>2<>3'.split(b'<>')`` returns
   ``[b'1', b'2', b'3']``). Splitting an empty sequence with a specified
   separator returns ``[b'']`` or ``[bytearray(b'')]`` depending on the type
   of object being split.  The *sep* argument may be any
   :term:`bytes-like object`.

   For example::

      >>> b'1,2,3'.split(b',')
      [b'1', b'2', b'3']
      >>> b'1,2,3'.split(b',', maxsplit=1)
      [b'1', b'2,3']
      >>> b'1,2,,3,'.split(b',')
      [b'1', b'2', b'', b'3', b'']

   If *sep* is not specified or is ``None``, a different splitting algorithm
   is applied: runs of consecutive ASCII whitespace are regarded as a single
   separator, and the result will contain no empty strings at the start or
   end if the sequence has leading or trailing whitespace.  Consequently,
   splitting an empty sequence or a sequence consisting solely of ASCII
   whitespace without a specified separator returns ``[]``.

   For example::


      >>> b'1 2 3'.split()
      [b'1', b'2', b'3']
      >>> b'1 2 3'.split(maxsplit=1)
      [b'1', b'2 3']
      >>> b'   1   2   3   '.split()
      [b'1', b'2', b'3']


.. method:: bytes.strip([chars])
            bytearray.strip([chars])

   Return a copy of the sequence with specified leading and trailing bytes
   removed. The *chars* argument is a binary sequence specifying the set of
   byte values to be removed - the name refers to the fact this method is
   usually used with ASCII characters.  If omitted or ``None``, the *chars*
   argument defaults to removing ASCII whitespace. The *chars* argument is
   not a prefix or suffix; rather, all combinations of its values are
   stripped::

      >>> b'   spacious   '.strip()
      b'spacious'
      >>> b'www.example.com'.strip(b'cmowz.')
      b'example'

   The binary sequence of byte values to remove may be any
   :term:`bytes-like object`.

   .. note::

      The bytearray version of this method does *not* operate in place -
      it always produces a new object, even if no changes were made.


The following methods on bytes and bytearray objects assume the use of ASCII
compatible binary formats and should not be applied to arbitrary binary data.
Note that all of the bytearray methods in this section do *not* operate in
place, and instead produce new objects.

.. method:: bytes.capitalize()
            bytearray.capitalize()

   Return a copy of the sequence with each byte interpreted as an ASCII
   character, and the first byte capitalized and the rest lowercased.
   Non-ASCII byte values are passed through unchanged.

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. method:: bytes.expandtabs(tabsize=8)
            bytearray.expandtabs(tabsize=8)

   Return a copy of the sequence where all ASCII tab characters are replaced
   by one or more ASCII spaces, depending on the current column and the given
   tab size.  Tab positions occur every *tabsize* bytes (default is 8,
   giving tab positions at columns 0, 8, 16 and so on).  To expand the
   sequence, the current column is set to zero and the sequence is examined
   byte by byte.  If the byte is an ASCII tab character (``b'\t'``), one or
   more space characters are inserted in the result until the current column
   is equal to the next tab position. (The tab character itself is not
   copied.)  If the current byte is an ASCII newline (``b'\n'``) or
   carriage return (``b'\r'``), it is copied and the current column is reset
   to zero.  Any other byte value is copied unchanged and the current column
   is incremented by one regardless of how the byte value is represented when
   printed::

      >>> b'01\t012\t0123\t01234'.expandtabs()
      b'01      012     0123    01234'
      >>> b'01\t012\t0123\t01234'.expandtabs(4)
      b'01  012 0123    01234'

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. method:: bytes.isalnum()
            bytearray.isalnum()

   Return ``True`` if all bytes in the sequence are alphabetical ASCII characters
   or ASCII decimal digits and the sequence is not empty, ``False`` otherwise.
   Alphabetic ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'``. ASCII decimal
   digits are those byte values in the sequence ``b'0123456789'``.

   For example::

      >>> b'ABCabc1'.isalnum()
      True
      >>> b'ABC abc1'.isalnum()
      False


.. method:: bytes.isalpha()
            bytearray.isalpha()

   Return ``True`` if all bytes in the sequence are alphabetic ASCII characters
   and the sequence is not empty, ``False`` otherwise.  Alphabetic ASCII
   characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'``.

   For example::

      >>> b'ABCabc'.isalpha()
      True
      >>> b'ABCabc1'.isalpha()
      False


.. method:: bytes.isascii()
            bytearray.isascii()

   Return ``True`` if the sequence is empty or all bytes in the sequence are ASCII,
   ``False`` otherwise.
   ASCII bytes are in the range 0-0x7F.

   .. versionadded:: 3.7


.. method:: bytes.isdigit()
            bytearray.isdigit()

   Return ``True`` if all bytes in the sequence are ASCII decimal digits
   and the sequence is not empty, ``False`` otherwise. ASCII decimal digits are
   those byte values in the sequence ``b'0123456789'``.

   For example::

      >>> b'1234'.isdigit()
      True
      >>> b'1.23'.isdigit()
      False


.. method:: bytes.islower()
            bytearray.islower()

   Return ``True`` if there is at least one lowercase ASCII character
   in the sequence and no uppercase ASCII characters, ``False`` otherwise.

   For example::

      >>> b'hello world'.islower()
      True
      >>> b'Hello world'.islower()
      False

   Lowercase ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
   are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.


.. method:: bytes.isspace()
            bytearray.isspace()

   Return ``True`` if all bytes in the sequence are ASCII whitespace and the
   sequence is not empty, ``False`` otherwise.  ASCII whitespace characters are
   those byte values in the sequence ``b' \t\n\r\x0b\f'`` (space, tab, newline,
   carriage return, vertical tab, form feed).


.. method:: bytes.istitle()
            bytearray.istitle()

   Return ``True`` if the sequence is ASCII titlecase and the sequence is not
   empty, ``False`` otherwise. See :meth:`bytes.title` for more details on the
   definition of "titlecase".

   For example::

      >>> b'Hello World'.istitle()
      True
      >>> b'Hello world'.istitle()
      False


.. method:: bytes.isupper()
            bytearray.isupper()

   Return ``True`` if there is at least one uppercase alphabetic ASCII character
   in the sequence and no lowercase ASCII characters, ``False`` otherwise.

   For example::

      >>> b'HELLO WORLD'.isupper()
      True
      >>> b'Hello world'.isupper()
      False

   Lowercase ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
   are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.


.. method:: bytes.lower()
            bytearray.lower()

   Return a copy of the sequence with all the uppercase ASCII characters
   converted to their corresponding lowercase counterpart.

   For example::

      >>> b'Hello World'.lower()
      b'hello world'

   Lowercase ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
   are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. index::
   single: universal newlines; bytes.splitlines method
   single: universal newlines; bytearray.splitlines method

.. method:: bytes.splitlines(keepends=False)
            bytearray.splitlines(keepends=False)

   Return a list of the lines in the binary sequence, breaking at ASCII
   line boundaries. This method uses the :term:`universal newlines` approach
   to splitting lines. Line breaks are not included in the resulting list
   unless *keepends* is given and true.

   For example::

      >>> b'ab c\n\nde fg\rkl\r\n'.splitlines()
      [b'ab c', b'', b'de fg', b'kl']
      >>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True)
      [b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

   Unlike :meth:`~bytes.split` when a delimiter string *sep* is given, this
   method returns an empty list for the empty string, and a terminal line
   break does not result in an extra line::

      >>> b"".split(b'\n'), b"Two lines\n".split(b'\n')
      ([b''], [b'Two lines', b''])
      >>> b"".splitlines(), b"One line\n".splitlines()
      ([], [b'One line'])


.. method:: bytes.swapcase()
            bytearray.swapcase()

   Return a copy of the sequence with all the lowercase ASCII characters
   converted to their corresponding uppercase counterpart and vice-versa.

   For example::

      >>> b'Hello World'.swapcase()
      b'hELLO wORLD'

   Lowercase ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
   are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.

   Unlike :func:`str.swapcase()`, it is always the case that
   ``bin.swapcase().swapcase() == bin`` for the binary versions. Case
   conversions are symmetrical in ASCII, even though that is not generally
   true for arbitrary Unicode code points.

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. method:: bytes.title()
            bytearray.title()

   Return a titlecased version of the binary sequence where words start with
   an uppercase ASCII character and the remaining characters are lowercase.
   Uncased byte values are left unmodified.

   For example::

      >>> b'Hello world'.title()
      b'Hello World'

   Lowercase ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
   are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.
   All other byte values are uncased.

   The algorithm uses a simple language-independent definition of a word as
   groups of consecutive letters.  The definition works in many contexts but
   it means that apostrophes in contractions and possessives form word
   boundaries, which may not be the desired result::

        >>> b"they're bill's friends from the UK".title()
        b"They'Re Bill'S Friends From The Uk"

   A workaround for apostrophes can be constructed using regular expressions::

        >>> import re
        >>> def titlecase(s):
        ...     return re.sub(rb"[A-Za-z]+('[A-Za-z]+)?",
        ...                   lambda mo: mo.group(0)[0:1].upper() +
        ...                              mo.group(0)[1:].lower(),
        ...                   s)
        ...
        >>> titlecase(b"they're bill's friends.")
        b"They're Bill's Friends."

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. method:: bytes.upper()
            bytearray.upper()

   Return a copy of the sequence with all the lowercase ASCII characters
   converted to their corresponding uppercase counterpart.

   For example::

      >>> b'Hello World'.upper()
      b'HELLO WORLD'

   Lowercase ASCII characters are those byte values in the sequence
   ``b'abcdefghijklmnopqrstuvwxyz'``. Uppercase ASCII characters
   are those byte values in the sequence ``b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. method:: bytes.zfill(width)
            bytearray.zfill(width)

   Return a copy of the sequence left filled with ASCII ``b'0'`` digits to
   make a sequence of length *width*. A leading sign prefix (``b'+'``/
   ``b'-'``) is handled by inserting the padding *after* the sign character
   rather than before. For :class:`bytes` objects, the original sequence is
   returned if *width* is less than or equal to ``len(seq)``.

   For example::

      >>> b"42".zfill(5)
      b'00042'
      >>> b"-42".zfill(5)
      b'-0042'

   .. note::

      The bytearray version of this method does *not* operate in place - it
      always produces a new object, even if no changes were made.


.. _bytes-formatting:

``printf``-style Bytes Formatting
----------------------------------

.. index::
   single: formatting; bytes (%)
   single: formatting; bytearray (%)
   single: interpolation; bytes (%)
   single: interpolation; bytearray (%)
   single: bytes; formatting
   single: bytearray; formatting
   single: bytes; interpolation
   single: bytearray; interpolation
   single: printf-style formatting
   single: sprintf-style formatting
   single: % (percent); printf-style formatting

.. note::

   The formatting operations described here exhibit a variety of quirks that
   lead to a number of common errors (such as failing to display tuples and
   dictionaries correctly).  If the value being printed may be a tuple or
   dictionary, wrap it in a tuple.

Bytes objects (``bytes``/``bytearray``) have one unique built-in operation:
the ``%`` operator (modulo).
This is also known as the bytes *formatting* or *interpolation* operator.
Given ``format % values`` (where *format* is a bytes object), ``%`` conversion
specifications in *format* are replaced with zero or more elements of *values*.
The effect is similar to using the :c:func:`sprintf` in the C language.

If *format* requires a single argument, *values* may be a single non-tuple
object. [5]_  Otherwise, *values* must be a tuple with exactly the number of
items specified by the format bytes object, or a single mapping object (for
example, a dictionary).

.. index::
   single: () (parentheses); in printf-style formatting
   single: * (asterisk); in printf-style formatting
   single: . (dot); in printf-style formatting

A conversion specifier contains two or more characters and has the following
components, which must occur in this order:

#. The ``'%'`` character, which marks the start of the specifier.

#. Mapping key (optional), consisting of a parenthesised sequence of characters
   (for example, ``(somename)``).

#. Conversion flags (optional), which affect the result of some conversion
   types.

#. Minimum field width (optional).  If specified as an ``'*'`` (asterisk), the
   actual width is read from the next element of the tuple in *values*, and the
   object to convert comes after the minimum field width and optional precision.

#. Precision (optional), given as a ``'.'`` (dot) followed by the precision.  If
   specified as ``'*'`` (an asterisk), the actual precision is read from the next
   element of the tuple in *values*, and the value to convert comes after the
   precision.

#. Length modifier (optional).

#. Conversion type.

When the right argument is a dictionary (or other mapping type), then the
formats in the bytes object *must* include a parenthesised mapping key into that
dictionary inserted immediately after the ``'%'`` character. The mapping key
selects the value to be formatted from the mapping.  For example:

   >>> print(b'%(language)s has %(number)03d quote types.' %
   ...       {b'language': b"Python", b"number": 2})
   b'Python has 002 quote types.'

In this case no ``*`` specifiers may occur in a format (since they require a
sequential parameter list).

The conversion flag characters are:

.. index::
   single: # (hash); in printf-style formatting
   single: - (minus); in printf-style formatting
   single: + (plus); in printf-style formatting
   single: space; in printf-style formatting

+---------+---------------------------------------------------------------------+
| Flag    | Meaning                                                             |
+=========+=====================================================================+
| ``'#'`` | The value conversion will use the "alternate form" (where defined   |
|         | below).                                                             |
+---------+---------------------------------------------------------------------+
| ``'0'`` | The conversion will be zero padded for numeric values.              |
+---------+---------------------------------------------------------------------+
| ``'-'`` | The converted value is left adjusted (overrides the ``'0'``         |
|         | conversion if both are given).                                      |
+---------+---------------------------------------------------------------------+
| ``' '`` | (a space) A blank should be left before a positive number (or empty |
|         | string) produced by a signed conversion.                            |
+---------+---------------------------------------------------------------------+
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will precede the conversion   |
|         | (overrides a "space" flag).                                         |
+---------+---------------------------------------------------------------------+

A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
is not necessary for Python -- so e.g. ``%ld`` is identical to ``%d``.

The conversion types are:

+------------+-----------------------------------------------------+-------+
| Conversion | Meaning                                             | Notes |
+============+=====================================================+=======+
| ``'d'``    | Signed integer decimal.                             |       |
+------------+-----------------------------------------------------+-------+
| ``'i'``    | Signed integer decimal.                             |       |
+------------+-----------------------------------------------------+-------+
| ``'o'``    | Signed octal value.                                 | \(1)  |
+------------+-----------------------------------------------------+-------+
| ``'u'``    | Obsolete type -- it is identical to ``'d'``.        | \(8)  |
+------------+-----------------------------------------------------+-------+
| ``'x'``    | Signed hexadecimal (lowercase).                     | \(2)  |
+------------+-----------------------------------------------------+-------+
| ``'X'``    | Signed hexadecimal (uppercase).                     | \(2)  |
+------------+-----------------------------------------------------+-------+
| ``'e'``    | Floating point exponential format (lowercase).      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'E'``    | Floating point exponential format (uppercase).      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'f'``    | Floating point decimal format.                      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'F'``    | Floating point decimal format.                      | \(3)  |
+------------+-----------------------------------------------------+-------+
| ``'g'``    | Floating point format. Uses lowercase exponential   | \(4)  |
|            | format if exponent is less than -4 or not less than |       |
|            | precision, decimal format otherwise.                |       |
+------------+-----------------------------------------------------+-------+
| ``'G'``    | Floating point format. Uses uppercase exponential   | \(4)  |
|            | format if exponent is less than -4 or not less than |       |
|            | precision, decimal format otherwise.                |       |
+------------+-----------------------------------------------------+-------+
| ``'c'``    | Single byte (accepts integer or single              |       |
|            | byte objects).                                      |       |
+------------+-----------------------------------------------------+-------+
| ``'b'``    | Bytes (any object that follows the                  | \(5)  |
|            | :ref:`buffer protocol <bufferobjects>` or has       |       |
|            | :meth:`__bytes__`).                                 |       |
+------------+-----------------------------------------------------+-------+
| ``'s'``    | ``'s'`` is an alias for ``'b'`` and should only     | \(6)  |
|            | be used for Python2/3 code bases.                   |       |
+------------+-----------------------------------------------------+-------+
| ``'a'``    | Bytes (converts any Python object using             | \(5)  |
|            | ``repr(obj).encode('ascii', 'backslashreplace')``). |       |
+------------+-----------------------------------------------------+-------+
| ``'r'``    | ``'r'`` is an alias for ``'a'`` and should only     | \(7)  |
|            | be used for Python2/3 code bases.                   |       |
+------------+-----------------------------------------------------+-------+
| ``'%'``    | No argument is converted, results in a ``'%'``      |       |
|            | character in the result.                            |       |
+------------+-----------------------------------------------------+-------+

Notes:

(1)
   The alternate form causes a leading octal specifier (``'0o'``) to be
   inserted before the first digit.

(2)
   The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
   the ``'x'`` or ``'X'`` format was used) to be inserted before the first digit.

(3)
   The alternate form causes the result to always contain a decimal point, even if
   no digits follow it.

   The precision determines the number of digits after the decimal point and
   defaults to 6.

(4)
   The alternate form causes the result to always contain a decimal point, and
   trailing zeroes are not removed as they would otherwise be.

   The precision determines the number of significant digits before and after the
   decimal point and defaults to 6.

(5)
   If precision is ``N``, the output is truncated to ``N`` characters.

(6)
   ``b'%s'`` is deprecated, but will not be removed during the 3.x series.

(7)
   ``b'%r'`` is deprecated, but will not be removed during the 3.x series.

(8)
   See :pep:`237`.

.. note::

   The bytearray version of this method does *not* operate in place - it
   always produces a new object, even if no changes were made.

.. seealso::

   :pep:`461` - Adding % formatting to bytes and bytearray

.. versionadded:: 3.5

.. _typememoryview:

Memory Views
------------

:class:`memoryview` objects allow Python code to access the internal data
of an object that supports the :ref:`buffer protocol <bufferobjects>` without
copying.

.. class:: memoryview(object)

   Create a :class:`memoryview` that references *object*.  *object* must
   support the buffer protocol.  Built-in objects that support the buffer
   protocol include :class:`bytes` and :class:`bytearray`.

   A :class:`memoryview` has the notion of an *element*, which is the
   atomic memory unit handled by the originating *object*.  For many simple
   types such as :class:`bytes` and :class:`bytearray`, an element is a single
   byte, but other types such as :class:`array.array` may have bigger elements.

   ``len(view)`` is equal to the length of :class:`~memoryview.tolist`.
   If ``view.ndim = 0``, the length is 1. If ``view.ndim = 1``, the length
   is equal to the number of elements in the view. For higher dimensions,
   the length is equal to the length of the nested list representation of
   the view. The :class:`~memoryview.itemsize` attribute will give you the
   number of bytes in a single element.

   A :class:`memoryview` supports slicing and indexing to expose its data.
   One-dimensional slicing will result in a subview::

    >>> v = memoryview(b'abcefg')
    >>> v[1]
    98
    >>> v[-1]
    103
    >>> v[1:4]
    <memory at 0x7f3ddc9f4350>
    >>> bytes(v[1:4])
    b'bce'

   If :class:`~memoryview.format` is one of the native format specifiers
   from the :mod:`struct` module, indexing with an integer or a tuple of
   integers is also supported and returns a single *element* with
   the correct type.  One-dimensional memoryviews can be indexed
   with an integer or a one-integer tuple.  Multi-dimensional memoryviews
   can be indexed with tuples of exactly *ndim* integers where *ndim* is
   the number of dimensions.  Zero-dimensional memoryviews can be indexed
   with the empty tuple.

   Here is an example with a non-byte format::

      >>> import array
      >>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444])
      >>> m = memoryview(a)
      >>> m[0]
      -11111111
      >>> m[-1]
      44444444
      >>> m[::2].tolist()
      [-11111111, -33333333]

   If the underlying object is writable, the memoryview supports
   one-dimensional slice assignment. Resizing is not allowed::

      >>> data = bytearray(b'abcefg')
      >>> v = memoryview(data)
      >>> v.readonly
      False
      >>> v[0] = ord(b'z')
      >>> data
      bytearray(b'zbcefg')
      >>> v[1:4] = b'123'
      >>> data
      bytearray(b'z123fg')
      >>> v[2:3] = b'spam'
      Traceback (most recent call last):
        File "<stdin>", line 1, in <module>
      ValueError: memoryview assignment: lvalue and rvalue have different structures
      >>> v[2:6] = b'spam'
      >>> data
      bytearray(b'z1spam')

   One-dimensional memoryviews of hashable (read-only) types with formats
   'B', 'b' or 'c' are also hashable. The hash is defined as
   ``hash(m) == hash(m.tobytes())``::

      >>> v = memoryview(b'abcefg')
      >>> hash(v) == hash(b'abcefg')
      True
      >>> hash(v[2:4]) == hash(b'ce')
      True
      >>> hash(v[::-2]) == hash(b'abcefg'[::-2])
      True

   .. versionchanged:: 3.3
      One-dimensional memoryviews can now be sliced.
      One-dimensional memoryviews with formats 'B', 'b' or 'c' are now hashable.

   .. versionchanged:: 3.4
      memoryview is now registered automatically with
      :class:`collections.abc.Sequence`

   .. versionchanged:: 3.5
      memoryviews can now be indexed with tuple of integers.

   :class:`memoryview` has several methods:

   .. method:: __eq__(exporter)

      A memoryview and a :pep:`3118` exporter are equal if their shapes are
      equivalent and if all corresponding values are equal when the operands'
      respective format codes are interpreted using :mod:`struct` syntax.

      For the subset of :mod:`struct` format strings currently supported by
      :meth:`tolist`, ``v`` and ``w`` are equal if ``v.tolist() == w.tolist()``::

         >>> import array
         >>> a = array.array('I', [1, 2, 3, 4, 5])
         >>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
         >>> c = array.array('b', [5, 3, 1])
         >>> x = memoryview(a)
         >>> y = memoryview(b)
         >>> x == a == y == b
         True
         >>> x.tolist() == a.tolist() == y.tolist() == b.tolist()
         True
         >>> z = y[::-2]
         >>> z == c
         True
         >>> z.tolist() == c.tolist()
         True

      If either format string is not supported by the :mod:`struct` module,
      then the objects will always compare as unequal (even if the format
      strings and buffer contents are identical)::

         >>> from ctypes import BigEndianStructure, c_long
         >>> class BEPoint(BigEndianStructure):
         ...     _fields_ = [("x", c_long), ("y", c_long)]
         ...
         >>> point = BEPoint(100, 200)
         >>> a = memoryview(point)
         >>> b = memoryview(point)
         >>> a == point
         False
         >>> a == b
         False

      Note that, as with floating point numbers, ``v is w`` does *not* imply
      ``v == w`` for memoryview objects.

      .. versionchanged:: 3.3
         Previous versions compared the raw memory disregarding the item format
         and the logical array structure.

   .. method:: tobytes(order='C')

      Return the data in the buffer as a bytestring.  This is equivalent to
      calling the :class:`bytes` constructor on the memoryview. ::

         >>> m = memoryview(b"abc")
         >>> m.tobytes()
         b'abc'
         >>> bytes(m)
         b'abc'

      For non-contiguous arrays the result is equal to the flattened list
      representation with all elements converted to bytes. :meth:`tobytes`
      supports all format strings, including those that are not in
      :mod:`struct` module syntax.

      .. versionadded:: 3.8
         *order* can be {'C', 'F', 'A'}.  When *order* is 'C' or 'F', the data
         of the original array is converted to C or Fortran order. For contiguous
         views, 'A' returns an exact copy of the physical memory. In particular,
         in-memory Fortran order is preserved. For non-contiguous views, the
         data is converted to C first. *order=None* is the same as *order='C'*.

   .. method:: hex([sep[, bytes_per_sep]])

      Return a string object containing two hexadecimal digits for each
      byte in the buffer. ::

         >>> m = memoryview(b"abc")
         >>> m.hex()
         '616263'

      .. versionadded:: 3.5

      .. versionchanged:: 3.8
         Similar to :meth:`bytes.hex`, :meth:`memoryview.hex` now supports
         optional *sep* and *bytes_per_sep* parameters to insert separators
         between bytes in the hex output.

   .. method:: tolist()

      Return the data in the buffer as a list of elements. ::

         >>> memoryview(b'abc').tolist()
         [97, 98, 99]
         >>> import array
         >>> a = array.array('d', [1.1, 2.2, 3.3])
         >>> m = memoryview(a)
         >>> m.tolist()
         [1.1, 2.2, 3.3]

      .. versionchanged:: 3.3
         :meth:`tolist` now supports all single character native formats in
         :mod:`struct` module syntax as well as multi-dimensional
         representations.

   .. method:: toreadonly()

      Return a readonly version of the memoryview object.  The original
      memoryview object is unchanged. ::

         >>> m = memoryview(bytearray(b'abc'))
         >>> mm = m.toreadonly()
         >>> mm.tolist()
         [89, 98, 99]
         >>> mm[0] = 42
         Traceback (most recent call last):
           File "<stdin>", line 1, in <module>
         TypeError: cannot modify read-only memory
         >>> m[0] = 43
         >>> mm.tolist()
         [43, 98, 99]

      .. versionadded:: 3.8

   .. method:: release()

      Release the underlying buffer exposed by the memoryview object.  Many
      objects take special actions when a view is held on them (for example,
      a :class:`bytearray` would temporarily forbid resizing); therefore,
      calling release() is handy to remove these restrictions (and free any
      dangling resources) as soon as possible.

      After this method has been called, any further operation on the view
      raises a :class:`ValueError` (except :meth:`release()` itself which can
      be called multiple times)::

         >>> m = memoryview(b'abc')
         >>> m.release()
         >>> m[0]
         Traceback (most recent call last):
           File "<stdin>", line 1, in <module>
         ValueError: operation forbidden on released memoryview object

      The context management protocol can be used for a similar effect,
      using the ``with`` statement::

         >>> with memoryview(b'abc') as m:
         ...     m[0]
         ...
         97
         >>> m[0]
         Traceback (most recent call last):
           File "<stdin>", line 1, in <module>
         ValueError: operation forbidden on released memoryview object

      .. versionadded:: 3.2

   .. method:: cast(format[, shape])

      Cast a memoryview to a new format or shape. *shape* defaults to
      ``[byte_length//new_itemsize]``, which means that the result view
      will be one-dimensional. The return value is a new memoryview, but
      the buffer itself is not copied. Supported casts are 1D -> C-:term:`contiguous`
      and C-contiguous -> 1D.

      The destination format is restricted to a single element native format in
      :mod:`struct` syntax. One of the formats must be a byte format
      ('B', 'b' or 'c'). The byte length of the result must be the same
      as the original length.

      Cast 1D/long to 1D/unsigned bytes::

         >>> import array
         >>> a = array.array('l', [1,2,3])
         >>> x = memoryview(a)
         >>> x.format
         'l'
         >>> x.itemsize
         8
         >>> len(x)
         3
         >>> x.nbytes
         24
         >>> y = x.cast('B')
         >>> y.format
         'B'
         >>> y.itemsize
         1
         >>> len(y)
         24
         >>> y.nbytes
         24

      Cast 1D/unsigned bytes to 1D/char::

         >>> b = bytearray(b'zyz')
         >>> x = memoryview(b)
         >>> x[0] = b'a'
         Traceback (most recent call last):
           File "<stdin>", line 1, in <module>
         ValueError: memoryview: invalid value for format "B"
         >>> y = x.cast('c')
         >>> y[0] = b'a'
         >>> b
         bytearray(b'ayz')

      Cast 1D/bytes to 3D/ints to 1D/signed char::

         >>> import struct
         >>> buf = struct.pack("i"*12, *list(range(12)))
         >>> x = memoryview(buf)
         >>> y = x.cast('i', shape=[2,2,3])
         >>> y.tolist()
         [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]
         >>> y.format
         'i'
         >>> y.itemsize
         4
         >>> len(y)
         2
         >>> y.nbytes
         48
         >>> z = y.cast('b')
         >>> z.format
         'b'
         >>> z.itemsize
         1
         >>> len(z)
         48
         >>> z.nbytes
         48

      Cast 1D/unsigned long to 2D/unsigned long::

         >>> buf = struct.pack("L"*6, *list(range(6)))
         >>> x = memoryview(buf)
         >>> y = x.cast('L', shape=[2,3])
         >>> len(y)
         2
         >>> y.nbytes
         48
         >>> y.tolist()
         [[0, 1, 2], [3, 4, 5]]

      .. versionadded:: 3.3

      .. versionchanged:: 3.5
         The source format is no longer restricted when casting to a byte view.

   There are also several readonly attributes available:

   .. attribute:: obj

      The underlying object of the memoryview::

         >>> b  = bytearray(b'xyz')
         >>> m = memoryview(b)
         >>> m.obj is b
         True

      .. versionadded:: 3.3

   .. attribute:: nbytes

      ``nbytes == product(shape) * itemsize == len(m.tobytes())``. This is
      the amount of space in bytes that the array would use in a contiguous
      representation. It is not necessarily equal to ``len(m)``::

         >>> import array
         >>> a = array.array('i', [1,2,3,4,5])
         >>> m = memoryview(a)
         >>> len(m)
         5
         >>> m.nbytes
         20
         >>> y = m[::2]
         >>> len(y)
         3
         >>> y.nbytes
         12
         >>> len(y.tobytes())
         12

      Multi-dimensional arrays::

         >>> import struct
         >>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)])
         >>> x = memoryview(buf)
         >>> y = x.cast('d', shape=[3,4])
         >>> y.tolist()
         [[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
         >>> len(y)
         3
         >>> y.nbytes
         96

      .. versionadded:: 3.3

   .. attribute:: readonly

      A bool indicating whether the memory is read only.

   .. attribute:: format

      A string containing the format (in :mod:`struct` module style) for each
      element in the view. A memoryview can be created from exporters with
      arbitrary format strings, but some methods (e.g. :meth:`tolist`) are
      restricted to native single element formats.

      .. versionchanged:: 3.3
         format ``'B'`` is now handled according to the struct module syntax.
         This means that ``memoryview(b'abc')[0] == b'abc'[0] == 97``.

   .. attribute:: itemsize

      The size in bytes of each element of the memoryview::

         >>> import array, struct
         >>> m = memoryview(array.array('H', [32000, 32001, 32002]))
         >>> m.itemsize
         2
         >>> m[0]
         32000
         >>> struct.calcsize('H') == m.itemsize
         True

   .. attribute:: ndim

      An integer indicating how many dimensions of a multi-dimensional array the
      memory represents.

   .. attribute:: shape

      A tuple of integers the length of :attr:`ndim` giving the shape of the
      memory as an N-dimensional array.

      .. versionchanged:: 3.3
         An empty tuple instead of ``None`` when ndim = 0.

   .. attribute:: strides

      A tuple of integers the length of :attr:`ndim` giving the size in bytes to
      access each element for each dimension of the array.

      .. versionchanged:: 3.3
         An empty tuple instead of ``None`` when ndim = 0.

   .. attribute:: suboffsets

      Used internally for PIL-style arrays. The value is informational only.

   .. attribute:: c_contiguous

      A bool indicating whether the memory is C-:term:`contiguous`.

      .. versionadded:: 3.3

   .. attribute:: f_contiguous

      A bool indicating whether the memory is Fortran :term:`contiguous`.

      .. versionadded:: 3.3

   .. attribute:: contiguous

      A bool indicating whether the memory is :term:`contiguous`.

      .. versionadded:: 3.3


.. _types-set:

Set Types --- :class:`set`, :class:`frozenset`
==============================================

.. index:: object: set

A :dfn:`set` object is an unordered collection of distinct :term:`hashable` objects.
Common uses include membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and
symmetric difference.
(For other containers see the built-in :class:`dict`, :class:`list`,
and :class:`tuple` classes, and the :mod:`collections` module.)

Like other collections, sets support ``x in set``, ``len(set)``, and ``for x in
set``.  Being an unordered collection, sets do not record element position or
order of insertion.  Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

There are currently two built-in set types, :class:`set` and :class:`frozenset`.
The :class:`set` type is mutable --- the contents can be changed using methods
like :meth:`~set.add` and :meth:`~set.remove`.  Since it is mutable, it has no
hash value and cannot be used as either a dictionary key or as an element of
another set.  The :class:`frozenset` type is immutable and :term:`hashable` ---
its contents cannot be altered after it is created; it can therefore be used as
a dictionary key or as an element of another set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list
of elements within braces, for example: ``{'jack', 'sjoerd'}``, in addition to the
:class:`set` constructor.

The constructors for both classes work the same:

.. class:: set([iterable])
           frozenset([iterable])

   Return a new set or frozenset object whose elements are taken from
   *iterable*.  The elements of a set must be :term:`hashable`.  To
   represent sets of sets, the inner sets must be :class:`frozenset`
   objects.  If *iterable* is not specified, a new empty set is
   returned.

   Sets can be created by several means:

   * Use a comma-separated list of elements within braces: ``{'jack', 'sjoerd'}``
   * Use a set comprehension: ``{c for c in 'abracadabra' if c not in 'abc'}``
   * Use the type constructor: ``set()``, ``set('foobar')``, ``set(['a', 'b', 'foo'])``

   Instances of :class:`set` and :class:`frozenset` provide the following
   operations:

   .. describe:: len(s)

      Return the number of elements in set *s* (cardinality of *s*).

   .. describe:: x in s

      Test *x* for membership in *s*.

   .. describe:: x not in s

      Test *x* for non-membership in *s*.

   .. method:: isdisjoint(other)

      Return ``True`` if the set has no elements in common with *other*.  Sets are
      disjoint if and only if their intersection is the empty set.

   .. method:: issubset(other)
               set <= other

      Test whether every element in the set is in *other*.

   .. method:: set < other

      Test whether the set is a proper subset of *other*, that is,
      ``set <= other and set != other``.

   .. method:: issuperset(other)
               set >= other

      Test whether every element in *other* is in the set.

   .. method:: set > other

      Test whether the set is a proper superset of *other*, that is, ``set >=
      other and set != other``.

   .. method:: union(*others)
               set | other | ...

      Return a new set with elements from the set and all others.

   .. method:: intersection(*others)
               set & other & ...

      Return a new set with elements common to the set and all others.

   .. method:: difference(*others)
               set - other - ...

      Return a new set with elements in the set that are not in the others.

   .. method:: symmetric_difference(other)
               set ^ other

      Return a new set with elements in either the set or *other* but not both.

   .. method:: copy()

      Return a shallow copy of the set.


   Note, the non-operator versions of :meth:`union`, :meth:`intersection`,
   :meth:`difference`, :meth:`symmetric_difference`, :meth:`issubset`, and
   :meth:`issuperset` methods will accept any iterable as an argument.  In
   contrast, their operator based counterparts require their arguments to be
   sets.  This precludes error-prone constructions like ``set('abc') & 'cbs'``
   in favor of the more readable ``set('abc').intersection('cbs')``.

   Both :class:`set` and :class:`frozenset` support set to set comparisons. Two
   sets are equal if and only if every element of each set is contained in the
   other (each is a subset of the other). A set is less than another set if and
   only if the first set is a proper subset of the second set (is a subset, but
   is not equal). A set is greater than another set if and only if the first set
   is a proper superset of the second set (is a superset, but is not equal).

   Instances of :class:`set` are compared to instances of :class:`frozenset`
   based on their members.  For example, ``set('abc') == frozenset('abc')``
   returns ``True`` and so does ``set('abc') in set([frozenset('abc')])``.

   The subset and equality comparisons do not generalize to a total ordering
   function.  For example, any two nonempty disjoint sets are not equal and are not
   subsets of each other, so *all* of the following return ``False``: ``a<b``,
   ``a==b``, or ``a>b``.

   Since sets only define partial ordering (subset relationships), the output of
   the :meth:`list.sort` method is undefined for lists of sets.

   Set elements, like dictionary keys, must be :term:`hashable`.

   Binary operations that mix :class:`set` instances with :class:`frozenset`
   return the type of the first operand.  For example: ``frozenset('ab') |
   set('bc')`` returns an instance of :class:`frozenset`.

   The following table lists operations available for :class:`set` that do not
   apply to immutable instances of :class:`frozenset`:

   .. method:: update(*others)
               set |= other | ...

      Update the set, adding elements from all others.

   .. method:: intersection_update(*others)
               set &= other & ...

      Update the set, keeping only elements found in it and all others.

   .. method:: difference_update(*others)
               set -= other | ...

      Update the set, removing elements found in others.

   .. method:: symmetric_difference_update(other)
               set ^= other

      Update the set, keeping only elements found in either set, but not in both.

   .. method:: add(elem)

      Add element *elem* to the set.

   .. method:: remove(elem)

      Remove element *elem* from the set.  Raises :exc:`KeyError` if *elem* is
      not contained in the set.

   .. method:: discard(elem)

      Remove element *elem* from the set if it is present.

   .. method:: pop()

      Remove and return an arbitrary element from the set.  Raises
      :exc:`KeyError` if the set is empty.

   .. method:: clear()

      Remove all elements from the set.


   Note, the non-operator versions of the :meth:`update`,
   :meth:`intersection_update`, :meth:`difference_update`, and
   :meth:`symmetric_difference_update` methods will accept any iterable as an
   argument.

   Note, the *elem* argument to the :meth:`__contains__`, :meth:`remove`, and
   :meth:`discard` methods may be a set.  To support searching for an equivalent
   frozenset, a temporary one is created from *elem*.


.. _typesmapping:

Mapping Types --- :class:`dict`
===============================

.. index::
   object: mapping
   object: dictionary
   triple: operations on; mapping; types
   triple: operations on; dictionary; type
   statement: del
   builtin: len

A :term:`mapping` object maps :term:`hashable` values to arbitrary objects.
Mappings are mutable objects.  There is currently only one standard mapping
type, the :dfn:`dictionary`.  (For other containers see the built-in
:class:`list`, :class:`set`, and :class:`tuple` classes, and the
:mod:`collections` module.)

A dictionary's keys are *almost* arbitrary values.  Values that are not
:term:`hashable`, that is, values containing lists, dictionaries or other
mutable types (that are compared by value rather than by object identity) may
not be used as keys.
Values that compare equal (such as ``1``, ``1.0``, and ``True``)
can be used interchangeably to index the same dictionary entry.

.. class:: dict(**kwargs)
           dict(mapping, **kwargs)
           dict(iterable, **kwargs)

   Return a new dictionary initialized from an optional positional argument
   and a possibly empty set of keyword arguments.

   Dictionaries can be created by several means:

   * Use a comma-separated list of ``key: value`` pairs within braces:
     ``{'jack': 4098, 'sjoerd': 4127}`` or ``{4098: 'jack', 4127: 'sjoerd'}``
   * Use a dict comprehension: ``{}``, ``{x: x ** 2 for x in range(10)}``
   * Use the type constructor: ``dict()``,
     ``dict([('foo', 100), ('bar', 200)])``, ``dict(foo=100, bar=200)``

   If no positional argument is given, an empty dictionary is created.
   If a positional argument is given and it is a mapping object, a dictionary
   is created with the same key-value pairs as the mapping object.  Otherwise,
   the positional argument must be an :term:`iterable` object.  Each item in
   the iterable must itself be an iterable with exactly two objects.  The
   first object of each item becomes a key in the new dictionary, and the
   second object the corresponding value.  If a key occurs more than once, the
   last value for that key becomes the corresponding value in the new
   dictionary.

   If keyword arguments are given, the keyword arguments and their values are
   added to the dictionary created from the positional argument.  If a key
   being added is already present, the value from the keyword argument
   replaces the value from the positional argument.

   To illustrate, the following examples all return a dictionary equal to
   ``{"one": 1, "two": 2, "three": 3}``::

      >>> a = dict(one=1, two=2, three=3)
      >>> b = {'one': 1, 'two': 2, 'three': 3}
      >>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3]))
      >>> d = dict([('two', 2), ('one', 1), ('three', 3)])
      >>> e = dict({'three': 3, 'one': 1, 'two': 2})
      >>> f = dict({'one': 1, 'three': 3}, two=2)
      >>> a == b == c == d == e == f
      True

   Providing keyword arguments as in the first example only works for keys that
   are valid Python identifiers.  Otherwise, any valid keys can be used.


   These are the operations that dictionaries support (and therefore, custom
   mapping types should support too):

   .. describe:: list(d)

      Return a list of all the keys used in the dictionary *d*.

   .. describe:: len(d)

      Return the number of items in the dictionary *d*.

   .. describe:: d[key]

      Return the item of *d* with key *key*.  Raises a :exc:`KeyError` if *key* is
      not in the map.

      .. index:: __missing__()

      If a subclass of dict defines a method :meth:`__missing__` and *key*
      is not present, the ``d[key]`` operation calls that method with the key *key*
      as argument.  The ``d[key]`` operation then returns or raises whatever is
      returned or raised by the ``__missing__(key)`` call.
      No other operations or methods invoke :meth:`__missing__`. If
      :meth:`__missing__` is not defined, :exc:`KeyError` is raised.
      :meth:`__missing__` must be a method; it cannot be an instance variable::

          >>> class Counter(dict):
          ...     def __missing__(self, key):
          ...         return 0
          >>> c = Counter()
          >>> c['red']
          0
          >>> c['red'] += 1
          >>> c['red']
          1

      The example above shows part of the implementation of
      :class:`collections.Counter`.  A different ``__missing__`` method is used
      by :class:`collections.defaultdict`.

   .. describe:: d[key] = value

      Set ``d[key]`` to *value*.

   .. describe:: del d[key]

      Remove ``d[key]`` from *d*.  Raises a :exc:`KeyError` if *key* is not in the
      map.

   .. describe:: key in d

      Return ``True`` if *d* has a key *key*, else ``False``.

   .. describe:: key not in d

      Equivalent to ``not key in d``.

   .. describe:: iter(d)

      Return an iterator over the keys of the dictionary.  This is a shortcut
      for ``iter(d.keys())``.

   .. method:: clear()

      Remove all items from the dictionary.

   .. method:: copy()

      Return a shallow copy of the dictionary.

   .. classmethod:: fromkeys(iterable[, value])

      Create a new dictionary with keys from *iterable* and values set to *value*.

      :meth:`fromkeys` is a class method that returns a new dictionary. *value*
      defaults to ``None``.  All of the values refer to just a single instance,
      so it generally doesn't make sense for *value* to be a mutable object
      such as an empty list.  To get distinct values, use a :ref:`dict
      comprehension <dict>` instead.

   .. method:: get(key[, default])

      Return the value for *key* if *key* is in the dictionary, else *default*.
      If *default* is not given, it defaults to ``None``, so that this method
      never raises a :exc:`KeyError`.

   .. method:: items()

      Return a new view of the dictionary's items (``(key, value)`` pairs).
      See the :ref:`documentation of view objects <dict-views>`.

   .. method:: keys()

      Return a new view of the dictionary's keys.  See the :ref:`documentation
      of view objects <dict-views>`.

   .. method:: pop(key[, default])

      If *key* is in the dictionary, remove it and return its value, else return
      *default*.  If *default* is not given and *key* is not in the dictionary,
      a :exc:`KeyError` is raised.

   .. method:: popitem()

      Remove and return a ``(key, value)`` pair from the dictionary.
      Pairs are returned in :abbr:`LIFO (last-in, first-out)` order.

      :meth:`popitem` is useful to destructively iterate over a dictionary, as
      often used in set algorithms.  If the dictionary is empty, calling
      :meth:`popitem` raises a :exc:`KeyError`.

      .. versionchanged:: 3.7
         LIFO order is now guaranteed. In prior versions, :meth:`popitem` would
         return an arbitrary key/value pair.

   .. describe:: reversed(d)

      Return a reverse iterator over the keys of the dictionary. This is a
      shortcut for ``reversed(d.keys())``.

      .. versionadded:: 3.8

   .. method:: setdefault(key[, default])

      If *key* is in the dictionary, return its value.  If not, insert *key*
      with a value of *default* and return *default*.  *default* defaults to
      ``None``.

   .. method:: update([other])

      Update the dictionary with the key/value pairs from *other*, overwriting
      existing keys.  Return ``None``.

      :meth:`update` accepts either another dictionary object or an iterable of
      key/value pairs (as tuples or other iterables of length two).  If keyword
      arguments are specified, the dictionary is then updated with those
      key/value pairs: ``d.update(red=1, blue=2)``.

   .. method:: values()

      Return a new view of the dictionary's values.  See the
      :ref:`documentation of view objects <dict-views>`.

      An equality comparison between one ``dict.values()`` view and another
      will always return ``False``. This also applies when comparing
      ``dict.values()`` to itself::

         >>> d = {'a': 1}
         >>> d.values() == d.values()
         False

   .. describe:: d | other

      Create a new dictionary with the merged keys and values of *d* and
      *other*, which must both be dictionaries. The values of *other* take
      priority when *d* and *other* share keys.

      .. versionadded:: 3.9

   .. describe:: d |= other

      Update the dictionary *d* with keys and values from *other*, which may be
      either a :term:`mapping` or an :term:`iterable` of key/value pairs. The
      values of *other* take priority when *d* and *other* share keys.

      .. versionadded:: 3.9

   Dictionaries compare equal if and only if they have the same ``(key,
   value)`` pairs (regardless of ordering). Order comparisons ('<', '<=', '>=', '>') raise
   :exc:`TypeError`.

   Dictionaries preserve insertion order.  Note that updating a key does not
   affect the order.  Keys added after deletion are inserted at the end. ::

      >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
      >>> d
      {'one': 1, 'two': 2, 'three': 3, 'four': 4}
      >>> list(d)
      ['one', 'two', 'three', 'four']
      >>> list(d.values())
      [1, 2, 3, 4]
      >>> d["one"] = 42
      >>> d
      {'one': 42, 'two': 2, 'three': 3, 'four': 4}
      >>> del d["two"]
      >>> d["two"] = None
      >>> d
      {'one': 42, 'three': 3, 'four': 4, 'two': None}

   .. versionchanged:: 3.7
      Dictionary order is guaranteed to be insertion order.  This behavior was
      an implementation detail of CPython from 3.6.

   Dictionaries and dictionary views are reversible. ::

      >>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
      >>> d
      {'one': 1, 'two': 2, 'three': 3, 'four': 4}
      >>> list(reversed(d))
      ['four', 'three', 'two', 'one']
      >>> list(reversed(d.values()))
      [4, 3, 2, 1]
      >>> list(reversed(d.items()))
      [('four', 4), ('three', 3), ('two', 2), ('one', 1)]

   .. versionchanged:: 3.8
      Dictionaries are now reversible.


.. seealso::
   :class:`types.MappingProxyType` can be used to create a read-only view
   of a :class:`dict`.


.. _dict-views:

Dictionary view objects
-----------------------

The objects returned by :meth:`dict.keys`, :meth:`dict.values` and
:meth:`dict.items` are *view objects*.  They provide a dynamic view on the
dictionary's entries, which means that when the dictionary changes, the view
reflects these changes.

Dictionary views can be iterated over to yield their respective data, and
support membership tests:

.. describe:: len(dictview)

   Return the number of entries in the dictionary.

.. describe:: iter(dictview)

   Return an iterator over the keys, values or items (represented as tuples of
   ``(key, value)``) in the dictionary.

   Keys and values are iterated over in insertion order.
   This allows the creation of ``(value, key)`` pairs
   using :func:`zip`: ``pairs = zip(d.values(), d.keys())``.  Another way to
   create the same list is ``pairs = [(v, k) for (k, v) in d.items()]``.

   Iterating views while adding or deleting entries in the dictionary may raise
   a :exc:`RuntimeError` or fail to iterate over all entries.

   .. versionchanged:: 3.7
      Dictionary order is guaranteed to be insertion order.

.. describe:: x in dictview

   Return ``True`` if *x* is in the underlying dictionary's keys, values or
   items (in the latter case, *x* should be a ``(key, value)`` tuple).

.. describe:: reversed(dictview)

   Return a reverse iterator over the keys, values or items of the dictionary.
   The view will be iterated in reverse order of the insertion.

   .. versionchanged:: 3.8
      Dictionary views are now reversible.

.. describe:: dictview.mapping

   Return a :class:`types.MappingProxyType` that wraps the original
   dictionary to which the view refers.

   .. versionadded:: 3.10

Keys views are set-like since their entries are unique and hashable.  If all
values are hashable, so that ``(key, value)`` pairs are unique and hashable,
then the items view is also set-like.  (Values views are not treated as set-like
since the entries are generally not unique.)  For set-like views, all of the
operations defined for the abstract base class :class:`collections.abc.Set` are
available (for example, ``==``, ``<``, or ``^``).  While using set operators,
set-like views accept any iterable as the other operand, unlike sets which only
accept sets as the input.

An example of dictionary view usage::

   >>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
   >>> keys = dishes.keys()
   >>> values = dishes.values()

   >>> # iteration
   >>> n = 0
   >>> for val in values:
   ...     n += val
   >>> print(n)
   504

   >>> # keys and values are iterated over in the same order (insertion order)
   >>> list(keys)
   ['eggs', 'sausage', 'bacon', 'spam']
   >>> list(values)
   [2, 1, 1, 500]

   >>> # view objects are dynamic and reflect dict changes
   >>> del dishes['eggs']
   >>> del dishes['sausage']
   >>> list(keys)
   ['bacon', 'spam']

   >>> # set operations
   >>> keys & {'eggs', 'bacon', 'salad'}
   {'bacon'}
   >>> keys ^ {'sausage', 'juice'}
   {'juice', 'sausage', 'bacon', 'spam'}
   >>> keys | ['juice', 'juice', 'juice']
   {'juice', 'sausage', 'bacon', 'spam', 'eggs'}

   >>> # get back a read-only proxy for the original dictionary
   >>> values.mapping
   mappingproxy({'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500})
   >>> values.mapping['spam']
   500


.. _typecontextmanager:

Context Manager Types
=====================

.. index::
   single: context manager
   single: context management protocol
   single: protocol; context management

Python's :keyword:`with` statement supports the concept of a runtime context
defined by a context manager.  This is implemented using a pair of methods
that allow user-defined classes to define a runtime context that is entered
before the statement body is executed and exited when the statement ends:


.. method:: contextmanager.__enter__()

   Enter the runtime context and return either this object or another object
   related to the runtime context. The value returned by this method is bound to
   the identifier in the :keyword:`!as` clause of :keyword:`with` statements using
   this context manager.

   An example of a context manager that returns itself is a :term:`file object`.
   File objects return themselves from __enter__() to allow :func:`open` to be
   used as the context expression in a :keyword:`with` statement.

   An example of a context manager that returns a related object is the one
   returned by :func:`decimal.localcontext`. These managers set the active
   decimal context to a copy of the original decimal context and then return the
   copy. This allows changes to be made to the current decimal context in the body
   of the :keyword:`with` statement without affecting code outside the
   :keyword:`!with` statement.


.. method:: contextmanager.__exit__(exc_type, exc_val, exc_tb)

   Exit the runtime context and return a Boolean flag indicating if any exception
   that occurred should be suppressed. If an exception occurred while executing the
   body of the :keyword:`with` statement, the arguments contain the exception type,
   value and traceback information. Otherwise, all three arguments are ``None``.

   Returning a true value from this method will cause the :keyword:`with` statement
   to suppress the exception and continue execution with the statement immediately
   following the :keyword:`!with` statement. Otherwise the exception continues
   propagating after this method has finished executing. Exceptions that occur
   during execution of this method will replace any exception that occurred in the
   body of the :keyword:`!with` statement.

   The exception passed in should never be reraised explicitly - instead, this
   method should return a false value to indicate that the method completed
   successfully and does not want to suppress the raised exception. This allows
   context management code to easily detect whether or not an :meth:`__exit__`
   method has actually failed.

Python defines several context managers to support easy thread synchronisation,
prompt closure of files or other objects, and simpler manipulation of the active
decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the
:mod:`contextlib` module for some examples.

Python's :term:`generator`\s and the :class:`contextlib.contextmanager` decorator
provide a convenient way to implement these protocols.  If a generator function is
decorated with the :class:`contextlib.contextmanager` decorator, it will return a
context manager implementing the necessary :meth:`~contextmanager.__enter__` and
:meth:`~contextmanager.__exit__` methods, rather than the iterator produced by an
undecorated generator function.

Note that there is no specific slot for any of these methods in the type
structure for Python objects in the Python/C API. Extension types wanting to
define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a
single class dictionary lookup is negligible.


Type Annotation Types --- :ref:`Generic Alias <types-genericalias>`, :ref:`Union <types-union>`
===============================================================================================

.. index::
   single: annotation; type annotation; type hint

The core built-in types for :term:`type annotations <annotation>` are
:ref:`Generic Alias <types-genericalias>` and :ref:`Union <types-union>`.


.. _types-genericalias:

Generic Alias Type
------------------

.. index::
   object: GenericAlias
   pair: Generic; Alias

``GenericAlias`` objects are generally created by
:ref:`subscripting <subscriptions>` a class. They are most often used with
:ref:`container classes <sequence-types>`, such as :class:`list` or
:class:`dict`. For example, ``list[int]`` is a ``GenericAlias`` object created
by subscripting the ``list`` class with the argument :class:`int`.
``GenericAlias`` objects are intended primarily for use with
:term:`type annotations <annotation>`.

.. note::

   It is generally only possible to subscript a class if the class implements
   the special method :meth:`~object.__class_getitem__`.

A ``GenericAlias`` object acts as a proxy for a :term:`generic type`,
implementing *parameterized generics*.

For a container class, the
argument(s) supplied to a :ref:`subscription <subscriptions>` of the class may
indicate the type(s) of the elements an object contains. For example,
``set[bytes]`` can be used in type annotations to signify a :class:`set` in
which all the elements are of type :class:`bytes`.

For a class which defines :meth:`~object.__class_getitem__` but is not a
container, the argument(s) supplied to a subscription of the class will often
indicate the return type(s) of one or more methods defined on an object. For
example, :mod:`regular expressions <re>` can be used on both the :class:`str` data
type and the :class:`bytes` data type:

* If ``x = re.search('foo', 'foo')``, ``x`` will be a
  :ref:`re.Match <match-objects>` object where the return values of
  ``x.group(0)`` and ``x[0]`` will both be of type :class:`str`. We can
  represent this kind of object in type annotations with the ``GenericAlias``
  ``re.Match[str]``.

* If ``y = re.search(b'bar', b'bar')``, (note the ``b`` for :class:`bytes`),
  ``y`` will also be an instance of ``re.Match``, but the return
  values of ``y.group(0)`` and ``y[0]`` will both be of type
  :class:`bytes`. In type annotations, we would represent this
  variety of :ref:`re.Match <match-objects>` objects with ``re.Match[bytes]``.

``GenericAlias`` objects are instances of the class
:class:`types.GenericAlias`, which can also be used to create ``GenericAlias``
objects directly.

.. describe:: T[X, Y, ...]

   Creates a ``GenericAlias`` representing a type ``T`` parameterized by types
   *X*, *Y*, and more depending on the ``T`` used.
   For example, a function expecting a :class:`list` containing
   :class:`float` elements::

      def average(values: list[float]) -> float:
          return sum(values) / len(values)

   Another example for :term:`mapping` objects, using a :class:`dict`, which
   is a generic type expecting two type parameters representing the key type
   and the value type.  In this example, the function expects a ``dict`` with
   keys of type :class:`str` and values of type :class:`int`::

      def send_post_request(url: str, body: dict[str, int]) -> None:
          ...

The builtin functions :func:`isinstance` and :func:`issubclass` do not accept
``GenericAlias`` types for their second argument::

   >>> isinstance([1, 2], list[str])
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   TypeError: isinstance() argument 2 cannot be a parameterized generic

The Python runtime does not enforce :term:`type annotations <annotation>`.
This extends to generic types and their type parameters. When creating
a container object from a ``GenericAlias``, the elements in the container are not checked
against their type. For example, the following code is discouraged, but will
run without errors::

   >>> t = list[str]
   >>> t([1, 2, 3])
   [1, 2, 3]

Furthermore, parameterized generics erase type parameters during object
creation::

   >>> t = list[str]
   >>> type(t)
   <class 'types.GenericAlias'>

   >>> l = t()
   >>> type(l)
   <class 'list'>

Calling :func:`repr` or :func:`str` on a generic shows the parameterized type::

   >>> repr(list[int])
   'list[int]'

   >>> str(list[int])
   'list[int]'

The :meth:`~object.__getitem__` method of generic containers will raise an
exception to disallow mistakes like ``dict[str][str]``::

   >>> dict[str][str]
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   TypeError: There are no type variables left in dict[str]

However, such expressions are valid when :ref:`type variables <generics>` are
used.  The index must have as many elements as there are type variable items
in the ``GenericAlias`` object's :attr:`~genericalias.__args__`. ::

   >>> from typing import TypeVar
   >>> Y = TypeVar('Y')
   >>> dict[str, Y][int]
   dict[str, int]


Standard Generic Classes
^^^^^^^^^^^^^^^^^^^^^^^^

The following standard library classes support parameterized generics. This
list is non-exhaustive.

* :class:`tuple`
* :class:`list`
* :class:`dict`
* :class:`set`
* :class:`frozenset`
* :class:`type`
* :class:`collections.deque`
* :class:`collections.defaultdict`
* :class:`collections.OrderedDict`
* :class:`collections.Counter`
* :class:`collections.ChainMap`
* :class:`collections.abc.Awaitable`
* :class:`collections.abc.Coroutine`
* :class:`collections.abc.AsyncIterable`
* :class:`collections.abc.AsyncIterator`
* :class:`collections.abc.AsyncGenerator`
* :class:`collections.abc.Iterable`
* :class:`collections.abc.Iterator`
* :class:`collections.abc.Generator`
* :class:`collections.abc.Reversible`
* :class:`collections.abc.Container`
* :class:`collections.abc.Collection`
* :class:`collections.abc.Callable`
* :class:`collections.abc.Set`
* :class:`collections.abc.MutableSet`
* :class:`collections.abc.Mapping`
* :class:`collections.abc.MutableMapping`
* :class:`collections.abc.Sequence`
* :class:`collections.abc.MutableSequence`
* :class:`collections.abc.ByteString`
* :class:`collections.abc.MappingView`
* :class:`collections.abc.KeysView`
* :class:`collections.abc.ItemsView`
* :class:`collections.abc.ValuesView`
* :class:`contextlib.AbstractContextManager`
* :class:`contextlib.AbstractAsyncContextManager`
* :class:`dataclasses.Field`
* :class:`functools.cached_property`
* :class:`functools.partialmethod`
* :class:`os.PathLike`
* :class:`queue.LifoQueue`
* :class:`queue.Queue`
* :class:`queue.PriorityQueue`
* :class:`queue.SimpleQueue`
* :ref:`re.Pattern <re-objects>`
* :ref:`re.Match <match-objects>`
* :class:`shelve.BsdDbShelf`
* :class:`shelve.DbfilenameShelf`
* :class:`shelve.Shelf`
* :class:`types.MappingProxyType`
* :class:`weakref.WeakKeyDictionary`
* :class:`weakref.WeakMethod`
* :class:`weakref.WeakSet`
* :class:`weakref.WeakValueDictionary`



Special Attributes of ``GenericAlias`` objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

All parameterized generics implement special read-only attributes.

.. attribute:: genericalias.__origin__

   This attribute points at the non-parameterized generic class::

      >>> list[int].__origin__
      <class 'list'>


.. attribute:: genericalias.__args__

   This attribute is a :class:`tuple` (possibly of length 1) of generic
   types passed to the original :meth:`~object.__class_getitem__` of the
   generic class::

      >>> dict[str, list[int]].__args__
      (<class 'str'>, list[int])


.. attribute:: genericalias.__parameters__

   This attribute is a lazily computed tuple (possibly empty) of unique type
   variables found in ``__args__``::

      >>> from typing import TypeVar

      >>> T = TypeVar('T')
      >>> list[T].__parameters__
      (~T,)


   .. note::
      A ``GenericAlias`` object with :class:`typing.ParamSpec` parameters may not
      have correct ``__parameters__`` after substitution because
      :class:`typing.ParamSpec` is intended primarily for static type checking.


.. attribute:: genericalias.__unpacked__

   A boolean that is true if the alias has been unpacked using the
   ``*`` operator (see :data:`~typing.TypeVarTuple`).

   .. versionadded:: 3.11


.. seealso::

   :pep:`484` - Type Hints
      Introducing Python's framework for type annotations.

   :pep:`585` - Type Hinting Generics In Standard Collections
      Introducing the ability to natively parameterize standard-library
      classes, provided they implement the special class method
      :meth:`~object.__class_getitem__`.

   :ref:`Generics`, :ref:`user-defined generics <user-defined-generics>` and :class:`typing.Generic`
      Documentation on how to implement generic classes that can be
      parameterized at runtime and understood by static type-checkers.

.. versionadded:: 3.9


.. _types-union:

Union Type
----------

.. index::
   object: Union
   pair: union; type

A union object holds the value of the ``|`` (bitwise or) operation on
multiple :ref:`type objects <bltin-type-objects>`.  These types are intended
primarily for :term:`type annotations <annotation>`. The union type expression
enables cleaner type hinting syntax compared to :data:`typing.Union`.

.. describe:: X | Y | ...

   Defines a union object which holds types *X*, *Y*, and so forth. ``X | Y``
   means either X or Y.  It is equivalent to ``typing.Union[X, Y]``.
   For example, the following function expects an argument of type
   :class:`int` or :class:`float`::

      def square(number: int | float) -> int | float:
          return number ** 2

.. describe:: union_object == other

   Union objects can be tested for equality with other union objects.  Details:

   * Unions of unions are flattened::

       (int | str) | float == int | str | float

   * Redundant types are removed::

       int | str | int == int | str

   * When comparing unions, the order is ignored::

      int | str == str | int

   * It is compatible with :data:`typing.Union`::

      int | str == typing.Union[int, str]

   * Optional types can be spelled as a union with ``None``::

      str | None == typing.Optional[str]

.. describe:: isinstance(obj, union_object)
.. describe:: issubclass(obj, union_object)

   Calls to :func:`isinstance` and :func:`issubclass` are also supported with a
   union object::

      >>> isinstance("", int | str)
      True

   However, union objects containing :ref:`parameterized generics
   <types-genericalias>` cannot be used::

      >>> isinstance(1, int | list[int])
      Traceback (most recent call last):
        File "<stdin>", line 1, in <module>
      TypeError: isinstance() argument 2 cannot contain a parameterized generic

The user-exposed type for the union object can be accessed from
:data:`types.UnionType` and used for :func:`isinstance` checks.  An object cannot be
instantiated from the type::

   >>> import types
   >>> isinstance(int | str, types.UnionType)
   True
   >>> types.UnionType()
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   TypeError: cannot create 'types.UnionType' instances

.. note::
   The :meth:`__or__` method for type objects was added to support the syntax
   ``X | Y``.  If a metaclass implements :meth:`__or__`, the Union may
   override it::

      >>> class M(type):
      ...     def __or__(self, other):
      ...         return "Hello"
      ...
      >>> class C(metaclass=M):
      ...     pass
      ...
      >>> C | int
      'Hello'
      >>> int | C
      int | __main__.C

.. seealso::

   :pep:`604` -- PEP proposing the ``X | Y`` syntax and the Union type.

.. versionadded:: 3.10


.. _typesother:

Other Built-in Types
====================

The interpreter supports several other kinds of objects. Most of these support
only one or two operations.


.. _typesmodules:

Modules
-------

The only special operation on a module is attribute access: ``m.name``, where
*m* is a module and *name* accesses a name defined in *m*'s symbol table.
Module attributes can be assigned to.  (Note that the :keyword:`import`
statement is not, strictly speaking, an operation on a module object; ``import
foo`` does not require a module object named *foo* to exist, rather it requires
an (external) *definition* for a module named *foo* somewhere.)

A special attribute of every module is :attr:`~object.__dict__`. This is the
dictionary containing the module's symbol table. Modifying this dictionary will
actually change the module's symbol table, but direct assignment to the
:attr:`~object.__dict__` attribute is not possible (you can write
``m.__dict__['a'] = 1``, which defines ``m.a`` to be ``1``, but you can't write
``m.__dict__ = {}``).  Modifying :attr:`~object.__dict__` directly is
not recommended.

Modules built into the interpreter are written like this: ``<module 'sys'
(built-in)>``.  If loaded from a file, they are written as ``<module 'os' from
'/usr/local/lib/pythonX.Y/os.pyc'>``.


.. _typesobjects:

Classes and Class Instances
---------------------------

See :ref:`objects` and :ref:`class` for these.


.. _typesfunctions:

Functions
---------

Function objects are created by function definitions.  The only operation on a
function object is to call it: ``func(argument-list)``.

There are really two flavors of function objects: built-in functions and
user-defined functions.  Both support the same operation (to call the function),
but the implementation is different, hence the different object types.

See :ref:`function` for more information.


.. _typesmethods:

Methods
-------

.. index:: object: method

Methods are functions that are called using the attribute notation. There are
two flavors: built-in methods (such as :meth:`append` on lists) and class
instance methods.  Built-in methods are described with the types that support
them.

If you access a method (a function defined in a class namespace) through an
instance, you get a special object: a :dfn:`bound method` (also called
:dfn:`instance method`) object. When called, it will add the ``self`` argument
to the argument list.  Bound methods have two special read-only attributes:
``m.__self__`` is the object on which the method operates, and ``m.__func__`` is
the function implementing the method.  Calling ``m(arg-1, arg-2, ..., arg-n)``
is completely equivalent to calling ``m.__func__(m.__self__, arg-1, arg-2, ...,
arg-n)``.

Like function objects, bound method objects support getting arbitrary
attributes.  However, since method attributes are actually stored on the
underlying function object (``meth.__func__``), setting method attributes on
bound methods is disallowed.  Attempting to set an attribute on a method
results in an :exc:`AttributeError` being raised.  In order to set a method
attribute, you need to explicitly set it on the underlying function object::

   >>> class C:
   ...     def method(self):
   ...         pass
   ...
   >>> c = C()
   >>> c.method.whoami = 'my name is method'  # can't set on the method
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   AttributeError: 'method' object has no attribute 'whoami'
   >>> c.method.__func__.whoami = 'my name is method'
   >>> c.method.whoami
   'my name is method'

See :ref:`types` for more information.


.. index:: object; code, code object

.. _bltin-code-objects:

Code Objects
------------

.. index::
   builtin: compile
   single: __code__ (function object attribute)

Code objects are used by the implementation to represent "pseudo-compiled"
executable Python code such as a function body. They differ from function
objects because they don't contain a reference to their global execution
environment.  Code objects are returned by the built-in :func:`compile` function
and can be extracted from function objects through their :attr:`__code__`
attribute. See also the :mod:`code` module.

Accessing ``__code__`` raises an :ref:`auditing event <auditing>`
``object.__getattr__`` with arguments ``obj`` and ``"__code__"``.

.. index::
   builtin: exec
   builtin: eval

A code object can be executed or evaluated by passing it (instead of a source
string) to the :func:`exec` or :func:`eval`  built-in functions.

See :ref:`types` for more information.


.. _bltin-type-objects:

Type Objects
------------

.. index::
   builtin: type
   module: types

Type objects represent the various object types.  An object's type is accessed
by the built-in function :func:`type`.  There are no special operations on
types.  The standard module :mod:`types` defines names for all standard built-in
types.

Types are written like this: ``<class 'int'>``.


.. _bltin-null-object:

The Null Object
---------------

This object is returned by functions that don't explicitly return a value.  It
supports no special operations.  There is exactly one null object, named
``None`` (a built-in name).  ``type(None)()`` produces the same singleton.

It is written as ``None``.


.. index:: single: ...; ellipsis literal
.. _bltin-ellipsis-object:

The Ellipsis Object
-------------------

This object is commonly used by slicing (see :ref:`slicings`).  It supports no
special operations.  There is exactly one ellipsis object, named
:const:`Ellipsis` (a built-in name).  ``type(Ellipsis)()`` produces the
:const:`Ellipsis` singleton.

It is written as ``Ellipsis`` or ``...``.


.. _bltin-notimplemented-object:

The NotImplemented Object
-------------------------

This object is returned from comparisons and binary operations when they are
asked to operate on types they don't support. See :ref:`comparisons` for more
information.  There is exactly one ``NotImplemented`` object.
``type(NotImplemented)()`` produces the singleton instance.

It is written as ``NotImplemented``.


.. _bltin-boolean-values:

Boolean Values
--------------

Boolean values are the two constant objects ``False`` and ``True``.  They are
used to represent truth values (although other values can also be considered
false or true).  In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively.
The built-in function :func:`bool` can be used to convert any value to a
Boolean, if the value can be interpreted as a truth value (see section
:ref:`truth` above).

.. index::
   single: False
   single: True
   pair: Boolean; values

They are written as ``False`` and ``True``, respectively.


.. _typesinternal:

Internal Objects
----------------

See :ref:`types` for this information.  It describes stack frame objects,
traceback objects, and slice objects.


.. _specialattrs:

Special Attributes
==================

The implementation adds a few special read-only attributes to several object
types, where they are relevant.  Some of these are not reported by the
:func:`dir` built-in function.


.. attribute:: object.__dict__

   A dictionary or other mapping object used to store an object's (writable)
   attributes.


.. attribute:: instance.__class__

   The class to which a class instance belongs.


.. attribute:: class.__bases__

   The tuple of base classes of a class object.


.. attribute:: definition.__name__

   The name of the class, function, method, descriptor, or
   generator instance.


.. attribute:: definition.__qualname__

   The :term:`qualified name` of the class, function, method, descriptor,
   or generator instance.

   .. versionadded:: 3.3


.. attribute:: class.__mro__

   This attribute is a tuple of classes that are considered when looking for
   base classes during method resolution.


.. method:: class.mro()

   This method can be overridden by a metaclass to customize the method
   resolution order for its instances.  It is called at class instantiation, and
   its result is stored in :attr:`~class.__mro__`.


.. method:: class.__subclasses__

   Each class keeps a list of weak references to its immediate subclasses.  This
   method returns a list of all those references still alive.  The list is in
   definition order.  Example::

      >>> int.__subclasses__()
      [<class 'bool'>]


.. _int_max_str_digits:

Integer string conversion length limitation
===========================================

CPython has a global limit for converting between :class:`int` and :class:`str`
to mitigate denial of service attacks. This limit *only* applies to decimal or
other non-power-of-two number bases. Hexadecimal, octal, and binary conversions
are unlimited. The limit can be configured.

The :class:`int` type in CPython is an abitrary length number stored in binary
form (commonly known as a "bignum"). There exists no algorithm that can convert
a string to a binary integer or a binary integer to a string in linear time,
*unless* the base is a power of 2. Even the best known algorithms for base 10
have sub-quadratic complexity. Converting a large value such as ``int('1' *
500_000)`` can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid `CVE-2020-10735
<https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735>`_.

The limit is applied to the number of digit characters in the input or output
string when a non-linear conversion algorithm would be involved.  Underscores
and the sign are not counted towards the limit.

When an operation would exceed the limit, a :exc:`ValueError` is raised:

.. doctest::

   >>> import sys
   >>> sys.set_int_max_str_digits(4300)  # Illustrative, this is the default.
   >>> _ = int('2' * 5432)
   Traceback (most recent call last):
   ...
   ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432 digits; use sys.set_int_max_str_digits() to increase the limit.
   >>> i = int('2' * 4300)
   >>> len(str(i))
   4300
   >>> i_squared = i*i
   >>> len(str(i_squared))
   Traceback (most recent call last):
   ...
   ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599 digits; use sys.set_int_max_str_digits() to increase the limit.
   >>> len(hex(i_squared))
   7144
   >>> assert int(hex(i_squared), base=16) == i*i  # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in
:data:`sys.int_info.default_max_str_digits <sys.int_info>`.
The lowest limit that can be configured is 640 digits as provided in
:data:`sys.int_info.str_digits_check_threshold <sys.int_info>`.

Verification:

.. doctest::

   >>> import sys
   >>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info
   >>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info
   >>> msg = int('578966293710682886880994035146873798396722250538762761564'
   ...           '9252925514383915483333812743580549779436104706260696366600'
   ...           '571186405732').to_bytes(53, 'big')
   ...

.. versionadded:: 3.11

Affected APIs
-------------

The limitation only applies to potentially slow conversions between :class:`int`
and :class:`str` or :class:`bytes`:

* ``int(string)`` with default base 10.
* ``int(string, base)`` for all bases that are not a power of 2.
* ``str(integer)``.
* ``repr(integer)``
* any other string conversion to base 10, for example ``f"{integer}"``,
  ``"{}".format(integer)``, or ``b"%d" % integer``.

The limitations do not apply to functions with a linear algorithm:

* ``int(string, base)`` with base 2, 4, 8, 16, or 32.
* :func:`int.from_bytes` and :func:`int.to_bytes`.
* :func:`hex`, :func:`oct`, :func:`bin`.
* :ref:`formatspec` for hex, octal, and binary numbers.
* :class:`str` to :class:`float`.
* :class:`str` to :class:`decimal.Decimal`.

Configuring the limit
---------------------

Before Python starts up you can use an environment variable or an interpreter
command line flag to configure the limit:

* :envvar:`PYTHONINTMAXSTRDIGITS`, e.g.
  ``PYTHONINTMAXSTRDIGITS=640 python3`` to set the limit to 640 or
  ``PYTHONINTMAXSTRDIGITS=0 python3`` to disable the limitation.
* :option:`-X int_max_str_digits <-X>`, e.g.
  ``python3 -X int_max_str_digits=640``
* :data:`sys.flags.int_max_str_digits` contains the value of
  :envvar:`PYTHONINTMAXSTRDIGITS` or :option:`-X int_max_str_digits <-X>`.
  If both the env var and the ``-X`` option are set, the ``-X`` option takes
  precedence. A value of *-1* indicates that both were unset, thus a value of
  :data:`sys.int_info.default_max_str_digits` was used during initilization.

From code, you can inspect the current limit and set a new one using these
:mod:`sys` APIs:

* :func:`sys.get_int_max_str_digits` and :func:`sys.set_int_max_str_digits` are
  a getter and setter for the interpreter-wide limit. Subinterpreters have
  their own limit.

Information about the default and minimum can be found in :attr:`sys.int_info`:

* :data:`sys.int_info.default_max_str_digits <sys.int_info>` is the compiled-in
  default limit.
* :data:`sys.int_info.str_digits_check_threshold <sys.int_info>` is the lowest
  accepted value for the limit (other than 0 which disables it).

.. versionadded:: 3.11

.. caution::

   Setting a low limit *can* lead to problems. While rare, code exists that
   contains integer constants in decimal in their source that exceed the
   minimum threshold. A consequence of setting the limit is that Python source
   code containing decimal integer literals longer than the limit will
   encounter an error during parsing, usually at startup time or import time or
   even at installation time - anytime an up to date ``.pyc`` does not already
   exist for the code. A workaround for source that contains such large
   constants is to convert them to ``0x`` hexadecimal form as it has no limit.

   Test your application thoroughly if you use a low limit. Ensure your tests
   run with the limit set early via the environment or flag so that it applies
   during startup and even during any installation step that may invoke Python
   to precompile ``.py`` sources to ``.pyc`` files.

Recommended configuration
-------------------------

The default :data:`sys.int_info.default_max_str_digits` is expected to be
reasonable for most applications. If your application requires a different
limit, set it from your main entry point using Python version agnostic code as
these APIs were added in security patch releases in versions before 3.12.

Example::

   >>> import sys
   >>> if hasattr(sys, "set_int_max_str_digits"):
   ...     upper_bound = 68000
   ...     lower_bound = 4004
   ...     current_limit = sys.get_int_max_str_digits()
   ...     if current_limit == 0 or current_limit > upper_bound:
   ...         sys.set_int_max_str_digits(upper_bound)
   ...     elif current_limit < lower_bound:
   ...         sys.set_int_max_str_digits(lower_bound)

If you need to disable it entirely, set it to ``0``.


.. rubric:: Footnotes

.. [1] Additional information on these special methods may be found in the Python
   Reference Manual (:ref:`customization`).

.. [2] As a consequence, the list ``[1, 2]`` is considered equal to ``[1.0, 2.0]``, and
   similarly for tuples.

.. [3] They must have since the parser can't tell the type of the operands.

.. [4] Cased characters are those with general category property being one of
   "Lu" (Letter, uppercase), "Ll" (Letter, lowercase), or "Lt" (Letter, titlecase).

.. [5] To format only a tuple you should therefore provide a singleton tuple whose only
   element is the tuple to be formatted.