summaryrefslogtreecommitdiffstats
path: root/Doc/library/string.rst
blob: 40aa07c8f92e9087015a975b62cf61698cb16678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
:mod:`string` --- Common string operations
==========================================

.. module:: string
   :synopsis: Common string operations.


.. index:: module: re

The :mod:`string` module contains a number of useful constants and
classes, as well as some deprecated legacy functions that are also
available as methods on strings. In addition, Python's built-in string
classes support the sequence type methods described in the
:ref:`typesseq` section, and also the string-specific methods described
in the :ref:`string-methods` section. To output formatted strings use
template strings or the ``%`` operator described in the
:ref:`string-formatting` section. Also, see the :mod:`re` module for
string functions based on regular expressions.


String constants
----------------

The constants defined in this module are:


.. data:: ascii_letters

   The concatenation of the :const:`ascii_lowercase` and :const:`ascii_uppercase`
   constants described below.  This value is not locale-dependent.


.. data:: ascii_lowercase

   The lowercase letters ``'abcdefghijklmnopqrstuvwxyz'``.  This value is not
   locale-dependent and will not change.


.. data:: ascii_uppercase

   The uppercase letters ``'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.  This value is not
   locale-dependent and will not change.


.. data:: digits

   The string ``'0123456789'``.


.. data:: hexdigits

   The string ``'0123456789abcdefABCDEF'``.


.. data:: letters

   The concatenation of the strings :const:`lowercase` and :const:`uppercase`
   described below.  The specific value is locale-dependent, and will be updated
   when :func:`locale.setlocale` is called.


.. data:: lowercase

   A string containing all the characters that are considered lowercase letters.
   On most systems this is the string ``'abcdefghijklmnopqrstuvwxyz'``.  The
   specific value is locale-dependent, and will be updated when
   :func:`locale.setlocale` is called.


.. data:: octdigits

   The string ``'01234567'``.


.. data:: punctuation

   String of ASCII characters which are considered punctuation characters in the
   ``C`` locale.


.. data:: printable

   String of characters which are considered printable.  This is a combination of
   :const:`digits`, :const:`letters`, :const:`punctuation`, and
   :const:`whitespace`.


.. data:: uppercase

   A string containing all the characters that are considered uppercase letters.
   On most systems this is the string ``'ABCDEFGHIJKLMNOPQRSTUVWXYZ'``.  The
   specific value is locale-dependent, and will be updated when
   :func:`locale.setlocale` is called.


.. data:: whitespace

   A string containing all characters that are considered whitespace. On most
   systems this includes the characters space, tab, linefeed, return, formfeed, and
   vertical tab.


.. _new-string-formatting:

String Formatting
-----------------

Starting in Python 2.6, the built-in str and unicode classes provide the ability
to do complex variable substitutions and value formatting via the
:meth:`str.format` method described in :pep:`3101`.  The :class:`Formatter`
class in the :mod:`string` module allows you to create and customize your own
string formatting behaviors using the same implementation as the built-in
:meth:`format` method.

.. class:: Formatter

   The :class:`Formatter` class has the following public methods:

   .. method:: format(format_string, *args, *kwargs)

      :meth:`format` is the primary API method.  It takes a format template
      string, and an arbitrary set of positional and keyword argument.
      :meth:`format` is just a wrapper that calls :meth:`vformat`.

   .. method:: vformat(format_string, args, kwargs)

      This function does the actual work of formatting.  It is exposed as a
      separate function for cases where you want to pass in a predefined
      dictionary of arguments, rather than unpacking and repacking the
      dictionary as individual arguments using the ``*args`` and ``**kwds``
      syntax.  :meth:`vformat` does the work of breaking up the format template
      string into character data and replacement fields.  It calls the various
      methods described below.

   In addition, the :class:`Formatter` defines a number of methods that are
   intended to be replaced by subclasses:

   .. method:: parse(format_string)

      Loop over the format_string and return an iterable of tuples
      (*literal_text*, *field_name*, *format_spec*, *conversion*).  This is used
      by :meth:`vformat` to break the string in to either literal text, or
      replacement fields.

      The values in the tuple conceptually represent a span of literal text
      followed by a single replacement field.  If there is no literal text
      (which can happen if two replacement fields occur consecutively), then
      *literal_text* will be a zero-length string.  If there is no replacement
      field, then the values of *field_name*, *format_spec* and *conversion*
      will be ``None``.

   .. method:: get_field(field_name, args, kwargs)

      Given *field_name* as returned by :meth:`parse` (see above), convert it to
      an object to be formatted.  Returns a tuple (obj, used_key).  The default
      version takes strings of the form defined in :pep:`3101`, such as
      "0[name]" or "label.title".  *args* and *kwargs* are as passed in to
      :meth:`vformat`.  The return value *used_key* has the same meaning as the
      *key* parameter to :meth:`get_value`.

   .. method:: get_value(key, args, kwargs)

      Retrieve a given field value.  The *key* argument will be either an
      integer or a string.  If it is an integer, it represents the index of the
      positional argument in *args*; if it is a string, then it represents a
      named argument in *kwargs*.

      The *args* parameter is set to the list of positional arguments to
      :meth:`vformat`, and the *kwargs* parameter is set to the dictionary of
      keyword arguments.

      For compound field names, these functions are only called for the first
      component of the field name; Subsequent components are handled through
      normal attribute and indexing operations.

      So for example, the field expression '0.name' would cause
      :meth:`get_value` to be called with a *key* argument of 0.  The ``name``
      attribute will be looked up after :meth:`get_value` returns by calling the
      built-in :func:`getattr` function.

      If the index or keyword refers to an item that does not exist, then an
      :exc:`IndexError` or :exc:`KeyError` should be raised.

   .. method:: check_unused_args(used_args, args, kwargs)

      Implement checking for unused arguments if desired.  The arguments to this
      function is the set of all argument keys that were actually referred to in
      the format string (integers for positional arguments, and strings for
      named arguments), and a reference to the *args* and *kwargs* that was
      passed to vformat.  The set of unused args can be calculated from these
      parameters.  :meth:`check_unused_args` is assumed to throw an exception if
      the check fails.

   .. method:: format_field(value, format_spec)

      :meth:`format_field` simply calls the global :func:`format` built-in.  The
      method is provided so that subclasses can override it.

   .. method:: convert_field(value, conversion)

      Converts the value (returned by :meth:`get_field`) given a conversion type
      (as in the tuple returned by the :meth:`parse` method.)  The default
      version understands 'r' (repr) and 's' (str) conversion types.


.. _formatstrings:

Format String Syntax
--------------------

The :meth:`str.format` method and the :class:`Formatter` class share the same
syntax for format strings (although in the case of :class:`Formatter`,
subclasses can define their own format string syntax.)

Format strings contain "replacement fields" surrounded by curly braces ``{}``.
Anything that is not contained in braces is considered literal text, which is
copied unchanged to the output.  If you need to include a brace character in the
literal text, it can be escaped by doubling: ``{{`` and ``}}``.

The grammar for a replacement field is as follows:

   .. productionlist:: sf
      replacement_field: "{" `field_name` ["!" `conversion`] [":" `format_spec`] "}"
      field_name: (`identifier` | `integer`) ("." `attribute_name` | "[" `element_index` "]")*
      attribute_name: `identifier`
      element_index: `integer`
      conversion: "r" | "s"
      format_spec: <described in the next section>

In less formal terms, the replacement field starts with a *field_name*, which
can either be a number (for a positional argument), or an identifier (for
keyword arguments).  Following this is an optional *conversion* field, which is
preceded by an exclamation point ``'!'``, and a *format_spec*, which is preceded
by a colon ``':'``.

The *field_name* itself begins with either a number or a keyword.  If it's a
number, it refers to a positional argument, and if it's a keyword it refers to a
named keyword argument.  This can be followed by any number of index or
attribute expressions. An expression of the form ``'.name'`` selects the named
attribute using :func:`getattr`, while an expression of the form ``'[index]'``
does an index lookup using :func:`__getitem__`.

Some simple format string examples::

   "First, thou shalt count to {0}" # References first positional argument
   "Bring me a {}"                  # Implicitly references the first positional argument
   "My quest is {name}"             # References keyword argument 'name'
   "Weight in tons {0.weight}"      # 'weight' attribute of first positional arg
   "Units destroyed: {players[0]}"  # First element of keyword argument 'players'.

The *conversion* field causes a type coercion before formatting.  Normally, the
job of formatting a value is done by the :meth:`__format__` method of the value
itself.  However, in some cases it is desirable to force a type to be formatted
as a string, overriding its own definition of formatting.  By converting the
value to a string before calling :meth:`__format__`, the normal formatting logic
is bypassed.

Two conversion flags are currently supported: ``'!s'`` which calls :func:`str`
on the value, and ``'!r'`` which calls :func:`repr`.

Some examples::

   "Harold's a clever {0!s}"        # Calls str() on the argument first
   "Bring out the holy {name!r}"    # Calls repr() on the argument first

The *format_spec* field contains a specification of how the value should be
presented, including such details as field width, alignment, padding, decimal
precision and so on.  Each value type can define it's own "formatting
mini-language" or interpretation of the *format_spec*.

Most built-in types support a common formatting mini-language, which is
described in the next section.

A *format_spec* field can also include nested replacement fields within it.
These nested replacement fields can contain only a field name; conversion flags
and format specifications are not allowed.  The replacement fields within the
format_spec are substituted before the *format_spec* string is interpreted.
This allows the formatting of a value to be dynamically specified.

For example, suppose you wanted to have a replacement field whose field width is
determined by another variable::

   "A man with two {0:{1}}".format("noses", 10)

This would first evaluate the inner replacement field, making the format string
effectively::

   "A man with two {0:10}"

Then the outer replacement field would be evaluated, producing::

   "noses     "

Which is substituted into the string, yielding::

   "A man with two noses     "

(The extra space is because we specified a field width of 10, and because left
alignment is the default for strings.)


.. _formatspec:

Format Specification Mini-Language
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

"Format specifications" are used within replacement fields contained within a
format string to define how individual values are presented (see
:ref:`formatstrings`.)  They can also be passed directly to the builtin
:func:`format` function.  Each formattable type may define how the format
specification is to be interpreted.

Most built-in types implement the following options for format specifications,
although some of the formatting options are only supported by the numeric types.

A general convention is that an empty format string (``""``) produces the same
result as if you had called :func:`str` on the value.

The general form of a *standard format specifier* is:

.. productionlist:: sf
   format_spec: [[`fill`]`align`][`sign`][#][0][`width`][.`precision`][`type`]
   fill: <a character other than '}'>
   align: "<" | ">" | "=" | "^"
   sign: "+" | "-" | " "
   width: `integer`
   precision: `integer`
   type: "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "x" | "X" | "%"

The *fill* character can be any character other than '}' (which signifies the
end of the field).  The presence of a fill character is signaled by the *next*
character, which must be one of the alignment options. If the second character
of *format_spec* is not a valid alignment option, then it is assumed that both
the fill character and the alignment option are absent.

The meaning of the various alignment options is as follows:

   +---------+----------------------------------------------------------+
   | Option  | Meaning                                                  |
   +=========+==========================================================+
   | ``'<'`` | Forces the field to be left-aligned within the available |
   |         | space (This is the default.)                             |
   +---------+----------------------------------------------------------+
   | ``'>'`` | Forces the field to be right-aligned within the          |
   |         | available space.                                         |
   +---------+----------------------------------------------------------+
   | ``'='`` | Forces the padding to be placed after the sign (if any)  |
   |         | but before the digits.  This is used for printing fields |
   |         | in the form '+000000120'. This alignment option is only  |
   |         | valid for numeric types.                                 |
   +---------+----------------------------------------------------------+
   | ``'^'`` | Forces the field to be centered within the available     |
   |         | space.                                                   |
   +---------+----------------------------------------------------------+

Note that unless a minimum field width is defined, the field width will always
be the same size as the data to fill it, so that the alignment option has no
meaning in this case.

The *sign* option is only valid for number types, and can be one of the
following:

   +---------+----------------------------------------------------------+
   | Option  | Meaning                                                  |
   +=========+==========================================================+
   | ``'+'`` | indicates that a sign should be used for both            |
   |         | positive as well as negative numbers.                    |
   +---------+----------------------------------------------------------+
   | ``'-'`` | indicates that a sign should be used only for negative   |
   |         | numbers (this is the default behavior).                  |
   +---------+----------------------------------------------------------+
   | space   | indicates that a leading space should be used on         |
   |         | positive numbers, and a minus sign on negative numbers.  |
   +---------+----------------------------------------------------------+

The ``'#'`` option is only valid for integers, and only for binary, octal, or
hexadecimal output.  If present, it specifies that the output will be prefixed
by ``'0b'``, ``'0o'``, or ``'0x'``, respectively.

*width* is a decimal integer defining the minimum field width.  If not
specified, then the field width will be determined by the content.

If the *width* field is preceded by a zero (``'0'``) character, this enables
zero-padding.  This is equivalent to an *alignment* type of ``'='`` and a *fill*
character of ``'0'``.

The *precision* is a decimal number indicating how many digits should be
displayed after the decimal point for a floating point value formatted with
``'f'`` and ``'F'``, or before and after the decimal point for a floating point
value formatted with ``'g'`` or ``'G'``.  For non-number types the field
indicates the maximum field size - in other words, how many characters will be
used from the field content. The *precision* is ignored for integer values.

Finally, the *type* determines how the data should be presented.

The available integer presentation types are:

   +---------+----------------------------------------------------------+
   | Type    | Meaning                                                  |
   +=========+==========================================================+
   | ``'b'`` | Binary format. Outputs the number in base 2.             |
   +---------+----------------------------------------------------------+
   | ``'c'`` | Character. Converts the integer to the corresponding     |
   |         | unicode character before printing.                       |
   +---------+----------------------------------------------------------+
   | ``'d'`` | Decimal Integer. Outputs the number in base 10.          |
   +---------+----------------------------------------------------------+
   | ``'o'`` | Octal format. Outputs the number in base 8.              |
   +---------+----------------------------------------------------------+
   | ``'x'`` | Hex format. Outputs the number in base 16, using lower-  |
   |         | case letters for the digits above 9.                     |
   +---------+----------------------------------------------------------+
   | ``'X'`` | Hex format. Outputs the number in base 16, using upper-  |
   |         | case letters for the digits above 9.                     |
   +---------+----------------------------------------------------------+
   | ``'n'`` | Number. This is the same as ``'d'``, except that it uses |
   |         | the current locale setting to insert the appropriate     |
   |         | number separator characters.                             |
   +---------+----------------------------------------------------------+
   | None    | The same as ``'d'``.                                     |
   +---------+----------------------------------------------------------+

The available presentation types for floating point and decimal values are:

   +---------+----------------------------------------------------------+
   | Type    | Meaning                                                  |
   +=========+==========================================================+
   | ``'e'`` | Exponent notation. Prints the number in scientific       |
   |         | notation using the letter 'e' to indicate the exponent.  |
   +---------+----------------------------------------------------------+
   | ``'E'`` | Exponent notation. Same as ``'e'`` except it uses an     |
   |         | upper case 'E' as the separator character.               |
   +---------+----------------------------------------------------------+
   | ``'f'`` | Fixed point. Displays the number as a fixed-point        |
   |         | number.                                                  |
   +---------+----------------------------------------------------------+
   | ``'F'`` | Fixed point. Same as ``'f'``.                            |
   +---------+----------------------------------------------------------+
   | ``'g'`` | General format. This prints the number as a fixed-point  |
   |         | number, unless the number is too large, in which case    |
   |         | it switches to ``'e'`` exponent notation. Infinity and   |
   |         | NaN values are formatted as ``inf``, ``-inf`` and        |
   |         | ``nan``, respectively.                                   |
   +---------+----------------------------------------------------------+
   | ``'G'`` | General format. Same as ``'g'`` except switches to       |
   |         | ``'E'`` if the number gets to large. The representations |
   |         | of infinity and NaN are uppercased, too.                 |
   +---------+----------------------------------------------------------+
   | ``'n'`` | Number. This is the same as ``'g'``, except that it uses |
   |         | the current locale setting to insert the appropriate     |
   |         | number separator characters.                             |
   +---------+----------------------------------------------------------+
   | ``'%'`` | Percentage. Multiplies the number by 100 and displays    |
   |         | in fixed (``'f'``) format, followed by a percent sign.   |
   +---------+----------------------------------------------------------+
   | None    | The same as ``'g'``.                                     |
   +---------+----------------------------------------------------------+


Template strings
----------------

Templates provide simpler string substitutions as described in :pep:`292`.
Instead of the normal ``%``\ -based substitutions, Templates support ``$``\
-based substitutions, using the following rules:

* ``$$`` is an escape; it is replaced with a single ``$``.

* ``$identifier`` names a substitution placeholder matching a mapping key of
  ``"identifier"``.  By default, ``"identifier"`` must spell a Python
  identifier.  The first non-identifier character after the ``$`` character
  terminates this placeholder specification.

* ``${identifier}`` is equivalent to ``$identifier``.  It is required when valid
  identifier characters follow the placeholder but are not part of the
  placeholder, such as ``"${noun}ification"``.

Any other appearance of ``$`` in the string will result in a :exc:`ValueError`
being raised.

.. versionadded:: 2.4

The :mod:`string` module provides a :class:`Template` class that implements
these rules.  The methods of :class:`Template` are:


.. class:: Template(template)

   The constructor takes a single argument which is the template string.


   .. method:: substitute(mapping[, **kws])

      Performs the template substitution, returning a new string.  *mapping* is
      any dictionary-like object with keys that match the placeholders in the
      template.  Alternatively, you can provide keyword arguments, where the
      keywords are the placeholders.  When both *mapping* and *kws* are given
      and there are duplicates, the placeholders from *kws* take precedence.


   .. method:: safe_substitute(mapping[, **kws])

      Like :meth:`substitute`, except that if placeholders are missing from
      *mapping* and *kws*, instead of raising a :exc:`KeyError` exception, the
      original placeholder will appear in the resulting string intact.  Also,
      unlike with :meth:`substitute`, any other appearances of the ``$`` will
      simply return ``$`` instead of raising :exc:`ValueError`.

      While other exceptions may still occur, this method is called "safe"
      because substitutions always tries to return a usable string instead of
      raising an exception.  In another sense, :meth:`safe_substitute` may be
      anything other than safe, since it will silently ignore malformed
      templates containing dangling delimiters, unmatched braces, or
      placeholders that are not valid Python identifiers.

:class:`Template` instances also provide one public data attribute:


.. attribute:: string.template

   This is the object passed to the constructor's *template* argument.  In general,
   you shouldn't change it, but read-only access is not enforced.

Here is an example of how to use a Template:

   >>> from string import Template
   >>> s = Template('$who likes $what')
   >>> s.substitute(who='tim', what='kung pao')
   'tim likes kung pao'
   >>> d = dict(who='tim')
   >>> Template('Give $who $100').substitute(d)
   Traceback (most recent call last):
   [...]
   ValueError: Invalid placeholder in string: line 1, col 10
   >>> Template('$who likes $what').substitute(d)
   Traceback (most recent call last):
   [...]
   KeyError: 'what'
   >>> Template('$who likes $what').safe_substitute(d)
   'tim likes $what'

Advanced usage: you can derive subclasses of :class:`Template` to customize the
placeholder syntax, delimiter character, or the entire regular expression used
to parse template strings.  To do this, you can override these class attributes:

* *delimiter* -- This is the literal string describing a placeholder introducing
  delimiter.  The default value ``$``.  Note that this should *not* be a regular
  expression, as the implementation will call :meth:`re.escape` on this string as
  needed.

* *idpattern* -- This is the regular expression describing the pattern for
  non-braced placeholders (the braces will be added automatically as
  appropriate).  The default value is the regular expression
  ``[_a-z][_a-z0-9]*``.

Alternatively, you can provide the entire regular expression pattern by
overriding the class attribute *pattern*.  If you do this, the value must be a
regular expression object with four named capturing groups.  The capturing
groups correspond to the rules given above, along with the invalid placeholder
rule:

* *escaped* -- This group matches the escape sequence, e.g. ``$$``, in the
  default pattern.

* *named* -- This group matches the unbraced placeholder name; it should not
  include the delimiter in capturing group.

* *braced* -- This group matches the brace enclosed placeholder name; it should
  not include either the delimiter or braces in the capturing group.

* *invalid* -- This group matches any other delimiter pattern (usually a single
  delimiter), and it should appear last in the regular expression.


String functions
----------------

The following functions are available to operate on string and Unicode objects.
They are not available as string methods.


.. function:: capwords(s)

   Split the argument into words using :func:`split`, capitalize each word using
   :func:`capitalize`, and join the capitalized words using :func:`join`.  Note
   that this replaces runs of whitespace characters by a single space, and removes
   leading and trailing whitespace.


.. function:: maketrans(from, to)

   Return a translation table suitable for passing to :func:`translate`, that will
   map each character in *from* into the character at the same position in *to*;
   *from* and *to* must have the same length.

   .. warning::

      Don't use strings derived from :const:`lowercase` and :const:`uppercase` as
      arguments; in some locales, these don't have the same length.  For case
      conversions, always use :meth:`str.lower` and :meth:`str.upper`.


Deprecated string functions
---------------------------

The following list of functions are also defined as methods of string and
Unicode objects; see section :ref:`string-methods` for more information on
those.  You should consider these functions as deprecated, although they will
not be removed until Python 3.0.  The functions defined in this module are:


.. function:: atof(s)

   .. deprecated:: 2.0
      Use the :func:`float` built-in function.

   .. index:: builtin: float

   Convert a string to a floating point number.  The string must have the standard
   syntax for a floating point literal in Python, optionally preceded by a sign
   (``+`` or ``-``).  Note that this behaves identical to the built-in function
   :func:`float` when passed a string.

   .. note::

      .. index::
         single: NaN
         single: Infinity

      When passing in a string, values for NaN and Infinity may be returned, depending
      on the underlying C library.  The specific set of strings accepted which cause
      these values to be returned depends entirely on the C library and is known to
      vary.


.. function:: atoi(s[, base])

   .. deprecated:: 2.0
      Use the :func:`int` built-in function.

   .. index:: builtin: eval

   Convert string *s* to an integer in the given *base*.  The string must consist
   of one or more digits, optionally preceded by a sign (``+`` or ``-``).  The
   *base* defaults to 10.  If it is 0, a default base is chosen depending on the
   leading characters of the string (after stripping the sign): ``0x`` or ``0X``
   means 16, ``0`` means 8, anything else means 10.  If *base* is 16, a leading
   ``0x`` or ``0X`` is always accepted, though not required.  This behaves
   identically to the built-in function :func:`int` when passed a string.  (Also
   note: for a more flexible interpretation of numeric literals, use the built-in
   function :func:`eval`.)


.. function:: atol(s[, base])

   .. deprecated:: 2.0
      Use the :func:`long` built-in function.

   .. index:: builtin: long

   Convert string *s* to a long integer in the given *base*. The string must
   consist of one or more digits, optionally preceded by a sign (``+`` or ``-``).
   The *base* argument has the same meaning as for :func:`atoi`.  A trailing ``l``
   or ``L`` is not allowed, except if the base is 0.  Note that when invoked
   without *base* or with *base* set to 10, this behaves identical to the built-in
   function :func:`long` when passed a string.


.. function:: capitalize(word)

   Return a copy of *word* with only its first character capitalized.


.. function:: expandtabs(s[, tabsize])

   Expand tabs in a string replacing them by one or more spaces, depending on the
   current column and the given tab size.  The column number is reset to zero after
   each newline occurring in the string. This doesn't understand other non-printing
   characters or escape sequences.  The tab size defaults to 8.


.. function:: find(s, sub[, start[,end]])

   Return the lowest index in *s* where the substring *sub* is found such that
   *sub* is wholly contained in ``s[start:end]``.  Return ``-1`` on failure.
   Defaults for *start* and *end* and interpretation of negative values is the same
   as for slices.


.. function:: rfind(s, sub[, start[, end]])

   Like :func:`find` but find the highest index.


.. function:: index(s, sub[, start[, end]])

   Like :func:`find` but raise :exc:`ValueError` when the substring is not found.


.. function:: rindex(s, sub[, start[, end]])

   Like :func:`rfind` but raise :exc:`ValueError` when the substring is not found.


.. function:: count(s, sub[, start[, end]])

   Return the number of (non-overlapping) occurrences of substring *sub* in string
   ``s[start:end]``. Defaults for *start* and *end* and interpretation of negative
   values are the same as for slices.


.. function:: lower(s)

   Return a copy of *s*, but with upper case letters converted to lower case.


.. function:: split(s[, sep[, maxsplit]])

   Return a list of the words of the string *s*.  If the optional second argument
   *sep* is absent or ``None``, the words are separated by arbitrary strings of
   whitespace characters (space, tab,  newline, return, formfeed).  If the second
   argument *sep* is present and not ``None``, it specifies a string to be used as
   the  word separator.  The returned list will then have one more item than the
   number of non-overlapping occurrences of the separator in the string.  The
   optional third argument *maxsplit* defaults to 0.  If it is nonzero, at most
   *maxsplit* number of splits occur, and the remainder of the string is returned
   as the final element of the list (thus, the list will have at most
   ``maxsplit+1`` elements).

   The behavior of split on an empty string depends on the value of *sep*. If *sep*
   is not specified, or specified as ``None``, the result will be an empty list.
   If *sep* is specified as any string, the result will be a list containing one
   element which is an empty string.


.. function:: rsplit(s[, sep[, maxsplit]])

   Return a list of the words of the string *s*, scanning *s* from the end.  To all
   intents and purposes, the resulting list of words is the same as returned by
   :func:`split`, except when the optional third argument *maxsplit* is explicitly
   specified and nonzero.  When *maxsplit* is nonzero, at most *maxsplit* number of
   splits -- the *rightmost* ones -- occur, and the remainder of the string is
   returned as the first element of the list (thus, the list will have at most
   ``maxsplit+1`` elements).

   .. versionadded:: 2.4


.. function:: splitfields(s[, sep[, maxsplit]])

   This function behaves identically to :func:`split`.  (In the past, :func:`split`
   was only used with one argument, while :func:`splitfields` was only used with
   two arguments.)


.. function:: join(words[, sep])

   Concatenate a list or tuple of words with intervening occurrences of  *sep*.
   The default value for *sep* is a single space character.  It is always true that
   ``string.join(string.split(s, sep), sep)`` equals *s*.


.. function:: joinfields(words[, sep])

   This function behaves identically to :func:`join`.  (In the past,  :func:`join`
   was only used with one argument, while :func:`joinfields` was only used with two
   arguments.) Note that there is no :meth:`joinfields` method on string objects;
   use the :meth:`join` method instead.


.. function:: lstrip(s[, chars])

   Return a copy of the string with leading characters removed.  If *chars* is
   omitted or ``None``, whitespace characters are removed.  If given and not
   ``None``, *chars* must be a string; the characters in the string will be
   stripped from the beginning of the string this method is called on.

   .. versionchanged:: 2.2.3
      The *chars* parameter was added.  The *chars* parameter cannot be passed in
      earlier 2.2 versions.


.. function:: rstrip(s[, chars])

   Return a copy of the string with trailing characters removed.  If *chars* is
   omitted or ``None``, whitespace characters are removed.  If given and not
   ``None``, *chars* must be a string; the characters in the string will be
   stripped from the end of the string this method is called on.

   .. versionchanged:: 2.2.3
      The *chars* parameter was added.  The *chars* parameter cannot be passed in
      earlier 2.2 versions.


.. function:: strip(s[, chars])

   Return a copy of the string with leading and trailing characters removed.  If
   *chars* is omitted or ``None``, whitespace characters are removed.  If given and
   not ``None``, *chars* must be a string; the characters in the string will be
   stripped from the both ends of the string this method is called on.

   .. versionchanged:: 2.2.3
      The *chars* parameter was added.  The *chars* parameter cannot be passed in
      earlier 2.2 versions.


.. function:: swapcase(s)

   Return a copy of *s*, but with lower case letters converted to upper case and
   vice versa.


.. function:: translate(s, table[, deletechars])

   Delete all characters from *s* that are in *deletechars* (if  present), and then
   translate the characters using *table*, which  must be a 256-character string
   giving the translation for each character value, indexed by its ordinal.  If
   *table* is ``None``, then only the character deletion step is performed.


.. function:: upper(s)

   Return a copy of *s*, but with lower case letters converted to upper case.


.. function:: ljust(s, width)
              rjust(s, width)
              center(s, width)

   These functions respectively left-justify, right-justify and center a string in
   a field of given width.  They return a string that is at least *width*
   characters wide, created by padding the string *s* with spaces until the given
   width on the right, left or both sides.  The string is never truncated.


.. function:: zfill(s, width)

   Pad a numeric string on the left with zero digits until the given width is
   reached.  Strings starting with a sign are handled correctly.


.. function:: replace(str, old, new[, maxreplace])

   Return a copy of string *str* with all occurrences of substring *old* replaced
   by *new*.  If the optional argument *maxreplace* is given, the first
   *maxreplace* occurrences are replaced.