1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
|
# Copyright (c) 2004 Python Software Foundation.
# All rights reserved.
# Written by Eric Price <eprice at tjhsst.edu>
# and Facundo Batista <facundo at taniquetil.com.ar>
# and Raymond Hettinger <python at rcn.com>
# and Aahz <aahz at pobox.com>
# and Tim Peters
"""
This is a Py2.3 implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:
www2.hursley.ibm.com/decimal/decarith.html
and IEEE standard 854-1987:
www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
Decimal floating point has finite precision with arbitrarily large bounds.
The purpose of the module is to support arithmetic using familiar
"schoolhouse" rules and to avoid the some of tricky representation
issues associated with binary floating point. The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of the expected Decimal("0.00") returned by decimal floating point).
Here are some examples of using the decimal module:
>>> from decimal import *
>>> getcontext().prec=9
>>> Decimal(0)
Decimal("0")
>>> Decimal("1")
Decimal("1")
>>> Decimal("-.0123")
Decimal("-0.0123")
>>> Decimal(123456)
Decimal("123456")
>>> Decimal("123.45e12345678901234567890")
Decimal("1.2345E+12345678901234567892")
>>> Decimal("1.33") + Decimal("1.27")
Decimal("2.60")
>>> Decimal("12.34") + Decimal("3.87") - Decimal("18.41")
Decimal("-2.20")
>>> dig = Decimal(1)
>>> print dig / Decimal(3)
0.333333333
>>> getcontext().prec = 18
>>> print dig / Decimal(3)
0.333333333333333333
>>> print dig.sqrt()
1
>>> print Decimal(3).sqrt()
1.73205080756887729
>>> print Decimal(3) ** 123
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print inf
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print neginf
-Infinity
>>> print neginf + inf
NaN
>>> print neginf * inf
-Infinity
>>> print dig / 0
Infinity
>>> getcontext().trap_enablers[DivisionByZero] = 1
>>> print dig / 0
Traceback (most recent call last):
...
...
...
DivisionByZero: x / 0
>>> c = Context()
>>> c.trap_enablers[DivisionUndefined] = 0
>>> print c.flags[DivisionUndefined]
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal("NaN")
>>> c.trap_enablers[DivisionUndefined] = 1
>>> print c.flags[DivisionUndefined]
1
>>> c.flags[DivisionUndefined] = 0
>>> print c.flags[DivisionUndefined]
0
>>> print c.divide(Decimal(0), Decimal(0))
Traceback (most recent call last):
...
...
...
DivisionUndefined: 0 / 0
>>> print c.flags[DivisionUndefined]
1
>>> c.flags[DivisionUndefined] = 0
>>> c.trap_enablers[DivisionUndefined] = False
>>> print c.divide(Decimal(0), Decimal(0))
NaN
>>> print c.flags[DivisionUndefined]
1
>>>
"""
__all__ = [
# Two major classes
'Decimal', 'Context',
# Contexts
'DefaultContext', 'BasicContext', 'ExtendedContext',
# Exceptions
'DecimalException', 'Clamped', 'InvalidOperation', 'ConversionSyntax',
'DivisionByZero', 'DivisionImpossible', 'DivisionUndefined',
'Inexact', 'InvalidContext', 'Rounded', 'Subnormal', 'Overflow',
'Underflow',
# Constants for use in setting up contexts
'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN',
'Signals', # <-- Used for building trap/flag dictionaries
# Functions for manipulating contexts
'setcontext', 'getcontext'
]
import threading
import copy
import operator
#Exponent Range
DEFAULT_MAX_EXPONENT = 999999999
DEFAULT_MIN_EXPONENT = -999999999
#Rounding
ROUND_DOWN = 'ROUND_DOWN'
ROUND_HALF_UP = 'ROUND_HALF_UP'
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
#Rounding decision (not part of the public API)
NEVER_ROUND = 'NEVER_ROUND' # Round in division (non-divmod), sqrt ONLY
ALWAYS_ROUND = 'ALWAYS_ROUND' # Every operation rounds at end.
#Errors
class DecimalException(ArithmeticError):
"""Base exception class, defines default things.
Used exceptions derive from this.
If an exception derives from another exception besides this (such as
Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
called if the others are present. This isn't actually used for
anything, though.
Attributes:
default -- If the context is basic, the trap_enablers are set to
this by default. Extended contexts start out with them set
to 0, regardless.
handle -- Called when context._raise_error is called and the
trap_enabler is set. First argument is self, second is the
context. More arguments can be given, those being after
the explanation in _raise_error (For example,
context._raise_error(NewError, '(-x)!', self._sign) would
call NewError().handle(context, self._sign).)
To define a new exception, it should be sufficient to have it derive
from DecimalException.
"""
default = 1
def handle(self, context, *args):
pass
class Clamped(DecimalException):
"""Exponent of a 0 changed to fit bounds.
This occurs and signals clamped if the exponent of a result has been
altered in order to fit the constraints of a specific concrete
representation. This may occur when the exponent of a zero result would
be outside the bounds of a representation, or when a large normal
number would have an encoded exponent that cannot be represented. In
this latter case, the exponent is reduced to fit and the corresponding
number of zero digits are appended to the coefficient ("fold-down").
"""
class InvalidOperation(DecimalException):
"""An invalid operation was performed.
Various bad things cause this:
Something creates a signaling NaN
-INF + INF
0 * (+-)INF
(+-)INF / (+-)INF
x % 0
(+-)INF % x
x._rescale( non-integer )
sqrt(-x) , x > 0
0 ** 0
x ** (non-integer)
x ** (+-)INF
An operand is invalid
"""
def handle(self, context, *args):
if args:
if args[0] == 1: #sNaN, must drop 's' but keep diagnostics
return Decimal( (args[1]._sign, args[1]._int, 'n') )
return NaN
# XXX Is there a logic error in subclassing InvalidOperation?
# Setting the InvalidOperation trap to zero does not preclude ConversionSyntax.
# Also, incrementing Conversion syntax flag will not increment InvalidOperation.
# Both of these issues interfere with cross-language portability because
# code following the spec would not know about the Python subclasses.
class ConversionSyntax(InvalidOperation):
"""Trying to convert badly formed string.
This occurs and signals invalid-operation if an string is being
converted to a number and it does not conform to the numeric string
syntax. The result is [0,qNaN].
"""
def handle(self, context, *args):
return (0, (0,), 'n') #Passed to something which uses a tuple.
class DivisionByZero(DecimalException, ZeroDivisionError):
"""Division by 0.
This occurs and signals division-by-zero if division of a finite number
by zero was attempted (during a divide-integer or divide operation, or a
power operation with negative right-hand operand), and the dividend was
not zero.
The result of the operation is [sign,inf], where sign is the exclusive
or of the signs of the operands for divide, or is 1 for an odd power of
-0, for power.
"""
def handle(self, context, sign, double = None, *args):
if double is not None:
return (Infsign[sign],)*2
return Infsign[sign]
class DivisionImpossible(InvalidOperation):
"""Cannot perform the division adequately.
This occurs and signals invalid-operation if the integer result of a
divide-integer or remainder operation had too many digits (would be
longer than precision). The result is [0,qNaN].
"""
def handle(self, context, *args):
return (NaN, NaN)
class DivisionUndefined(InvalidOperation, ZeroDivisionError):
"""Undefined result of division.
This occurs and signals invalid-operation if division by zero was
attempted (during a divide-integer, divide, or remainder operation), and
the dividend is also zero. The result is [0,qNaN].
"""
def handle(self, context, tup=None, *args):
if tup is not None:
return (NaN, NaN) #for 0 %0, 0 // 0
return NaN
class Inexact(DecimalException):
"""Had to round, losing information.
This occurs and signals inexact whenever the result of an operation is
not exact (that is, it needed to be rounded and any discarded digits
were non-zero), or if an overflow or underflow condition occurs. The
result in all cases is unchanged.
The inexact signal may be tested (or trapped) to determine if a given
operation (or sequence of operations) was inexact.
"""
default = 0
class InvalidContext(InvalidOperation):
"""Invalid context. Unknown rounding, for example.
This occurs and signals invalid-operation if an invalid context was
detected during an operation. This can occur if contexts are not checked
on creation and either the precision exceeds the capability of the
underlying concrete representation or an unknown or unsupported rounding
was specified. These aspects of the context need only be checked when
the values are required to be used. The result is [0,qNaN].
"""
def handle(self, context, *args):
return NaN
class Rounded(DecimalException):
"""Number got rounded (not necessarily changed during rounding).
This occurs and signals rounded whenever the result of an operation is
rounded (that is, some zero or non-zero digits were discarded from the
coefficient), or if an overflow or underflow condition occurs. The
result in all cases is unchanged.
The rounded signal may be tested (or trapped) to determine if a given
operation (or sequence of operations) caused a loss of precision.
"""
default = 0
class Subnormal(DecimalException):
"""Exponent < Emin before rounding.
This occurs and signals subnormal whenever the result of a conversion or
operation is subnormal (that is, its adjusted exponent is less than
Emin, before any rounding). The result in all cases is unchanged.
The subnormal signal may be tested (or trapped) to determine if a given
or operation (or sequence of operations) yielded a subnormal result.
"""
pass
class Overflow(Inexact, Rounded):
"""Numerical overflow.
This occurs and signals overflow if the adjusted exponent of a result
(from a conversion or from an operation that is not an attempt to divide
by zero), after rounding, would be greater than the largest value that
can be handled by the implementation (the value Emax).
The result depends on the rounding mode:
For round-half-up and round-half-even (and for round-half-down and
round-up, if implemented), the result of the operation is [sign,inf],
where sign is the sign of the intermediate result. For round-down, the
result is the largest finite number that can be represented in the
current precision, with the sign of the intermediate result. For
round-ceiling, the result is the same as for round-down if the sign of
the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
the result is the same as for round-down if the sign of the intermediate
result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
will also be raised.
"""
def handle(self, context, sign, *args):
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
ROUND_HALF_DOWN, ROUND_UP):
return Infsign[sign]
if sign == 0:
if context.rounding == ROUND_CEILING:
return Infsign[sign]
return Decimal((sign, (9,)*context.prec,
context.Emax-context.prec+1))
if sign == 1:
if context.rounding == ROUND_FLOOR:
return Infsign[sign]
return Decimal( (sign, (9,)*context.prec,
context.Emax-context.prec+1))
class Underflow(Inexact, Rounded, Subnormal):
"""Numerical underflow with result rounded to 0.
This occurs and signals underflow if a result is inexact and the
adjusted exponent of the result would be smaller (more negative) than
the smallest value that can be handled by the implementation (the value
Emin). That is, the result is both inexact and subnormal.
The result after an underflow will be a subnormal number rounded, if
necessary, so that its exponent is not less than Etiny. This may result
in 0 with the sign of the intermediate result and an exponent of Etiny.
In all cases, Inexact, Rounded, and Subnormal will also be raised.
"""
def _filterfunc(obj):
"""Returns true if a subclass of DecimalException"""
try:
return issubclass(obj, DecimalException)
except TypeError:
return False
#Signals holds the exceptions
Signals = filter(_filterfunc, globals().values())
del _filterfunc
##### Context Functions #######################################
#To fix reloading, force it to create a new context
#Old contexts have different exceptions in their dicts, making problems.
if hasattr(threading.currentThread(), '__decimal_context__'):
del threading.currentThread().__decimal_context__
def setcontext(context):
"""Set this thread's context to context."""
if context == DefaultContext:
context = Context()
threading.currentThread().__decimal_context__ = context
def getcontext():
"""Returns this thread's context.
If this thread does not yet have a context, returns
a new context and sets this thread's context.
New contexts are copies of DefaultContext.
"""
try:
return threading.currentThread().__decimal_context__
except AttributeError:
context = Context()
threading.currentThread().__decimal_context__ = context
return context
##### Decimal class ###########################################
class Decimal(object):
"""Floating point class for decimal arithmetic."""
__slots__ = ('_exp','_int','_sign')
def __init__(self, value="0", context=None):
"""Create a decimal point instance.
>>> Decimal('3.14') # string input
Decimal("3.14")
>>> Decimal((0, (3, 1, 4), -2)) # tuple input (sign, digit_tuple, exponent)
Decimal("3.14")
>>> Decimal(314) # int or long
Decimal("314")
>>> Decimal(Decimal(314)) # another decimal instance
Decimal("314")
"""
if context is None:
context = getcontext()
if isinstance(value, (int,long)):
value = str(value)
# String?
# REs insist on real strings, so we can too.
if isinstance(value, basestring):
if _isinfinity(value):
self._exp = 'F'
self._int = (0,)
sign = _isinfinity(value)
if sign == 1:
self._sign = 0
else:
self._sign = 1
return
if _isnan(value):
sig, sign, diag = _isnan(value)
if len(diag) > context.prec: #Diagnostic info too long
self._sign, self._int, self._exp = \
context._raise_error(ConversionSyntax)
return
if sig == 1:
self._exp = 'n' #qNaN
else: #sig == 2
self._exp = 'N' #sNaN
self._sign = sign
self._int = tuple(map(int, diag)) #Diagnostic info
return
try:
self._sign, self._int, self._exp = _string2exact(value)
except ValueError:
self._sign, self._int, self._exp = context._raise_error(ConversionSyntax)
return
# tuple/list conversion (possibly from as_tuple())
if isinstance(value, (list,tuple)):
if len(value) != 3:
raise ValueError, 'Invalid arguments'
if value[0] not in [0,1]:
raise ValueError, 'Invalid sign'
for digit in value[1]:
if not isinstance(digit, (int,long)) or digit < 0:
raise ValueError, "The second value in the tuple must be composed of non negative integer elements."
self._sign = value[0]
self._int = tuple(value[1])
if value[2] in ('F','n','N'):
self._exp = value[2]
else:
self._exp = int(value[2])
return
# Turn an intermediate value back to Decimal()
if isinstance(value, _WorkRep):
if value.sign == 1:
self._sign = 0
else:
self._sign = 1
self._int = tuple(value.int)
self._exp = int(value.exp)
return
if isinstance(value, Decimal):
self._exp = value._exp
self._sign = value._sign
self._int = value._int
return
raise TypeError("Can't convert %r" % value)
def _convert_other(self, other):
"""Convert other to Decimal.
Verifies that it's ok to use in an implicit construction.
"""
if isinstance(other, Decimal):
return other
if isinstance(other, (int, long)):
other = Decimal(other)
return other
raise TypeError, "You can interact Decimal only with int, long or Decimal data types."
def _isnan(self):
"""Returns whether the number is not actually one.
0 if a number
1 if NaN
2 if sNaN
"""
if self._exp == 'n':
return 1
elif self._exp == 'N':
return 2
return 0
def _isinfinity(self):
"""Returns whether the number is infinite
0 if finite or not a number
1 if +INF
-1 if -INF
"""
if self._exp == 'F':
if self._sign:
return -1
return 1
return 0
def _check_nans(self, other = None, context=None):
"""Returns whether the number is not actually one.
if self, other are sNaN, signal
if self, other are NaN return nan
return 0
Done before operations.
"""
if context is None:
context = getcontext()
if self._isnan() == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, self)
if other is not None and other._isnan() == 2:
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if self._isnan():
return self
if other is not None and other._isnan():
return other
return 0
def __nonzero__(self):
"""Is the number non-zero?
0 if self == 0
1 if self != 0
"""
if isinstance(self._exp, str):
return 1
return self._int != (0,)*len(self._int)
def __cmp__(self, other, context=None):
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return 1
if not self and not other:
return 0 #If both 0, sign comparison isn't certain.
#If different signs, neg one is less
if other._sign < self._sign:
return -1
if self._sign < other._sign:
return 1
# INF = INF
if self._isinfinity() and other._isinfinity():
return 0
if self._isinfinity():
return (-1)**self._sign
if other._isinfinity():
return -((-1)**other._sign)
if self.adjusted() == other.adjusted() and \
self._int + (0,)*(self._exp - other._exp) == \
other._int + (0,)*(other._exp - self._exp):
return 0 #equal, except in precision. ([0]*(-x) = [])
elif self.adjusted() > other.adjusted() and self._int[0] != 0:
return (-1)**self._sign
elif self.adjusted < other.adjusted() and other._int[0] != 0:
return -((-1)**self._sign)
context = context.copy()
rounding = context._set_rounding(ROUND_UP) #round away from 0
flags = context._ignore_all_flags()
res = self.__sub__(other, context=context)
context._regard_flags(*flags)
context.rounding = rounding
if not res:
return 0
elif res._sign:
return -1
return 1
def __eq__(self, other):
if not isinstance(other, (Decimal, int, long)):
return False
return self.__cmp__(other) == 0
def __ne__(self, other):
if not isinstance(other, (Decimal, int, long)):
return True
return self.__cmp__(other) != 0
def compare(self, other, context=None):
"""Compares one to another.
-1 => a < b
0 => a = b
1 => a > b
NaN => one is NaN
Like __cmp__, but returns Decimal instances.
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
#compare(NaN, NaN) = NaN
ans = self._check_nans(other, context)
if ans:
return ans
return Decimal(self.__cmp__(other, context))
def __hash__(self):
"""x.__hash__() <==> hash(x)"""
# Decimal integers must hash the same as the ints
# Non-integer decimals are normalized and hashed as strings
# Normalization assures that hast(100E-1) == hash(10)
i = int(self)
if self == Decimal(i):
return hash(i)
assert self.__nonzero__() # '-0' handled by integer case
return hash(str(self.normalize()))
def as_tuple(self):
"""Represents the number as a triple tuple.
To show the internals exactly as they are.
"""
return (self._sign, self._int, self._exp)
def __repr__(self):
"""Represents the number as an instance of Decimal."""
# Invariant: eval(repr(d)) == d
return 'Decimal("%s")' % str(self)
def __str__(self, eng = 0, context=None):
"""Return string representation of the number in scientific notation.
Captures all of the information in the underlying representation.
"""
if self._isnan():
minus = '-'*self._sign
if self._int == (0,):
info = ''
else:
info = ''.join(map(str, self._int))
if self._isnan() == 2:
return minus + 'sNaN' + info
return minus + 'NaN' + info
if self._isinfinity():
minus = '-'*self._sign
return minus + 'Infinity'
if context is None:
context = getcontext()
tmp = map(str, self._int)
numdigits = len(self._int)
leftdigits = self._exp + numdigits
if eng and not self: #self = 0eX wants 0[.0[0]]eY, not [[0]0]0eY
if self._exp < 0 and self._exp >= -6: #short, no need for e/E
s = '-'*self._sign + '0.' + '0'*(abs(self._exp))
return s
#exp is closest mult. of 3 >= self._exp
exp = ((self._exp - 1)// 3 + 1) * 3
if exp != self._exp:
s = '0.'+'0'*(exp - self._exp)
else:
s = '0'
if exp != 0:
if context.capitals:
s += 'E'
else:
s += 'e'
if exp > 0:
s += '+' #0.0e+3, not 0.0e3
s += str(exp)
s = '-'*self._sign + s
return s
if eng:
dotplace = (leftdigits-1)%3+1
adjexp = leftdigits -1 - (leftdigits-1)%3
else:
adjexp = leftdigits-1
dotplace = 1
if self._exp == 0:
pass
elif self._exp < 0 and adjexp >= 0:
tmp.insert(leftdigits, '.')
elif self._exp < 0 and adjexp >= -6:
tmp[0:0] = ['0'] * int(-leftdigits)
tmp.insert(0, '0.')
else:
if numdigits > dotplace:
tmp.insert(dotplace, '.')
elif numdigits < dotplace:
tmp.extend(['0']*(dotplace-numdigits))
if adjexp:
if not context.capitals:
tmp.append('e')
else:
tmp.append('E')
if adjexp > 0:
tmp.append('+')
tmp.append(str(adjexp))
if eng:
while tmp[0:1] == ['0']:
tmp[0:1] = []
if len(tmp) == 0 or tmp[0] == '.' or tmp[0].lower() == 'e':
tmp[0:0] = ['0']
if self._sign:
tmp.insert(0, '-')
return ''.join(tmp)
def to_eng_string(self, context=None):
"""Convert to engineering-type string.
Engineering notation has an exponent which is a multiple of 3, so there
are up to 3 digits left of the decimal place.
Same rules for when in exponential and when as a value as in __str__.
"""
if context is None:
context = getcontext()
return self.__str__(eng=1, context=context)
def __neg__(self, context=None):
"""Returns a copy with the sign switched.
Rounds, if it has reason.
"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if not self:
# -Decimal('0') is Decimal('0'), not Decimal('-0')
sign = 0
elif self._sign:
sign = 0
else:
sign = 1
if context._rounding_decision == ALWAYS_ROUND:
return Decimal((sign, self._int, self._exp))._fix(context=context)
return Decimal( (sign, self._int, self._exp))
def __pos__(self, context=None):
"""Returns a copy, unless it is a sNaN.
Rounds the number (if more then precision digits)
"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
sign = self._sign
if not self:
# + (-0) = 0
sign = 0
if context._rounding_decision == ALWAYS_ROUND:
ans = self._fix(context=context)
else:
ans = Decimal(self)
ans._sign = sign
return ans
def __abs__(self, round=1, context=None):
"""Returns the absolute value of self.
If the second argument is 0, do not round.
"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if not round:
context = context.copy()
context._set_rounding_decision(NEVER_ROUND)
if self._sign:
ans = self.__neg__(context=context)
else:
ans = self.__pos__(context=context)
return ans
def __add__(self, other, context=None):
"""Returns self + other.
-INF + INF (or the reverse) cause InvalidOperation errors.
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return ans
if self._isinfinity():
#If both INF, same sign => same as both, opposite => error.
if self._sign != other._sign and other._isinfinity():
return context._raise_error(InvalidOperation, '-INF + INF')
return Decimal(self)
if other._isinfinity():
return Decimal(other) #Can't both be infinity here
shouldround = context._rounding_decision == ALWAYS_ROUND
exp = min(self._exp, other._exp)
negativezero = 0
if context.rounding == ROUND_FLOOR and self._sign != other._sign:
#If the answer is 0, the sign should be negative, in this case.
negativezero = 1
if not self and not other:
sign = min(self._sign, other._sign)
if negativezero:
sign = 1
return Decimal( (sign, (0,), exp))
if not self:
if exp < other._exp - context.prec-1:
exp = other._exp - context.prec-1
ans = other._rescale(exp, watchexp=0, context=context)
if shouldround:
ans = ans._fix(context=context)
return ans
if not other:
if exp < self._exp - context.prec-1:
exp = self._exp - context.prec-1
ans = self._rescale(exp, watchexp=0, context=context)
if shouldround:
ans = ans._fix(context=context)
return ans
op1 = _WorkRep(self)
op2 = _WorkRep(other)
op1, op2 = _normalize(op1, op2, shouldround, context.prec)
result = _WorkRep()
if op1.sign != op2.sign:
diff = cmp(abs(op1), abs(op2))
# Equal and opposite
if diff == 0:
if exp < context.Etiny():
exp = context.Etiny()
context._raise_error(Clamped)
return Decimal((negativezero, (0,), exp))
if diff < 0:
op1, op2 = op2, op1
#OK, now abs(op1) > abs(op2)
if op1.sign == -1:
result.sign = -1
op1.sign, op2.sign = op2.sign, op1.sign
else:
result.sign = 1
#So we know the sign, and op1 > 0.
elif op1.sign == -1:
result.sign = -1
op1.sign, op2.sign = (1, 1)
else:
result.sign = 1
#Now, op1 > abs(op2) > 0
op1.int.reverse()
op2.int.reverse()
if op2.sign == 1:
result.int = resultint = map(operator.add, op1.int, op2.int)
carry = 0
for i in xrange(len(op1.int)):
tmp = resultint[i] + carry
carry = 0
if tmp > 9:
carry = 1
tmp -= 10
resultint[i] = tmp
if carry:
resultint.append(1)
else:
result.int = resultint = map(operator.sub, op1.int, op2.int)
loan = 0
for i in xrange(len(op1.int)):
tmp = resultint[i] - loan
loan = 0
if tmp < 0:
loan = 1
tmp += 10
resultint[i] = tmp
assert not loan
while resultint[-1] == 0:
resultint.pop()
resultint.reverse()
result.exp = op1.exp
ans = Decimal(result)
if shouldround:
ans = ans._fix(context=context)
return ans
__radd__ = __add__
def __sub__(self, other, context=None):
"""Return self + (-other)"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context=context)
if ans:
return ans
# -Decimal(0) = Decimal(0), which we don't want since
# (-0 - 0 = -0 + (-0) = -0, but -0 + 0 = 0.)
# so we change the sign directly to a copy
tmp = Decimal(other)
tmp._sign = 1-tmp._sign
return self.__add__(tmp, context=context)
def __rsub__(self, other, context=None):
"""Return other + (-self)"""
if context is None:
context = getcontext()
other = self._convert_other(other)
tmp = Decimal(self)
tmp._sign = 1 - tmp._sign
return other.__add__(tmp, context=context)
def _increment(self, round=1, context=None):
"""Special case of add, adding 1eExponent
Since it is common, (rounding, for example) this adds
(sign)*one E self._exp to the number more efficiently than add.
For example:
Decimal('5.624e10')._increment() == Decimal('5.625e10')
"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
L = list(self._int)
L[-1] += 1
spot = len(L)-1
while L[spot] == 10:
L[spot] = 0
if spot == 0:
L[0:0] = [1]
break
L[spot-1] += 1
spot -= 1
ans = Decimal((self._sign, L, self._exp))
if round and context._rounding_decision == ALWAYS_ROUND:
ans = ans._fix(context=context)
return ans
def __mul__(self, other, context=None):
"""Return self * other.
(+-) INF * 0 (or its reverse) raise InvalidOperation.
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return ans
resultsign = operator.xor(self._sign, other._sign)
if self._isinfinity():
if not other:
return context._raise_error(InvalidOperation, '(+-)INF * 0')
return Infsign[resultsign]
if other._isinfinity():
if not self:
return context._raise_error(InvalidOperation, '0 * (+-)INF')
return Infsign[resultsign]
resultexp = self._exp + other._exp
shouldround = context._rounding_decision == ALWAYS_ROUND
# Special case for multiplying by zero
if not self or not other:
ans = Decimal((resultsign, (0,), resultexp))
if shouldround:
#Fixing in case the exponent is out of bounds
ans = ans._fix(context=context)
return ans
# Special case for multiplying by power of 10
if self._int == (1,):
ans = Decimal((resultsign, other._int, resultexp))
if shouldround:
ans = ans._fix(context=context)
return ans
if other._int == (1,):
ans = Decimal((resultsign, self._int, resultexp))
if shouldround:
ans = ans._fix(context=context)
return ans
op1 = list(self._int)
op2 = list(other._int)
op1.reverse()
op2.reverse()
# Minimize Decimal additions
if len(op2) > len(op1):
op1, op2 = op2, op1
_divmod = divmod
accumulator = [0]*(len(self._int) + len(other._int))
for i in xrange(len(op2)):
if op2[i] == 0:
continue
mult = op2[i]
carry = 0
for j in xrange(len(op1)):
carry, accumulator[i+j] = _divmod( mult * op1[j] + carry
+ accumulator[i+j], 10)
if carry:
accumulator[i + j + 1] += carry
while not accumulator[-1]:
accumulator.pop()
accumulator.reverse()
ans = Decimal( (resultsign, accumulator, resultexp))
if shouldround:
ans = ans._fix(context=context)
return ans
__rmul__ = __mul__
def __div__(self, other, context=None):
"""Return self / other."""
return self._divide(other, context=context)
__truediv__ = __div__
def _divide(self, other, divmod = 0, context=None):
"""Return a / b, to context.prec precision.
divmod:
0 => true division
1 => (a //b, a%b)
2 => a //b
3 => a%b
Actually, if divmod is 2 or 3 a tuple is returned, but errors for
computing the other value are not raised.
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
if divmod:
return (ans, ans)
else:
return ans
sign = operator.xor(self._sign, other._sign)
if not self and not other:
if divmod:
return context._raise_error(DivisionUndefined, '0 / 0', 1)
return context._raise_error(DivisionUndefined, '0 / 0')
if self._isinfinity() and other._isinfinity():
if not divmod:
return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
else:
return (context._raise_error(InvalidOperation,
'(+-)INF // (+-)INF'),
context._raise_error(InvalidOperation,
'(+-)INF % (+-)INF'))
if not divmod:
if other._isinfinity():
context._raise_error(Clamped, 'Division by infinity')
return Decimal((sign, (0,), context.Etiny()))
if self._isinfinity():
return Infsign[sign]
#These two have different precision.
if not self:
exp = self._exp - other._exp
if exp < context.Etiny():
exp = context.Etiny()
context._raise_error(Clamped, '0e-x / y')
if exp > context.Emax:
exp = context.Emax
context._raise_error(Clamped, '0e+x / y')
return Decimal( (sign, (0,), exp) )
if not other:
return context._raise_error(DivisionByZero, 'x / 0', sign)
if divmod:
if other._isinfinity():
return (Decimal((sign, (0,), 0)), Decimal(self))
if self._isinfinity():
if divmod == 1:
return (Infsign[sign],
context._raise_error(InvalidOperation, 'INF % x'))
elif divmod == 2:
return (Infsign[sign], NaN)
elif divmod == 3:
return (Infsign[sign],
context._raise_error(InvalidOperation, 'INF % x'))
if not self:
otherside = Decimal(self)
otherside._exp = min(self._exp, other._exp)
return (Decimal((sign, (0,), 0)), otherside)
if not other:
return context._raise_error(DivisionByZero, 'divmod(x,0)',
sign, 1)
#OK, so neither = 0, INF
shouldround = context._rounding_decision == ALWAYS_ROUND
#If we're dividing into ints, and self < other, stop.
#self.__abs__(0) does not round.
if divmod and (self.__abs__(0, context) < other.__abs__(0, context)):
if divmod == 1 or divmod == 3:
exp = min(self._exp, other._exp)
ans2 = self._rescale(exp, context=context, watchexp=0)
if shouldround:
ans2 = ans2._fix(context=context)
return (Decimal( (sign, (0,), 0) ),
ans2)
elif divmod == 2:
#Don't round the mod part, if we don't need it.
return (Decimal( (sign, (0,), 0) ), Decimal(self))
if sign:
sign = -1
else:
sign = 1
adjust = 0
op1 = _WorkRep(self)
op2 = _WorkRep(other)
op1, op2, adjust = _adjust_coefficients(op1, op2)
res = _WorkRep( (sign, [0], (op1.exp - op2.exp)) )
if divmod and res.exp > context.prec + 1:
return context._raise_error(DivisionImpossible)
ans = None
while 1:
while( (len(op2.int) < len(op1.int) and op1.int[0]) or
(len(op2.int) == len(op1.int) and op2.int <= op1.int)):
#Meaning, while op2.int < op1.int, when normalized.
res._increment()
op1.subtract(op2.int)
if res.exp == 0 and divmod:
if len(res.int) > context.prec and shouldround:
return context._raise_error(DivisionImpossible)
otherside = Decimal(op1)
frozen = context._ignore_all_flags()
exp = min(self._exp, other._exp)
otherside = otherside._rescale(exp, context=context,
watchexp=0)
context._regard_flags(*frozen)
if shouldround:
otherside = otherside._fix(context=context)
return (Decimal(res), otherside)
if op1.int == [0]*len(op1.int) and adjust >= 0 and not divmod:
break
if (len(res.int) > context.prec) and shouldround:
if divmod:
return context._raise_error(DivisionImpossible)
shouldround=1
# Really, the answer is a bit higher, so adding a one to
# the end will make sure the rounding is right.
if op1.int != [0]*len(op1.int):
res.int.append(1)
res.exp -= 1
break
res.exp -= 1
adjust += 1
res.int.append(0)
op1.int.append(0)
op1.exp -= 1
if res.exp == 0 and divmod and (len(op2.int) > len(op1.int) or
(len(op2.int) == len(op1.int) and
op2.int > op1.int)):
#Solves an error in precision. Same as a previous block.
if len(res.int) > context.prec and shouldround:
return context._raise_error(DivisionImpossible)
otherside = Decimal(op1)
frozen = context._ignore_all_flags()
exp = min(self._exp, other._exp)
otherside = otherside._rescale(exp, context=context)
context._regard_flags(*frozen)
return (Decimal(res), otherside)
ans = Decimal(res)
if shouldround:
ans = ans._fix(context=context)
return ans
def __rdiv__(self, other, context=None):
"""Swaps self/other and returns __div__."""
other = self._convert_other(other)
return other.__div__(self, context=context)
__rtruediv__ = __rdiv__
def __divmod__(self, other, context=None):
"""
(self // other, self % other)
"""
return self._divide(other, 1, context)
def __rdivmod__(self, other, context=None):
"""Swaps self/other and returns __divmod__."""
other = self._convert_other(other)
return other.__divmod__(self, context=context)
def __mod__(self, other, context=None):
"""
self % other
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return ans
if self and not other:
return context._raise_error(InvalidOperation, 'x % 0')
return self._divide(other, 3, context)[1]
def __rmod__(self, other, context=None):
"""Swaps self/other and returns __mod__."""
other = self._convert_other(other)
return other.__mod__(self, context=context)
def remainder_near(self, other, context=None):
"""
Remainder nearest to 0- abs(remainder-near) <= other/2
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return ans
if self and not other:
return context._raise_error(InvalidOperation, 'x % 0')
# If DivisionImpossible causes an error, do not leave Rounded/Inexact
# ignored in the calling function.
context = context.copy()
flags = context._ignore_flags(Rounded, Inexact)
#keep DivisionImpossible flags
(side, r) = self.__divmod__(other, context=context)
if r._isnan():
context._regard_flags(*flags)
return r
context = context.copy()
rounding = context._set_rounding_decision(NEVER_ROUND)
if other._sign:
comparison = other.__div__(Decimal(-2), context=context)
else:
comparison = other.__div__(Decimal(2), context=context)
context._set_rounding_decision(rounding)
context._regard_flags(*flags)
s1, s2 = r._sign, comparison._sign
r._sign, comparison._sign = 0, 0
if r < comparison:
r._sign, comparison._sign = s1, s2
#Get flags now
self.__divmod__(other, context=context)
return r._fix(context=context)
r._sign, comparison._sign = s1, s2
rounding = context._set_rounding_decision(NEVER_ROUND)
(side, r) = self.__divmod__(other, context=context)
context._set_rounding_decision(rounding)
if r._isnan():
return r
decrease = not side._iseven()
rounding = context._set_rounding_decision(NEVER_ROUND)
side = side.__abs__(context=context)
context._set_rounding_decision(rounding)
s1, s2 = r._sign, comparison._sign
r._sign, comparison._sign = 0, 0
if r > comparison or decrease and r == comparison:
r._sign, comparison._sign = s1, s2
context.prec += 1
if len(side.__add__(Decimal(1), context=context)._int) >= context.prec:
context.prec -= 1
return context._raise_error(DivisionImpossible)[1]
context.prec -= 1
if self._sign == other._sign:
r = r.__sub__(other, context=context)
else:
r = r.__add__(other, context=context)
else:
r._sign, comparison._sign = s1, s2
return r._fix(context=context)
def __floordiv__(self, other, context=None):
"""self // other"""
return self._divide(other, 2, context)[0]
def __rfloordiv__(self, other, context=None):
"""Swaps self/other and returns __floordiv__."""
other = self._convert_other(other)
return other.__floordiv__(self, context=context)
def __float__(self):
"""Float representation."""
return float(str(self))
def __int__(self):
"""Converts self to a int, truncating if necessary."""
if self._isnan():
context = getcontext()
return context._raise_error(InvalidContext)
elif self._isinfinity():
raise OverflowError, "Cannot convert infinity to long"
if not self:
return 0
sign = '-'*self._sign
if self._exp >= 0:
s = sign + ''.join(map(str, self._int)) + '0'*self._exp
return int(s)
s = sign + ''.join(map(str, self._int))[:self._exp]
return int(s)
tmp = list(self._int)
tmp.reverse()
val = 0
while tmp:
val *= 10
val += tmp.pop()
return int(((-1) ** self._sign) * val * 10.**int(self._exp))
def __long__(self):
"""Converts to a long.
Equivalent to long(int(self))
"""
return long(self.__int__())
def _fix(self, prec=None, rounding=None, folddown=None, context=None):
"""Round if it is necessary to keep self within prec precision.
Rounds and fixes the exponent. Does not raise on a sNaN.
Arguments:
self - Decimal instance
prec - precision to which to round. By default, the context decides.
rounding - Rounding method. By default, the context decides.
folddown - Fold down high elements, by default context._clamp
context - context used.
"""
if self._isinfinity() or self._isnan():
return self
if context is None:
context = getcontext()
if prec is None:
prec = context.prec
ans = Decimal(self)
ans = ans._fixexponents(prec, rounding, folddown=folddown,
context=context)
if len(ans._int) > prec:
ans = ans._round(prec, rounding, context=context)
ans = ans._fixexponents(prec, rounding, folddown=folddown,
context=context)
return ans
def _fixexponents(self, prec=None, rounding=None, folddown=None,
context=None):
"""Fix the exponents and return a copy with the exponent in bounds."""
if self._isinfinity():
return self
if context is None:
context = getcontext()
if prec is None:
prec = context.prec
if folddown is None:
folddown = context._clamp
Emin, Emax = context.Emin, context.Emax
Etop = context.Etop()
ans = Decimal(self)
if ans.adjusted() < Emin:
Etiny = context.Etiny()
if ans._exp < Etiny:
if not ans:
ans._exp = Etiny
context._raise_error(Clamped)
return ans
ans = ans._rescale(Etiny, context=context)
#It isn't zero, and exp < Emin => subnormal
context._raise_error(Subnormal)
if context.flags[Inexact]:
context._raise_error(Underflow)
else:
if ans:
#Only raise subnormal if non-zero.
context._raise_error(Subnormal)
elif folddown and ans._exp > Etop:
context._raise_error(Clamped)
ans = ans._rescale(Etop, context=context)
elif ans.adjusted() > Emax:
if not ans:
ans._exp = Emax
context._raise_error(Clamped)
return ans
context._raise_error(Inexact)
context._raise_error(Rounded)
return context._raise_error(Overflow, 'above Emax', ans._sign)
return ans
def _round(self, prec=None, rounding=None, context=None):
"""Returns a rounded version of self.
You can specify the precision or rounding method. Otherwise, the
context determines it.
"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if self._isinfinity():
return Decimal(self)
if rounding is None:
rounding = context.rounding
if prec is None:
prec = context.prec
if not self:
if prec <= 0:
dig = (0,)
exp = len(self._int) - prec + self._exp
else:
dig = (0,) * prec
exp = len(self._int) + self._exp - prec
ans = Decimal((self._sign, dig, exp))
context._raise_error(Rounded)
return ans
if prec == 0:
temp = Decimal(self)
temp._int = (0,)+temp._int
prec = 1
elif prec < 0:
exp = self._exp + len(self._int) - prec - 1
temp = Decimal( (self._sign, (0, 1), exp))
prec = 1
else:
temp = Decimal(self)
numdigits = len(temp._int)
if prec == numdigits:
return temp
# See if we need to extend precision
expdiff = prec - numdigits
if expdiff > 0:
tmp = list(temp._int)
tmp.extend([0] * expdiff)
ans = Decimal( (temp._sign, tmp, temp._exp - expdiff))
return ans
#OK, but maybe all the lost digits are 0.
lostdigits = self._int[expdiff:]
if lostdigits == (0,) * len(lostdigits):
ans = Decimal( (temp._sign, temp._int[:prec], temp._exp - expdiff))
#Rounded, but not Inexact
context._raise_error(Rounded)
return ans
# Okay, let's round and lose data
this_function = getattr(temp, self._pick_rounding_function[rounding])
#Now we've got the rounding function
if prec != context.prec:
context = context.copy()
context.prec = prec
ans = this_function(prec, expdiff, context)
context._raise_error(Rounded)
context._raise_error(Inexact, 'Changed in rounding')
return ans
_pick_rounding_function = {}
def _round_down(self, prec, expdiff, context):
"""Also known as round-towards-0, truncate."""
return Decimal( (self._sign, self._int[:prec], self._exp - expdiff) )
def _round_half_up(self, prec, expdiff, context, tmp = None):
"""Rounds 5 up (away from 0)"""
if tmp is None:
tmp = Decimal( (self._sign,self._int[:prec], self._exp - expdiff))
if self._int[prec] >= 5:
tmp = tmp._increment(round=0, context=context)
if len(tmp._int) > prec:
return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1))
return tmp
def _round_half_even(self, prec, expdiff, context):
"""Round 5 to even, rest to nearest."""
tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff))
half = (self._int[prec] == 5)
if half:
for digit in self._int[prec+1:]:
if digit != 0:
half = 0
break
if half:
if self._int[prec-1] %2 == 0:
return tmp
return self._round_half_up(prec, expdiff, context, tmp)
def _round_half_down(self, prec, expdiff, context):
"""Round 5 down"""
tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff))
half = (self._int[prec] == 5)
if half:
for digit in self._int[prec+1:]:
if digit != 0:
half = 0
break
if half:
return tmp
return self._round_half_up(prec, expdiff, context, tmp)
def _round_up(self, prec, expdiff, context):
"""Rounds away from 0."""
tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff) )
for digit in self._int[prec:]:
if digit != 0:
tmp = tmp._increment(round=1, context=context)
if len(tmp._int) > prec:
return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1))
else:
return tmp
return tmp
def _round_ceiling(self, prec, expdiff, context):
"""Rounds up (not away from 0 if negative.)"""
if self._sign:
return self._round_down(prec, expdiff, context)
else:
return self._round_up(prec, expdiff, context)
def _round_floor(self, prec, expdiff, context):
"""Rounds down (not towards 0 if negative)"""
if not self._sign:
return self._round_down(prec, expdiff, context)
else:
return self._round_up(prec, expdiff, context)
def __pow__(self, n, modulo = None, context=None):
"""Return self ** n (mod modulo)
If modulo is None (default), don't take it mod modulo.
"""
if context is None:
context = getcontext()
n = self._convert_other(n)
#Because the spot << doesn't work with really big exponents
if n._isinfinity() or n.adjusted() > 8:
return context._raise_error(InvalidOperation, 'x ** INF')
ans = self._check_nans(n, context)
if ans:
return ans
if not n._isinfinity() and not n._isinteger():
return context._raise_error(InvalidOperation, 'x ** (non-integer)')
if not self and not n:
return context._raise_error(InvalidOperation, '0 ** 0')
if not n:
return Decimal(1)
if self == Decimal(1):
return Decimal(1)
sign = self._sign and not n._iseven()
n = int(n)
if self._isinfinity():
if modulo:
return context._raise_error(InvalidOperation, 'INF % x')
if n > 0:
return Infsign[sign]
return Decimal( (sign, (0,), 0) )
#with ludicrously large exponent, just raise an overflow and return inf.
if not modulo and n > 0 and (self._exp + len(self._int) - 1) * n > context.Emax \
and self:
tmp = Decimal('inf')
tmp._sign = sign
context._raise_error(Rounded)
context._raise_error(Inexact)
context._raise_error(Overflow, 'Big power', sign)
return tmp
elength = len(str(abs(n)))
firstprec = context.prec
if not modulo and firstprec + elength + 1 > DEFAULT_MAX_EXPONENT:
return context._raise_error(Overflow, 'Too much precision.', sign)
mul = Decimal(self)
val = Decimal(1)
context = context.copy()
context.prec = firstprec + elength + 1
rounding = context.rounding
if n < 0:
#n is a long now, not Decimal instance
n = -n
mul = Decimal(1).__div__(mul, context=context)
shouldround = context._rounding_decision == ALWAYS_ROUND
spot = 1
while spot <= n:
spot <<= 1
spot >>= 1
#Spot is the highest power of 2 less than n
while spot:
val = val.__mul__(val, context=context)
if val._isinfinity():
val = Infsign[sign]
break
if spot & n:
val = val.__mul__(mul, context=context)
if modulo is not None:
val = val.__mod__(modulo, context=context)
spot >>= 1
context.prec = firstprec
if shouldround:
return val._fix(context=context)
return val
def __rpow__(self, other, context=None):
"""Swaps self/other and returns __pow__."""
other = self._convert_other(other)
return other.__pow__(self, context=context)
def normalize(self, context=None):
"""Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
dup = self._fix(context=context)
if dup._isinfinity():
return dup
if not dup:
return Decimal( (dup._sign, (0,), 0) )
end = len(dup._int)
exp = dup._exp
while dup._int[end-1] == 0:
exp += 1
end -= 1
return Decimal( (dup._sign, dup._int[:end], exp) )
def quantize(self, exp, rounding = None, context=None, watchexp = 1):
"""Quantize self so its exponent is the same as that of exp.
Similar to self._rescale(exp._exp) but with error checking.
"""
if context is None:
context = getcontext()
ans = self._check_nans(exp, context)
if ans:
return ans
if exp._isinfinity() or self._isinfinity():
if exp._isinfinity() and self._isinfinity():
return self #if both are inf, it is OK
return context._raise_error(InvalidOperation,
'quantize with one INF')
return self._rescale(exp._exp, rounding, context, watchexp)
def same_quantum(self, other):
"""Test whether self and other have the same exponent.
same as self._exp == other._exp, except NaN == sNaN
"""
if self._isnan() or other._isnan():
return self._isnan() and other._isnan() and True
if self._isinfinity() or other._isinfinity():
return self._isinfinity() and other._isinfinity() and True
return self._exp == other._exp
def _rescale(self, exp, rounding = None, context=None, watchexp = 1):
"""Rescales so that the exponent is exp.
exp = exp to scale to (an integer)
rounding = rounding version
watchexp: if set (default) an error is returned if exp is greater
than Emax or less than Etiny.
"""
if context is None:
context = getcontext()
if self._isinfinity():
return context._raise_error(InvalidOperation, 'rescale with an INF')
ans = self._check_nans(context=context)
if ans:
return ans
out = 0
if watchexp and (context.Emax < exp or context.Etiny() > exp):
return context._raise_error(InvalidOperation, 'rescale(a, INF)')
if not self:
ans = Decimal(self)
ans._int = (0,)
ans._exp = exp
return ans
diff = self._exp - exp
digits = len(self._int)+diff
if watchexp and digits > context.prec:
return context._raise_error(InvalidOperation, 'Rescale > prec')
tmp = Decimal(self)
tmp._int = (0,)+tmp._int
digits += 1
prevexact = context.flags[Inexact]
if digits < 0:
tmp._exp = -digits + tmp._exp
tmp._int = (0,1)
digits = 1
tmp = tmp._round(digits, rounding, context=context)
if tmp._int[0] == 0 and len(tmp._int) > 1:
tmp._int = tmp._int[1:]
tmp._exp = exp
if tmp and tmp.adjusted() < context.Emin:
context._raise_error(Subnormal)
elif tmp and tmp.adjusted() > context.Emax:
return context._raise_error(InvalidOperation, 'rescale(a, INF)')
return tmp
def to_integral(self, rounding = None, context=None):
"""Rounds to the nearest integer, without raising inexact, rounded."""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if self._exp >= 0:
return self
flags = context._ignore_flags(Rounded, Inexact)
ans = self._rescale(0, rounding, context=context)
context._regard_flags(flags)
return ans
def sqrt(self, context=None):
"""Return the square root of self.
Uses a converging algorithm (Xn+1 = 0.5*(Xn + self / Xn))
Should quadratically approach the right answer.
"""
if context is None:
context = getcontext()
ans = self._check_nans(context=context)
if ans:
return ans
if not self:
#exponent = self._exp / 2, using round_down.
#if self._exp < 0:
# exp = (self._exp+1) // 2
#else:
exp = (self._exp) // 2
if self._sign == 1:
#sqrt(-0) = -0
return Decimal( (1, (0,), exp))
else:
return Decimal( (0, (0,), exp))
if self._sign == 1:
return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
if self._isinfinity():
return Decimal(self)
tmp = Decimal(self)
expadd = tmp._exp / 2
if tmp._exp % 2 == 1:
tmp._int += (0,)
tmp._exp = 0
else:
tmp._exp = 0
context = context.copy()
flags = context._ignore_all_flags()
firstprec = context.prec
context.prec = 3
if tmp.adjusted() % 2 == 0:
ans = Decimal( (0, (8,1,9), tmp.adjusted() - 2) )
ans = ans.__add__(tmp.__mul__(Decimal((0, (2,5,9), -2)),
context=context), context=context)
ans._exp -= 1 + tmp.adjusted()/2
else:
ans = Decimal( (0, (2,5,9), tmp._exp + len(tmp._int)- 3) )
ans = ans.__add__(tmp.__mul__(Decimal((0, (8,1,9), -3)),
context=context), context=context)
ans._exp -= 1 + tmp.adjusted()/2
#ans is now a linear approximation.
Emax, Emin = context.Emax, context.Emin
context.Emax, context.Emin = DEFAULT_MAX_EXPONENT, DEFAULT_MIN_EXPONENT
half = Decimal('0.5')
count = 1
maxp = firstprec + 2
rounding = context._set_rounding(ROUND_HALF_EVEN)
while 1:
context.prec = min(2*context.prec - 2, maxp)
ans = half.__mul__(ans.__add__(tmp.__div__(ans, context=context),
context=context), context=context)
if context.prec == maxp:
break
#round to the answer's precision-- the only error can be 1 ulp.
context.prec = firstprec
prevexp = ans.adjusted()
ans = ans._round(context=context)
#Now, check if the other last digits are better.
context.prec = firstprec + 1
# In case we rounded up another digit and we should actually go lower.
if prevexp != ans.adjusted():
ans._int += (0,)
ans._exp -= 1
lower = ans.__sub__(Decimal((0, (5,), ans._exp-1)), context=context)
context._set_rounding(ROUND_UP)
if lower.__mul__(lower, context=context) > (tmp):
ans = ans.__sub__(Decimal((0, (1,), ans._exp)), context=context)
else:
upper = ans.__add__(Decimal((0, (5,), ans._exp-1)),context=context)
context._set_rounding(ROUND_DOWN)
if upper.__mul__(upper, context=context) < tmp:
ans = ans.__add__(Decimal((0, (1,), ans._exp)),context=context)
ans._exp += expadd
context.prec = firstprec
context.rounding = rounding
ans = ans._fix(context=context)
rounding = context._set_rounding_decision(NEVER_ROUND)
if not ans.__mul__(ans, context=context) == self:
# Only rounded/inexact if here.
context._regard_flags(flags)
context._raise_error(Rounded)
context._raise_error(Inexact)
else:
#Exact answer, so let's set the exponent right.
#if self._exp < 0:
# exp = (self._exp +1)// 2
#else:
exp = self._exp // 2
context.prec += ans._exp - exp
ans = ans._rescale(exp, context=context)
context.prec = firstprec
context._regard_flags(flags)
context.Emax, context.Emin = Emax, Emin
return ans._fix(context=context)
def max(self, other, context=None):
"""Returns the larger value.
like max(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return ans
ans = self
if self < other:
ans = other
shouldround = context._rounding_decision == ALWAYS_ROUND
if shouldround:
ans = ans._fix(context=context)
return ans
def min(self, other, context=None):
"""Returns the smaller value.
like min(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
if context is None:
context = getcontext()
other = self._convert_other(other)
ans = self._check_nans(other, context)
if ans:
return ans
ans = self
if self > other:
ans = other
if context._rounding_decision == ALWAYS_ROUND:
ans = ans._fix(context=context)
return ans
def _isinteger(self):
"""Returns whether self is an integer"""
if self._exp >= 0:
return True
rest = self._int[self._exp:]
return rest == (0,)*len(rest)
def _iseven(self):
"""Returns 1 if self is even. Assumes self is an integer."""
if self._exp > 0:
return 1
return self._int[-1+self._exp] % 2 == 0
def adjusted(self):
"""Return the adjusted exponent of self"""
try:
return self._exp + len(self._int) - 1
#If NaN or Infinity, self._exp is string
except TypeError:
return 0
#properties to immutability-near feature
def _get_sign(self):
return self._sign
def _get_int(self):
return self._int
def _get_exp(self):
return self._exp
sign = property(_get_sign)
int = property(_get_int)
exp = property(_get_exp)
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Decimal:
return self # I'm immutable; therefore I am my own clone
return self.__class__(str(self))
def __deepcopy__(self, memo):
if type(self) == Decimal:
return self # My components are also immutable
return self.__class__(str(self))
##### Context class ###########################################
# get rounding method function:
rounding_functions = [name for name in Decimal.__dict__.keys() if name.startswith('_round_')]
for name in rounding_functions:
#name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
globalname = name[1:].upper()
val = globals()[globalname]
Decimal._pick_rounding_function[val] = name
del name, val, globalname, rounding_functions
class Context(object):
"""Contains the context for a Decimal instance.
Contains:
prec - precision (for use in rounding, division, square roots..)
rounding - rounding type. (how you round)
_rounding_decision - ALWAYS_ROUND, NEVER_ROUND -- do you round?
trap_enablers - If trap_enablers[exception] = 1, then the exception is
raised when it is caused. Otherwise, a value is
substituted in.
flags - When an exception is caused, flags[exception] is incremented.
(Whether or not the trap_enabler is set)
Should be reset by user of Decimal instance.
Emin - Minimum exponent
Emax - Maximum exponent
capitals - If 1, 1*10^1 is printed as 1E+1.
If 0, printed as 1e1
_clamp - If 1, change exponents if too high (Default 0)
"""
DefaultLock = threading.Lock()
def __init__(self, prec=None, rounding=None,
trap_enablers=None, flags=None,
_rounding_decision=None,
Emin=None, Emax=None,
capitals=None, _clamp=0,
_ignored_flags=[]):
if flags is None:
flags = dict.fromkeys(Signals, 0)
self.DefaultLock.acquire()
for name, val in locals().items():
if val is None:
setattr(self, name, copy.copy(getattr(DefaultContext, name)))
else:
setattr(self, name, val)
self.DefaultLock.release()
del self.self
def __repr__(self):
"""Show the current context in readable form, not in a form for eval()."""
s = []
s.append('Context(prec=%(prec)d, rounding=%(rounding)s, Emin=%(Emin)d, Emax=%(Emax)d' % vars(self))
s.append('setflags=%r' % [f.__name__ for f, v in self.flags.items() if v])
s.append('settraps=%r' % [t.__name__ for t, v in self.trap_enablers.items() if v])
return ', '.join(s) + ')'
def clear_flags(self):
"""Reset all flags to zero"""
for flag in self.flags:
self.flags[flag] = 0
def copy(self):
"""Returns a copy from self."""
nc = Context(self.prec, self.rounding, self.trap_enablers, self.flags,
self._rounding_decision, self.Emin, self.Emax,
self.capitals, self._clamp, self._ignored_flags)
return nc
__copy__ = copy
def _raise_error(self, error, explanation = None, *args):
"""Handles an error
If the flag is in _ignored_flags, returns the default response.
Otherwise, it increments the flag, then, if the corresponding
trap_enabler is set, it reaises the exception. Otherwise, it returns
the default value after incrementing the flag.
"""
if error in self._ignored_flags:
#Don't touch the flag
return error().handle(self, *args)
self.flags[error] += 1
if not self.trap_enablers[error]:
#The errors define how to handle themselves.
return error().handle(self, *args)
# Errors should only be risked on copies of the context
#self._ignored_flags = []
raise error, explanation
def _ignore_all_flags(self):
"""Ignore all flags, if they are raised"""
return self._ignore_flags(*Signals)
def _ignore_flags(self, *flags):
"""Ignore the flags, if they are raised"""
# Do not mutate-- This way, copies of a context leave the original
# alone.
self._ignored_flags = (self._ignored_flags + list(flags))
return list(flags)
def _regard_flags(self, *flags):
"""Stop ignoring the flags, if they are raised"""
if flags and isinstance(flags[0], (tuple,list)):
flags = flags[0]
for flag in flags:
self._ignored_flags.remove(flag)
def Etiny(self):
"""Returns Etiny (= Emin - prec + 1)"""
return int(self.Emin - self.prec + 1)
def Etop(self):
"""Returns maximum exponent (= Emax - prec + 1)"""
return int(self.Emax - self.prec + 1)
def _set_rounding_decision(self, type):
"""Sets the rounding decision.
Sets the rounding decision, and returns the current (previous)
rounding decision. Often used like:
context = context.copy()
# That so you don't change the calling context
# if an error occurs in the middle (say DivisionImpossible is raised).
rounding = context._set_rounding_decision(NEVER_ROUND)
instance = instance / Decimal(2)
context._set_rounding_decision(rounding)
This will make it not round for that operation.
"""
rounding = self._rounding_decision
self._rounding_decision = type
return rounding
def _set_rounding(self, type):
"""Sets the rounding type.
Sets the rounding type, and returns the current (previous)
rounding type. Often used like:
context = context.copy()
# so you don't change the calling context
# if an error occurs in the middle.
rounding = context._set_rounding(ROUND_UP)
val = self.__sub__(other, context=context)
context._set_rounding(rounding)
This will make it round up for that operation.
"""
rounding = self.rounding
self.rounding= type
return rounding
def create_decimal(self, num):
"""Creates a new Decimal instance but using self as context."""
d = Decimal(num, context=self)
return d._fix(context=self)
#Methods
def abs(self, a):
"""Returns the absolute value of the operand.
If the operand is negative, the result is the same as using the minus
operation on the operand. Otherwise, the result is the same as using
the plus operation on the operand.
>>> ExtendedContext.abs(Decimal('2.1'))
Decimal("2.1")
>>> ExtendedContext.abs(Decimal('-100'))
Decimal("100")
>>> ExtendedContext.abs(Decimal('101.5'))
Decimal("101.5")
>>> ExtendedContext.abs(Decimal('-101.5'))
Decimal("101.5")
"""
return a.__abs__(context=self)
def add(self, a, b):
"""Return the sum of the two operands.
>>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
Decimal("19.00")
>>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
Decimal("1.02E+4")
"""
return a.__add__(b, context=self)
def _apply(self, a):
return str(a._fix(context=self))
def compare(self, a, b):
"""Compares values numerically.
If the signs of the operands differ, a value representing each operand
('-1' if the operand is less than zero, '0' if the operand is zero or
negative zero, or '1' if the operand is greater than zero) is used in
place of that operand for the comparison instead of the actual
operand.
The comparison is then effected by subtracting the second operand from
the first and then returning a value according to the result of the
subtraction: '-1' if the result is less than zero, '0' if the result is
zero or negative zero, or '1' if the result is greater than zero.
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
Decimal("-1")
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
Decimal("0")
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
Decimal("0")
>>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
Decimal("1")
>>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
Decimal("1")
>>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
Decimal("-1")
"""
return a.compare(b, context=self)
def divide(self, a, b):
"""Decimal division in a specified context.
>>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
Decimal("0.333333333")
>>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
Decimal("0.666666667")
>>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
Decimal("2.5")
>>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
Decimal("0.1")
>>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
Decimal("1")
>>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
Decimal("4.00")
>>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
Decimal("1.20")
>>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
Decimal("10")
>>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
Decimal("1000")
>>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
Decimal("1.20E+6")
"""
return a.__div__(b, context=self)
def divide_int(self, a, b):
"""Divides two numbers and returns the integer part of the result.
>>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
Decimal("0")
>>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
Decimal("3")
>>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
Decimal("3")
"""
return a.__floordiv__(b, context=self)
def divmod(self, a, b):
return a.__divmod__(b, context=self)
def max(self, a,b):
"""max compares two values numerically and returns the maximum.
If either operand is a NaN then the general rules apply.
Otherwise, the operands are compared as as though by the compare
operation. If they are numerically equal then the left-hand operand
is chosen as the result. Otherwise the maximum (closer to positive
infinity) of the two operands is chosen as the result.
>>> ExtendedContext.max(Decimal('3'), Decimal('2'))
Decimal("3")
>>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
Decimal("3")
>>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
Decimal("1.0")
"""
return a.max(b, context=self)
def min(self, a,b):
"""min compares two values numerically and returns the minimum.
If either operand is a NaN then the general rules apply.
Otherwise, the operands are compared as as though by the compare
operation. If they are numerically equal then the left-hand operand
is chosen as the result. Otherwise the minimum (closer to negative
infinity) of the two operands is chosen as the result.
>>> ExtendedContext.min(Decimal('3'), Decimal('2'))
Decimal("2")
>>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
Decimal("-10")
>>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
Decimal("1.0")
"""
return a.min(b, context=self)
def minus(self, a):
"""Minus corresponds to unary prefix minus in Python.
The operation is evaluated using the same rules as subtract; the
operation minus(a) is calculated as subtract('0', a) where the '0'
has the same exponent as the operand.
>>> ExtendedContext.minus(Decimal('1.3'))
Decimal("-1.3")
>>> ExtendedContext.minus(Decimal('-1.3'))
Decimal("1.3")
"""
return a.__neg__(context=self)
def multiply(self, a, b):
"""multiply multiplies two operands.
If either operand is a special value then the general rules apply.
Otherwise, the operands are multiplied together ('long multiplication'),
resulting in a number which may be as long as the sum of the lengths
of the two operands.
>>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
Decimal("3.60")
>>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
Decimal("21")
>>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
Decimal("0.72")
>>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
Decimal("-0.0")
>>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
Decimal("4.28135971E+11")
"""
return a.__mul__(b, context=self)
def normalize(self, a):
"""normalize reduces an operand to its simplest form.
Essentially a plus operation with all trailing zeros removed from the
result.
>>> ExtendedContext.normalize(Decimal('2.1'))
Decimal("2.1")
>>> ExtendedContext.normalize(Decimal('-2.0'))
Decimal("-2")
>>> ExtendedContext.normalize(Decimal('1.200'))
Decimal("1.2")
>>> ExtendedContext.normalize(Decimal('-120'))
Decimal("-1.2E+2")
>>> ExtendedContext.normalize(Decimal('120.00'))
Decimal("1.2E+2")
>>> ExtendedContext.normalize(Decimal('0.00'))
Decimal("0")
"""
return a.normalize(context=self)
def plus(self, a):
"""Plus corresponds to unary prefix plus in Python.
The operation is evaluated using the same rules as add; the
operation plus(a) is calculated as add('0', a) where the '0'
has the same exponent as the operand.
>>> ExtendedContext.plus(Decimal('1.3'))
Decimal("1.3")
>>> ExtendedContext.plus(Decimal('-1.3'))
Decimal("-1.3")
"""
return a.__pos__(context=self)
def power(self, a, b, modulo=None):
"""Raises a to the power of b, to modulo if given.
The right-hand operand must be a whole number whose integer part (after
any exponent has been applied) has no more than 9 digits and whose
fractional part (if any) is all zeros before any rounding. The operand
may be positive, negative, or zero; if negative, the absolute value of
the power is used, and the left-hand operand is inverted (divided into
1) before use.
If the increased precision needed for the intermediate calculations
exceeds the capabilities of the implementation then an Invalid operation
condition is raised.
If, when raising to a negative power, an underflow occurs during the
division into 1, the operation is not halted at that point but
continues.
>>> ExtendedContext.power(Decimal('2'), Decimal('3'))
Decimal("8")
>>> ExtendedContext.power(Decimal('2'), Decimal('-3'))
Decimal("0.125")
>>> ExtendedContext.power(Decimal('1.7'), Decimal('8'))
Decimal("69.7575744")
>>> ExtendedContext.power(Decimal('Infinity'), Decimal('-2'))
Decimal("0")
>>> ExtendedContext.power(Decimal('Infinity'), Decimal('-1'))
Decimal("0")
>>> ExtendedContext.power(Decimal('Infinity'), Decimal('0'))
Decimal("1")
>>> ExtendedContext.power(Decimal('Infinity'), Decimal('1'))
Decimal("Infinity")
>>> ExtendedContext.power(Decimal('Infinity'), Decimal('2'))
Decimal("Infinity")
>>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-2'))
Decimal("0")
>>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-1'))
Decimal("-0")
>>> ExtendedContext.power(Decimal('-Infinity'), Decimal('0'))
Decimal("1")
>>> ExtendedContext.power(Decimal('-Infinity'), Decimal('1'))
Decimal("-Infinity")
>>> ExtendedContext.power(Decimal('-Infinity'), Decimal('2'))
Decimal("Infinity")
>>> ExtendedContext.power(Decimal('0'), Decimal('0'))
Decimal("NaN")
"""
return a.__pow__(b, modulo, context=self)
def quantize(self, a, b):
"""Returns a value equal to 'a' (rounded) and having the exponent of 'b'.
The coefficient of the result is derived from that of the left-hand
operand. It may be rounded using the current rounding setting (if the
exponent is being increased), multiplied by a positive power of ten (if
the exponent is being decreased), or is unchanged (if the exponent is
already equal to that of the right-hand operand).
Unlike other operations, if the length of the coefficient after the
quantize operation would be greater than precision then an Invalid
operation condition is raised. This guarantees that, unless there is an
error condition, the exponent of the result of a quantize is always
equal to that of the right-hand operand.
Also unlike other operations, quantize will never raise Underflow, even
if the result is subnormal and inexact.
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
Decimal("2.170")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
Decimal("2.17")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
Decimal("2.2")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
Decimal("2")
>>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
Decimal("0E+1")
>>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
Decimal("-Infinity")
>>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
Decimal("NaN")
>>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
Decimal("-0")
>>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
Decimal("-0E+5")
>>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
Decimal("NaN")
>>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
Decimal("NaN")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
Decimal("217.0")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
Decimal("217")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
Decimal("2.2E+2")
>>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
Decimal("2E+2")
"""
return a.quantize(b, context=self)
def remainder(self, a, b):
"""Returns the remainder from integer division.
The result is the residue of the dividend after the operation of
calculating integer division as described for divide-integer, rounded to
precision digits if necessary. The sign of the result, if non-zero, is
the same as that of the original dividend.
This operation will fail under the same conditions as integer division
(that is, if integer division on the same two operands would fail, the
remainder cannot be calculated).
>>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
Decimal("2.1")
>>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
Decimal("1")
>>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
Decimal("-1")
>>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
Decimal("0.2")
>>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
Decimal("0.1")
>>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
Decimal("1.0")
"""
return a.__mod__(b, context=self)
def remainder_near(self, a, b):
"""Returns to be "a - b * n", where n is the integer nearest the exact
value of "x / b" (if two integers are equally near then the even one
is chosen). If the result is equal to 0 then its sign will be the
sign of a.
This operation will fail under the same conditions as integer division
(that is, if integer division on the same two operands would fail, the
remainder cannot be calculated).
>>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
Decimal("-0.9")
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
Decimal("-2")
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
Decimal("1")
>>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
Decimal("-1")
>>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
Decimal("0.2")
>>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
Decimal("0.1")
>>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
Decimal("-0.3")
"""
return a.remainder_near(b, context=self)
def same_quantum(self, a, b):
"""Returns True if the two operands have the same exponent.
The result is never affected by either the sign or the coefficient of
either operand.
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
False
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
True
>>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
False
>>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
True
"""
return a.same_quantum(b)
def sqrt(self, a):
"""Returns the square root of a non-negative number to context precision.
If the result must be inexact, it is rounded using the round-half-even
algorithm.
>>> ExtendedContext.sqrt(Decimal('0'))
Decimal("0")
>>> ExtendedContext.sqrt(Decimal('-0'))
Decimal("-0")
>>> ExtendedContext.sqrt(Decimal('0.39'))
Decimal("0.624499800")
>>> ExtendedContext.sqrt(Decimal('100'))
Decimal("10")
>>> ExtendedContext.sqrt(Decimal('1'))
Decimal("1")
>>> ExtendedContext.sqrt(Decimal('1.0'))
Decimal("1.0")
>>> ExtendedContext.sqrt(Decimal('1.00'))
Decimal("1.0")
>>> ExtendedContext.sqrt(Decimal('7'))
Decimal("2.64575131")
>>> ExtendedContext.sqrt(Decimal('10'))
Decimal("3.16227766")
>>> ExtendedContext.prec
9
"""
return a.sqrt(context=self)
def subtract(self, a, b):
"""Return the sum of the two operands.
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
Decimal("0.23")
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
Decimal("0.00")
>>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
Decimal("-0.77")
"""
return a.__sub__(b, context=self)
def to_eng_string(self, a):
"""Converts a number to a string, using scientific notation.
The operation is not affected by the context.
"""
return a.to_eng_string(context=self)
def to_sci_string(self, a):
"""Converts a number to a string, using scientific notation.
The operation is not affected by the context.
"""
return a.__str__(context=self)
def to_integral(self, a):
"""Rounds to an integer.
When the operand has a negative exponent, the result is the same
as using the quantize() operation using the given operand as the
left-hand-operand, 1E+0 as the right-hand-operand, and the precision
of the operand as the precision setting, except that no flags will
be set. The rounding mode is taken from the context.
>>> ExtendedContext.to_integral(Decimal('2.1'))
Decimal("2")
>>> ExtendedContext.to_integral(Decimal('100'))
Decimal("100")
>>> ExtendedContext.to_integral(Decimal('100.0'))
Decimal("100")
>>> ExtendedContext.to_integral(Decimal('101.5'))
Decimal("102")
>>> ExtendedContext.to_integral(Decimal('-101.5'))
Decimal("-102")
>>> ExtendedContext.to_integral(Decimal('10E+5'))
Decimal("1.0E+6")
>>> ExtendedContext.to_integral(Decimal('7.89E+77'))
Decimal("7.89E+77")
>>> ExtendedContext.to_integral(Decimal('-Inf'))
Decimal("-Infinity")
"""
return a.to_integral(context=self)
class _WorkRep(object):
__slots__ = ('sign','int','exp')
# sign: -1 None 1
# int: list
# exp: None, int, or string
def __init__(self, value=None):
if value is None:
self.sign = None
self.int = []
self.exp = None
if isinstance(value, Decimal):
if value._sign:
self.sign = -1
else:
self.sign = 1
self.int = list(value._int)
self.exp = value._exp
if isinstance(value, tuple):
self.sign = value[0]
self.int = value[1]
self.exp = value[2]
def __repr__(self):
return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
__str__ = __repr__
def __neg__(self):
if self.sign == 1:
return _WorkRep( (-1, self.int, self.exp) )
else:
return _WorkRep( (1, self.int, self.exp) )
def __abs__(self):
if self.sign == -1:
return -self
else:
return self
def __cmp__(self, other):
if self.exp != other.exp:
raise ValueError("Operands not normalized: %r, %r" % (self, other))
if self.sign != other.sign:
if self.sign == -1:
return -1
else:
return 1
if self.sign == -1:
direction = -1
else:
direction = 1
int1 = self.int
int2 = other.int
if len(int1) > len(int2):
return direction * 1
if len(int1) < len(int2):
return direction * -1
for i in xrange(len(int1)):
if int1[i] > int2[i]:
return direction * 1
if int1[i] < int2[i]:
return direction * -1
return 0
def _increment(self):
curspot = len(self.int) - 1
self.int[curspot]+= 1
while (self.int[curspot] >= 10):
self.int[curspot] -= 10
if curspot == 0:
self.int[0:0] = [1]
break
self.int[curspot-1] += 1
curspot -= 1
def subtract(self, alist):
"""Subtract a list from the current int (in place).
It is assured that (len(list) = len(self.int) and list < self.int) or
len(list) = len(self.int)-1
(i.e. that int(join(list)) < int(join(self.int)))
"""
selfint = self.int
selfint.reverse()
alist.reverse()
carry = 0
for x in xrange(len(alist)):
selfint[x] -= alist[x] + carry
if selfint[x] < 0:
carry = 1
selfint[x] += 10
else:
carry = 0
if carry:
selfint[x+1] -= 1
last = len(selfint)-1
while len(selfint) > 1 and selfint[last] == 0:
last -= 1
if last == 0:
break
selfint[last+1:]=[]
selfint.reverse()
alist.reverse()
return
def _normalize(op1, op2, shouldround = 0, prec = 0):
"""Normalizes op1, op2 to have the same exp and length of coefficient.
Done during addition.
"""
# Yes, the exponent is a long, but the difference between exponents
# must be an int-- otherwise you'd get a big memory problem.
numdigits = int(op1.exp - op2.exp)
if numdigits < 0:
numdigits = -numdigits
tmp = op2
other = op1
else:
tmp = op1
other = op2
if shouldround and numdigits > len(other.int) + prec + 1 -len(tmp.int):
# If the difference in adjusted exps is > prec+1, we know
# other is insignificant, so might as well put a 1 after the precision.
# (since this is only for addition.) Also stops MemoryErrors.
extend = prec + 2 -len(tmp.int)
if extend <= 0:
extend = 1
tmp.int.extend([0]*extend)
tmp.exp -= extend
other.int[:] = [0]*(len(tmp.int)-1)+[1]
other.exp = tmp.exp
return op1, op2
tmp.int.extend([0] * numdigits)
tmp.exp = tmp.exp - numdigits
numdigits = len(op1.int) - len(op2.int)
# numdigits != 0 => They have the same exponent, but not the same length
# of the coefficient.
if numdigits < 0:
numdigits = -numdigits
tmp = op1
else:
tmp = op2
tmp.int[0:0] = [0] * numdigits
return op1, op2
def _adjust_coefficients(op1, op2):
"""Adjust op1, op2 so that op2.int+[0] > op1.int >= op2.int.
Returns the adjusted op1, op2 as well as the change in op1.exp-op2.exp.
Used on _WorkRep instances during division.
"""
adjust = 0
#If op1 is smaller, get it to same size
if len(op2.int) > len(op1.int):
diff = len(op2.int) - len(op1.int)
op1.int.extend([0]*diff)
op1.exp -= diff
adjust = diff
#Same length, wrong order
if len(op1.int) == len(op2.int) and op1.int < op2.int:
op1.int.append(0)
op1.exp -= 1
adjust+= 1
return op1, op2, adjust
if len(op1.int) > len(op2.int) + 1:
diff = len(op1.int) - len(op2.int) - 1
op2.int.extend([0]*diff)
op2.exp -= diff
adjust -= diff
if len(op1.int) == len(op2.int)+1 and op1.int > op2.int:
op2.int.append(0)
op2.exp -= 1
adjust -= 1
return op1, op2, adjust
##### Helper Functions ########################################
_infinity_map = {
'inf' : 1,
'infinity' : 1,
'+inf' : 1,
'+infinity' : 1,
'-inf' : -1,
'-infinity' : -1
}
def _isinfinity(num):
"""Determines whether a string or float is infinity.
+1 for negative infinity; 0 for finite ; +1 for positive infinity
"""
num = str(num).lower()
return _infinity_map.get(num, 0)
def _isnan(num):
"""Determines whether a string or float is NaN
(1, sign, diagnostic info as string) => NaN
(2, sign, diagnostic info as string) => sNaN
0 => not a NaN
"""
num = str(num).lower()
if not num:
return 0
#get the sign, get rid of trailing [+-]
sign = 0
if num[0] == '+':
num = num[1:]
elif num[0] == '-': #elif avoids '+-nan'
num = num[1:]
sign = 1
if num.startswith('nan'):
if len(num) > 3 and not num[3:].isdigit(): #diagnostic info
return 0
return (1, sign, num[3:].lstrip('0'))
if num.startswith('snan'):
if len(num) > 4 and not num[4:].isdigit():
return 0
return (2, sign, num[4:].lstrip('0'))
return 0
##### Setup Specific Contexts ################################
_basic_traps = dict.fromkeys(Signals, 1)
_basic_traps.update({Inexact:0, Rounded:0, Subnormal:0})
# The default context prototype used by Context()
# Is mutable, so than new contexts can have different default values
DefaultContext = Context(
prec=28, rounding=ROUND_HALF_EVEN,
trap_enablers=dict.fromkeys(Signals, 0),
flags=None,
_rounding_decision=ALWAYS_ROUND,
Emax=DEFAULT_MAX_EXPONENT,
Emin=DEFAULT_MIN_EXPONENT,
capitals=1
)
DefaultContext.trap_enablers.update({ConversionSyntax : 1})
# Pre-made alternate contexts offered by the specification
# Don't change these; the user should be able to select these
# contexts and be able to reproduce results from other implementations
# of the spec.
BasicContext = Context(
prec=9, rounding=ROUND_HALF_UP,
trap_enablers=_basic_traps,
flags=None,
_rounding_decision=ALWAYS_ROUND,
)
ExtendedContext = Context(
prec=9, rounding=ROUND_HALF_EVEN,
trap_enablers=dict.fromkeys(Signals, 0),
flags=None,
_rounding_decision=ALWAYS_ROUND,
)
##### Useful Constants (internal use only) ####################
#Reusable defaults
Inf = Decimal('Inf')
negInf = Decimal('-Inf')
#Infsign[sign] is infinity w/ that sign
Infsign = (Inf, negInf)
NaN = Decimal('NaN')
##### crud for parsing strings #################################
import re
# There's an optional sign at the start, and an optional exponent
# at the end. The exponent has an optional sign and at least one
# digit. In between, must have either at least one digit followed
# by an optional fraction, or a decimal point followed by at least
# one digit. Yuck.
_parser = re.compile(r"""
# \s*
(?P<sign>[-+])?
(
(?P<int>\d+) (\. (?P<frac>\d*))?
|
\. (?P<onlyfrac>\d+)
)
([eE](?P<exp>[-+]? \d+))?
# \s*
$
""", re.VERBOSE).match #Uncomment the \s* to allow leading or trailing spaces.
del re
# return sign, n, p s.t. float string value == -1**sign * n * 10**p exactly
def _string2exact(s):
m = _parser(s)
if m is None:
raise ValueError("invalid literal for Decimal: %r" % s)
if m.group('sign') == "-":
sign = 1
else:
sign = 0
exp = m.group('exp')
if exp is None:
exp = 0
else:
exp = int(exp)
intpart = m.group('int')
if intpart is None:
intpart = ""
fracpart = m.group('onlyfrac')
else:
fracpart = m.group('frac')
if fracpart is None:
fracpart = ""
exp -= len(fracpart)
mantissa = intpart + fracpart
tmp = map(int, mantissa)
backup = tmp
while tmp and tmp[0] == 0:
del tmp[0]
# It's a zero
if not tmp:
if backup:
return (sign, tuple(backup), exp)
return (sign, (0,), exp)
mantissa = tuple(tmp)
return (sign, mantissa, exp)
if __name__ == '__main__':
import doctest, sys
doctest.testmod(sys.modules[__name__])
|