summaryrefslogtreecommitdiffstats
path: root/Lib/difflib.py
blob: 0637cffb32c90602fc3a0dd847e751ebdfd824e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
#! /usr/bin/env python

"""
Module difflib -- helpers for computing deltas between objects.

Function get_close_matches(word, possibilities, n=3, cutoff=0.6):
    Use SequenceMatcher to return list of the best "good enough" matches.

Function ndiff(a, b):
    Return a delta: the difference between `a` and `b` (lists of strings).

Function restore(delta, which):
    Return one of the two sequences that generated an ndiff delta.

Class SequenceMatcher:
    A flexible class for comparing pairs of sequences of any type.

Class Differ:
    For producing human-readable deltas from sequences of lines of text.
"""

__all__ = ['get_close_matches', 'ndiff', 'restore', 'SequenceMatcher',
           'Differ']

class SequenceMatcher:

    """
    SequenceMatcher is a flexible class for comparing pairs of sequences of
    any type, so long as the sequence elements are hashable.  The basic
    algorithm predates, and is a little fancier than, an algorithm
    published in the late 1980's by Ratcliff and Obershelp under the
    hyperbolic name "gestalt pattern matching".  The basic idea is to find
    the longest contiguous matching subsequence that contains no "junk"
    elements (R-O doesn't address junk).  The same idea is then applied
    recursively to the pieces of the sequences to the left and to the right
    of the matching subsequence.  This does not yield minimal edit
    sequences, but does tend to yield matches that "look right" to people.

    SequenceMatcher tries to compute a "human-friendly diff" between two
    sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
    longest *contiguous* & junk-free matching subsequence.  That's what
    catches peoples' eyes.  The Windows(tm) windiff has another interesting
    notion, pairing up elements that appear uniquely in each sequence.
    That, and the method here, appear to yield more intuitive difference
    reports than does diff.  This method appears to be the least vulnerable
    to synching up on blocks of "junk lines", though (like blank lines in
    ordinary text files, or maybe "<P>" lines in HTML files).  That may be
    because this is the only method of the 3 that has a *concept* of
    "junk" <wink>.

    Example, comparing two strings, and considering blanks to be "junk":

    >>> s = SequenceMatcher(lambda x: x == " ",
    ...                     "private Thread currentThread;",
    ...                     "private volatile Thread currentThread;")
    >>>

    .ratio() returns a float in [0, 1], measuring the "similarity" of the
    sequences.  As a rule of thumb, a .ratio() value over 0.6 means the
    sequences are close matches:

    >>> print round(s.ratio(), 3)
    0.866
    >>>

    If you're only interested in where the sequences match,
    .get_matching_blocks() is handy:

    >>> for block in s.get_matching_blocks():
    ...     print "a[%d] and b[%d] match for %d elements" % block
    a[0] and b[0] match for 8 elements
    a[8] and b[17] match for 6 elements
    a[14] and b[23] match for 15 elements
    a[29] and b[38] match for 0 elements

    Note that the last tuple returned by .get_matching_blocks() is always a
    dummy, (len(a), len(b), 0), and this is the only case in which the last
    tuple element (number of elements matched) is 0.

    If you want to know how to change the first sequence into the second,
    use .get_opcodes():

    >>> for opcode in s.get_opcodes():
    ...     print "%6s a[%d:%d] b[%d:%d]" % opcode
     equal a[0:8] b[0:8]
    insert a[8:8] b[8:17]
     equal a[8:14] b[17:23]
     equal a[14:29] b[23:38]

    See the Differ class for a fancy human-friendly file differencer, which
    uses SequenceMatcher both to compare sequences of lines, and to compare
    sequences of characters within similar (near-matching) lines.

    See also function get_close_matches() in this module, which shows how
    simple code building on SequenceMatcher can be used to do useful work.

    Timing:  Basic R-O is cubic time worst case and quadratic time expected
    case.  SequenceMatcher is quadratic time for the worst case and has
    expected-case behavior dependent in a complicated way on how many
    elements the sequences have in common; best case time is linear.

    Methods:

    __init__(isjunk=None, a='', b='')
        Construct a SequenceMatcher.

    set_seqs(a, b)
        Set the two sequences to be compared.

    set_seq1(a)
        Set the first sequence to be compared.

    set_seq2(b)
        Set the second sequence to be compared.

    find_longest_match(alo, ahi, blo, bhi)
        Find longest matching block in a[alo:ahi] and b[blo:bhi].

    get_matching_blocks()
        Return list of triples describing matching subsequences.

    get_opcodes()
        Return list of 5-tuples describing how to turn a into b.

    ratio()
        Return a measure of the sequences' similarity (float in [0,1]).

    quick_ratio()
        Return an upper bound on .ratio() relatively quickly.

    real_quick_ratio()
        Return an upper bound on ratio() very quickly.
    """

    def __init__(self, isjunk=None, a='', b=''):
        """Construct a SequenceMatcher.

        Optional arg isjunk is None (the default), or a one-argument
        function that takes a sequence element and returns true iff the
        element is junk.  None is equivalent to passing "lambda x: 0", i.e.
        no elements are considered to be junk.  For example, pass
            lambda x: x in " \\t"
        if you're comparing lines as sequences of characters, and don't
        want to synch up on blanks or hard tabs.

        Optional arg a is the first of two sequences to be compared.  By
        default, an empty string.  The elements of a must be hashable.  See
        also .set_seqs() and .set_seq1().

        Optional arg b is the second of two sequences to be compared.  By
        default, an empty string.  The elements of b must be hashable. See
        also .set_seqs() and .set_seq2().
        """

        # Members:
        # a
        #      first sequence
        # b
        #      second sequence; differences are computed as "what do
        #      we need to do to 'a' to change it into 'b'?"
        # b2j
        #      for x in b, b2j[x] is a list of the indices (into b)
        #      at which x appears; junk elements do not appear
        # fullbcount
        #      for x in b, fullbcount[x] == the number of times x
        #      appears in b; only materialized if really needed (used
        #      only for computing quick_ratio())
        # matching_blocks
        #      a list of (i, j, k) triples, where a[i:i+k] == b[j:j+k];
        #      ascending & non-overlapping in i and in j; terminated by
        #      a dummy (len(a), len(b), 0) sentinel
        # opcodes
        #      a list of (tag, i1, i2, j1, j2) tuples, where tag is
        #      one of
        #          'replace'   a[i1:i2] should be replaced by b[j1:j2]
        #          'delete'    a[i1:i2] should be deleted
        #          'insert'    b[j1:j2] should be inserted
        #          'equal'     a[i1:i2] == b[j1:j2]
        # isjunk
        #      a user-supplied function taking a sequence element and
        #      returning true iff the element is "junk" -- this has
        #      subtle but helpful effects on the algorithm, which I'll
        #      get around to writing up someday <0.9 wink>.
        #      DON'T USE!  Only __chain_b uses this.  Use isbjunk.
        # isbjunk
        #      for x in b, isbjunk(x) == isjunk(x) but much faster;
        #      it's really the has_key method of a hidden dict.
        #      DOES NOT WORK for x in a!
        # isbpopular
        #      for x in b, isbpopular(x) is true iff b is reasonably long
        #      (at least 200 elements) and x accounts for more than 1% of
        #      its elements.  DOES NOT WORK for x in a!

        self.isjunk = isjunk
        self.a = self.b = None
        self.set_seqs(a, b)

    def set_seqs(self, a, b):
        """Set the two sequences to be compared.

        >>> s = SequenceMatcher()
        >>> s.set_seqs("abcd", "bcde")
        >>> s.ratio()
        0.75
        """

        self.set_seq1(a)
        self.set_seq2(b)

    def set_seq1(self, a):
        """Set the first sequence to be compared.

        The second sequence to be compared is not changed.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.set_seq1("bcde")
        >>> s.ratio()
        1.0
        >>>

        SequenceMatcher computes and caches detailed information about the
        second sequence, so if you want to compare one sequence S against
        many sequences, use .set_seq2(S) once and call .set_seq1(x)
        repeatedly for each of the other sequences.

        See also set_seqs() and set_seq2().
        """

        if a is self.a:
            return
        self.a = a
        self.matching_blocks = self.opcodes = None

    def set_seq2(self, b):
        """Set the second sequence to be compared.

        The first sequence to be compared is not changed.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.set_seq2("abcd")
        >>> s.ratio()
        1.0
        >>>

        SequenceMatcher computes and caches detailed information about the
        second sequence, so if you want to compare one sequence S against
        many sequences, use .set_seq2(S) once and call .set_seq1(x)
        repeatedly for each of the other sequences.

        See also set_seqs() and set_seq1().
        """

        if b is self.b:
            return
        self.b = b
        self.matching_blocks = self.opcodes = None
        self.fullbcount = None
        self.__chain_b()

    # For each element x in b, set b2j[x] to a list of the indices in
    # b where x appears; the indices are in increasing order; note that
    # the number of times x appears in b is len(b2j[x]) ...
    # when self.isjunk is defined, junk elements don't show up in this
    # map at all, which stops the central find_longest_match method
    # from starting any matching block at a junk element ...
    # also creates the fast isbjunk function ...
    # b2j also does not contain entries for "popular" elements, meaning
    # elements that account for more than 1% of the total elements, and
    # when the sequence is reasonably large (>= 200 elements); this can
    # be viewed as an adaptive notion of semi-junk, and yields an enormous
    # speedup when, e.g., comparing program files with hundreds of
    # instances of "return NULL;" ...
    # note that this is only called when b changes; so for cross-product
    # kinds of matches, it's best to call set_seq2 once, then set_seq1
    # repeatedly

    def __chain_b(self):
        # Because isjunk is a user-defined (not C) function, and we test
        # for junk a LOT, it's important to minimize the number of calls.
        # Before the tricks described here, __chain_b was by far the most
        # time-consuming routine in the whole module!  If anyone sees
        # Jim Roskind, thank him again for profile.py -- I never would
        # have guessed that.
        # The first trick is to build b2j ignoring the possibility
        # of junk.  I.e., we don't call isjunk at all yet.  Throwing
        # out the junk later is much cheaper than building b2j "right"
        # from the start.
        b = self.b
        n = len(b)
        self.b2j = b2j = {}
        populardict = {}
        for i, elt in enumerate(b):
            if elt in b2j:
                indices = b2j[elt]
                if n >= 200 and len(indices) * 100 > n:
                    populardict[elt] = 1
                    del indices[:]
                else:
                    indices.append(i)
            else:
                b2j[elt] = [i]

        # Purge leftover indices for popular elements.
        for elt in populardict:
            del b2j[elt]

        # Now b2j.keys() contains elements uniquely, and especially when
        # the sequence is a string, that's usually a good deal smaller
        # than len(string).  The difference is the number of isjunk calls
        # saved.
        isjunk = self.isjunk
        junkdict = {}
        if isjunk:
            for d in populardict, b2j:
                for elt in d.keys():
                    if isjunk(elt):
                        junkdict[elt] = 1
                        del d[elt]

        # Now for x in b, isjunk(x) == x in junkdict, but the
        # latter is much faster.  Note too that while there may be a
        # lot of junk in the sequence, the number of *unique* junk
        # elements is probably small.  So the memory burden of keeping
        # this dict alive is likely trivial compared to the size of b2j.
        self.isbjunk = junkdict.has_key
        self.isbpopular = populardict.has_key

    def find_longest_match(self, alo, ahi, blo, bhi):
        """Find longest matching block in a[alo:ahi] and b[blo:bhi].

        If isjunk is not defined:

        Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
            alo <= i <= i+k <= ahi
            blo <= j <= j+k <= bhi
        and for all (i',j',k') meeting those conditions,
            k >= k'
            i <= i'
            and if i == i', j <= j'

        In other words, of all maximal matching blocks, return one that
        starts earliest in a, and of all those maximal matching blocks that
        start earliest in a, return the one that starts earliest in b.

        >>> s = SequenceMatcher(None, " abcd", "abcd abcd")
        >>> s.find_longest_match(0, 5, 0, 9)
        (0, 4, 5)

        If isjunk is defined, first the longest matching block is
        determined as above, but with the additional restriction that no
        junk element appears in the block.  Then that block is extended as
        far as possible by matching (only) junk elements on both sides.  So
        the resulting block never matches on junk except as identical junk
        happens to be adjacent to an "interesting" match.

        Here's the same example as before, but considering blanks to be
        junk.  That prevents " abcd" from matching the " abcd" at the tail
        end of the second sequence directly.  Instead only the "abcd" can
        match, and matches the leftmost "abcd" in the second sequence:

        >>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
        >>> s.find_longest_match(0, 5, 0, 9)
        (1, 0, 4)

        If no blocks match, return (alo, blo, 0).

        >>> s = SequenceMatcher(None, "ab", "c")
        >>> s.find_longest_match(0, 2, 0, 1)
        (0, 0, 0)
        """

        # CAUTION:  stripping common prefix or suffix would be incorrect.
        # E.g.,
        #    ab
        #    acab
        # Longest matching block is "ab", but if common prefix is
        # stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
        # strip, so ends up claiming that ab is changed to acab by
        # inserting "ca" in the middle.  That's minimal but unintuitive:
        # "it's obvious" that someone inserted "ac" at the front.
        # Windiff ends up at the same place as diff, but by pairing up
        # the unique 'b's and then matching the first two 'a's.

        a, b, b2j, isbjunk = self.a, self.b, self.b2j, self.isbjunk
        besti, bestj, bestsize = alo, blo, 0
        # find longest junk-free match
        # during an iteration of the loop, j2len[j] = length of longest
        # junk-free match ending with a[i-1] and b[j]
        j2len = {}
        nothing = []
        for i in xrange(alo, ahi):
            # look at all instances of a[i] in b; note that because
            # b2j has no junk keys, the loop is skipped if a[i] is junk
            j2lenget = j2len.get
            newj2len = {}
            for j in b2j.get(a[i], nothing):
                # a[i] matches b[j]
                if j < blo:
                    continue
                if j >= bhi:
                    break
                k = newj2len[j] = j2lenget(j-1, 0) + 1
                if k > bestsize:
                    besti, bestj, bestsize = i-k+1, j-k+1, k
            j2len = newj2len

        # Extend the best by non-junk elements on each end.  In particular,
        # "popular" non-junk elements aren't in b2j, which greatly speeds
        # the inner loop above, but also means "the best" match so far
        # doesn't contain any junk *or* popular non-junk elements.
        while besti > alo and bestj > blo and \
              not isbjunk(b[bestj-1]) and \
              a[besti-1] == b[bestj-1]:
            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
        while besti+bestsize < ahi and bestj+bestsize < bhi and \
              not isbjunk(b[bestj+bestsize]) and \
              a[besti+bestsize] == b[bestj+bestsize]:
            bestsize += 1

        # Now that we have a wholly interesting match (albeit possibly
        # empty!), we may as well suck up the matching junk on each
        # side of it too.  Can't think of a good reason not to, and it
        # saves post-processing the (possibly considerable) expense of
        # figuring out what to do with it.  In the case of an empty
        # interesting match, this is clearly the right thing to do,
        # because no other kind of match is possible in the regions.
        while besti > alo and bestj > blo and \
              isbjunk(b[bestj-1]) and \
              a[besti-1] == b[bestj-1]:
            besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
        while besti+bestsize < ahi and bestj+bestsize < bhi and \
              isbjunk(b[bestj+bestsize]) and \
              a[besti+bestsize] == b[bestj+bestsize]:
            bestsize = bestsize + 1

        return besti, bestj, bestsize

    def get_matching_blocks(self):
        """Return list of triples describing matching subsequences.

        Each triple is of the form (i, j, n), and means that
        a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
        i and in j.

        The last triple is a dummy, (len(a), len(b), 0), and is the only
        triple with n==0.

        >>> s = SequenceMatcher(None, "abxcd", "abcd")
        >>> s.get_matching_blocks()
        [(0, 0, 2), (3, 2, 2), (5, 4, 0)]
        """

        if self.matching_blocks is not None:
            return self.matching_blocks
        self.matching_blocks = []
        la, lb = len(self.a), len(self.b)
        self.__helper(0, la, 0, lb, self.matching_blocks)
        self.matching_blocks.append( (la, lb, 0) )
        return self.matching_blocks

    # builds list of matching blocks covering a[alo:ahi] and
    # b[blo:bhi], appending them in increasing order to answer

    def __helper(self, alo, ahi, blo, bhi, answer):
        i, j, k = x = self.find_longest_match(alo, ahi, blo, bhi)
        # a[alo:i] vs b[blo:j] unknown
        # a[i:i+k] same as b[j:j+k]
        # a[i+k:ahi] vs b[j+k:bhi] unknown
        if k:
            if alo < i and blo < j:
                self.__helper(alo, i, blo, j, answer)
            answer.append(x)
            if i+k < ahi and j+k < bhi:
                self.__helper(i+k, ahi, j+k, bhi, answer)

    def get_opcodes(self):
        """Return list of 5-tuples describing how to turn a into b.

        Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
        has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
        tuple preceding it, and likewise for j1 == the previous j2.

        The tags are strings, with these meanings:

        'replace':  a[i1:i2] should be replaced by b[j1:j2]
        'delete':   a[i1:i2] should be deleted.
                    Note that j1==j2 in this case.
        'insert':   b[j1:j2] should be inserted at a[i1:i1].
                    Note that i1==i2 in this case.
        'equal':    a[i1:i2] == b[j1:j2]

        >>> a = "qabxcd"
        >>> b = "abycdf"
        >>> s = SequenceMatcher(None, a, b)
        >>> for tag, i1, i2, j1, j2 in s.get_opcodes():
        ...    print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
        ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))
         delete a[0:1] (q) b[0:0] ()
          equal a[1:3] (ab) b[0:2] (ab)
        replace a[3:4] (x) b[2:3] (y)
          equal a[4:6] (cd) b[3:5] (cd)
         insert a[6:6] () b[5:6] (f)
        """

        if self.opcodes is not None:
            return self.opcodes
        i = j = 0
        self.opcodes = answer = []
        for ai, bj, size in self.get_matching_blocks():
            # invariant:  we've pumped out correct diffs to change
            # a[:i] into b[:j], and the next matching block is
            # a[ai:ai+size] == b[bj:bj+size].  So we need to pump
            # out a diff to change a[i:ai] into b[j:bj], pump out
            # the matching block, and move (i,j) beyond the match
            tag = ''
            if i < ai and j < bj:
                tag = 'replace'
            elif i < ai:
                tag = 'delete'
            elif j < bj:
                tag = 'insert'
            if tag:
                answer.append( (tag, i, ai, j, bj) )
            i, j = ai+size, bj+size
            # the list of matching blocks is terminated by a
            # sentinel with size 0
            if size:
                answer.append( ('equal', ai, i, bj, j) )
        return answer

    def ratio(self):
        """Return a measure of the sequences' similarity (float in [0,1]).

        Where T is the total number of elements in both sequences, and
        M is the number of matches, this is 2,0*M / T.
        Note that this is 1 if the sequences are identical, and 0 if
        they have nothing in common.

        .ratio() is expensive to compute if you haven't already computed
        .get_matching_blocks() or .get_opcodes(), in which case you may
        want to try .quick_ratio() or .real_quick_ratio() first to get an
        upper bound.

        >>> s = SequenceMatcher(None, "abcd", "bcde")
        >>> s.ratio()
        0.75
        >>> s.quick_ratio()
        0.75
        >>> s.real_quick_ratio()
        1.0
        """

        matches = reduce(lambda sum, triple: sum + triple[-1],
                         self.get_matching_blocks(), 0)
        return 2.0 * matches / (len(self.a) + len(self.b))

    def quick_ratio(self):
        """Return an upper bound on ratio() relatively quickly.

        This isn't defined beyond that it is an upper bound on .ratio(), and
        is faster to compute.
        """

        # viewing a and b as multisets, set matches to the cardinality
        # of their intersection; this counts the number of matches
        # without regard to order, so is clearly an upper bound
        if self.fullbcount is None:
            self.fullbcount = fullbcount = {}
            for elt in self.b:
                fullbcount[elt] = fullbcount.get(elt, 0) + 1
        fullbcount = self.fullbcount
        # avail[x] is the number of times x appears in 'b' less the
        # number of times we've seen it in 'a' so far ... kinda
        avail = {}
        availhas, matches = avail.has_key, 0
        for elt in self.a:
            if availhas(elt):
                numb = avail[elt]
            else:
                numb = fullbcount.get(elt, 0)
            avail[elt] = numb - 1
            if numb > 0:
                matches = matches + 1
        return 2.0 * matches / (len(self.a) + len(self.b))

    def real_quick_ratio(self):
        """Return an upper bound on ratio() very quickly.

        This isn't defined beyond that it is an upper bound on .ratio(), and
        is faster to compute than either .ratio() or .quick_ratio().
        """

        la, lb = len(self.a), len(self.b)
        # can't have more matches than the number of elements in the
        # shorter sequence
        return 2.0 * min(la, lb) / (la + lb)

def get_close_matches(word, possibilities, n=3, cutoff=0.6):
    """Use SequenceMatcher to return list of the best "good enough" matches.

    word is a sequence for which close matches are desired (typically a
    string).

    possibilities is a list of sequences against which to match word
    (typically a list of strings).

    Optional arg n (default 3) is the maximum number of close matches to
    return.  n must be > 0.

    Optional arg cutoff (default 0.6) is a float in [0, 1].  Possibilities
    that don't score at least that similar to word are ignored.

    The best (no more than n) matches among the possibilities are returned
    in a list, sorted by similarity score, most similar first.

    >>> get_close_matches("appel", ["ape", "apple", "peach", "puppy"])
    ['apple', 'ape']
    >>> import keyword as _keyword
    >>> get_close_matches("wheel", _keyword.kwlist)
    ['while']
    >>> get_close_matches("apple", _keyword.kwlist)
    []
    >>> get_close_matches("accept", _keyword.kwlist)
    ['except']
    """

    if not n >  0:
        raise ValueError("n must be > 0: " + `n`)
    if not 0.0 <= cutoff <= 1.0:
        raise ValueError("cutoff must be in [0.0, 1.0]: " + `cutoff`)
    result = []
    s = SequenceMatcher()
    s.set_seq2(word)
    for x in possibilities:
        s.set_seq1(x)
        if s.real_quick_ratio() >= cutoff and \
           s.quick_ratio() >= cutoff and \
           s.ratio() >= cutoff:
            result.append((s.ratio(), x))
    # Sort by score.
    result.sort()
    # Retain only the best n.
    result = result[-n:]
    # Move best-scorer to head of list.
    result.reverse()
    # Strip scores.
    return [x for score, x in result]


def _count_leading(line, ch):
    """
    Return number of `ch` characters at the start of `line`.

    Example:

    >>> _count_leading('   abc', ' ')
    3
    """

    i, n = 0, len(line)
    while i < n and line[i] == ch:
        i += 1
    return i

class Differ:
    r"""
    Differ is a class for comparing sequences of lines of text, and
    producing human-readable differences or deltas.  Differ uses
    SequenceMatcher both to compare sequences of lines, and to compare
    sequences of characters within similar (near-matching) lines.

    Each line of a Differ delta begins with a two-letter code:

        '- '    line unique to sequence 1
        '+ '    line unique to sequence 2
        '  '    line common to both sequences
        '? '    line not present in either input sequence

    Lines beginning with '? ' attempt to guide the eye to intraline
    differences, and were not present in either input sequence.  These lines
    can be confusing if the sequences contain tab characters.

    Note that Differ makes no claim to produce a *minimal* diff.  To the
    contrary, minimal diffs are often counter-intuitive, because they synch
    up anywhere possible, sometimes accidental matches 100 pages apart.
    Restricting synch points to contiguous matches preserves some notion of
    locality, at the occasional cost of producing a longer diff.

    Example: Comparing two texts.

    First we set up the texts, sequences of individual single-line strings
    ending with newlines (such sequences can also be obtained from the
    `readlines()` method of file-like objects):

    >>> text1 = '''  1. Beautiful is better than ugly.
    ...   2. Explicit is better than implicit.
    ...   3. Simple is better than complex.
    ...   4. Complex is better than complicated.
    ... '''.splitlines(1)
    >>> len(text1)
    4
    >>> text1[0][-1]
    '\n'
    >>> text2 = '''  1. Beautiful is better than ugly.
    ...   3.   Simple is better than complex.
    ...   4. Complicated is better than complex.
    ...   5. Flat is better than nested.
    ... '''.splitlines(1)

    Next we instantiate a Differ object:

    >>> d = Differ()

    Note that when instantiating a Differ object we may pass functions to
    filter out line and character 'junk'.  See Differ.__init__ for details.

    Finally, we compare the two:

    >>> result = list(d.compare(text1, text2))

    'result' is a list of strings, so let's pretty-print it:

    >>> from pprint import pprint as _pprint
    >>> _pprint(result)
    ['    1. Beautiful is better than ugly.\n',
     '-   2. Explicit is better than implicit.\n',
     '-   3. Simple is better than complex.\n',
     '+   3.   Simple is better than complex.\n',
     '?     ++\n',
     '-   4. Complex is better than complicated.\n',
     '?            ^                     ---- ^\n',
     '+   4. Complicated is better than complex.\n',
     '?           ++++ ^                      ^\n',
     '+   5. Flat is better than nested.\n']

    As a single multi-line string it looks like this:

    >>> print ''.join(result),
        1. Beautiful is better than ugly.
    -   2. Explicit is better than implicit.
    -   3. Simple is better than complex.
    +   3.   Simple is better than complex.
    ?     ++
    -   4. Complex is better than complicated.
    ?            ^                     ---- ^
    +   4. Complicated is better than complex.
    ?           ++++ ^                      ^
    +   5. Flat is better than nested.

    Methods:

    __init__(linejunk=None, charjunk=None)
        Construct a text differencer, with optional filters.

    compare(a, b)
        Compare two sequences of lines; generate the resulting delta.
    """

    def __init__(self, linejunk=None, charjunk=None):
        """
        Construct a text differencer, with optional filters.

        The two optional keyword parameters are for filter functions:

        - `linejunk`: A function that should accept a single string argument,
          and return true iff the string is junk. The module-level function
          `IS_LINE_JUNK` may be used to filter out lines without visible
          characters, except for at most one splat ('#').  It is recommended
          to leave linejunk None; as of Python 2.3, the underlying
          SequenceMatcher class has grown an adaptive notion of "noise" lines
          that's better than any static definition the author has ever been
          able to craft.

        - `charjunk`: A function that should accept a string of length 1. The
          module-level function `IS_CHARACTER_JUNK` may be used to filter out
          whitespace characters (a blank or tab; **note**: bad idea to include
          newline in this!).  Use of IS_CHARACTER_JUNK is recommended.
        """

        self.linejunk = linejunk
        self.charjunk = charjunk

    def compare(self, a, b):
        r"""
        Compare two sequences of lines; generate the resulting delta.

        Each sequence must contain individual single-line strings ending with
        newlines. Such sequences can be obtained from the `readlines()` method
        of file-like objects.  The delta generated also consists of newline-
        terminated strings, ready to be printed as-is via the writeline()
        method of a file-like object.

        Example:

        >>> print ''.join(Differ().compare('one\ntwo\nthree\n'.splitlines(1),
        ...                                'ore\ntree\nemu\n'.splitlines(1))),
        - one
        ?  ^
        + ore
        ?  ^
        - two
        - three
        ?  -
        + tree
        + emu
        """

        cruncher = SequenceMatcher(self.linejunk, a, b)
        for tag, alo, ahi, blo, bhi in cruncher.get_opcodes():
            if tag == 'replace':
                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
            elif tag == 'delete':
                g = self._dump('-', a, alo, ahi)
            elif tag == 'insert':
                g = self._dump('+', b, blo, bhi)
            elif tag == 'equal':
                g = self._dump(' ', a, alo, ahi)
            else:
                raise ValueError, 'unknown tag ' + `tag`

            for line in g:
                yield line

    def _dump(self, tag, x, lo, hi):
        """Generate comparison results for a same-tagged range."""
        for i in xrange(lo, hi):
            yield '%s %s' % (tag, x[i])

    def _plain_replace(self, a, alo, ahi, b, blo, bhi):
        assert alo < ahi and blo < bhi
        # dump the shorter block first -- reduces the burden on short-term
        # memory if the blocks are of very different sizes
        if bhi - blo < ahi - alo:
            first  = self._dump('+', b, blo, bhi)
            second = self._dump('-', a, alo, ahi)
        else:
            first  = self._dump('-', a, alo, ahi)
            second = self._dump('+', b, blo, bhi)

        for g in first, second:
            for line in g:
                yield line

    def _fancy_replace(self, a, alo, ahi, b, blo, bhi):
        r"""
        When replacing one block of lines with another, search the blocks
        for *similar* lines; the best-matching pair (if any) is used as a
        synch point, and intraline difference marking is done on the
        similar pair. Lots of work, but often worth it.

        Example:

        >>> d = Differ()
        >>> d._fancy_replace(['abcDefghiJkl\n'], 0, 1, ['abcdefGhijkl\n'], 0, 1)
        >>> print ''.join(d.results),
        - abcDefghiJkl
        ?    ^  ^  ^
        + abcdefGhijkl
        ?    ^  ^  ^
        """

        # don't synch up unless the lines have a similarity score of at
        # least cutoff; best_ratio tracks the best score seen so far
        best_ratio, cutoff = 0.74, 0.75
        cruncher = SequenceMatcher(self.charjunk)
        eqi, eqj = None, None   # 1st indices of equal lines (if any)

        # search for the pair that matches best without being identical
        # (identical lines must be junk lines, & we don't want to synch up
        # on junk -- unless we have to)
        for j in xrange(blo, bhi):
            bj = b[j]
            cruncher.set_seq2(bj)
            for i in xrange(alo, ahi):
                ai = a[i]
                if ai == bj:
                    if eqi is None:
                        eqi, eqj = i, j
                    continue
                cruncher.set_seq1(ai)
                # computing similarity is expensive, so use the quick
                # upper bounds first -- have seen this speed up messy
                # compares by a factor of 3.
                # note that ratio() is only expensive to compute the first
                # time it's called on a sequence pair; the expensive part
                # of the computation is cached by cruncher
                if cruncher.real_quick_ratio() > best_ratio and \
                      cruncher.quick_ratio() > best_ratio and \
                      cruncher.ratio() > best_ratio:
                    best_ratio, best_i, best_j = cruncher.ratio(), i, j
        if best_ratio < cutoff:
            # no non-identical "pretty close" pair
            if eqi is None:
                # no identical pair either -- treat it as a straight replace
                for line in self._plain_replace(a, alo, ahi, b, blo, bhi):
                    yield line
                return
            # no close pair, but an identical pair -- synch up on that
            best_i, best_j, best_ratio = eqi, eqj, 1.0
        else:
            # there's a close pair, so forget the identical pair (if any)
            eqi = None

        # a[best_i] very similar to b[best_j]; eqi is None iff they're not
        # identical

        # pump out diffs from before the synch point
        for line in self._fancy_helper(a, alo, best_i, b, blo, best_j):
            yield line

        # do intraline marking on the synch pair
        aelt, belt = a[best_i], b[best_j]
        if eqi is None:
            # pump out a '-', '?', '+', '?' quad for the synched lines
            atags = btags = ""
            cruncher.set_seqs(aelt, belt)
            for tag, ai1, ai2, bj1, bj2 in cruncher.get_opcodes():
                la, lb = ai2 - ai1, bj2 - bj1
                if tag == 'replace':
                    atags += '^' * la
                    btags += '^' * lb
                elif tag == 'delete':
                    atags += '-' * la
                elif tag == 'insert':
                    btags += '+' * lb
                elif tag == 'equal':
                    atags += ' ' * la
                    btags += ' ' * lb
                else:
                    raise ValueError, 'unknown tag ' + `tag`
            for line in self._qformat(aelt, belt, atags, btags):
                yield line
        else:
            # the synch pair is identical
            yield '  ' + aelt

        # pump out diffs from after the synch point
        for line in self._fancy_helper(a, best_i+1, ahi, b, best_j+1, bhi):
            yield line

    def _fancy_helper(self, a, alo, ahi, b, blo, bhi):
        g = []
        if alo < ahi:
            if blo < bhi:
                g = self._fancy_replace(a, alo, ahi, b, blo, bhi)
            else:
                g = self._dump('-', a, alo, ahi)
        elif blo < bhi:
            g = self._dump('+', b, blo, bhi)

        for line in g:
            yield line

    def _qformat(self, aline, bline, atags, btags):
        r"""
        Format "?" output and deal with leading tabs.

        Example:

        >>> d = Differ()
        >>> d._qformat('\tabcDefghiJkl\n', '\t\tabcdefGhijkl\n',
        ...            '  ^ ^  ^      ', '+  ^ ^  ^      ')
        >>> for line in d.results: print repr(line)
        ...
        '- \tabcDefghiJkl\n'
        '? \t ^ ^  ^\n'
        '+ \t\tabcdefGhijkl\n'
        '? \t  ^ ^  ^\n'
        """

        # Can hurt, but will probably help most of the time.
        common = min(_count_leading(aline, "\t"),
                     _count_leading(bline, "\t"))
        common = min(common, _count_leading(atags[:common], " "))
        atags = atags[common:].rstrip()
        btags = btags[common:].rstrip()

        yield "- " + aline
        if atags:
            yield "? %s%s\n" % ("\t" * common, atags)

        yield "+ " + bline
        if btags:
            yield "? %s%s\n" % ("\t" * common, btags)

# With respect to junk, an earlier version of ndiff simply refused to
# *start* a match with a junk element.  The result was cases like this:
#     before: private Thread currentThread;
#     after:  private volatile Thread currentThread;
# If you consider whitespace to be junk, the longest contiguous match
# not starting with junk is "e Thread currentThread".  So ndiff reported
# that "e volatil" was inserted between the 't' and the 'e' in "private".
# While an accurate view, to people that's absurd.  The current version
# looks for matching blocks that are entirely junk-free, then extends the
# longest one of those as far as possible but only with matching junk.
# So now "currentThread" is matched, then extended to suck up the
# preceding blank; then "private" is matched, and extended to suck up the
# following blank; then "Thread" is matched; and finally ndiff reports
# that "volatile " was inserted before "Thread".  The only quibble
# remaining is that perhaps it was really the case that " volatile"
# was inserted after "private".  I can live with that <wink>.

import re

def IS_LINE_JUNK(line, pat=re.compile(r"\s*#?\s*$").match):
    r"""
    Return 1 for ignorable line: iff `line` is blank or contains a single '#'.

    Examples:

    >>> IS_LINE_JUNK('\n')
    True
    >>> IS_LINE_JUNK('  #   \n')
    True
    >>> IS_LINE_JUNK('hello\n')
    False
    """

    return pat(line) is not None

def IS_CHARACTER_JUNK(ch, ws=" \t"):
    r"""
    Return 1 for ignorable character: iff `ch` is a space or tab.

    Examples:

    >>> IS_CHARACTER_JUNK(' ')
    True
    >>> IS_CHARACTER_JUNK('\t')
    True
    >>> IS_CHARACTER_JUNK('\n')
    False
    >>> IS_CHARACTER_JUNK('x')
    False
    """

    return ch in ws

del re

def ndiff(a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK):
    r"""
    Compare `a` and `b` (lists of strings); return a `Differ`-style delta.

    Optional keyword parameters `linejunk` and `charjunk` are for filter
    functions (or None):

    - linejunk: A function that should accept a single string argument, and
      return true iff the string is junk.  The default is None, and is
      recommended; as of Python 2.3, an adaptive notion of "noise" lines is
      used that does a good job on its own.

    - charjunk: A function that should accept a string of length 1. The
      default is module-level function IS_CHARACTER_JUNK, which filters out
      whitespace characters (a blank or tab; note: bad idea to include newline
      in this!).

    Tools/scripts/ndiff.py is a command-line front-end to this function.

    Example:

    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
    ...              'ore\ntree\nemu\n'.splitlines(1))
    >>> print ''.join(diff),
    - one
    ?  ^
    + ore
    ?  ^
    - two
    - three
    ?  -
    + tree
    + emu
    """
    return Differ(linejunk, charjunk).compare(a, b)

def restore(delta, which):
    r"""
    Generate one of the two sequences that generated a delta.

    Given a `delta` produced by `Differ.compare()` or `ndiff()`, extract
    lines originating from file 1 or 2 (parameter `which`), stripping off line
    prefixes.

    Examples:

    >>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1),
    ...              'ore\ntree\nemu\n'.splitlines(1))
    >>> diff = list(diff)
    >>> print ''.join(restore(diff, 1)),
    one
    two
    three
    >>> print ''.join(restore(diff, 2)),
    ore
    tree
    emu
    """
    try:
        tag = {1: "- ", 2: "+ "}[int(which)]
    except KeyError:
        raise ValueError, ('unknown delta choice (must be 1 or 2): %r'
                           % which)
    prefixes = ("  ", tag)
    for line in delta:
        if line[:2] in prefixes:
            yield line[2:]

def _test():
    import doctest, difflib
    return doctest.testmod(difflib)

if __name__ == "__main__":
    _test()
969' href='#n3969'>3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066
/*
 * This file compiles an abstract syntax tree (AST) into Python bytecode.
 *
 * The primary entry point is _PyAST_Compile(), which returns a
 * PyCodeObject.  The compiler makes several passes to build the code
 * object:
 *   1. Checks for future statements.  See future.c
 *   2. Builds a symbol table.  See symtable.c.
 *   3. Generate an instruction sequence. See compiler_mod() in this file.
 *   4. Generate a control flow graph and run optimizations on it.  See flowgraph.c.
 *   5. Assemble the basic blocks into final code.  See optimize_and_assemble() in
 *      this file, and assembler.c.
 *
 * Note that compiler_mod() suggests module, but the module ast type
 * (mod_ty) has cases for expressions and interactive statements.
 *
 * CAUTION: The VISIT_* macros abort the current function when they
 * encounter a problem. So don't invoke them when there is memory
 * which needs to be released. Code blocks are OK, as the compiler
 * structure takes care of releasing those.  Use the arena to manage
 * objects.
 */

#include <stdbool.h>

#include "Python.h"
#include "opcode.h"
#include "pycore_ast.h"           // _PyAST_GetDocString()
#define NEED_OPCODE_TABLES
#include "pycore_opcode_utils.h"
#undef NEED_OPCODE_TABLES
#include "pycore_code.h"          // _PyCode_New()
#include "pycore_compile.h"
#include "pycore_flowgraph.h"
#include "pycore_intrinsics.h"
#include "pycore_long.h"          // _PyLong_GetZero()
#include "pycore_pystate.h"       // _Py_GetConfig()
#include "pycore_setobject.h"     // _PySet_NextEntry()
#include "pycore_symtable.h"      // PySTEntryObject, _PyFuture_FromAST()

#define NEED_OPCODE_METADATA
#include "pycore_opcode_metadata.h" // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed
#undef NEED_OPCODE_METADATA

#define COMP_GENEXP   0
#define COMP_LISTCOMP 1
#define COMP_SETCOMP  2
#define COMP_DICTCOMP 3

/* A soft limit for stack use, to avoid excessive
 * memory use for large constants, etc.
 *
 * The value 30 is plucked out of thin air.
 * Code that could use more stack than this is
 * rare, so the exact value is unimportant.
 */
#define STACK_USE_GUIDELINE 30

#undef SUCCESS
#undef ERROR
#define SUCCESS 0
#define ERROR -1

#define RETURN_IF_ERROR(X)  \
    if ((X) == -1) {        \
        return ERROR;       \
    }

#define IS_TOP_LEVEL_AWAIT(C) ( \
        ((C)->c_flags.cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \
        && ((C)->u->u_ste->ste_type == ModuleBlock))

typedef _PyCompilerSrcLocation location;
typedef struct _PyCfgBuilder cfg_builder;

#define LOCATION(LNO, END_LNO, COL, END_COL) \
    ((const _PyCompilerSrcLocation){(LNO), (END_LNO), (COL), (END_COL)})

/* Return true if loc1 starts after loc2 ends. */
static inline bool
location_is_after(location loc1, location loc2) {
    return (loc1.lineno > loc2.end_lineno) ||
            ((loc1.lineno == loc2.end_lineno) &&
             (loc1.col_offset > loc2.end_col_offset));
}

#define LOC(x) SRC_LOCATION_FROM_AST(x)

typedef _PyCfgJumpTargetLabel jump_target_label;

static jump_target_label NO_LABEL = {-1};

#define SAME_LABEL(L1, L2) ((L1).id == (L2).id)
#define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL)))

#define NEW_JUMP_TARGET_LABEL(C, NAME) \
    jump_target_label NAME = instr_sequence_new_label(INSTR_SEQUENCE(C)); \
    if (!IS_LABEL(NAME)) { \
        return ERROR; \
    }

#define USE_LABEL(C, LBL) \
    RETURN_IF_ERROR(_PyCompile_InstructionSequence_UseLabel(INSTR_SEQUENCE(C), (LBL).id))


/* fblockinfo tracks the current frame block.

A frame block is used to handle loops, try/except, and try/finally.
It's called a frame block to distinguish it from a basic block in the
compiler IR.
*/

enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END,
                  WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER,
                  EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR };

struct fblockinfo {
    enum fblocktype fb_type;
    jump_target_label fb_block;
    /* (optional) type-specific exit or cleanup block */
    jump_target_label fb_exit;
    /* (optional) additional information required for unwinding */
    void *fb_datum;
};

enum {
    COMPILER_SCOPE_MODULE,
    COMPILER_SCOPE_CLASS,
    COMPILER_SCOPE_FUNCTION,
    COMPILER_SCOPE_ASYNC_FUNCTION,
    COMPILER_SCOPE_LAMBDA,
    COMPILER_SCOPE_COMPREHENSION,
    COMPILER_SCOPE_TYPEPARAMS,
};


typedef _PyCompile_Instruction instruction;
typedef _PyCompile_InstructionSequence instr_sequence;

#define INITIAL_INSTR_SEQUENCE_SIZE 100
#define INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE 10

/*
 * Resize the array if index is out of range.
 *
 * idx: the index we want to access
 * arr: pointer to the array
 * alloc: pointer to the capacity of the array
 * default_alloc: initial number of items
 * item_size: size of each item
 *
 */
int
_PyCompile_EnsureArrayLargeEnough(int idx, void **array, int *alloc,
                                  int default_alloc, size_t item_size)
{
    void *arr = *array;
    if (arr == NULL) {
        int new_alloc = default_alloc;
        if (idx >= new_alloc) {
            new_alloc = idx + default_alloc;
        }
        arr = PyObject_Calloc(new_alloc, item_size);
        if (arr == NULL) {
            PyErr_NoMemory();
            return ERROR;
        }
        *alloc = new_alloc;
    }
    else if (idx >= *alloc) {
        size_t oldsize = *alloc * item_size;
        int new_alloc = *alloc << 1;
        if (idx >= new_alloc) {
            new_alloc = idx + default_alloc;
        }
        size_t newsize = new_alloc * item_size;

        if (oldsize > (SIZE_MAX >> 1)) {
            PyErr_NoMemory();
            return ERROR;
        }

        assert(newsize > 0);
        void *tmp = PyObject_Realloc(arr, newsize);
        if (tmp == NULL) {
            PyErr_NoMemory();
            return ERROR;
        }
        *alloc = new_alloc;
        arr = tmp;
        memset((char *)arr + oldsize, 0, newsize - oldsize);
    }

    *array = arr;
    return SUCCESS;
}

static int
instr_sequence_next_inst(instr_sequence *seq) {
    assert(seq->s_instrs != NULL || seq->s_used == 0);

    RETURN_IF_ERROR(
        _PyCompile_EnsureArrayLargeEnough(seq->s_used + 1,
                                          (void**)&seq->s_instrs,
                                          &seq->s_allocated,
                                          INITIAL_INSTR_SEQUENCE_SIZE,
                                          sizeof(instruction)));
    assert(seq->s_allocated >= 0);
    assert(seq->s_used < seq->s_allocated);
    return seq->s_used++;
}

static jump_target_label
instr_sequence_new_label(instr_sequence *seq)
{
    jump_target_label lbl = {++seq->s_next_free_label};
    return lbl;
}

int
_PyCompile_InstructionSequence_UseLabel(instr_sequence *seq, int lbl)
{
    int old_size = seq->s_labelmap_size;
    RETURN_IF_ERROR(
        _PyCompile_EnsureArrayLargeEnough(lbl,
                                          (void**)&seq->s_labelmap,
                                           &seq->s_labelmap_size,
                                           INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE,
                                           sizeof(int)));

    for(int i = old_size; i < seq->s_labelmap_size; i++) {
        seq->s_labelmap[i] = -111;  /* something weird, for debugging */
    }
    seq->s_labelmap[lbl] = seq->s_used; /* label refers to the next instruction */
    return SUCCESS;
}


#define MAX_OPCODE 511

int
_PyCompile_InstructionSequence_Addop(instr_sequence *seq, int opcode, int oparg,
                                     location loc)
{
    assert(0 <= opcode && opcode <= MAX_OPCODE);
    assert(IS_WITHIN_OPCODE_RANGE(opcode));
    assert(OPCODE_HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0);
    assert(0 <= oparg && oparg < (1 << 30));

    int idx = instr_sequence_next_inst(seq);
    RETURN_IF_ERROR(idx);
    instruction *ci = &seq->s_instrs[idx];
    ci->i_opcode = opcode;
    ci->i_oparg = oparg;
    ci->i_loc = loc;
    return SUCCESS;
}

static int
instr_sequence_insert_instruction(instr_sequence *seq, int pos,
                                  int opcode, int oparg, location loc)
{
    assert(pos >= 0 && pos <= seq->s_used);
    int last_idx = instr_sequence_next_inst(seq);
    RETURN_IF_ERROR(last_idx);
    for (int i=last_idx-1; i >= pos; i--) {
        seq->s_instrs[i+1] = seq->s_instrs[i];
    }
    instruction *ci = &seq->s_instrs[pos];
    ci->i_opcode = opcode;
    ci->i_oparg = oparg;
    ci->i_loc = loc;

    /* fix the labels map */
    for(int lbl=0; lbl < seq->s_labelmap_size; lbl++) {
        if (seq->s_labelmap[lbl] >= pos) {
            seq->s_labelmap[lbl]++;
        }
    }
    return SUCCESS;
}

static void
instr_sequence_fini(instr_sequence *seq) {
    PyObject_Free(seq->s_labelmap);
    seq->s_labelmap = NULL;

    PyObject_Free(seq->s_instrs);
    seq->s_instrs = NULL;
}

static cfg_builder*
instr_sequence_to_cfg(instr_sequence *seq) {
    cfg_builder *g = _PyCfgBuilder_New();
    if (g == NULL) {
        return NULL;
    }

    /* There can be more than one label for the same offset. The
     * offset2lbl maping selects one of them which we use consistently.
     */

    int *offset2lbl = PyMem_Malloc(seq->s_used * sizeof(int));
    if (offset2lbl == NULL) {
        PyErr_NoMemory();
        goto error;
    }
    for (int i = 0; i < seq->s_used; i++) {
        offset2lbl[i] = -1;
    }
    for (int lbl=0; lbl < seq->s_labelmap_size; lbl++) {
        int offset = seq->s_labelmap[lbl];
        if (offset >= 0) {
            assert(offset < seq->s_used);
            offset2lbl[offset] = lbl;
        }
    }

    for (int i = 0; i < seq->s_used; i++) {
        int lbl = offset2lbl[i];
        if (lbl >= 0) {
            assert (lbl < seq->s_labelmap_size);
            jump_target_label lbl_ = {lbl};
            if (_PyCfgBuilder_UseLabel(g, lbl_) < 0) {
                goto error;
            }
        }
        instruction *instr = &seq->s_instrs[i];
        int opcode = instr->i_opcode;
        int oparg = instr->i_oparg;
        if (HAS_TARGET(opcode)) {
            int offset = seq->s_labelmap[oparg];
            assert(offset >= 0 && offset < seq->s_used);
            int lbl = offset2lbl[offset];
            assert(lbl >= 0 && lbl < seq->s_labelmap_size);
            oparg = lbl;
        }
        if (_PyCfgBuilder_Addop(g, opcode, oparg, instr->i_loc) < 0) {
            goto error;
        }
    }
    if (_PyCfgBuilder_CheckSize(g) < 0) {
        goto error;
    }
    PyMem_Free(offset2lbl);
    return g;
error:
    _PyCfgBuilder_Free(g);
    PyMem_Free(offset2lbl);
    return NULL;
}

/* The following items change on entry and exit of code blocks.
   They must be saved and restored when returning to a block.
*/
struct compiler_unit {
    PySTEntryObject *u_ste;

    int u_scope_type;

    PyObject *u_private;        /* for private name mangling */

    instr_sequence u_instr_sequence; /* codegen output */

    int u_nfblocks;
    int u_in_inlined_comp;

    struct fblockinfo u_fblock[CO_MAXBLOCKS];

    _PyCompile_CodeUnitMetadata u_metadata;
};

/* This struct captures the global state of a compilation.

The u pointer points to the current compilation unit, while units
for enclosing blocks are stored in c_stack.     The u and c_stack are
managed by compiler_enter_scope() and compiler_exit_scope().

Note that we don't track recursion levels during compilation - the
task of detecting and rejecting excessive levels of nesting is
handled by the symbol analysis pass.

*/

struct compiler {
    PyObject *c_filename;
    struct symtable *c_st;
    PyFutureFeatures c_future;   /* module's __future__ */
    PyCompilerFlags c_flags;

    int c_optimize;              /* optimization level */
    int c_interactive;           /* true if in interactive mode */
    int c_nestlevel;
    PyObject *c_const_cache;     /* Python dict holding all constants,
                                    including names tuple */
    struct compiler_unit *u; /* compiler state for current block */
    PyObject *c_stack;           /* Python list holding compiler_unit ptrs */
    PyArena *c_arena;            /* pointer to memory allocation arena */
};

#define INSTR_SEQUENCE(C) (&((C)->u->u_instr_sequence))


typedef struct {
    // A list of strings corresponding to name captures. It is used to track:
    // - Repeated name assignments in the same pattern.
    // - Different name assignments in alternatives.
    // - The order of name assignments in alternatives.
    PyObject *stores;
    // If 0, any name captures against our subject will raise.
    int allow_irrefutable;
    // An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop
    // i items off of the stack. The end result looks like this (with each block
    // falling through to the next):
    // fail_pop[4]: POP_TOP
    // fail_pop[3]: POP_TOP
    // fail_pop[2]: POP_TOP
    // fail_pop[1]: POP_TOP
    // fail_pop[0]: NOP
    jump_target_label *fail_pop;
    // The current length of fail_pop.
    Py_ssize_t fail_pop_size;
    // The number of items on top of the stack that need to *stay* on top of the
    // stack. Variable captures go beneath these. All of them will be popped on
    // failure.
    Py_ssize_t on_top;
} pattern_context;

static int codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc);

static void compiler_free(struct compiler *);
static int compiler_error(struct compiler *, location loc, const char *, ...);
static int compiler_warn(struct compiler *, location loc, const char *, ...);
static int compiler_nameop(struct compiler *, location, identifier, expr_context_ty);

static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
static int compiler_visit_stmt(struct compiler *, stmt_ty);
static int compiler_visit_keyword(struct compiler *, keyword_ty);
static int compiler_visit_expr(struct compiler *, expr_ty);
static int compiler_augassign(struct compiler *, stmt_ty);
static int compiler_annassign(struct compiler *, stmt_ty);
static int compiler_subscript(struct compiler *, expr_ty);
static int compiler_slice(struct compiler *, expr_ty);

static bool are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t);


static int compiler_with(struct compiler *, stmt_ty, int);
static int compiler_async_with(struct compiler *, stmt_ty, int);
static int compiler_async_for(struct compiler *, stmt_ty);
static int compiler_call_simple_kw_helper(struct compiler *c,
                                          location loc,
                                          asdl_keyword_seq *keywords,
                                          Py_ssize_t nkwelts);
static int compiler_call_helper(struct compiler *c, location loc,
                                int n, asdl_expr_seq *args,
                                asdl_keyword_seq *keywords);
static int compiler_try_except(struct compiler *, stmt_ty);
static int compiler_try_star_except(struct compiler *, stmt_ty);
static int compiler_set_qualname(struct compiler *);

static int compiler_sync_comprehension_generator(
                                      struct compiler *c, location loc,
                                      asdl_comprehension_seq *generators, int gen_index,
                                      int depth,
                                      expr_ty elt, expr_ty val, int type,
                                      int iter_on_stack);

static int compiler_async_comprehension_generator(
                                      struct compiler *c, location loc,
                                      asdl_comprehension_seq *generators, int gen_index,
                                      int depth,
                                      expr_ty elt, expr_ty val, int type,
                                      int iter_on_stack);

static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *);
static int compiler_match(struct compiler *, stmt_ty);
static int compiler_pattern_subpattern(struct compiler *,
                                       pattern_ty, pattern_context *);

static PyCodeObject *optimize_and_assemble(struct compiler *, int addNone);

#define CAPSULE_NAME "compile.c compiler unit"


static int
compiler_setup(struct compiler *c, mod_ty mod, PyObject *filename,
               PyCompilerFlags *flags, int optimize, PyArena *arena)
{
    PyCompilerFlags local_flags = _PyCompilerFlags_INIT;

    c->c_const_cache = PyDict_New();
    if (!c->c_const_cache) {
        return ERROR;
    }

    c->c_stack = PyList_New(0);
    if (!c->c_stack) {
        return ERROR;
    }

    c->c_filename = Py_NewRef(filename);
    c->c_arena = arena;
    if (!_PyFuture_FromAST(mod, filename, &c->c_future)) {
        return ERROR;
    }
    if (!flags) {
        flags = &local_flags;
    }
    int merged = c->c_future.ff_features | flags->cf_flags;
    c->c_future.ff_features = merged;
    flags->cf_flags = merged;
    c->c_flags = *flags;
    c->c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize;
    c->c_nestlevel = 0;

    if (!_PyAST_Optimize(mod, arena, c->c_optimize, merged)) {
        return ERROR;
    }
    c->c_st = _PySymtable_Build(mod, filename, &c->c_future);
    if (c->c_st == NULL) {
        if (!PyErr_Occurred()) {
            PyErr_SetString(PyExc_SystemError, "no symtable");
        }
        return ERROR;
    }
    return SUCCESS;
}

static struct compiler*
new_compiler(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags,
             int optimize, PyArena *arena)
{
    struct compiler *c = PyMem_Calloc(1, sizeof(struct compiler));
    if (c == NULL) {
        return NULL;
    }
    if (compiler_setup(c, mod, filename, pflags, optimize, arena) < 0) {
        compiler_free(c);
        return NULL;
    }
    return c;
}

PyCodeObject *
_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags,
               int optimize, PyArena *arena)
{
    assert(!PyErr_Occurred());
    struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena);
    if (c == NULL) {
        return NULL;
    }

    PyCodeObject *co = compiler_mod(c, mod);
    compiler_free(c);
    assert(co || PyErr_Occurred());
    return co;
}

int
_PyCompile_AstOptimize(mod_ty mod, PyObject *filename, PyCompilerFlags *cf,
                       int optimize, PyArena *arena)
{
    PyFutureFeatures future;
    if (!_PyFuture_FromAST(mod, filename, &future)) {
        return -1;
    }
    int flags = future.ff_features | cf->cf_flags;
    if (optimize == -1) {
        optimize = _Py_GetConfig()->optimization_level;
    }
    if (!_PyAST_Optimize(mod, arena, optimize, flags)) {
        return -1;
    }
    return 0;
}

static void
compiler_free(struct compiler *c)
{
    if (c->c_st)
        _PySymtable_Free(c->c_st);
    Py_XDECREF(c->c_filename);
    Py_XDECREF(c->c_const_cache);
    Py_XDECREF(c->c_stack);
    PyMem_Free(c);
}

static PyObject *
list2dict(PyObject *list)
{
    Py_ssize_t i, n;
    PyObject *v, *k;
    PyObject *dict = PyDict_New();
    if (!dict) return NULL;

    n = PyList_Size(list);
    for (i = 0; i < n; i++) {
        v = PyLong_FromSsize_t(i);
        if (!v) {
            Py_DECREF(dict);
            return NULL;
        }
        k = PyList_GET_ITEM(list, i);
        if (PyDict_SetItem(dict, k, v) < 0) {
            Py_DECREF(v);
            Py_DECREF(dict);
            return NULL;
        }
        Py_DECREF(v);
    }
    return dict;
}

/* Return new dict containing names from src that match scope(s).

src is a symbol table dictionary.  If the scope of a name matches
either scope_type or flag is set, insert it into the new dict.  The
values are integers, starting at offset and increasing by one for
each key.
*/

static PyObject *
dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
{
    Py_ssize_t i = offset, scope, num_keys, key_i;
    PyObject *k, *v, *dest = PyDict_New();
    PyObject *sorted_keys;

    assert(offset >= 0);
    if (dest == NULL)
        return NULL;

    /* Sort the keys so that we have a deterministic order on the indexes
       saved in the returned dictionary.  These indexes are used as indexes
       into the free and cell var storage.  Therefore if they aren't
       deterministic, then the generated bytecode is not deterministic.
    */
    sorted_keys = PyDict_Keys(src);
    if (sorted_keys == NULL)
        return NULL;
    if (PyList_Sort(sorted_keys) != 0) {
        Py_DECREF(sorted_keys);
        return NULL;
    }
    num_keys = PyList_GET_SIZE(sorted_keys);

    for (key_i = 0; key_i < num_keys; key_i++) {
        /* XXX this should probably be a macro in symtable.h */
        long vi;
        k = PyList_GET_ITEM(sorted_keys, key_i);
        v = PyDict_GetItemWithError(src, k);
        assert(v && PyLong_Check(v));
        vi = PyLong_AS_LONG(v);
        scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;

        if (scope == scope_type || vi & flag) {
            PyObject *item = PyLong_FromSsize_t(i);
            if (item == NULL) {
                Py_DECREF(sorted_keys);
                Py_DECREF(dest);
                return NULL;
            }
            i++;
            if (PyDict_SetItem(dest, k, item) < 0) {
                Py_DECREF(sorted_keys);
                Py_DECREF(item);
                Py_DECREF(dest);
                return NULL;
            }
            Py_DECREF(item);
        }
    }
    Py_DECREF(sorted_keys);
    return dest;
}

static void
compiler_unit_free(struct compiler_unit *u)
{
    instr_sequence_fini(&u->u_instr_sequence);
    Py_CLEAR(u->u_ste);
    Py_CLEAR(u->u_metadata.u_name);
    Py_CLEAR(u->u_metadata.u_qualname);
    Py_CLEAR(u->u_metadata.u_consts);
    Py_CLEAR(u->u_metadata.u_names);
    Py_CLEAR(u->u_metadata.u_varnames);
    Py_CLEAR(u->u_metadata.u_freevars);
    Py_CLEAR(u->u_metadata.u_cellvars);
    Py_CLEAR(u->u_metadata.u_fasthidden);
    Py_CLEAR(u->u_private);
    PyObject_Free(u);
}

static int
compiler_set_qualname(struct compiler *c)
{
    Py_ssize_t stack_size;
    struct compiler_unit *u = c->u;
    PyObject *name, *base;

    base = NULL;
    stack_size = PyList_GET_SIZE(c->c_stack);
    assert(stack_size >= 1);
    if (stack_size > 1) {
        int scope, force_global = 0;
        struct compiler_unit *parent;
        PyObject *mangled, *capsule;

        capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
        parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(parent);
        if (parent->u_scope_type == COMPILER_SCOPE_TYPEPARAMS) {
            /* The parent is a type parameter scope, so we need to
               look at the grandparent. */
            if (stack_size == 2) {
                // If we're immediately within the module, we can skip
                // the rest and just set the qualname to be the same as name.
                u->u_metadata.u_qualname = Py_NewRef(u->u_metadata.u_name);
                return SUCCESS;
            }
            capsule = PyList_GET_ITEM(c->c_stack, stack_size - 2);
            parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
            assert(parent);
        }

        if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_CLASS) {
            assert(u->u_metadata.u_name);
            mangled = _Py_Mangle(parent->u_private, u->u_metadata.u_name);
            if (!mangled) {
                return ERROR;
            }

            scope = _PyST_GetScope(parent->u_ste, mangled);
            Py_DECREF(mangled);
            assert(scope != GLOBAL_IMPLICIT);
            if (scope == GLOBAL_EXPLICIT)
                force_global = 1;
        }

        if (!force_global) {
            if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_LAMBDA)
            {
                _Py_DECLARE_STR(dot_locals, ".<locals>");
                base = PyUnicode_Concat(parent->u_metadata.u_qualname,
                                        &_Py_STR(dot_locals));
                if (base == NULL) {
                    return ERROR;
                }
            }
            else {
                base = Py_NewRef(parent->u_metadata.u_qualname);
            }
        }
    }

    if (base != NULL) {
        _Py_DECLARE_STR(dot, ".");
        name = PyUnicode_Concat(base, &_Py_STR(dot));
        Py_DECREF(base);
        if (name == NULL) {
            return ERROR;
        }
        PyUnicode_Append(&name, u->u_metadata.u_name);
        if (name == NULL) {
            return ERROR;
        }
    }
    else {
        name = Py_NewRef(u->u_metadata.u_name);
    }
    u->u_metadata.u_qualname = name;

    return SUCCESS;
}

/* Return the stack effect of opcode with argument oparg.

   Some opcodes have different stack effect when jump to the target and
   when not jump. The 'jump' parameter specifies the case:

   * 0 -- when not jump
   * 1 -- when jump
   * -1 -- maximal
 */
static int
stack_effect(int opcode, int oparg, int jump)
{
    if (0 <= opcode && opcode <= MAX_REAL_OPCODE) {
        if (_PyOpcode_Deopt[opcode] != opcode) {
            // Specialized instructions are not supported.
            return PY_INVALID_STACK_EFFECT;
        }
        int popped, pushed;
        if (jump > 0) {
            popped = _PyOpcode_num_popped(opcode, oparg, true);
            pushed = _PyOpcode_num_pushed(opcode, oparg, true);
        }
        else {
            popped = _PyOpcode_num_popped(opcode, oparg, false);
            pushed = _PyOpcode_num_pushed(opcode, oparg, false);
        }
        if (popped < 0 || pushed < 0) {
            return PY_INVALID_STACK_EFFECT;
        }
        if (jump >= 0) {
            return pushed - popped;
        }
        if (jump < 0) {
            // Compute max(pushed - popped, alt_pushed - alt_popped)
            int alt_popped = _PyOpcode_num_popped(opcode, oparg, true);
            int alt_pushed = _PyOpcode_num_pushed(opcode, oparg, true);
            if (alt_popped < 0 || alt_pushed < 0) {
                return PY_INVALID_STACK_EFFECT;
            }
            int diff = pushed - popped;
            int alt_diff = alt_pushed - alt_popped;
            if (alt_diff > diff) {
                return alt_diff;
            }
            return diff;
        }
    }

    // Pseudo ops
    switch (opcode) {
        case POP_BLOCK:
        case JUMP:
        case JUMP_NO_INTERRUPT:
            return 0;

        case EXIT_INIT_CHECK:
            return -1;

        /* Exception handling pseudo-instructions */
        case SETUP_FINALLY:
            /* 0 in the normal flow.
             * Restore the stack position and push 1 value before jumping to
             * the handler if an exception be raised. */
            return jump ? 1 : 0;
        case SETUP_CLEANUP:
            /* As SETUP_FINALLY, but pushes lasti as well */
            return jump ? 2 : 0;
        case SETUP_WITH:
            /* 0 in the normal flow.
             * Restore the stack position to the position before the result
             * of __(a)enter__ and push 2 values before jumping to the handler
             * if an exception be raised. */
            return jump ? 1 : 0;

        case STORE_FAST_MAYBE_NULL:
            return -1;
        case LOAD_CLOSURE:
            return 1;
        case LOAD_METHOD:
            return 1;
        case LOAD_SUPER_METHOD:
        case LOAD_ZERO_SUPER_METHOD:
        case LOAD_ZERO_SUPER_ATTR:
            return -1;
        default:
            return PY_INVALID_STACK_EFFECT;
    }

    return PY_INVALID_STACK_EFFECT; /* not reachable */
}

int
PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
{
    return stack_effect(opcode, oparg, jump);
}

int
PyCompile_OpcodeStackEffect(int opcode, int oparg)
{
    return stack_effect(opcode, oparg, -1);
}

int
_PyCompile_OpcodeIsValid(int opcode)
{
    return IS_VALID_OPCODE(opcode);
}

int
_PyCompile_OpcodeHasArg(int opcode)
{
    return OPCODE_HAS_ARG(opcode);
}

int
_PyCompile_OpcodeHasConst(int opcode)
{
    return OPCODE_HAS_CONST(opcode);
}

int
_PyCompile_OpcodeHasName(int opcode)
{
    return OPCODE_HAS_NAME(opcode);
}

int
_PyCompile_OpcodeHasJump(int opcode)
{
    return OPCODE_HAS_JUMP(opcode);
}

int
_PyCompile_OpcodeHasFree(int opcode)
{
    return OPCODE_HAS_FREE(opcode);
}

int
_PyCompile_OpcodeHasLocal(int opcode)
{
    return OPCODE_HAS_LOCAL(opcode);
}

int
_PyCompile_OpcodeHasExc(int opcode)
{
    return IS_BLOCK_PUSH_OPCODE(opcode);
}

static int
codegen_addop_noarg(instr_sequence *seq, int opcode, location loc)
{
    assert(!OPCODE_HAS_ARG(opcode));
    assert(!IS_ASSEMBLER_OPCODE(opcode));
    return _PyCompile_InstructionSequence_Addop(seq, opcode, 0, loc);
}

static Py_ssize_t
dict_add_o(PyObject *dict, PyObject *o)
{
    PyObject *v;
    Py_ssize_t arg;

    v = PyDict_GetItemWithError(dict, o);
    if (!v) {
        if (PyErr_Occurred()) {
            return ERROR;
        }
        arg = PyDict_GET_SIZE(dict);
        v = PyLong_FromSsize_t(arg);
        if (!v) {
            return ERROR;
        }
        if (PyDict_SetItem(dict, o, v) < 0) {
            Py_DECREF(v);
            return ERROR;
        }
        Py_DECREF(v);
    }
    else
        arg = PyLong_AsLong(v);
    return arg;
}

// Merge const *o* recursively and return constant key object.
static PyObject*
merge_consts_recursive(PyObject *const_cache, PyObject *o)
{
    assert(PyDict_CheckExact(const_cache));
    // None and Ellipsis are immortal objects, and key is the singleton.
    // No need to merge object and key.
    if (o == Py_None || o == Py_Ellipsis) {
        return o;
    }

    PyObject *key = _PyCode_ConstantKey(o);
    if (key == NULL) {
        return NULL;
    }

    // t is borrowed reference
    PyObject *t = PyDict_SetDefault(const_cache, key, key);
    if (t != key) {
        // o is registered in const_cache.  Just use it.
        Py_XINCREF(t);
        Py_DECREF(key);
        return t;
    }

    // We registered o in const_cache.
    // When o is a tuple or frozenset, we want to merge its
    // items too.
    if (PyTuple_CheckExact(o)) {
        Py_ssize_t len = PyTuple_GET_SIZE(o);
        for (Py_ssize_t i = 0; i < len; i++) {
            PyObject *item = PyTuple_GET_ITEM(o, i);
            PyObject *u = merge_consts_recursive(const_cache, item);
            if (u == NULL) {
                Py_DECREF(key);
                return NULL;
            }

            // See _PyCode_ConstantKey()
            PyObject *v;  // borrowed
            if (PyTuple_CheckExact(u)) {
                v = PyTuple_GET_ITEM(u, 1);
            }
            else {
                v = u;
            }
            if (v != item) {
                PyTuple_SET_ITEM(o, i, Py_NewRef(v));
                Py_DECREF(item);
            }

            Py_DECREF(u);
        }
    }
    else if (PyFrozenSet_CheckExact(o)) {
        // *key* is tuple. And its first item is frozenset of
        // constant keys.
        // See _PyCode_ConstantKey() for detail.
        assert(PyTuple_CheckExact(key));
        assert(PyTuple_GET_SIZE(key) == 2);

        Py_ssize_t len = PySet_GET_SIZE(o);
        if (len == 0) {  // empty frozenset should not be re-created.
            return key;
        }
        PyObject *tuple = PyTuple_New(len);
        if (tuple == NULL) {
            Py_DECREF(key);
            return NULL;
        }
        Py_ssize_t i = 0, pos = 0;
        PyObject *item;
        Py_hash_t hash;
        while (_PySet_NextEntry(o, &pos, &item, &hash)) {
            PyObject *k = merge_consts_recursive(const_cache, item);
            if (k == NULL) {
                Py_DECREF(tuple);
                Py_DECREF(key);
                return NULL;
            }
            PyObject *u;
            if (PyTuple_CheckExact(k)) {
                u = Py_NewRef(PyTuple_GET_ITEM(k, 1));
                Py_DECREF(k);
            }
            else {
                u = k;
            }
            PyTuple_SET_ITEM(tuple, i, u);  // Steals reference of u.
            i++;
        }

        // Instead of rewriting o, we create new frozenset and embed in the
        // key tuple.  Caller should get merged frozenset from the key tuple.
        PyObject *new = PyFrozenSet_New(tuple);
        Py_DECREF(tuple);
        if (new == NULL) {
            Py_DECREF(key);
            return NULL;
        }
        assert(PyTuple_GET_ITEM(key, 1) == o);
        Py_DECREF(o);
        PyTuple_SET_ITEM(key, 1, new);
    }

    return key;
}

static Py_ssize_t
compiler_add_const(PyObject *const_cache, struct compiler_unit *u, PyObject *o)
{
    assert(PyDict_CheckExact(const_cache));
    PyObject *key = merge_consts_recursive(const_cache, o);
    if (key == NULL) {
        return ERROR;
    }

    Py_ssize_t arg = dict_add_o(u->u_metadata.u_consts, key);
    Py_DECREF(key);
    return arg;
}

static int
compiler_addop_load_const(PyObject *const_cache, struct compiler_unit *u, location loc, PyObject *o)
{
    Py_ssize_t arg = compiler_add_const(const_cache, u, o);
    if (arg < 0) {
        return ERROR;
    }
    return codegen_addop_i(&u->u_instr_sequence, LOAD_CONST, arg, loc);
}

static int
compiler_addop_o(struct compiler_unit *u, location loc,
                 int opcode, PyObject *dict, PyObject *o)
{
    Py_ssize_t arg = dict_add_o(dict, o);
    if (arg < 0) {
        return ERROR;
    }
    return codegen_addop_i(&u->u_instr_sequence, opcode, arg, loc);
}

static int
compiler_addop_name(struct compiler_unit *u, location loc,
                    int opcode, PyObject *dict, PyObject *o)
{
    PyObject *mangled = _Py_Mangle(u->u_private, o);
    if (!mangled) {
        return ERROR;
    }
    Py_ssize_t arg = dict_add_o(dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0) {
        return ERROR;
    }
    if (opcode == LOAD_ATTR) {
        arg <<= 1;
    }
    if (opcode == LOAD_METHOD) {
        assert(SAME_OPCODE_METADATA(LOAD_METHOD, LOAD_ATTR));
        opcode = LOAD_ATTR;
        arg <<= 1;
        arg |= 1;
    }
    if (opcode == LOAD_SUPER_ATTR) {
        arg <<= 2;
        arg |= 2;
    }
    if (opcode == LOAD_SUPER_METHOD) {
        assert(SAME_OPCODE_METADATA(LOAD_SUPER_METHOD, LOAD_SUPER_ATTR));
        opcode = LOAD_SUPER_ATTR;
        arg <<= 2;
        arg |= 3;
    }
    if (opcode == LOAD_ZERO_SUPER_ATTR) {
        assert(SAME_OPCODE_METADATA(LOAD_ZERO_SUPER_ATTR, LOAD_SUPER_ATTR));
        opcode = LOAD_SUPER_ATTR;
        arg <<= 2;
    }
    if (opcode == LOAD_ZERO_SUPER_METHOD) {
        assert(SAME_OPCODE_METADATA(LOAD_ZERO_SUPER_METHOD, LOAD_SUPER_ATTR));
        opcode = LOAD_SUPER_ATTR;
        arg <<= 2;
        arg |= 1;
    }
    return codegen_addop_i(&u->u_instr_sequence, opcode, arg, loc);
}

/* Add an opcode with an integer argument */
static int
codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc)
{
    /* oparg value is unsigned, but a signed C int is usually used to store
       it in the C code (like Python/ceval.c).

       Limit to 32-bit signed C int (rather than INT_MAX) for portability.

       The argument of a concrete bytecode instruction is limited to 8-bit.
       EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */

    int oparg_ = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
    assert(!IS_ASSEMBLER_OPCODE(opcode));
    return _PyCompile_InstructionSequence_Addop(seq, opcode, oparg_, loc);
}

static int
codegen_addop_j(instr_sequence *seq, location loc,
                int opcode, jump_target_label target)
{
    assert(IS_LABEL(target));
    assert(OPCODE_HAS_JUMP(opcode) || IS_BLOCK_PUSH_OPCODE(opcode));
    assert(!IS_ASSEMBLER_OPCODE(opcode));
    return _PyCompile_InstructionSequence_Addop(seq, opcode, target.id, loc);
}

#define RETURN_IF_ERROR_IN_SCOPE(C, CALL) { \
    if ((CALL) < 0) { \
        compiler_exit_scope((C)); \
        return ERROR; \
    } \
}

#define ADDOP(C, LOC, OP) \
    RETURN_IF_ERROR(codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC)))

#define ADDOP_IN_SCOPE(C, LOC, OP) RETURN_IF_ERROR_IN_SCOPE((C), codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC)))

#define ADDOP_LOAD_CONST(C, LOC, O) \
    RETURN_IF_ERROR(compiler_addop_load_const((C)->c_const_cache, (C)->u, (LOC), (O)))

/* Same as ADDOP_LOAD_CONST, but steals a reference. */
#define ADDOP_LOAD_CONST_NEW(C, LOC, O) { \
    PyObject *__new_const = (O); \
    if (__new_const == NULL) { \
        return ERROR; \
    } \
    if (compiler_addop_load_const((C)->c_const_cache, (C)->u, (LOC), __new_const) < 0) { \
        Py_DECREF(__new_const); \
        return ERROR; \
    } \
    Py_DECREF(__new_const); \
}

#define ADDOP_N(C, LOC, OP, O, TYPE) { \
    assert(!OPCODE_HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \
    if (compiler_addop_o((C)->u, (LOC), (OP), (C)->u->u_metadata.u_ ## TYPE, (O)) < 0) { \
        Py_DECREF((O)); \
        return ERROR; \
    } \
    Py_DECREF((O)); \
}

#define ADDOP_NAME(C, LOC, OP, O, TYPE) \
    RETURN_IF_ERROR(compiler_addop_name((C)->u, (LOC), (OP), (C)->u->u_metadata.u_ ## TYPE, (O)))

#define ADDOP_I(C, LOC, OP, O) \
    RETURN_IF_ERROR(codegen_addop_i(INSTR_SEQUENCE(C), (OP), (O), (LOC)))

#define ADDOP_JUMP(C, LOC, OP, O) \
    RETURN_IF_ERROR(codegen_addop_j(INSTR_SEQUENCE(C), (LOC), (OP), (O)))

#define ADDOP_COMPARE(C, LOC, CMP) \
    RETURN_IF_ERROR(compiler_addcompare((C), (LOC), (cmpop_ty)(CMP)))

#define ADDOP_BINARY(C, LOC, BINOP) \
    RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), false))

#define ADDOP_INPLACE(C, LOC, BINOP) \
    RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), true))

#define ADD_YIELD_FROM(C, LOC, await) \
    RETURN_IF_ERROR(compiler_add_yield_from((C), (LOC), (await)))

#define POP_EXCEPT_AND_RERAISE(C, LOC) \
    RETURN_IF_ERROR(compiler_pop_except_and_reraise((C), (LOC)))

#define ADDOP_YIELD(C, LOC) \
    RETURN_IF_ERROR(addop_yield((C), (LOC)))

/* VISIT and VISIT_SEQ takes an ASDL type as their second argument.  They use
   the ASDL name to synthesize the name of the C type and the visit function.
*/

#define VISIT(C, TYPE, V) \
    RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), (V)));

#define VISIT_IN_SCOPE(C, TYPE, V) \
    RETURN_IF_ERROR_IN_SCOPE((C), compiler_visit_ ## TYPE((C), (V)))

#define VISIT_SEQ(C, TYPE, SEQ) { \
    int _i; \
    asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), elt)); \
    } \
}

#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
    int _i; \
    asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (compiler_visit_ ## TYPE((C), elt) < 0) { \
            compiler_exit_scope(C); \
            return ERROR; \
        } \
    } \
}


static int
compiler_enter_scope(struct compiler *c, identifier name,
                     int scope_type, void *key, int lineno)
{
    location loc = LOCATION(lineno, lineno, 0, 0);

    struct compiler_unit *u;

    u = (struct compiler_unit *)PyObject_Calloc(1, sizeof(
                                            struct compiler_unit));
    if (!u) {
        PyErr_NoMemory();
        return ERROR;
    }
    u->u_scope_type = scope_type;
    u->u_metadata.u_argcount = 0;
    u->u_metadata.u_posonlyargcount = 0;
    u->u_metadata.u_kwonlyargcount = 0;
    u->u_ste = _PySymtable_Lookup(c->c_st, key);
    if (!u->u_ste) {
        compiler_unit_free(u);
        return ERROR;
    }
    u->u_metadata.u_name = Py_NewRef(name);
    u->u_metadata.u_varnames = list2dict(u->u_ste->ste_varnames);
    if (!u->u_metadata.u_varnames) {
        compiler_unit_free(u);
        return ERROR;
    }
    u->u_metadata.u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, DEF_COMP_CELL, 0);
    if (!u->u_metadata.u_cellvars) {
        compiler_unit_free(u);
        return ERROR;
    }
    if (u->u_ste->ste_needs_class_closure) {
        /* Cook up an implicit __class__ cell. */
        Py_ssize_t res;
        assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
        res = dict_add_o(u->u_metadata.u_cellvars, &_Py_ID(__class__));
        if (res < 0) {
            compiler_unit_free(u);
            return ERROR;
        }
    }
    if (u->u_ste->ste_needs_classdict) {
        /* Cook up an implicit __classdict__ cell. */
        Py_ssize_t res;
        assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
        res = dict_add_o(u->u_metadata.u_cellvars, &_Py_ID(__classdict__));
        if (res < 0) {
            compiler_unit_free(u);
            return ERROR;
        }
    }

    u->u_metadata.u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
                               PyDict_GET_SIZE(u->u_metadata.u_cellvars));
    if (!u->u_metadata.u_freevars) {
        compiler_unit_free(u);
        return ERROR;
    }

    u->u_metadata.u_fasthidden = PyDict_New();
    if (!u->u_metadata.u_fasthidden) {
        compiler_unit_free(u);
        return ERROR;
    }

    u->u_nfblocks = 0;
    u->u_in_inlined_comp = 0;
    u->u_metadata.u_firstlineno = lineno;
    u->u_metadata.u_consts = PyDict_New();
    if (!u->u_metadata.u_consts) {
        compiler_unit_free(u);
        return ERROR;
    }
    u->u_metadata.u_names = PyDict_New();
    if (!u->u_metadata.u_names) {
        compiler_unit_free(u);
        return ERROR;
    }

    u->u_private = NULL;

    /* Push the old compiler_unit on the stack. */
    if (c->u) {
        PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
        if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
            Py_XDECREF(capsule);
            compiler_unit_free(u);
            return ERROR;
        }
        Py_DECREF(capsule);
        u->u_private = Py_XNewRef(c->u->u_private);
    }
    c->u = u;

    c->c_nestlevel++;

    if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
        loc.lineno = 0;
    }
    else {
        RETURN_IF_ERROR(compiler_set_qualname(c));
    }
    ADDOP_I(c, loc, RESUME, RESUME_AT_FUNC_START);

    if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
        loc.lineno = -1;
    }
    return SUCCESS;
}

static void
compiler_exit_scope(struct compiler *c)
{
    // Don't call PySequence_DelItem() with an exception raised
    PyObject *exc = PyErr_GetRaisedException();

    c->c_nestlevel--;
    compiler_unit_free(c->u);
    /* Restore c->u to the parent unit. */
    Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1;
    if (n >= 0) {
        PyObject *capsule = PyList_GET_ITEM(c->c_stack, n);
        c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(c->u);
        /* we are deleting from a list so this really shouldn't fail */
        if (PySequence_DelItem(c->c_stack, n) < 0) {
            PyErr_FormatUnraisable("Exception ignored on removing "
                                   "the last compiler stack item");
        }
    }
    else {
        c->u = NULL;
    }

    PyErr_SetRaisedException(exc);
}

/* Search if variable annotations are present statically in a block. */

static bool
find_ann(asdl_stmt_seq *stmts)
{
    int i, j, res = 0;
    stmt_ty st;

    for (i = 0; i < asdl_seq_LEN(stmts); i++) {
        st = (stmt_ty)asdl_seq_GET(stmts, i);
        switch (st->kind) {
        case AnnAssign_kind:
            return true;
        case For_kind:
            res = find_ann(st->v.For.body) ||
                  find_ann(st->v.For.orelse);
            break;
        case AsyncFor_kind:
            res = find_ann(st->v.AsyncFor.body) ||
                  find_ann(st->v.AsyncFor.orelse);
            break;
        case While_kind:
            res = find_ann(st->v.While.body) ||
                  find_ann(st->v.While.orelse);
            break;
        case If_kind:
            res = find_ann(st->v.If.body) ||
                  find_ann(st->v.If.orelse);
            break;
        case With_kind:
            res = find_ann(st->v.With.body);
            break;
        case AsyncWith_kind:
            res = find_ann(st->v.AsyncWith.body);
            break;
        case Try_kind:
            for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
                excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
                    st->v.Try.handlers, j);
                if (find_ann(handler->v.ExceptHandler.body)) {
                    return true;
                }
            }
            res = find_ann(st->v.Try.body) ||
                  find_ann(st->v.Try.finalbody) ||
                  find_ann(st->v.Try.orelse);
            break;
        case TryStar_kind:
            for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) {
                excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
                    st->v.TryStar.handlers, j);
                if (find_ann(handler->v.ExceptHandler.body)) {
                    return true;
                }
            }
            res = find_ann(st->v.TryStar.body) ||
                  find_ann(st->v.TryStar.finalbody) ||
                  find_ann(st->v.TryStar.orelse);
            break;
        case Match_kind:
            for (j = 0; j < asdl_seq_LEN(st->v.Match.cases); j++) {
                match_case_ty match_case = (match_case_ty)asdl_seq_GET(
                    st->v.Match.cases, j);
                if (find_ann(match_case->body)) {
                    return true;
                }
            }
            break;
        default:
            res = false;
            break;
        }
        if (res) {
            break;
        }
    }
    return res;
}

/*
 * Frame block handling functions
 */

static int
compiler_push_fblock(struct compiler *c, location loc,
                     enum fblocktype t, jump_target_label block_label,
                     jump_target_label exit, void *datum)
{
    struct fblockinfo *f;
    if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
        return compiler_error(c, loc, "too many statically nested blocks");
    }
    f = &c->u->u_fblock[c->u->u_nfblocks++];
    f->fb_type = t;
    f->fb_block = block_label;
    f->fb_exit = exit;
    f->fb_datum = datum;
    return SUCCESS;
}

static void
compiler_pop_fblock(struct compiler *c, enum fblocktype t, jump_target_label block_label)
{
    struct compiler_unit *u = c->u;
    assert(u->u_nfblocks > 0);
    u->u_nfblocks--;
    assert(u->u_fblock[u->u_nfblocks].fb_type == t);
    assert(SAME_LABEL(u->u_fblock[u->u_nfblocks].fb_block, block_label));
}

static int
compiler_call_exit_with_nones(struct compiler *c, location loc)
{
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADDOP_I(c, loc, CALL, 2);
    return SUCCESS;
}

static int
compiler_add_yield_from(struct compiler *c, location loc, int await)
{
    NEW_JUMP_TARGET_LABEL(c, send);
    NEW_JUMP_TARGET_LABEL(c, fail);
    NEW_JUMP_TARGET_LABEL(c, exit);

    USE_LABEL(c, send);
    ADDOP_JUMP(c, loc, SEND, exit);
    // Set up a virtual try/except to handle when StopIteration is raised during
    // a close or throw call. The only way YIELD_VALUE raises if they do!
    ADDOP_JUMP(c, loc, SETUP_FINALLY, fail);
    ADDOP_I(c, loc, YIELD_VALUE, 1);
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    ADDOP_I(c, loc, RESUME, await ? RESUME_AFTER_AWAIT : RESUME_AFTER_YIELD_FROM);
    ADDOP_JUMP(c, loc, JUMP_NO_INTERRUPT, send);

    USE_LABEL(c, fail);
    ADDOP(c, loc, CLEANUP_THROW);

    USE_LABEL(c, exit);
    ADDOP(c, loc, END_SEND);
    return SUCCESS;
}

static int
compiler_pop_except_and_reraise(struct compiler *c, location loc)
{
    /* Stack contents
     * [exc_info, lasti, exc]            COPY        3
     * [exc_info, lasti, exc, exc_info]  POP_EXCEPT
     * [exc_info, lasti, exc]            RERAISE      1
     * (exception_unwind clears the stack)
     */

    ADDOP_I(c, loc, COPY, 3);
    ADDOP(c, loc, POP_EXCEPT);
    ADDOP_I(c, loc, RERAISE, 1);
    return SUCCESS;
}

/* Unwind a frame block.  If preserve_tos is true, the TOS before
 * popping the blocks will be restored afterwards, unless another
 * return, break or continue is found. In which case, the TOS will
 * be popped.
 */
static int
compiler_unwind_fblock(struct compiler *c, location *ploc,
                       struct fblockinfo *info, int preserve_tos)
{
    switch (info->fb_type) {
        case WHILE_LOOP:
        case EXCEPTION_HANDLER:
        case EXCEPTION_GROUP_HANDLER:
        case ASYNC_COMPREHENSION_GENERATOR:
            return SUCCESS;

        case FOR_LOOP:
            /* Pop the iterator */
            if (preserve_tos) {
                ADDOP_I(c, *ploc, SWAP, 2);
            }
            ADDOP(c, *ploc, POP_TOP);
            return SUCCESS;

        case TRY_EXCEPT:
            ADDOP(c, *ploc, POP_BLOCK);
            return SUCCESS;

        case FINALLY_TRY:
            /* This POP_BLOCK gets the line number of the unwinding statement */
            ADDOP(c, *ploc, POP_BLOCK);
            if (preserve_tos) {
                RETURN_IF_ERROR(
                    compiler_push_fblock(c, *ploc, POP_VALUE, NO_LABEL, NO_LABEL, NULL));
            }
            /* Emit the finally block */
            VISIT_SEQ(c, stmt, info->fb_datum);
            if (preserve_tos) {
                compiler_pop_fblock(c, POP_VALUE, NO_LABEL);
            }
            /* The finally block should appear to execute after the
             * statement causing the unwinding, so make the unwinding
             * instruction artificial */
            *ploc = NO_LOCATION;
            return SUCCESS;

        case FINALLY_END:
            if (preserve_tos) {
                ADDOP_I(c, *ploc, SWAP, 2);
            }
            ADDOP(c, *ploc, POP_TOP); /* exc_value */
            if (preserve_tos) {
                ADDOP_I(c, *ploc, SWAP, 2);
            }
            ADDOP(c, *ploc, POP_BLOCK);
            ADDOP(c, *ploc, POP_EXCEPT);
            return SUCCESS;

        case WITH:
        case ASYNC_WITH:
            *ploc = LOC((stmt_ty)info->fb_datum);
            ADDOP(c, *ploc, POP_BLOCK);
            if (preserve_tos) {
                ADDOP_I(c, *ploc, SWAP, 2);
            }
            RETURN_IF_ERROR(compiler_call_exit_with_nones(c, *ploc));
            if (info->fb_type == ASYNC_WITH) {
                ADDOP_I(c, *ploc, GET_AWAITABLE, 2);
                ADDOP_LOAD_CONST(c, *ploc, Py_None);
                ADD_YIELD_FROM(c, *ploc, 1);
            }
            ADDOP(c, *ploc, POP_TOP);
            /* The exit block should appear to execute after the
             * statement causing the unwinding, so make the unwinding
             * instruction artificial */
            *ploc = NO_LOCATION;
            return SUCCESS;

        case HANDLER_CLEANUP: {
            if (info->fb_datum) {
                ADDOP(c, *ploc, POP_BLOCK);
            }
            if (preserve_tos) {
                ADDOP_I(c, *ploc, SWAP, 2);
            }
            ADDOP(c, *ploc, POP_BLOCK);
            ADDOP(c, *ploc, POP_EXCEPT);
            if (info->fb_datum) {
                ADDOP_LOAD_CONST(c, *ploc, Py_None);
                RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Store));
                RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Del));
            }
            return SUCCESS;
        }
        case POP_VALUE: {
            if (preserve_tos) {
                ADDOP_I(c, *ploc, SWAP, 2);
            }
            ADDOP(c, *ploc, POP_TOP);
            return SUCCESS;
        }
    }
    Py_UNREACHABLE();
}

/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
static int
compiler_unwind_fblock_stack(struct compiler *c, location *ploc,
                             int preserve_tos, struct fblockinfo **loop)
{
    if (c->u->u_nfblocks == 0) {
        return SUCCESS;
    }
    struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
    if (top->fb_type == EXCEPTION_GROUP_HANDLER) {
        return compiler_error(
            c, *ploc, "'break', 'continue' and 'return' cannot appear in an except* block");
    }
    if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
        *loop = top;
        return SUCCESS;
    }
    struct fblockinfo copy = *top;
    c->u->u_nfblocks--;
    RETURN_IF_ERROR(compiler_unwind_fblock(c, ploc, &copy, preserve_tos));
    RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, ploc, preserve_tos, loop));
    c->u->u_fblock[c->u->u_nfblocks] = copy;
    c->u->u_nfblocks++;
    return SUCCESS;
}

/* Compile a sequence of statements, checking for a docstring
   and for annotations. */

static int
compiler_body(struct compiler *c, location loc, asdl_stmt_seq *stmts)
{
    int i = 0;
    stmt_ty st;
    PyObject *docstring;

    /* Set current line number to the line number of first statement.
       This way line number for SETUP_ANNOTATIONS will always
       coincide with the line number of first "real" statement in module.
       If body is empty, then lineno will be set later in optimize_and_assemble. */
    if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) {
        st = (stmt_ty)asdl_seq_GET(stmts, 0);
        loc = LOC(st);
    }
    /* Every annotated class and module should have __annotations__. */
    if (find_ann(stmts)) {
        ADDOP(c, loc, SETUP_ANNOTATIONS);
    }
    if (!asdl_seq_LEN(stmts)) {
        return SUCCESS;
    }
    /* if not -OO mode, set docstring */
    if (c->c_optimize < 2) {
        docstring = _PyAST_GetDocString(stmts);
        if (docstring) {
            PyObject *cleandoc = _PyCompile_CleanDoc(docstring);
            if (cleandoc == NULL) {
                return ERROR;
            }
            i = 1;
            st = (stmt_ty)asdl_seq_GET(stmts, 0);
            assert(st->kind == Expr_kind);
            location loc = LOC(st->v.Expr.value);
            ADDOP_LOAD_CONST(c, loc, cleandoc);
            Py_DECREF(cleandoc);
            RETURN_IF_ERROR(compiler_nameop(c, NO_LOCATION, &_Py_ID(__doc__), Store));
        }
    }
    for (; i < asdl_seq_LEN(stmts); i++) {
        VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
    }
    return SUCCESS;
}

static int
compiler_codegen(struct compiler *c, mod_ty mod)
{
    _Py_DECLARE_STR(anon_module, "<module>");
    RETURN_IF_ERROR(
        compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE,
                             mod, 1));

    location loc = LOCATION(1, 1, 0, 0);
    switch (mod->kind) {
    case Module_kind:
        if (compiler_body(c, loc, mod->v.Module.body) < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
        break;
    case Interactive_kind:
        if (find_ann(mod->v.Interactive.body)) {
            ADDOP(c, loc, SETUP_ANNOTATIONS);
        }
        c->c_interactive = 1;
        VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body);
        break;
    case Expression_kind:
        VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "module kind %d should not be possible",
                     mod->kind);
        return ERROR;
    }
    return SUCCESS;
}

static PyCodeObject *
compiler_mod(struct compiler *c, mod_ty mod)
{
    int addNone = mod->kind != Expression_kind;
    if (compiler_codegen(c, mod) < 0) {
        return NULL;
    }
    PyCodeObject *co = optimize_and_assemble(c, addNone);
    compiler_exit_scope(c);
    return co;
}

/* The test for LOCAL must come before the test for FREE in order to
   handle classes where name is both local and free.  The local var is
   a method and the free var is a free var referenced within a method.
*/

static int
get_ref_type(struct compiler *c, PyObject *name)
{
    int scope;
    if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
        (_PyUnicode_EqualToASCIIString(name, "__class__") ||
         _PyUnicode_EqualToASCIIString(name, "__classdict__"))) {
        return CELL;
    }
    scope = _PyST_GetScope(c->u->u_ste, name);
    if (scope == 0) {
        PyErr_Format(PyExc_SystemError,
                     "_PyST_GetScope(name=%R) failed: "
                     "unknown scope in unit %S (%R); "
                     "symbols: %R; locals: %R; globals: %R",
                     name,
                     c->u->u_metadata.u_name, c->u->u_ste->ste_id,
                     c->u->u_ste->ste_symbols, c->u->u_metadata.u_varnames, c->u->u_metadata.u_names);
        return ERROR;
    }
    return scope;
}

static int
compiler_lookup_arg(PyObject *dict, PyObject *name)
{
    PyObject *v = PyDict_GetItemWithError(dict, name);
    if (v == NULL) {
        return ERROR;
    }
    return PyLong_AS_LONG(v);
}

static int
compiler_make_closure(struct compiler *c, location loc,
                      PyCodeObject *co, Py_ssize_t flags)
{
    if (co->co_nfreevars) {
        int i = PyCode_GetFirstFree(co);
        for (; i < co->co_nlocalsplus; ++i) {
            /* Bypass com_addop_varname because it will generate
               LOAD_DEREF but LOAD_CLOSURE is needed.
            */
            PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i);

            /* Special case: If a class contains a method with a
               free variable that has the same name as a method,
               the name will be considered free *and* local in the
               class.  It should be handled by the closure, as
               well as by the normal name lookup logic.
            */
            int reftype = get_ref_type(c, name);
            if (reftype == -1) {
                return ERROR;
            }
            int arg;
            if (reftype == CELL) {
                arg = compiler_lookup_arg(c->u->u_metadata.u_cellvars, name);
            }
            else {
                arg = compiler_lookup_arg(c->u->u_metadata.u_freevars, name);
            }
            if (arg == -1) {
                PyObject *freevars = _PyCode_GetFreevars(co);
                if (freevars == NULL) {
                    PyErr_Clear();
                }
                PyErr_Format(PyExc_SystemError,
                    "compiler_lookup_arg(name=%R) with reftype=%d failed in %S; "
                    "freevars of code %S: %R",
                    name,
                    reftype,
                    c->u->u_metadata.u_name,
                    co->co_name,
                    freevars);
                Py_DECREF(freevars);
                return ERROR;
            }
            ADDOP_I(c, loc, LOAD_CLOSURE, arg);
        }
        flags |= MAKE_FUNCTION_CLOSURE;
        ADDOP_I(c, loc, BUILD_TUPLE, co->co_nfreevars);
    }
    ADDOP_LOAD_CONST(c, loc, (PyObject*)co);

    ADDOP(c, loc, MAKE_FUNCTION);

    if (flags & MAKE_FUNCTION_CLOSURE) {
        ADDOP_I(c, loc, SET_FUNCTION_ATTRIBUTE, MAKE_FUNCTION_CLOSURE);
    }
    if (flags & MAKE_FUNCTION_ANNOTATIONS) {
        ADDOP_I(c, loc, SET_FUNCTION_ATTRIBUTE, MAKE_FUNCTION_ANNOTATIONS);
    }
    if (flags & MAKE_FUNCTION_KWDEFAULTS) {
        ADDOP_I(c, loc, SET_FUNCTION_ATTRIBUTE, MAKE_FUNCTION_KWDEFAULTS);
    }
    if (flags & MAKE_FUNCTION_DEFAULTS) {
        ADDOP_I(c, loc, SET_FUNCTION_ATTRIBUTE, MAKE_FUNCTION_DEFAULTS);
    }
    return SUCCESS;
}

static int
compiler_decorators(struct compiler *c, asdl_expr_seq* decos)
{
    if (!decos) {
        return SUCCESS;
    }

    for (Py_ssize_t i = 0; i < asdl_seq_LEN(decos); i++) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
    }
    return SUCCESS;
}

static int
compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos)
{
    if (!decos) {
        return SUCCESS;
    }

    for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) {
        location loc = LOC((expr_ty)asdl_seq_GET(decos, i));
        ADDOP_I(c, loc, CALL, 0);
    }
    return SUCCESS;
}

static int
compiler_visit_kwonlydefaults(struct compiler *c, location loc,
                              asdl_arg_seq *kwonlyargs, asdl_expr_seq *kw_defaults)
{
    /* Push a dict of keyword-only default values.

       Return -1 on error, 0 if no dict pushed, 1 if a dict is pushed.
       */
    int i;
    PyObject *keys = NULL;

    for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
        arg_ty arg = asdl_seq_GET(kwonlyargs, i);
        expr_ty default_ = asdl_seq_GET(kw_defaults, i);
        if (default_) {
            PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
            if (!mangled) {
                goto error;
            }
            if (keys == NULL) {
                keys = PyList_New(1);
                if (keys == NULL) {
                    Py_DECREF(mangled);
                    return ERROR;
                }
                PyList_SET_ITEM(keys, 0, mangled);
            }
            else {
                int res = PyList_Append(keys, mangled);
                Py_DECREF(mangled);
                if (res == -1) {
                    goto error;
                }
            }
            if (compiler_visit_expr(c, default_) < 0) {
                goto error;
            }
        }
    }
    if (keys != NULL) {
        Py_ssize_t default_count = PyList_GET_SIZE(keys);
        PyObject *keys_tuple = PyList_AsTuple(keys);
        Py_DECREF(keys);
        ADDOP_LOAD_CONST_NEW(c, loc, keys_tuple);
        ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, default_count);
        assert(default_count > 0);
        return 1;
    }
    else {
        return 0;
    }

error:
    Py_XDECREF(keys);
    return ERROR;
}

static int
compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
{
    location loc = LOC(annotation);
    ADDOP_LOAD_CONST_NEW(c, loc, _PyAST_ExprAsUnicode(annotation));
    return SUCCESS;
}

static int
compiler_visit_argannotation(struct compiler *c, identifier id,
    expr_ty annotation, Py_ssize_t *annotations_len, location loc)
{
    if (!annotation) {
        return SUCCESS;
    }
    PyObject *mangled = _Py_Mangle(c->u->u_private, id);
    if (!mangled) {
        return ERROR;
    }
    ADDOP_LOAD_CONST(c, loc, mangled);
    Py_DECREF(mangled);

    if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
        VISIT(c, annexpr, annotation);
    }
    else {
        if (annotation->kind == Starred_kind) {
            // *args: *Ts (where Ts is a TypeVarTuple).
            // Do [annotation_value] = [*Ts].
            // (Note that in theory we could end up here even for an argument
            // other than *args, but in practice the grammar doesn't allow it.)
            VISIT(c, expr, annotation->v.Starred.value);
            ADDOP_I(c, loc, UNPACK_SEQUENCE, (Py_ssize_t) 1);
        }
        else {
            VISIT(c, expr, annotation);
        }
    }
    *annotations_len += 2;
    return SUCCESS;
}

static int
compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args,
                              Py_ssize_t *annotations_len, location loc)
{
    int i;
    for (i = 0; i < asdl_seq_LEN(args); i++) {
        arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
        RETURN_IF_ERROR(
            compiler_visit_argannotation(
                        c,
                        arg->arg,
                        arg->annotation,
                        annotations_len,
                        loc));
    }
    return SUCCESS;
}

static int
compiler_visit_annotations(struct compiler *c, location loc,
                           arguments_ty args, expr_ty returns)
{
    /* Push arg annotation names and values.
       The expressions are evaluated out-of-order wrt the source code.

       Return -1 on error, 0 if no annotations pushed, 1 if a annotations is pushed.
       */
    Py_ssize_t annotations_len = 0;

    RETURN_IF_ERROR(
        compiler_visit_argannotations(c, args->args, &annotations_len, loc));

    RETURN_IF_ERROR(
        compiler_visit_argannotations(c, args->posonlyargs, &annotations_len, loc));

    if (args->vararg && args->vararg->annotation) {
        RETURN_IF_ERROR(
            compiler_visit_argannotation(c, args->vararg->arg,
                                         args->vararg->annotation, &annotations_len, loc));
    }

    RETURN_IF_ERROR(
        compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len, loc));

    if (args->kwarg && args->kwarg->annotation) {
        RETURN_IF_ERROR(
            compiler_visit_argannotation(c, args->kwarg->arg,
                                         args->kwarg->annotation, &annotations_len, loc));
    }

    RETURN_IF_ERROR(
        compiler_visit_argannotation(c, &_Py_ID(return), returns, &annotations_len, loc));

    if (annotations_len) {
        ADDOP_I(c, loc, BUILD_TUPLE, annotations_len);
        return 1;
    }

    return 0;
}

static int
compiler_visit_defaults(struct compiler *c, arguments_ty args,
                        location loc)
{
    VISIT_SEQ(c, expr, args->defaults);
    ADDOP_I(c, loc, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
    return SUCCESS;
}

static Py_ssize_t
compiler_default_arguments(struct compiler *c, location loc,
                           arguments_ty args)
{
    Py_ssize_t funcflags = 0;
    if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
        RETURN_IF_ERROR(compiler_visit_defaults(c, args, loc));
        funcflags |= MAKE_FUNCTION_DEFAULTS;
    }
    if (args->kwonlyargs) {
        int res = compiler_visit_kwonlydefaults(c, loc,
                                                args->kwonlyargs,
                                                args->kw_defaults);
        RETURN_IF_ERROR(res);
        if (res > 0) {
            funcflags |= MAKE_FUNCTION_KWDEFAULTS;
        }
    }
    return funcflags;
}

static bool
forbidden_name(struct compiler *c, location loc, identifier name,
               expr_context_ty ctx)
{
    if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
        compiler_error(c, loc, "cannot assign to __debug__");
        return true;
    }
    if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
        compiler_error(c, loc, "cannot delete __debug__");
        return true;
    }
    return false;
}

static int
compiler_check_debug_one_arg(struct compiler *c, arg_ty arg)
{
    if (arg != NULL) {
        if (forbidden_name(c, LOC(arg), arg->arg, Store)) {
            return ERROR;
        }
    }
    return SUCCESS;
}

static int
compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args)
{
    if (args != NULL) {
        for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) {
            RETURN_IF_ERROR(
                compiler_check_debug_one_arg(c, asdl_seq_GET(args, i)));
        }
    }
    return SUCCESS;
}

static int
compiler_check_debug_args(struct compiler *c, arguments_ty args)
{
    RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->posonlyargs));
    RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->args));
    RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->vararg));
    RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->kwonlyargs));
    RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->kwarg));
    return SUCCESS;
}

static int
wrap_in_stopiteration_handler(struct compiler *c)
{
    NEW_JUMP_TARGET_LABEL(c, handler);

    /* Insert SETUP_CLEANUP at start */
    RETURN_IF_ERROR(
        instr_sequence_insert_instruction(
            INSTR_SEQUENCE(c), 0,
            SETUP_CLEANUP, handler.id, NO_LOCATION));

    ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
    ADDOP(c, NO_LOCATION, RETURN_VALUE);
    USE_LABEL(c, handler);
    ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_1, INTRINSIC_STOPITERATION_ERROR);
    ADDOP_I(c, NO_LOCATION, RERAISE, 1);
    return SUCCESS;
}

static int
compiler_type_params(struct compiler *c, asdl_type_param_seq *type_params)
{
    if (!type_params) {
        return SUCCESS;
    }
    Py_ssize_t n = asdl_seq_LEN(type_params);

    for (Py_ssize_t i = 0; i < n; i++) {
        type_param_ty typeparam = asdl_seq_GET(type_params, i);
        location loc = LOC(typeparam);
        switch(typeparam->kind) {
        case TypeVar_kind:
            ADDOP_LOAD_CONST(c, loc, typeparam->v.TypeVar.name);
            if (typeparam->v.TypeVar.bound) {
                expr_ty bound = typeparam->v.TypeVar.bound;
                if (compiler_enter_scope(c, typeparam->v.TypeVar.name, COMPILER_SCOPE_TYPEPARAMS,
                                        (void *)typeparam, bound->lineno) == -1) {
                    return ERROR;
                }
                VISIT_IN_SCOPE(c, expr, bound);
                ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
                PyCodeObject *co = optimize_and_assemble(c, 1);
                compiler_exit_scope(c);
                if (co == NULL) {
                    return ERROR;
                }
                if (compiler_make_closure(c, loc, co, 0) < 0) {
                    Py_DECREF(co);
                    return ERROR;
                }
                Py_DECREF(co);

                int intrinsic = bound->kind == Tuple_kind
                    ? INTRINSIC_TYPEVAR_WITH_CONSTRAINTS
                    : INTRINSIC_TYPEVAR_WITH_BOUND;
                ADDOP_I(c, loc, CALL_INTRINSIC_2, intrinsic);
            }
            else {
                ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEVAR);
            }
            ADDOP_I(c, loc, COPY, 1);
            RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.TypeVar.name, Store));
            break;
        case TypeVarTuple_kind:
            ADDOP_LOAD_CONST(c, loc, typeparam->v.TypeVarTuple.name);
            ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEVARTUPLE);
            ADDOP_I(c, loc, COPY, 1);
            RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.TypeVarTuple.name, Store));
            break;
        case ParamSpec_kind:
            ADDOP_LOAD_CONST(c, loc, typeparam->v.ParamSpec.name);
            ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PARAMSPEC);
            ADDOP_I(c, loc, COPY, 1);
            RETURN_IF_ERROR(compiler_nameop(c, loc, typeparam->v.ParamSpec.name, Store));
            break;
        }
    }
    ADDOP_I(c, LOC(asdl_seq_GET(type_params, 0)), BUILD_TUPLE, n);
    return SUCCESS;
}

static int
compiler_function_body(struct compiler *c, stmt_ty s, int is_async, Py_ssize_t funcflags,
                       int firstlineno)
{
    PyObject *docstring = NULL;
    arguments_ty args;
    identifier name;
    asdl_stmt_seq *body;
    int scope_type;

    if (is_async) {
        assert(s->kind == AsyncFunctionDef_kind);

        args = s->v.AsyncFunctionDef.args;
        name = s->v.AsyncFunctionDef.name;
        body = s->v.AsyncFunctionDef.body;

        scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
    } else {
        assert(s->kind == FunctionDef_kind);

        args = s->v.FunctionDef.args;
        name = s->v.FunctionDef.name;
        body = s->v.FunctionDef.body;

        scope_type = COMPILER_SCOPE_FUNCTION;
    }

    RETURN_IF_ERROR(
        compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno));

    /* if not -OO mode, add docstring */
    if (c->c_optimize < 2) {
        docstring = _PyAST_GetDocString(body);
        if (docstring) {
            docstring = _PyCompile_CleanDoc(docstring);
            if (docstring == NULL) {
                compiler_exit_scope(c);
                return ERROR;
            }
        }
    }
    if (compiler_add_const(c->c_const_cache, c->u, docstring ? docstring : Py_None) < 0) {
        Py_XDECREF(docstring);
        compiler_exit_scope(c);
        return ERROR;
    }
    Py_XDECREF(docstring);

    c->u->u_metadata.u_argcount = asdl_seq_LEN(args->args);
    c->u->u_metadata.u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
    c->u->u_metadata.u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    for (Py_ssize_t i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) {
        VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i));
    }
    if (c->u->u_ste->ste_coroutine || c->u->u_ste->ste_generator) {
        if (wrap_in_stopiteration_handler(c) < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
    }
    PyCodeObject *co = optimize_and_assemble(c, 1);
    compiler_exit_scope(c);
    if (co == NULL) {
        Py_XDECREF(co);
        return ERROR;
    }
    location loc = LOC(s);
    if (compiler_make_closure(c, loc, co, funcflags) < 0) {
        Py_DECREF(co);
        return ERROR;
    }
    Py_DECREF(co);
    return SUCCESS;
}

static int
compiler_function(struct compiler *c, stmt_ty s, int is_async)
{
    arguments_ty args;
    expr_ty returns;
    identifier name;
    asdl_expr_seq *decos;
    asdl_type_param_seq *type_params;
    Py_ssize_t funcflags;
    int annotations;
    int firstlineno;

    if (is_async) {
        assert(s->kind == AsyncFunctionDef_kind);

        args = s->v.AsyncFunctionDef.args;
        returns = s->v.AsyncFunctionDef.returns;
        decos = s->v.AsyncFunctionDef.decorator_list;
        name = s->v.AsyncFunctionDef.name;
        type_params = s->v.AsyncFunctionDef.type_params;
    } else {
        assert(s->kind == FunctionDef_kind);

        args = s->v.FunctionDef.args;
        returns = s->v.FunctionDef.returns;
        decos = s->v.FunctionDef.decorator_list;
        name = s->v.FunctionDef.name;
        type_params = s->v.FunctionDef.type_params;
    }

    RETURN_IF_ERROR(compiler_check_debug_args(c, args));
    RETURN_IF_ERROR(compiler_decorators(c, decos));

    firstlineno = s->lineno;
    if (asdl_seq_LEN(decos)) {
        firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
    }

    location loc = LOC(s);

    int is_generic = asdl_seq_LEN(type_params) > 0;

    funcflags = compiler_default_arguments(c, loc, args);
    if (funcflags == -1) {
        return ERROR;
    }

    int num_typeparam_args = 0;

    if (is_generic) {
        if (funcflags & MAKE_FUNCTION_DEFAULTS) {
            num_typeparam_args += 1;
        }
        if (funcflags & MAKE_FUNCTION_KWDEFAULTS) {
            num_typeparam_args += 1;
        }
        if (num_typeparam_args == 2) {
            ADDOP_I(c, loc, SWAP, 2);
        }
        PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>", name);
        if (!type_params_name) {
            return ERROR;
        }
        if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS,
                                 (void *)type_params, firstlineno) == -1) {
            Py_DECREF(type_params_name);
            return ERROR;
        }
        Py_DECREF(type_params_name);
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params));
        for (int i = 0; i < num_typeparam_args; i++) {
            RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(INSTR_SEQUENCE(c), LOAD_FAST, i, loc));
        }
    }

    annotations = compiler_visit_annotations(c, loc, args, returns);
    if (annotations < 0) {
        if (is_generic) {
            compiler_exit_scope(c);
        }
        return ERROR;
    }
    if (annotations > 0) {
        funcflags |= MAKE_FUNCTION_ANNOTATIONS;
    }

    if (compiler_function_body(c, s, is_async, funcflags, firstlineno) < 0) {
        if (is_generic) {
            compiler_exit_scope(c);
        }
        return ERROR;
    }

    if (is_generic) {
        RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(
            INSTR_SEQUENCE(c), SWAP, 2, loc));
        RETURN_IF_ERROR_IN_SCOPE(c, codegen_addop_i(
            INSTR_SEQUENCE(c), CALL_INTRINSIC_2, INTRINSIC_SET_FUNCTION_TYPE_PARAMS, loc));

        c->u->u_metadata.u_argcount = num_typeparam_args;
        PyCodeObject *co = optimize_and_assemble(c, 0);
        compiler_exit_scope(c);
        if (co == NULL) {
            return ERROR;
        }
        if (compiler_make_closure(c, loc, co, 0) < 0) {
            Py_DECREF(co);
            return ERROR;
        }
        Py_DECREF(co);
        if (num_typeparam_args > 0) {
            ADDOP_I(c, loc, SWAP, num_typeparam_args + 1);
            ADDOP_I(c, loc, CALL, num_typeparam_args - 1);
        }
        else {
            ADDOP(c, loc, PUSH_NULL);
            ADDOP_I(c, loc, CALL, 0);
        }
    }

    RETURN_IF_ERROR(compiler_apply_decorators(c, decos));
    return compiler_nameop(c, loc, name, Store);
}

static int
compiler_set_type_params_in_class(struct compiler *c, location loc)
{
    _Py_DECLARE_STR(type_params, ".type_params");
    RETURN_IF_ERROR(compiler_nameop(c, loc, &_Py_STR(type_params), Load));
    RETURN_IF_ERROR(compiler_nameop(c, loc, &_Py_ID(__type_params__), Store));
    return 1;
}

static int
compiler_class_body(struct compiler *c, stmt_ty s, int firstlineno)
{
    /* ultimately generate code for:
         <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
       where:
         <func> is a zero arg function/closure created from the class body.
            It mutates its locals to build the class namespace.
         <name> is the class name
         <bases> is the positional arguments and *varargs argument
         <keywords> is the keyword arguments and **kwds argument
       This borrows from compiler_call.
    */

    /* 1. compile the class body into a code object */
    RETURN_IF_ERROR(
        compiler_enter_scope(c, s->v.ClassDef.name,
                             COMPILER_SCOPE_CLASS, (void *)s, firstlineno));

    location loc = LOCATION(firstlineno, firstlineno, 0, 0);
    /* use the class name for name mangling */
    Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name));
    /* load (global) __name__ ... */
    if (compiler_nameop(c, loc, &_Py_ID(__name__), Load) < 0) {
        compiler_exit_scope(c);
        return ERROR;
    }
    /* ... and store it as __module__ */
    if (compiler_nameop(c, loc, &_Py_ID(__module__), Store) < 0) {
        compiler_exit_scope(c);
        return ERROR;
    }
    assert(c->u->u_metadata.u_qualname);
    ADDOP_LOAD_CONST(c, loc, c->u->u_metadata.u_qualname);
    if (compiler_nameop(c, loc, &_Py_ID(__qualname__), Store) < 0) {
        compiler_exit_scope(c);
        return ERROR;
    }
    asdl_type_param_seq *type_params = s->v.ClassDef.type_params;
    if (asdl_seq_LEN(type_params) > 0) {
        if (!compiler_set_type_params_in_class(c, loc)) {
            compiler_exit_scope(c);
            return ERROR;
        }
    }
    if (c->u->u_ste->ste_needs_classdict) {
        ADDOP(c, loc, LOAD_LOCALS);

        // We can't use compiler_nameop here because we need to generate a
        // STORE_DEREF in a class namespace, and compiler_nameop() won't do
        // that by default.
        PyObject *cellvars = c->u->u_metadata.u_cellvars;
        if (compiler_addop_o(c->u, loc, STORE_DEREF, cellvars,
                             &_Py_ID(__classdict__)) < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
    }
    /* compile the body proper */
    if (compiler_body(c, loc, s->v.ClassDef.body) < 0) {
        compiler_exit_scope(c);
        return ERROR;
    }
    /* The following code is artificial */
    /* Set __classdictcell__ if necessary */
    if (c->u->u_ste->ste_needs_classdict) {
        /* Store __classdictcell__ into class namespace */
        int i = compiler_lookup_arg(c->u->u_metadata.u_cellvars, &_Py_ID(__classdict__));
        if (i < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
        ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i);
        if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classdictcell__), Store) < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
    }
    /* Return __classcell__ if it is referenced, otherwise return None */
    if (c->u->u_ste->ste_needs_class_closure) {
        /* Store __classcell__ into class namespace & return it */
        int i = compiler_lookup_arg(c->u->u_metadata.u_cellvars, &_Py_ID(__class__));
        if (i < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
        ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i);
        ADDOP_I(c, NO_LOCATION, COPY, 1);
        if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classcell__), Store) < 0) {
            compiler_exit_scope(c);
            return ERROR;
        }
    }
    else {
        /* No methods referenced __class__, so just return None */
        ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
    }
    ADDOP_IN_SCOPE(c, NO_LOCATION, RETURN_VALUE);
    /* create the code object */
    PyCodeObject *co = optimize_and_assemble(c, 1);

    /* leave the new scope */
    compiler_exit_scope(c);
    if (co == NULL) {
        return ERROR;
    }

    /* 2. load the 'build_class' function */

    // these instructions should be attributed to the class line,
    // not a decorator line
    loc = LOC(s);
    ADDOP(c, loc, LOAD_BUILD_CLASS);
    ADDOP(c, loc, PUSH_NULL);

    /* 3. load a function (or closure) made from the code object */
    if (compiler_make_closure(c, loc, co, 0) < 0) {
        Py_DECREF(co);
        return ERROR;
    }
    Py_DECREF(co);

    /* 4. load class name */
    ADDOP_LOAD_CONST(c, loc, s->v.ClassDef.name);

    return SUCCESS;
}

static int
compiler_class(struct compiler *c, stmt_ty s)
{
    asdl_expr_seq *decos = s->v.ClassDef.decorator_list;

    RETURN_IF_ERROR(compiler_decorators(c, decos));

    int firstlineno = s->lineno;
    if (asdl_seq_LEN(decos)) {
        firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
    }
    location loc = LOC(s);

    asdl_type_param_seq *type_params = s->v.ClassDef.type_params;
    int is_generic = asdl_seq_LEN(type_params) > 0;
    if (is_generic) {
        Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name));
        PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>",
                                                         s->v.ClassDef.name);
        if (!type_params_name) {
            return ERROR;
        }
        if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS,
                                 (void *)type_params, firstlineno) == -1) {
            Py_DECREF(type_params_name);
            return ERROR;
        }
        Py_DECREF(type_params_name);
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params));
        _Py_DECLARE_STR(type_params, ".type_params");
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(type_params), Store));
    }

    if (compiler_class_body(c, s, firstlineno) < 0) {
        if (is_generic) {
            compiler_exit_scope(c);
        }
        return ERROR;
    }

    /* generate the rest of the code for the call */

    if (is_generic) {
        _Py_DECLARE_STR(type_params, ".type_params");
        _Py_DECLARE_STR(generic_base, ".generic_base");
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(type_params), Load));
        RETURN_IF_ERROR_IN_SCOPE(
            c, codegen_addop_i(INSTR_SEQUENCE(c), CALL_INTRINSIC_1, INTRINSIC_SUBSCRIPT_GENERIC, loc)
        )
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_nameop(c, loc, &_Py_STR(generic_base), Store));

        Py_ssize_t original_len = asdl_seq_LEN(s->v.ClassDef.bases);
        asdl_expr_seq *bases = _Py_asdl_expr_seq_new(
            original_len + 1, c->c_arena);
        if (bases == NULL) {
            compiler_exit_scope(c);
            return ERROR;
        }
        for (Py_ssize_t i = 0; i < original_len; i++) {
            asdl_seq_SET(bases, i, asdl_seq_GET(s->v.ClassDef.bases, i));
        }
        expr_ty name_node = _PyAST_Name(
            &_Py_STR(generic_base), Load,
            loc.lineno, loc.col_offset, loc.end_lineno, loc.end_col_offset, c->c_arena
        );
        if (name_node == NULL) {
            compiler_exit_scope(c);
            return ERROR;
        }
        asdl_seq_SET(bases, original_len, name_node);
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_call_helper(c, loc, 2,
                                                         bases,
                                                         s->v.ClassDef.keywords));

        PyCodeObject *co = optimize_and_assemble(c, 0);
        compiler_exit_scope(c);
        if (co == NULL) {
            return ERROR;
        }
        if (compiler_make_closure(c, loc, co, 0) < 0) {
            Py_DECREF(co);
            return ERROR;
        }
        Py_DECREF(co);
        ADDOP(c, loc, PUSH_NULL);
        ADDOP_I(c, loc, CALL, 0);
    } else {
        RETURN_IF_ERROR(compiler_call_helper(c, loc, 2,
                                            s->v.ClassDef.bases,
                                            s->v.ClassDef.keywords));
    }

    /* 6. apply decorators */
    RETURN_IF_ERROR(compiler_apply_decorators(c, decos));

    /* 7. store into <name> */
    RETURN_IF_ERROR(compiler_nameop(c, loc, s->v.ClassDef.name, Store));
    return SUCCESS;
}

static int
compiler_typealias_body(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    PyObject *name = s->v.TypeAlias.name->v.Name.id;
    RETURN_IF_ERROR(
        compiler_enter_scope(c, name, COMPILER_SCOPE_FUNCTION, s, loc.lineno));
    /* Make None the first constant, so the evaluate function can't have a
        docstring. */
    RETURN_IF_ERROR(compiler_add_const(c->c_const_cache, c->u, Py_None));
    VISIT_IN_SCOPE(c, expr, s->v.TypeAlias.value);
    ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
    PyCodeObject *co = optimize_and_assemble(c, 0);
    compiler_exit_scope(c);
    if (co == NULL) {
        return ERROR;
    }
    if (compiler_make_closure(c, loc, co, 0) < 0) {
        Py_DECREF(co);
        return ERROR;
    }
    Py_DECREF(co);
    ADDOP_I(c, loc, BUILD_TUPLE, 3);
    ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_TYPEALIAS);
    return SUCCESS;
}

static int
compiler_typealias(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    asdl_type_param_seq *type_params = s->v.TypeAlias.type_params;
    int is_generic = asdl_seq_LEN(type_params) > 0;
    PyObject *name = s->v.TypeAlias.name->v.Name.id;
    if (is_generic) {
        PyObject *type_params_name = PyUnicode_FromFormat("<generic parameters of %U>",
                                                         name);
        if (!type_params_name) {
            return ERROR;
        }
        if (compiler_enter_scope(c, type_params_name, COMPILER_SCOPE_TYPEPARAMS,
                                 (void *)type_params, loc.lineno) == -1) {
            Py_DECREF(type_params_name);
            return ERROR;
        }
        Py_DECREF(type_params_name);
        RETURN_IF_ERROR_IN_SCOPE(
            c, compiler_addop_load_const(c->c_const_cache, c->u, loc, name)
        );
        RETURN_IF_ERROR_IN_SCOPE(c, compiler_type_params(c, type_params));
    }
    else {
        ADDOP_LOAD_CONST(c, loc, name);
        ADDOP_LOAD_CONST(c, loc, Py_None);
    }

    if (compiler_typealias_body(c, s) < 0) {
        if (is_generic) {
            compiler_exit_scope(c);
        }
        return ERROR;
    }

    if (is_generic) {
        PyCodeObject *co = optimize_and_assemble(c, 0);
        compiler_exit_scope(c);
        if (co == NULL) {
            return ERROR;
        }
        if (compiler_make_closure(c, loc, co, 0) < 0) {
            Py_DECREF(co);
            return ERROR;
        }
        Py_DECREF(co);
        ADDOP(c, loc, PUSH_NULL);
        ADDOP_I(c, loc, CALL, 0);
    }
    RETURN_IF_ERROR(compiler_nameop(c, loc, name, Store));
    return SUCCESS;
}

/* Return false if the expression is a constant value except named singletons.
   Return true otherwise. */
static bool
check_is_arg(expr_ty e)
{
    if (e->kind != Constant_kind) {
        return true;
    }
    PyObject *value = e->v.Constant.value;
    return (value == Py_None
         || value == Py_False
         || value == Py_True
         || value == Py_Ellipsis);
}

static PyTypeObject * infer_type(expr_ty e);

/* Check operands of identity checks ("is" and "is not").
   Emit a warning if any operand is a constant except named singletons.
 */
static int
check_compare(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n;
    bool left = check_is_arg(e->v.Compare.left);
    expr_ty left_expr = e->v.Compare.left;
    n = asdl_seq_LEN(e->v.Compare.ops);
    for (i = 0; i < n; i++) {
        cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
        expr_ty right_expr = (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i);
        bool right = check_is_arg(right_expr);
        if (op == Is || op == IsNot) {
            if (!right || !left) {
                const char *msg = (op == Is)
                        ? "\"is\" with '%.200s' literal. Did you mean \"==\"?"
                        : "\"is not\" with '%.200s' literal. Did you mean \"!=\"?";
                expr_ty literal = !left ? left_expr : right_expr;
                return compiler_warn(
                    c, LOC(e), msg, infer_type(literal)->tp_name
                );
            }
        }
        left = right;
        left_expr = right_expr;
    }
    return SUCCESS;
}

static const int compare_masks[] = {
    [Py_LT] = COMPARISON_LESS_THAN,
    [Py_LE] = COMPARISON_LESS_THAN | COMPARISON_EQUALS,
    [Py_EQ] = COMPARISON_EQUALS,
    [Py_NE] = COMPARISON_NOT_EQUALS,
    [Py_GT] = COMPARISON_GREATER_THAN,
    [Py_GE] = COMPARISON_GREATER_THAN | COMPARISON_EQUALS,
};

static int compiler_addcompare(struct compiler *c, location loc,
                               cmpop_ty op)
{
    int cmp;
    switch (op) {
    case Eq:
        cmp = Py_EQ;
        break;
    case NotEq:
        cmp = Py_NE;
        break;
    case Lt:
        cmp = Py_LT;
        break;
    case LtE:
        cmp = Py_LE;
        break;
    case Gt:
        cmp = Py_GT;
        break;
    case GtE:
        cmp = Py_GE;
        break;
    case Is:
        ADDOP_I(c, loc, IS_OP, 0);
        return SUCCESS;
    case IsNot:
        ADDOP_I(c, loc, IS_OP, 1);
        return SUCCESS;
    case In:
        ADDOP_I(c, loc, CONTAINS_OP, 0);
        return SUCCESS;
    case NotIn:
        ADDOP_I(c, loc, CONTAINS_OP, 1);
        return SUCCESS;
    default:
        Py_UNREACHABLE();
    }
    // cmp goes in top three bits of the oparg, while the low four bits are used
    // by quickened versions of this opcode to store the comparison mask. The
    // fifth-lowest bit indicates whether the result should be converted to bool
    // and is set later):
    ADDOP_I(c, loc, COMPARE_OP, (cmp << 5) | compare_masks[cmp]);
    return SUCCESS;
}



static int
compiler_jump_if(struct compiler *c, location loc,
                 expr_ty e, jump_target_label next, int cond)
{
    switch (e->kind) {
    case UnaryOp_kind:
        if (e->v.UnaryOp.op == Not) {
            return compiler_jump_if(c, loc, e->v.UnaryOp.operand, next, !cond);
        }
        /* fallback to general implementation */
        break;
    case BoolOp_kind: {
        asdl_expr_seq *s = e->v.BoolOp.values;
        Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
        assert(n >= 0);
        int cond2 = e->v.BoolOp.op == Or;
        jump_target_label next2 = next;
        if (!cond2 != !cond) {
            NEW_JUMP_TARGET_LABEL(c, new_next2);
            next2 = new_next2;
        }
        for (i = 0; i < n; ++i) {
            RETURN_IF_ERROR(
                compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, i), next2, cond2));
        }
        RETURN_IF_ERROR(
            compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, n), next, cond));
        if (!SAME_LABEL(next2, next)) {
            USE_LABEL(c, next2);
        }
        return SUCCESS;
    }
    case IfExp_kind: {
        NEW_JUMP_TARGET_LABEL(c, end);
        NEW_JUMP_TARGET_LABEL(c, next2);
        RETURN_IF_ERROR(
            compiler_jump_if(c, loc, e->v.IfExp.test, next2, 0));
        RETURN_IF_ERROR(
            compiler_jump_if(c, loc, e->v.IfExp.body, next, cond));
        ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

        USE_LABEL(c, next2);
        RETURN_IF_ERROR(
            compiler_jump_if(c, loc, e->v.IfExp.orelse, next, cond));

        USE_LABEL(c, end);
        return SUCCESS;
    }
    case Compare_kind: {
        Py_ssize_t n = asdl_seq_LEN(e->v.Compare.ops) - 1;
        if (n > 0) {
            RETURN_IF_ERROR(check_compare(c, e));
            NEW_JUMP_TARGET_LABEL(c, cleanup);
            VISIT(c, expr, e->v.Compare.left);
            for (Py_ssize_t i = 0; i < n; i++) {
                VISIT(c, expr,
                    (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
                ADDOP_I(c, LOC(e), SWAP, 2);
                ADDOP_I(c, LOC(e), COPY, 2);
                ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, i));
                ADDOP(c, LOC(e), TO_BOOL);
                ADDOP_JUMP(c, LOC(e), POP_JUMP_IF_FALSE, cleanup);
            }
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
            ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, n));
            ADDOP(c, LOC(e), TO_BOOL);
            ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
            NEW_JUMP_TARGET_LABEL(c, end);
            ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

            USE_LABEL(c, cleanup);
            ADDOP(c, LOC(e), POP_TOP);
            if (!cond) {
                ADDOP_JUMP(c, NO_LOCATION, JUMP, next);
            }

            USE_LABEL(c, end);
            return SUCCESS;
        }
        /* fallback to general implementation */
        break;
    }
    default:
        /* fallback to general implementation */
        break;
    }

    /* general implementation */
    VISIT(c, expr, e);
    ADDOP(c, LOC(e), TO_BOOL);
    ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
    return SUCCESS;
}

static int
compiler_ifexp(struct compiler *c, expr_ty e)
{
    assert(e->kind == IfExp_kind);
    NEW_JUMP_TARGET_LABEL(c, end);
    NEW_JUMP_TARGET_LABEL(c, next);

    RETURN_IF_ERROR(
        compiler_jump_if(c, LOC(e), e->v.IfExp.test, next, 0));

    VISIT(c, expr, e->v.IfExp.body);
    ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

    USE_LABEL(c, next);
    VISIT(c, expr, e->v.IfExp.orelse);

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_lambda(struct compiler *c, expr_ty e)
{
    PyCodeObject *co;
    Py_ssize_t funcflags;
    arguments_ty args = e->v.Lambda.args;
    assert(e->kind == Lambda_kind);

    RETURN_IF_ERROR(compiler_check_debug_args(c, args));

    location loc = LOC(e);
    funcflags = compiler_default_arguments(c, loc, args);
    if (funcflags == -1) {
        return ERROR;
    }

    _Py_DECLARE_STR(anon_lambda, "<lambda>");
    RETURN_IF_ERROR(
        compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA,
                             (void *)e, e->lineno));

    /* Make None the first constant, so the lambda can't have a
       docstring. */
    RETURN_IF_ERROR(compiler_add_const(c->c_const_cache, c->u, Py_None));

    c->u->u_metadata.u_argcount = asdl_seq_LEN(args->args);
    c->u->u_metadata.u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
    c->u->u_metadata.u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
    if (c->u->u_ste->ste_generator) {
        co = optimize_and_assemble(c, 0);
    }
    else {
        location loc = LOCATION(e->lineno, e->lineno, 0, 0);
        ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
        co = optimize_and_assemble(c, 1);
    }
    compiler_exit_scope(c);
    if (co == NULL) {
        return ERROR;
    }

    if (compiler_make_closure(c, loc, co, funcflags) < 0) {
        Py_DECREF(co);
        return ERROR;
    }
    Py_DECREF(co);

    return SUCCESS;
}

static int
compiler_if(struct compiler *c, stmt_ty s)
{
    jump_target_label next;
    assert(s->kind == If_kind);
    NEW_JUMP_TARGET_LABEL(c, end);
    if (asdl_seq_LEN(s->v.If.orelse)) {
        NEW_JUMP_TARGET_LABEL(c, orelse);
        next = orelse;
    }
    else {
        next = end;
    }
    RETURN_IF_ERROR(
        compiler_jump_if(c, LOC(s), s->v.If.test, next, 0));

    VISIT_SEQ(c, stmt, s->v.If.body);
    if (asdl_seq_LEN(s->v.If.orelse)) {
        ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

        USE_LABEL(c, next);
        VISIT_SEQ(c, stmt, s->v.If.orelse);
    }

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_for(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    NEW_JUMP_TARGET_LABEL(c, start);
    NEW_JUMP_TARGET_LABEL(c, body);
    NEW_JUMP_TARGET_LABEL(c, cleanup);
    NEW_JUMP_TARGET_LABEL(c, end);

    RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL));

    VISIT(c, expr, s->v.For.iter);
    ADDOP(c, loc, GET_ITER);

    USE_LABEL(c, start);
    ADDOP_JUMP(c, loc, FOR_ITER, cleanup);

    USE_LABEL(c, body);
    VISIT(c, expr, s->v.For.target);
    VISIT_SEQ(c, stmt, s->v.For.body);
    /* Mark jump as artificial */
    ADDOP_JUMP(c, NO_LOCATION, JUMP, start);

    USE_LABEL(c, cleanup);
    ADDOP(c, NO_LOCATION, END_FOR);

    compiler_pop_fblock(c, FOR_LOOP, start);

    VISIT_SEQ(c, stmt, s->v.For.orelse);

    USE_LABEL(c, end);
    return SUCCESS;
}


static int
compiler_async_for(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    if (IS_TOP_LEVEL_AWAIT(c)){
        c->u->u_ste->ste_coroutine = 1;
    } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
        return compiler_error(c, loc, "'async for' outside async function");
    }

    NEW_JUMP_TARGET_LABEL(c, start);
    NEW_JUMP_TARGET_LABEL(c, except);
    NEW_JUMP_TARGET_LABEL(c, end);

    VISIT(c, expr, s->v.AsyncFor.iter);
    ADDOP(c, loc, GET_AITER);

    USE_LABEL(c, start);
    RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL));

    /* SETUP_FINALLY to guard the __anext__ call */
    ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
    ADDOP(c, loc, GET_ANEXT);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADD_YIELD_FROM(c, loc, 1);
    ADDOP(c, loc, POP_BLOCK);  /* for SETUP_FINALLY */

    /* Success block for __anext__ */
    VISIT(c, expr, s->v.AsyncFor.target);
    VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
    /* Mark jump as artificial */
    ADDOP_JUMP(c, NO_LOCATION, JUMP, start);

    compiler_pop_fblock(c, FOR_LOOP, start);

    /* Except block for __anext__ */
    USE_LABEL(c, except);

    /* Use same line number as the iterator,
     * as the END_ASYNC_FOR succeeds the `for`, not the body. */
    loc = LOC(s->v.AsyncFor.iter);
    ADDOP(c, loc, END_ASYNC_FOR);

    /* `else` block */
    VISIT_SEQ(c, stmt, s->v.For.orelse);

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_while(struct compiler *c, stmt_ty s)
{
    NEW_JUMP_TARGET_LABEL(c, loop);
    NEW_JUMP_TARGET_LABEL(c, body);
    NEW_JUMP_TARGET_LABEL(c, end);
    NEW_JUMP_TARGET_LABEL(c, anchor);

    USE_LABEL(c, loop);

    RETURN_IF_ERROR(compiler_push_fblock(c, LOC(s), WHILE_LOOP, loop, end, NULL));
    RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, anchor, 0));

    USE_LABEL(c, body);
    VISIT_SEQ(c, stmt, s->v.While.body);
    RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, body, 1));

    compiler_pop_fblock(c, WHILE_LOOP, loop);

    USE_LABEL(c, anchor);
    if (s->v.While.orelse) {
        VISIT_SEQ(c, stmt, s->v.While.orelse);
    }

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_return(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    int preserve_tos = ((s->v.Return.value != NULL) &&
                        (s->v.Return.value->kind != Constant_kind));
    if (!_PyST_IsFunctionLike(c->u->u_ste)) {
        return compiler_error(c, loc, "'return' outside function");
    }
    if (s->v.Return.value != NULL &&
        c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
    {
        return compiler_error(c, loc, "'return' with value in async generator");
    }

    if (preserve_tos) {
        VISIT(c, expr, s->v.Return.value);
    } else {
        /* Emit instruction with line number for return value */
        if (s->v.Return.value != NULL) {
            loc = LOC(s->v.Return.value);
            ADDOP(c, loc, NOP);
        }
    }
    if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) {
        loc = LOC(s);
        ADDOP(c, loc, NOP);
    }

    RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, preserve_tos, NULL));
    if (s->v.Return.value == NULL) {
        ADDOP_LOAD_CONST(c, loc, Py_None);
    }
    else if (!preserve_tos) {
        ADDOP_LOAD_CONST(c, loc, s->v.Return.value->v.Constant.value);
    }
    ADDOP(c, loc, RETURN_VALUE);

    return SUCCESS;
}

static int
compiler_break(struct compiler *c, location loc)
{
    struct fblockinfo *loop = NULL;
    location origin_loc = loc;
    /* Emit instruction with line number */
    ADDOP(c, loc, NOP);
    RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop));
    if (loop == NULL) {
        return compiler_error(c, origin_loc, "'break' outside loop");
    }
    RETURN_IF_ERROR(compiler_unwind_fblock(c, &loc, loop, 0));
    ADDOP_JUMP(c, loc, JUMP, loop->fb_exit);
    return SUCCESS;
}

static int
compiler_continue(struct compiler *c, location loc)
{
    struct fblockinfo *loop = NULL;
    location origin_loc = loc;
    /* Emit instruction with line number */
    ADDOP(c, loc, NOP);
    RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop));
    if (loop == NULL) {
        return compiler_error(c, origin_loc, "'continue' not properly in loop");
    }
    ADDOP_JUMP(c, loc, JUMP, loop->fb_block);
    return SUCCESS;
}


/* Code generated for "try: <body> finally: <finalbody>" is as follows:

        SETUP_FINALLY           L
        <code for body>
        POP_BLOCK
        <code for finalbody>
        JUMP E
    L:
        <code for finalbody>
    E:

   The special instructions use the block stack.  Each block
   stack entry contains the instruction that created it (here
   SETUP_FINALLY), the level of the value stack at the time the
   block stack entry was created, and a label (here L).

   SETUP_FINALLY:
    Pushes the current value stack level and the label
    onto the block stack.
   POP_BLOCK:
    Pops en entry from the block stack.

   The block stack is unwound when an exception is raised:
   when a SETUP_FINALLY entry is found, the raised and the caught
   exceptions are pushed onto the value stack (and the exception
   condition is cleared), and the interpreter jumps to the label
   gotten from the block stack.
*/

static int
compiler_try_finally(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);

    NEW_JUMP_TARGET_LABEL(c, body);
    NEW_JUMP_TARGET_LABEL(c, end);
    NEW_JUMP_TARGET_LABEL(c, exit);
    NEW_JUMP_TARGET_LABEL(c, cleanup);

    /* `try` block */
    ADDOP_JUMP(c, loc, SETUP_FINALLY, end);

    USE_LABEL(c, body);
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, FINALLY_TRY, body, end,
                             s->v.Try.finalbody));

    if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
        RETURN_IF_ERROR(compiler_try_except(c, s));
    }
    else {
        VISIT_SEQ(c, stmt, s->v.Try.body);
    }
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, body);
    VISIT_SEQ(c, stmt, s->v.Try.finalbody);

    ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
    /* `finally` block */

    USE_LABEL(c, end);

    loc = NO_LOCATION;
    ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
    ADDOP(c, loc, PUSH_EXC_INFO);
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL));
    VISIT_SEQ(c, stmt, s->v.Try.finalbody);
    compiler_pop_fblock(c, FINALLY_END, end);

    loc = NO_LOCATION;
    ADDOP_I(c, loc, RERAISE, 0);

    USE_LABEL(c, cleanup);
    POP_EXCEPT_AND_RERAISE(c, loc);

    USE_LABEL(c, exit);
    return SUCCESS;
}

static int
compiler_try_star_finally(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);

    NEW_JUMP_TARGET_LABEL(c, body);
    NEW_JUMP_TARGET_LABEL(c, end);
    NEW_JUMP_TARGET_LABEL(c, exit);
    NEW_JUMP_TARGET_LABEL(c, cleanup);
    /* `try` block */
    ADDOP_JUMP(c, loc, SETUP_FINALLY, end);

    USE_LABEL(c, body);
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, FINALLY_TRY, body, end,
                             s->v.TryStar.finalbody));

    if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) {
        RETURN_IF_ERROR(compiler_try_star_except(c, s));
    }
    else {
        VISIT_SEQ(c, stmt, s->v.TryStar.body);
    }
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, body);
    VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);

    ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);

    /* `finally` block */
    USE_LABEL(c, end);

    loc = NO_LOCATION;
    ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
    ADDOP(c, loc, PUSH_EXC_INFO);
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL));

    VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);

    compiler_pop_fblock(c, FINALLY_END, end);
    loc = NO_LOCATION;
    ADDOP_I(c, loc, RERAISE, 0);

    USE_LABEL(c, cleanup);
    POP_EXCEPT_AND_RERAISE(c, loc);

    USE_LABEL(c, exit);
    return SUCCESS;
}


/*
   Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
   (The contents of the value stack is shown in [], with the top
   at the right; 'tb' is trace-back info, 'val' the exception's
   associated value, and 'exc' the exception.)

   Value stack          Label   Instruction     Argument
   []                           SETUP_FINALLY   L1
   []                           <code for S>
   []                           POP_BLOCK
   []                           JUMP            L0

   [exc]                L1:     <evaluate E1>           )
   [exc, E1]                    CHECK_EXC_MATCH         )
   [exc, bool]                  POP_JUMP_IF_FALSE L2    ) only if E1
   [exc]                        <assign to V1>  (or POP if no V1)
   []                           <code for S1>
                                JUMP            L0

   [exc]                L2:     <evaluate E2>
   .............................etc.......................

   [exc]                Ln+1:   RERAISE     # re-raise exception

   []                   L0:     <next statement>

   Of course, parts are not generated if Vi or Ei is not present.
*/
static int
compiler_try_except(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    Py_ssize_t i, n;

    NEW_JUMP_TARGET_LABEL(c, body);
    NEW_JUMP_TARGET_LABEL(c, except);
    NEW_JUMP_TARGET_LABEL(c, end);
    NEW_JUMP_TARGET_LABEL(c, cleanup);

    ADDOP_JUMP(c, loc, SETUP_FINALLY, except);

    USE_LABEL(c, body);
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL));
    VISIT_SEQ(c, stmt, s->v.Try.body);
    compiler_pop_fblock(c, TRY_EXCEPT, body);
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) {
        VISIT_SEQ(c, stmt, s->v.Try.orelse);
    }
    ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
    n = asdl_seq_LEN(s->v.Try.handlers);

    USE_LABEL(c, except);

    ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup);
    ADDOP(c, NO_LOCATION, PUSH_EXC_INFO);

    /* Runtime will push a block here, so we need to account for that */
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, EXCEPTION_HANDLER, NO_LABEL, NO_LABEL, NULL));

    for (i = 0; i < n; i++) {
        excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
            s->v.Try.handlers, i);
        location loc = LOC(handler);
        if (!handler->v.ExceptHandler.type && i < n-1) {
            return compiler_error(c, loc, "default 'except:' must be last");
        }
        NEW_JUMP_TARGET_LABEL(c, next_except);
        except = next_except;
        if (handler->v.ExceptHandler.type) {
            VISIT(c, expr, handler->v.ExceptHandler.type);
            ADDOP(c, loc, CHECK_EXC_MATCH);
            ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, except);
        }
        if (handler->v.ExceptHandler.name) {
            NEW_JUMP_TARGET_LABEL(c, cleanup_end);
            NEW_JUMP_TARGET_LABEL(c, cleanup_body);

            RETURN_IF_ERROR(
                compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store));

            /*
              try:
                  # body
              except type as name:
                  try:
                      # body
                  finally:
                      name = None # in case body contains "del name"
                      del name
            */

            /* second try: */
            ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end);

            USE_LABEL(c, cleanup_body);
            RETURN_IF_ERROR(
                compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
                                     NO_LABEL, handler->v.ExceptHandler.name));

            /* second # body */
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
            /* name = None; del name; # Mark as artificial */
            ADDOP(c, NO_LOCATION, POP_BLOCK);
            ADDOP(c, NO_LOCATION, POP_BLOCK);
            ADDOP(c, NO_LOCATION, POP_EXCEPT);
            ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
            ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

            /* except: */
            USE_LABEL(c, cleanup_end);

            /* name = None; del name; # artificial */
            ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));

            ADDOP_I(c, NO_LOCATION, RERAISE, 1);
        }
        else {
            NEW_JUMP_TARGET_LABEL(c, cleanup_body);

            ADDOP(c, loc, POP_TOP); /* exc_value */

            USE_LABEL(c, cleanup_body);
            RETURN_IF_ERROR(
                compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
                                     NO_LABEL, NULL));

            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
            ADDOP(c, NO_LOCATION, POP_BLOCK);
            ADDOP(c, NO_LOCATION, POP_EXCEPT);
            ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
        }

        USE_LABEL(c, except);
    }
    /* artificial */
    compiler_pop_fblock(c, EXCEPTION_HANDLER, NO_LABEL);
    ADDOP_I(c, NO_LOCATION, RERAISE, 0);

    USE_LABEL(c, cleanup);
    POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);

    USE_LABEL(c, end);
    return SUCCESS;
}

/*
   Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...":
   (The contents of the value stack is shown in [], with the top
   at the right; 'tb' is trace-back info, 'val' the exception instance,
   and 'typ' the exception's type.)

   Value stack                   Label         Instruction     Argument
   []                                         SETUP_FINALLY         L1
   []                                         <code for S>
   []                                         POP_BLOCK
   []                                         JUMP                  L0

   [exc]                            L1:       BUILD_LIST   )  list for raised/reraised excs ("result")
   [orig, res]                                COPY 2       )  make a copy of the original EG

   [orig, res, exc]                           <evaluate E1>
   [orig, res, exc, E1]                       CHECK_EG_MATCH
   [orig, res, rest/exc, match?]              COPY 1
   [orig, res, rest/exc, match?, match?]      POP_JUMP_IF_NONE      C1

   [orig, res, rest, match]                   <assign to V1>  (or POP if no V1)

   [orig, res, rest]                          SETUP_FINALLY         R1
   [orig, res, rest]                          <code for S1>
   [orig, res, rest]                          JUMP                  L2

   [orig, res, rest, i, v]          R1:       LIST_APPEND   3 ) exc raised in except* body - add to res
   [orig, res, rest, i]                       POP
   [orig, res, rest]                          JUMP                  LE2

   [orig, res, rest]                L2:       NOP  ) for lineno
   [orig, res, rest]                          JUMP                  LE2

   [orig, res, rest/exc, None]      C1:       POP

   [orig, res, rest]               LE2:       <evaluate E2>
   .............................etc.......................

   [orig, res, rest]                Ln+1:     LIST_APPEND 1  ) add unhandled exc to res (could be None)

   [orig, res]                                CALL_INTRINSIC_2 PREP_RERAISE_STAR
   [exc]                                      COPY 1
   [exc, exc]                                 POP_JUMP_IF_NOT_NONE  RER
   [exc]                                      POP_TOP
   []                                         JUMP                  L0

   [exc]                            RER:      SWAP 2
   [exc, prev_exc_info]                       POP_EXCEPT
   [exc]                                      RERAISE               0

   []                               L0:       <next statement>
*/
static int
compiler_try_star_except(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);

    NEW_JUMP_TARGET_LABEL(c, body);
    NEW_JUMP_TARGET_LABEL(c, except);
    NEW_JUMP_TARGET_LABEL(c, orelse);
    NEW_JUMP_TARGET_LABEL(c, end);
    NEW_JUMP_TARGET_LABEL(c, cleanup);
    NEW_JUMP_TARGET_LABEL(c, reraise_star);

    ADDOP_JUMP(c, loc, SETUP_FINALLY, except);

    USE_LABEL(c, body);
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL));
    VISIT_SEQ(c, stmt, s->v.TryStar.body);
    compiler_pop_fblock(c, TRY_EXCEPT, body);
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    ADDOP_JUMP(c, NO_LOCATION, JUMP, orelse);
    Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers);

    USE_LABEL(c, except);

    ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup);
    ADDOP(c, NO_LOCATION, PUSH_EXC_INFO);

    /* Runtime will push a block here, so we need to account for that */
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, EXCEPTION_GROUP_HANDLER,
                             NO_LABEL, NO_LABEL, "except handler"));

    for (Py_ssize_t i = 0; i < n; i++) {
        excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
            s->v.TryStar.handlers, i);
        location loc = LOC(handler);
        NEW_JUMP_TARGET_LABEL(c, next_except);
        except = next_except;
        NEW_JUMP_TARGET_LABEL(c, except_with_error);
        NEW_JUMP_TARGET_LABEL(c, no_match);
        if (i == 0) {
            /* create empty list for exceptions raised/reraise in the except* blocks */
            /*
               [orig]       BUILD_LIST
            */
            /* Create a copy of the original EG */
            /*
               [orig, []]   COPY 2
               [orig, [], exc]
            */
            ADDOP_I(c, loc, BUILD_LIST, 0);
            ADDOP_I(c, loc, COPY, 2);
        }
        if (handler->v.ExceptHandler.type) {
            VISIT(c, expr, handler->v.ExceptHandler.type);
            ADDOP(c, loc, CHECK_EG_MATCH);
            ADDOP_I(c, loc, COPY, 1);
            ADDOP_JUMP(c, loc, POP_JUMP_IF_NONE, no_match);
        }

        NEW_JUMP_TARGET_LABEL(c, cleanup_end);
        NEW_JUMP_TARGET_LABEL(c, cleanup_body);

        if (handler->v.ExceptHandler.name) {
            RETURN_IF_ERROR(
                compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store));
        }
        else {
            ADDOP(c, loc, POP_TOP);  // match
        }

        /*
          try:
              # body
          except type as name:
              try:
                  # body
              finally:
                  name = None # in case body contains "del name"
                  del name
        */
        /* second try: */
        ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end);

        USE_LABEL(c, cleanup_body);
        RETURN_IF_ERROR(
            compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
                                 NO_LABEL, handler->v.ExceptHandler.name));

        /* second # body */
        VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
        compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
        /* name = None; del name; # artificial */
        ADDOP(c, NO_LOCATION, POP_BLOCK);
        if (handler->v.ExceptHandler.name) {
            ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
        }
        ADDOP_JUMP(c, NO_LOCATION, JUMP, except);

        /* except: */
        USE_LABEL(c, cleanup_end);

        /* name = None; del name; # artificial */
        if (handler->v.ExceptHandler.name) {
            ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
            RETURN_IF_ERROR(
                compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
        }

        /* add exception raised to the res list */
        ADDOP_I(c, NO_LOCATION, LIST_APPEND, 3); // exc
        ADDOP(c, NO_LOCATION, POP_TOP); // lasti
        ADDOP_JUMP(c, NO_LOCATION, JUMP, except_with_error);

        USE_LABEL(c, except);
        ADDOP(c, NO_LOCATION, NOP);  // to hold a propagated location info
        ADDOP_JUMP(c, NO_LOCATION, JUMP, except_with_error);

        USE_LABEL(c, no_match);
        ADDOP(c, loc, POP_TOP);  // match (None)

        USE_LABEL(c, except_with_error);

        if (i == n - 1) {
            /* Add exc to the list (if not None it's the unhandled part of the EG) */
            ADDOP_I(c, NO_LOCATION, LIST_APPEND, 1);
            ADDOP_JUMP(c, NO_LOCATION, JUMP, reraise_star);
        }
    }
    /* artificial */
    compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NO_LABEL);
    NEW_JUMP_TARGET_LABEL(c, reraise);

    USE_LABEL(c, reraise_star);
    ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_2, INTRINSIC_PREP_RERAISE_STAR);
    ADDOP_I(c, NO_LOCATION, COPY, 1);
    ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_NOT_NONE, reraise);

    /* Nothing to reraise */
    ADDOP(c, NO_LOCATION, POP_TOP);
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    ADDOP(c, NO_LOCATION, POP_EXCEPT);
    ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

    USE_LABEL(c, reraise);
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    ADDOP_I(c, NO_LOCATION, SWAP, 2);
    ADDOP(c, NO_LOCATION, POP_EXCEPT);
    ADDOP_I(c, NO_LOCATION, RERAISE, 0);

    USE_LABEL(c, cleanup);
    POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);

    USE_LABEL(c, orelse);
    VISIT_SEQ(c, stmt, s->v.TryStar.orelse);

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_try(struct compiler *c, stmt_ty s) {
    if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
        return compiler_try_finally(c, s);
    else
        return compiler_try_except(c, s);
}

static int
compiler_try_star(struct compiler *c, stmt_ty s)
{
    if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) {
        return compiler_try_star_finally(c, s);
    }
    else {
        return compiler_try_star_except(c, s);
    }
}

static int
compiler_import_as(struct compiler *c, location loc,
                   identifier name, identifier asname)
{
    /* The IMPORT_NAME opcode was already generated.  This function
       merely needs to bind the result to a name.

       If there is a dot in name, we need to split it and emit a
       IMPORT_FROM for each name.
    */
    Py_ssize_t len = PyUnicode_GET_LENGTH(name);
    Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
    if (dot == -2) {
        return ERROR;
    }
    if (dot != -1) {
        /* Consume the base module name to get the first attribute */
        while (1) {
            Py_ssize_t pos = dot + 1;
            PyObject *attr;
            dot = PyUnicode_FindChar(name, '.', pos, len, 1);
            if (dot == -2) {
                return ERROR;
            }
            attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
            if (!attr) {
                return ERROR;
            }
            ADDOP_N(c, loc, IMPORT_FROM, attr, names);
            if (dot == -1) {
                break;
            }
            ADDOP_I(c, loc, SWAP, 2);
            ADDOP(c, loc, POP_TOP);
        }
        RETURN_IF_ERROR(compiler_nameop(c, loc, asname, Store));
        ADDOP(c, loc, POP_TOP);
        return SUCCESS;
    }
    return compiler_nameop(c, loc, asname, Store);
}

static int
compiler_import(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    /* The Import node stores a module name like a.b.c as a single
       string.  This is convenient for all cases except
         import a.b.c as d
       where we need to parse that string to extract the individual
       module names.
       XXX Perhaps change the representation to make this case simpler?
     */
    Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);

    PyObject *zero = _PyLong_GetZero();  // borrowed reference
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
        int r;

        ADDOP_LOAD_CONST(c, loc, zero);
        ADDOP_LOAD_CONST(c, loc, Py_None);
        ADDOP_NAME(c, loc, IMPORT_NAME, alias->name, names);

        if (alias->asname) {
            r = compiler_import_as(c, loc, alias->name, alias->asname);
            RETURN_IF_ERROR(r);
        }
        else {
            identifier tmp = alias->name;
            Py_ssize_t dot = PyUnicode_FindChar(
                alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
            if (dot != -1) {
                tmp = PyUnicode_Substring(alias->name, 0, dot);
                if (tmp == NULL) {
                    return ERROR;
                }
            }
            r = compiler_nameop(c, loc, tmp, Store);
            if (dot != -1) {
                Py_DECREF(tmp);
            }
            RETURN_IF_ERROR(r);
        }
    }
    return SUCCESS;
}

static int
compiler_from_import(struct compiler *c, stmt_ty s)
{
    Py_ssize_t n = asdl_seq_LEN(s->v.ImportFrom.names);

    ADDOP_LOAD_CONST_NEW(c, LOC(s), PyLong_FromLong(s->v.ImportFrom.level));

    PyObject *names = PyTuple_New(n);
    if (!names) {
        return ERROR;
    }

    /* build up the names */
    for (Py_ssize_t i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        PyTuple_SET_ITEM(names, i, Py_NewRef(alias->name));
    }

    if (location_is_after(LOC(s), c->c_future.ff_location) &&
        s->v.ImportFrom.module &&
        _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__"))
    {
        Py_DECREF(names);
        return compiler_error(c, LOC(s), "from __future__ imports must occur "
                              "at the beginning of the file");
    }
    ADDOP_LOAD_CONST_NEW(c, LOC(s), names);

    if (s->v.ImportFrom.module) {
        ADDOP_NAME(c, LOC(s), IMPORT_NAME, s->v.ImportFrom.module, names);
    }
    else {
        _Py_DECLARE_STR(empty, "");
        ADDOP_NAME(c, LOC(s), IMPORT_NAME, &_Py_STR(empty), names);
    }
    for (Py_ssize_t i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        identifier store_name;

        if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
            assert(n == 1);
            ADDOP_I(c, LOC(s), CALL_INTRINSIC_1, INTRINSIC_IMPORT_STAR);
            ADDOP(c, NO_LOCATION, POP_TOP);
            return SUCCESS;
        }

        ADDOP_NAME(c, LOC(s), IMPORT_FROM, alias->name, names);
        store_name = alias->name;
        if (alias->asname) {
            store_name = alias->asname;
        }

        RETURN_IF_ERROR(compiler_nameop(c, LOC(s), store_name, Store));
    }
    /* remove imported module */
    ADDOP(c, LOC(s), POP_TOP);
    return SUCCESS;
}

static int
compiler_assert(struct compiler *c, stmt_ty s)
{
    /* Always emit a warning if the test is a non-zero length tuple */
    if ((s->v.Assert.test->kind == Tuple_kind &&
        asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) ||
        (s->v.Assert.test->kind == Constant_kind &&
         PyTuple_Check(s->v.Assert.test->v.Constant.value) &&
         PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0))
    {
        RETURN_IF_ERROR(
            compiler_warn(c, LOC(s), "assertion is always true, "
                                     "perhaps remove parentheses?"));
    }
    if (c->c_optimize) {
        return SUCCESS;
    }
    NEW_JUMP_TARGET_LABEL(c, end);
    RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.Assert.test, end, 1));
    ADDOP(c, LOC(s), LOAD_ASSERTION_ERROR);
    if (s->v.Assert.msg) {
        VISIT(c, expr, s->v.Assert.msg);
        ADDOP_I(c, LOC(s), CALL, 0);
    }
    ADDOP_I(c, LOC(s->v.Assert.test), RAISE_VARARGS, 1);

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_stmt_expr(struct compiler *c, location loc, expr_ty value)
{
    if (c->c_interactive && c->c_nestlevel <= 1) {
        VISIT(c, expr, value);
        ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PRINT);
        ADDOP(c, NO_LOCATION, POP_TOP);
        return SUCCESS;
    }

    if (value->kind == Constant_kind) {
        /* ignore constant statement */
        ADDOP(c, loc, NOP);
        return SUCCESS;
    }

    VISIT(c, expr, value);
    ADDOP(c, NO_LOCATION, POP_TOP); /* artificial */
    return SUCCESS;
}

static int
compiler_visit_stmt(struct compiler *c, stmt_ty s)
{

    switch (s->kind) {
    case FunctionDef_kind:
        return compiler_function(c, s, 0);
    case ClassDef_kind:
        return compiler_class(c, s);
    case TypeAlias_kind:
        return compiler_typealias(c, s);
    case Return_kind:
        return compiler_return(c, s);
    case Delete_kind:
        VISIT_SEQ(c, expr, s->v.Delete.targets)
        break;
    case Assign_kind:
    {
        Py_ssize_t n = asdl_seq_LEN(s->v.Assign.targets);
        VISIT(c, expr, s->v.Assign.value);
        for (Py_ssize_t i = 0; i < n; i++) {
            if (i < n - 1) {
                ADDOP_I(c, LOC(s), COPY, 1);
            }
            VISIT(c, expr,
                  (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
        }
        break;
    }
    case AugAssign_kind:
        return compiler_augassign(c, s);
    case AnnAssign_kind:
        return compiler_annassign(c, s);
    case For_kind:
        return compiler_for(c, s);
    case While_kind:
        return compiler_while(c, s);
    case If_kind:
        return compiler_if(c, s);
    case Match_kind:
        return compiler_match(c, s);
    case Raise_kind:
    {
        Py_ssize_t n = 0;
        if (s->v.Raise.exc) {
            VISIT(c, expr, s->v.Raise.exc);
            n++;
            if (s->v.Raise.cause) {
                VISIT(c, expr, s->v.Raise.cause);
                n++;
            }
        }
        ADDOP_I(c, LOC(s), RAISE_VARARGS, (int)n);
        break;
    }
    case Try_kind:
        return compiler_try(c, s);
    case TryStar_kind:
        return compiler_try_star(c, s);
    case Assert_kind:
        return compiler_assert(c, s);
    case Import_kind:
        return compiler_import(c, s);
    case ImportFrom_kind:
        return compiler_from_import(c, s);
    case Global_kind:
    case Nonlocal_kind:
        break;
    case Expr_kind:
    {
        return compiler_stmt_expr(c, LOC(s), s->v.Expr.value);
    }
    case Pass_kind:
    {
        ADDOP(c, LOC(s), NOP);
        break;
    }
    case Break_kind:
    {
        return compiler_break(c, LOC(s));
    }
    case Continue_kind:
    {
        return compiler_continue(c, LOC(s));
    }
    case With_kind:
        return compiler_with(c, s, 0);
    case AsyncFunctionDef_kind:
        return compiler_function(c, s, 1);
    case AsyncWith_kind:
        return compiler_async_with(c, s, 0);
    case AsyncFor_kind:
        return compiler_async_for(c, s);
    }

    return SUCCESS;
}

static int
unaryop(unaryop_ty op)
{
    switch (op) {
    case Invert:
        return UNARY_INVERT;
    case USub:
        return UNARY_NEGATIVE;
    default:
        PyErr_Format(PyExc_SystemError,
            "unary op %d should not be possible", op);
        return 0;
    }
}

static int
addop_binary(struct compiler *c, location loc, operator_ty binop,
             bool inplace)
{
    int oparg;
    switch (binop) {
        case Add:
            oparg = inplace ? NB_INPLACE_ADD : NB_ADD;
            break;
        case Sub:
            oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT;
            break;
        case Mult:
            oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY;
            break;
        case MatMult:
            oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY;
            break;
        case Div:
            oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE;
            break;
        case Mod:
            oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER;
            break;
        case Pow:
            oparg = inplace ? NB_INPLACE_POWER : NB_POWER;
            break;
        case LShift:
            oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT;
            break;
        case RShift:
            oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT;
            break;
        case BitOr:
            oparg = inplace ? NB_INPLACE_OR : NB_OR;
            break;
        case BitXor:
            oparg = inplace ? NB_INPLACE_XOR : NB_XOR;
            break;
        case BitAnd:
            oparg = inplace ? NB_INPLACE_AND : NB_AND;
            break;
        case FloorDiv:
            oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE;
            break;
        default:
            PyErr_Format(PyExc_SystemError, "%s op %d should not be possible",
                         inplace ? "inplace" : "binary", binop);
            return ERROR;
    }
    ADDOP_I(c, loc, BINARY_OP, oparg);
    return SUCCESS;
}


static int
addop_yield(struct compiler *c, location loc) {
    if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) {
        ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_ASYNC_GEN_WRAP);
    }
    ADDOP_I(c, loc, YIELD_VALUE, 0);
    ADDOP_I(c, loc, RESUME, RESUME_AFTER_YIELD);
    return SUCCESS;
}

static int
compiler_nameop(struct compiler *c, location loc,
                identifier name, expr_context_ty ctx)
{
    int op, scope;
    Py_ssize_t arg;
    enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;

    PyObject *dict = c->u->u_metadata.u_names;
    PyObject *mangled;

    assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
           !_PyUnicode_EqualToASCIIString(name, "True") &&
           !_PyUnicode_EqualToASCIIString(name, "False"));

    if (forbidden_name(c, loc, name, ctx)) {
        return ERROR;
    }

    mangled = _Py_Mangle(c->u->u_private, name);
    if (!mangled) {
        return ERROR;
    }

    op = 0;
    optype = OP_NAME;
    scope = _PyST_GetScope(c->u->u_ste, mangled);
    switch (scope) {
    case FREE:
        dict = c->u->u_metadata.u_freevars;
        optype = OP_DEREF;
        break;
    case CELL:
        dict = c->u->u_metadata.u_cellvars;
        optype = OP_DEREF;
        break;
    case LOCAL:
        if (_PyST_IsFunctionLike(c->u->u_ste)) {
            optype = OP_FAST;
        }
        else {
            PyObject *item;
            if (PyDict_GetItemRef(c->u->u_metadata.u_fasthidden, mangled,
                                  &item) < 0) {
                goto error;
            }
            if (item == Py_True) {
                optype = OP_FAST;
            }
            Py_XDECREF(item);
        }
        break;
    case GLOBAL_IMPLICIT:
        if (_PyST_IsFunctionLike(c->u->u_ste))
            optype = OP_GLOBAL;
        break;
    case GLOBAL_EXPLICIT:
        optype = OP_GLOBAL;
        break;
    default:
        /* scope can be 0 */
        break;
    }

    /* XXX Leave assert here, but handle __doc__ and the like better */
    assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');

    switch (optype) {
    case OP_DEREF:
        switch (ctx) {
        case Load:
            if (c->u->u_ste->ste_type == ClassBlock && !c->u->u_in_inlined_comp) {
                op = LOAD_FROM_DICT_OR_DEREF;
                // First load the locals
                if (codegen_addop_noarg(INSTR_SEQUENCE(c), LOAD_LOCALS, loc) < 0) {
                    goto error;
                }
            }
            else if (c->u->u_ste->ste_can_see_class_scope) {
                op = LOAD_FROM_DICT_OR_DEREF;
                // First load the classdict
                if (compiler_addop_o(c->u, loc, LOAD_DEREF,
                                     c->u->u_metadata.u_freevars, &_Py_ID(__classdict__)) < 0) {
                    goto error;
                }
            }
            else {
                op = LOAD_DEREF;
            }
            break;
        case Store: op = STORE_DEREF; break;
        case Del: op = DELETE_DEREF; break;
        }
        break;
    case OP_FAST:
        switch (ctx) {
        case Load: op = LOAD_FAST; break;
        case Store: op = STORE_FAST; break;
        case Del: op = DELETE_FAST; break;
        }
        ADDOP_N(c, loc, op, mangled, varnames);
        return SUCCESS;
    case OP_GLOBAL:
        switch (ctx) {
        case Load:
            if (c->u->u_ste->ste_can_see_class_scope && scope == GLOBAL_IMPLICIT) {
                op = LOAD_FROM_DICT_OR_GLOBALS;
                // First load the classdict
                if (compiler_addop_o(c->u, loc, LOAD_DEREF,
                                     c->u->u_metadata.u_freevars, &_Py_ID(__classdict__)) < 0) {
                    goto error;
                }
            } else {
                op = LOAD_GLOBAL;
            }
            break;
        case Store: op = STORE_GLOBAL; break;
        case Del: op = DELETE_GLOBAL; break;
        }
        break;
    case OP_NAME:
        switch (ctx) {
        case Load:
            op = (c->u->u_ste->ste_type == ClassBlock
                    && c->u->u_in_inlined_comp)
                ? LOAD_GLOBAL
                : LOAD_NAME;
            break;
        case Store: op = STORE_NAME; break;
        case Del: op = DELETE_NAME; break;
        }
        break;
    }

    assert(op);
    arg = dict_add_o(dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0) {
        return ERROR;
    }
    if (op == LOAD_GLOBAL) {
        arg <<= 1;
    }
    return codegen_addop_i(INSTR_SEQUENCE(c), op, arg, loc);

error:
    Py_DECREF(mangled);
    return ERROR;
}

static int
compiler_boolop(struct compiler *c, expr_ty e)
{
    int jumpi;
    Py_ssize_t i, n;
    asdl_expr_seq *s;

    location loc = LOC(e);
    assert(e->kind == BoolOp_kind);
    if (e->v.BoolOp.op == And)
        jumpi = POP_JUMP_IF_FALSE;
    else
        jumpi = POP_JUMP_IF_TRUE;
    NEW_JUMP_TARGET_LABEL(c, end);
    s = e->v.BoolOp.values;
    n = asdl_seq_LEN(s) - 1;
    assert(n >= 0);
    for (i = 0; i < n; ++i) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
        ADDOP_I(c, loc, COPY, 1);
        ADDOP(c, loc, TO_BOOL);
        ADDOP_JUMP(c, loc, jumpi, end);
        ADDOP(c, loc, POP_TOP);
    }
    VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));

    USE_LABEL(c, end);
    return SUCCESS;
}

static int
starunpack_helper(struct compiler *c, location loc,
                  asdl_expr_seq *elts, int pushed,
                  int build, int add, int extend, int tuple)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    if (n > 2 && are_all_items_const(elts, 0, n)) {
        PyObject *folded = PyTuple_New(n);
        if (folded == NULL) {
            return ERROR;
        }
        PyObject *val;
        for (Py_ssize_t i = 0; i < n; i++) {
            val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
            PyTuple_SET_ITEM(folded, i, Py_NewRef(val));
        }
        if (tuple && !pushed) {
            ADDOP_LOAD_CONST_NEW(c, loc, folded);
        } else {
            if (add == SET_ADD) {
                Py_SETREF(folded, PyFrozenSet_New(folded));
                if (folded == NULL) {
                    return ERROR;
                }
            }
            ADDOP_I(c, loc, build, pushed);
            ADDOP_LOAD_CONST_NEW(c, loc, folded);
            ADDOP_I(c, loc, extend, 1);
            if (tuple) {
                ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE);
            }
        }
        return SUCCESS;
    }

    int big = n+pushed > STACK_USE_GUIDELINE;
    int seen_star = 0;
    for (Py_ssize_t i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind) {
            seen_star = 1;
            break;
        }
    }
    if (!seen_star && !big) {
        for (Py_ssize_t i = 0; i < n; i++) {
            expr_ty elt = asdl_seq_GET(elts, i);
            VISIT(c, expr, elt);
        }
        if (tuple) {
            ADDOP_I(c, loc, BUILD_TUPLE, n+pushed);
        } else {
            ADDOP_I(c, loc, build, n+pushed);
        }
        return SUCCESS;
    }
    int sequence_built = 0;
    if (big) {
        ADDOP_I(c, loc, build, pushed);
        sequence_built = 1;
    }
    for (Py_ssize_t i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind) {
            if (sequence_built == 0) {
                ADDOP_I(c, loc, build, i+pushed);
                sequence_built = 1;
            }
            VISIT(c, expr, elt->v.Starred.value);
            ADDOP_I(c, loc, extend, 1);
        }
        else {
            VISIT(c, expr, elt);
            if (sequence_built) {
                ADDOP_I(c, loc, add, 1);
            }
        }
    }
    assert(sequence_built);
    if (tuple) {
        ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE);
    }
    return SUCCESS;
}

static int
unpack_helper(struct compiler *c, location loc, asdl_expr_seq *elts)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    int seen_star = 0;
    for (Py_ssize_t i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind && !seen_star) {
            if ((i >= (1 << 8)) ||
                (n-i-1 >= (INT_MAX >> 8))) {
                return compiler_error(c, loc,
                    "too many expressions in "
                    "star-unpacking assignment");
            }
            ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8)));
            seen_star = 1;
        }
        else if (elt->kind == Starred_kind) {
            return compiler_error(c, loc,
                "multiple starred expressions in assignment");
        }
    }
    if (!seen_star) {
        ADDOP_I(c, loc, UNPACK_SEQUENCE, n);
    }
    return SUCCESS;
}

static int
assignment_helper(struct compiler *c, location loc, asdl_expr_seq *elts)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    RETURN_IF_ERROR(unpack_helper(c, loc, elts));
    for (Py_ssize_t i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value);
    }
    return SUCCESS;
}

static int
compiler_list(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    asdl_expr_seq *elts = e->v.List.elts;
    if (e->v.List.ctx == Store) {
        return assignment_helper(c, loc, elts);
    }
    else if (e->v.List.ctx == Load) {
        return starunpack_helper(c, loc, elts, 0,
                                 BUILD_LIST, LIST_APPEND, LIST_EXTEND, 0);
    }
    else {
        VISIT_SEQ(c, expr, elts);
    }
    return SUCCESS;
}

static int
compiler_tuple(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    asdl_expr_seq *elts = e->v.Tuple.elts;
    if (e->v.Tuple.ctx == Store) {
        return assignment_helper(c, loc, elts);
    }
    else if (e->v.Tuple.ctx == Load) {
        return starunpack_helper(c, loc, elts, 0,
                                 BUILD_LIST, LIST_APPEND, LIST_EXTEND, 1);
    }
    else {
        VISIT_SEQ(c, expr, elts);
    }
    return SUCCESS;
}

static int
compiler_set(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    return starunpack_helper(c, loc, e->v.Set.elts, 0,
                             BUILD_SET, SET_ADD, SET_UPDATE, 0);
}

static bool
are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end)
{
    for (Py_ssize_t i = begin; i < end; i++) {
        expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
        if (key == NULL || key->kind != Constant_kind) {
            return false;
        }
    }
    return true;
}

static int
compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i, n = end - begin;
    PyObject *keys, *key;
    int big = n*2 > STACK_USE_GUIDELINE;
    location loc = LOC(e);
    if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) {
        for (i = begin; i < end; i++) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
        }
        keys = PyTuple_New(n);
        if (keys == NULL) {
            return SUCCESS;
        }
        for (i = begin; i < end; i++) {
            key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
            PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key));
        }
        ADDOP_LOAD_CONST_NEW(c, loc, keys);
        ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n);
        return SUCCESS;
    }
    if (big) {
        ADDOP_I(c, loc, BUILD_MAP, 0);
    }
    for (i = begin; i < end; i++) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
        VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
        if (big) {
            ADDOP_I(c, loc, MAP_ADD, 1);
        }
    }
    if (!big) {
        ADDOP_I(c, loc, BUILD_MAP, n);
    }
    return SUCCESS;
}

static int
compiler_dict(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    Py_ssize_t i, n, elements;
    int have_dict;
    int is_unpacking = 0;
    n = asdl_seq_LEN(e->v.Dict.values);
    have_dict = 0;
    elements = 0;
    for (i = 0; i < n; i++) {
        is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
        if (is_unpacking) {
            if (elements) {
                RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i));
                if (have_dict) {
                    ADDOP_I(c, loc, DICT_UPDATE, 1);
                }
                have_dict = 1;
                elements = 0;
            }
            if (have_dict == 0) {
                ADDOP_I(c, loc, BUILD_MAP, 0);
                have_dict = 1;
            }
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
            ADDOP_I(c, loc, DICT_UPDATE, 1);
        }
        else {
            if (elements*2 > STACK_USE_GUIDELINE) {
                RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i + 1));
                if (have_dict) {
                    ADDOP_I(c, loc, DICT_UPDATE, 1);
                }
                have_dict = 1;
                elements = 0;
            }
            else {
                elements++;
            }
        }
    }
    if (elements) {
        RETURN_IF_ERROR(compiler_subdict(c, e, n - elements, n));
        if (have_dict) {
            ADDOP_I(c, loc, DICT_UPDATE, 1);
        }
        have_dict = 1;
    }
    if (!have_dict) {
        ADDOP_I(c, loc, BUILD_MAP, 0);
    }
    return SUCCESS;
}

static int
compiler_compare(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    Py_ssize_t i, n;

    RETURN_IF_ERROR(check_compare(c, e));
    VISIT(c, expr, e->v.Compare.left);
    assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
    n = asdl_seq_LEN(e->v.Compare.ops) - 1;
    if (n == 0) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
        ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, 0));
    }
    else {
        NEW_JUMP_TARGET_LABEL(c, cleanup);
        for (i = 0; i < n; i++) {
            VISIT(c, expr,
                (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
            ADDOP_I(c, loc, SWAP, 2);
            ADDOP_I(c, loc, COPY, 2);
            ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, i));
            ADDOP_I(c, loc, COPY, 1);
            ADDOP(c, loc, TO_BOOL);
            ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, cleanup);
            ADDOP(c, loc, POP_TOP);
        }
        VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
        ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, n));
        NEW_JUMP_TARGET_LABEL(c, end);
        ADDOP_JUMP(c, NO_LOCATION, JUMP, end);

        USE_LABEL(c, cleanup);
        ADDOP_I(c, loc, SWAP, 2);
        ADDOP(c, loc, POP_TOP);

        USE_LABEL(c, end);
    }
    return SUCCESS;
}

static PyTypeObject *
infer_type(expr_ty e)
{
    switch (e->kind) {
    case Tuple_kind:
        return &PyTuple_Type;
    case List_kind:
    case ListComp_kind:
        return &PyList_Type;
    case Dict_kind:
    case DictComp_kind:
        return &PyDict_Type;
    case Set_kind:
    case SetComp_kind:
        return &PySet_Type;
    case GeneratorExp_kind:
        return &PyGen_Type;
    case Lambda_kind:
        return &PyFunction_Type;
    case JoinedStr_kind:
    case FormattedValue_kind:
        return &PyUnicode_Type;
    case Constant_kind:
        return Py_TYPE(e->v.Constant.value);
    default:
        return NULL;
    }
}

static int
check_caller(struct compiler *c, expr_ty e)
{
    switch (e->kind) {
    case Constant_kind:
    case Tuple_kind:
    case List_kind:
    case ListComp_kind:
    case Dict_kind:
    case DictComp_kind:
    case Set_kind:
    case SetComp_kind:
    case GeneratorExp_kind:
    case JoinedStr_kind:
    case FormattedValue_kind: {
        location loc = LOC(e);
        return compiler_warn(c, loc, "'%.200s' object is not callable; "
                                     "perhaps you missed a comma?",
                                     infer_type(e)->tp_name);
    }
    default:
        return SUCCESS;
    }
}

static int
check_subscripter(struct compiler *c, expr_ty e)
{
    PyObject *v;

    switch (e->kind) {
    case Constant_kind:
        v = e->v.Constant.value;
        if (!(v == Py_None || v == Py_Ellipsis ||
              PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
              PyAnySet_Check(v)))
        {
            return SUCCESS;
        }
        /* fall through */
    case Set_kind:
    case SetComp_kind:
    case GeneratorExp_kind:
    case Lambda_kind: {
        location loc = LOC(e);
        return compiler_warn(c, loc, "'%.200s' object is not subscriptable; "
                                     "perhaps you missed a comma?",
                                     infer_type(e)->tp_name);
    }
    default:
        return SUCCESS;
    }
}

static int
check_index(struct compiler *c, expr_ty e, expr_ty s)
{
    PyObject *v;

    PyTypeObject *index_type = infer_type(s);
    if (index_type == NULL
        || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
        || index_type == &PySlice_Type) {
        return SUCCESS;
    }

    switch (e->kind) {
    case Constant_kind:
        v = e->v.Constant.value;
        if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
            return SUCCESS;
        }
        /* fall through */
    case Tuple_kind:
    case List_kind:
    case ListComp_kind:
    case JoinedStr_kind:
    case FormattedValue_kind: {
        location loc = LOC(e);
        return compiler_warn(c, loc, "%.200s indices must be integers "
                                     "or slices, not %.200s; "
                                     "perhaps you missed a comma?",
                                     infer_type(e)->tp_name,
                                     index_type->tp_name);
    }
    default:
        return SUCCESS;
    }
}

static int
is_import_originated(struct compiler *c, expr_ty e)
{
    /* Check whether the global scope has an import named
     e, if it is a Name object. For not traversing all the
     scope stack every time this function is called, it will
     only check the global scope to determine whether something
     is imported or not. */

    if (e->kind != Name_kind) {
        return 0;
    }

    long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id);
    return flags & DEF_IMPORT;
}

static int
can_optimize_super_call(struct compiler *c, expr_ty attr)
{
    expr_ty e = attr->v.Attribute.value;
    if (e->kind != Call_kind ||
        e->v.Call.func->kind != Name_kind ||
        !_PyUnicode_EqualToASCIIString(e->v.Call.func->v.Name.id, "super") ||
        _PyUnicode_EqualToASCIIString(attr->v.Attribute.attr, "__class__") ||
        asdl_seq_LEN(e->v.Call.keywords) != 0) {
        return 0;
    }
    Py_ssize_t num_args = asdl_seq_LEN(e->v.Call.args);

    PyObject *super_name = e->v.Call.func->v.Name.id;
    // detect statically-visible shadowing of 'super' name
    int scope = _PyST_GetScope(c->u->u_ste, super_name);
    if (scope != GLOBAL_IMPLICIT) {
        return 0;
    }
    scope = _PyST_GetScope(c->c_st->st_top, super_name);
    if (scope != 0) {
        return 0;
    }

    if (num_args == 2) {
        for (Py_ssize_t i = 0; i < num_args; i++) {
            expr_ty elt = asdl_seq_GET(e->v.Call.args, i);
            if (elt->kind == Starred_kind) {
                return 0;
            }
        }
        // exactly two non-starred args; we can just load
        // the provided args
        return 1;
    }

    if (num_args != 0) {
        return 0;
    }
    // we need the following for zero-arg super():

    // enclosing function should have at least one argument
    if (c->u->u_metadata.u_argcount == 0 &&
        c->u->u_metadata.u_posonlyargcount == 0) {
        return 0;
    }
    // __class__ cell should be available
    if (get_ref_type(c, &_Py_ID(__class__)) == FREE) {
        return 1;
    }
    return 0;
}

static int
load_args_for_super(struct compiler *c, expr_ty e) {
    location loc = LOC(e);

    // load super() global
    PyObject *super_name = e->v.Call.func->v.Name.id;
    RETURN_IF_ERROR(compiler_nameop(c, LOC(e->v.Call.func), super_name, Load));

    if (asdl_seq_LEN(e->v.Call.args) == 2) {
        VISIT(c, expr, asdl_seq_GET(e->v.Call.args, 0));
        VISIT(c, expr, asdl_seq_GET(e->v.Call.args, 1));
        return SUCCESS;
    }

    // load __class__ cell
    PyObject *name = &_Py_ID(__class__);
    assert(get_ref_type(c, name) == FREE);
    RETURN_IF_ERROR(compiler_nameop(c, loc, name, Load));

    // load self (first argument)
    Py_ssize_t i = 0;
    PyObject *key, *value;
    if (!PyDict_Next(c->u->u_metadata.u_varnames, &i, &key, &value)) {
        return ERROR;
    }
    RETURN_IF_ERROR(compiler_nameop(c, loc, key, Load));

    return SUCCESS;
}

// If an attribute access spans multiple lines, update the current start
// location to point to the attribute name.
static location
update_start_location_to_match_attr(struct compiler *c, location loc,
                                    expr_ty attr)
{
    assert(attr->kind == Attribute_kind);
    if (loc.lineno != attr->end_lineno) {
        loc.lineno = attr->end_lineno;
        int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr);
        if (len <= attr->end_col_offset) {
            loc.col_offset = attr->end_col_offset - len;
        }
        else {
            // GH-94694: Somebody's compiling weird ASTs. Just drop the columns:
            loc.col_offset = -1;
            loc.end_col_offset = -1;
        }
        // Make sure the end position still follows the start position, even for
        // weird ASTs:
        loc.end_lineno = Py_MAX(loc.lineno, loc.end_lineno);
        if (loc.lineno == loc.end_lineno) {
            loc.end_col_offset = Py_MAX(loc.col_offset, loc.end_col_offset);
        }
    }
    return loc;
}

// Return 1 if the method call was optimized, 0 if not, and -1 on error.
static int
maybe_optimize_method_call(struct compiler *c, expr_ty e)
{
    Py_ssize_t argsl, i, kwdsl;
    expr_ty meth = e->v.Call.func;
    asdl_expr_seq *args = e->v.Call.args;
    asdl_keyword_seq *kwds = e->v.Call.keywords;

    /* Check that the call node is an attribute access */
    if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) {
        return 0;
    }

    /* Check that the base object is not something that is imported */
    if (is_import_originated(c, meth->v.Attribute.value)) {
        return 0;
    }

    /* Check that there aren't too many arguments */
    argsl = asdl_seq_LEN(args);
    kwdsl = asdl_seq_LEN(kwds);
    if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) {
        return 0;
    }
    /* Check that there are no *varargs types of arguments. */
    for (i = 0; i < argsl; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        if (elt->kind == Starred_kind) {
            return 0;
        }
    }

    for (i = 0; i < kwdsl; i++) {
        keyword_ty kw = asdl_seq_GET(kwds, i);
        if (kw->arg == NULL) {
            return 0;
        }
    }

    /* Alright, we can optimize the code. */
    location loc = LOC(meth);

    if (can_optimize_super_call(c, meth)) {
        RETURN_IF_ERROR(load_args_for_super(c, meth->v.Attribute.value));
        int opcode = asdl_seq_LEN(meth->v.Attribute.value->v.Call.args) ?
            LOAD_SUPER_METHOD : LOAD_ZERO_SUPER_METHOD;
        ADDOP_NAME(c, loc, opcode, meth->v.Attribute.attr, names);
        loc = update_start_location_to_match_attr(c, loc, meth);
        ADDOP(c, loc, NOP);
    } else {
        VISIT(c, expr, meth->v.Attribute.value);
        loc = update_start_location_to_match_attr(c, loc, meth);
        ADDOP_NAME(c, loc, LOAD_METHOD, meth->v.Attribute.attr, names);
    }

    VISIT_SEQ(c, expr, e->v.Call.args);

    if (kwdsl) {
        VISIT_SEQ(c, keyword, kwds);
        RETURN_IF_ERROR(
            compiler_call_simple_kw_helper(c, loc, kwds, kwdsl));
        loc = update_start_location_to_match_attr(c, LOC(e), meth);
        ADDOP_I(c, loc, CALL_KW, argsl + kwdsl);
    }
    else {
        loc = update_start_location_to_match_attr(c, LOC(e), meth);
        ADDOP_I(c, loc, CALL, argsl);
    }
    return 1;
}

static int
validate_keywords(struct compiler *c, asdl_keyword_seq *keywords)
{
    Py_ssize_t nkeywords = asdl_seq_LEN(keywords);
    for (Py_ssize_t i = 0; i < nkeywords; i++) {
        keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i));
        if (key->arg == NULL) {
            continue;
        }
        location loc = LOC(key);
        if (forbidden_name(c, loc, key->arg, Store)) {
            return ERROR;
        }
        for (Py_ssize_t j = i + 1; j < nkeywords; j++) {
            keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j));
            if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) {
                compiler_error(c, LOC(other), "keyword argument repeated: %U", key->arg);
                return ERROR;
            }
        }
    }
    return SUCCESS;
}

static int
compiler_call(struct compiler *c, expr_ty e)
{
    RETURN_IF_ERROR(validate_keywords(c, e->v.Call.keywords));
    int ret = maybe_optimize_method_call(c, e);
    if (ret < 0) {
        return ERROR;
    }
    if (ret == 1) {
        return SUCCESS;
    }
    RETURN_IF_ERROR(check_caller(c, e->v.Call.func));
    VISIT(c, expr, e->v.Call.func);
    location loc = LOC(e->v.Call.func);
    ADDOP(c, loc, PUSH_NULL);
    loc = LOC(e);
    return compiler_call_helper(c, loc, 0,
                                e->v.Call.args,
                                e->v.Call.keywords);
}

static int
compiler_joined_str(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values);
    if (value_count > STACK_USE_GUIDELINE) {
        _Py_DECLARE_STR(empty, "");
        ADDOP_LOAD_CONST_NEW(c, loc, Py_NewRef(&_Py_STR(empty)));
        ADDOP_NAME(c, loc, LOAD_METHOD, &_Py_ID(join), names);
        ADDOP_I(c, loc, BUILD_LIST, 0);
        for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) {
            VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i));
            ADDOP_I(c, loc, LIST_APPEND, 1);
        }
        ADDOP_I(c, loc, CALL, 1);
    }
    else {
        VISIT_SEQ(c, expr, e->v.JoinedStr.values);
        if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) {
            ADDOP_I(c, loc, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
        }
    }
    return SUCCESS;
}

/* Used to implement f-strings. Format a single value. */
static int
compiler_formatted_value(struct compiler *c, expr_ty e)
{
    /* Our oparg encodes 2 pieces of information: the conversion
       character, and whether or not a format_spec was provided.

       Convert the conversion char to 3 bits:
           : 000  0x0  FVC_NONE   The default if nothing specified.
       !s  : 001  0x1  FVC_STR
       !r  : 010  0x2  FVC_REPR
       !a  : 011  0x3  FVC_ASCII

       next bit is whether or not we have a format spec:
       yes : 100  0x4
       no  : 000  0x0
    */

    int conversion = e->v.FormattedValue.conversion;
    int oparg;

    /* The expression to be formatted. */
    VISIT(c, expr, e->v.FormattedValue.value);

    location loc = LOC(e);
    if (conversion != -1) {
        switch (conversion) {
        case 's': oparg = FVC_STR;   break;
        case 'r': oparg = FVC_REPR;  break;
        case 'a': oparg = FVC_ASCII; break;
        default:
            PyErr_Format(PyExc_SystemError,
                     "Unrecognized conversion character %d", conversion);
            return ERROR;
        }
        ADDOP_I(c, loc, CONVERT_VALUE, oparg);
    }
    if (e->v.FormattedValue.format_spec) {
        /* Evaluate the format spec, and update our opcode arg. */
        VISIT(c, expr, e->v.FormattedValue.format_spec);
        ADDOP(c, loc, FORMAT_WITH_SPEC);
    } else {
        ADDOP(c, loc, FORMAT_SIMPLE);
    }
    return SUCCESS;
}

static int
compiler_subkwargs(struct compiler *c, location loc,
                   asdl_keyword_seq *keywords,
                   Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i, n = end - begin;
    keyword_ty kw;
    PyObject *keys, *key;
    assert(n > 0);
    int big = n*2 > STACK_USE_GUIDELINE;
    if (n > 1 && !big) {
        for (i = begin; i < end; i++) {
            kw = asdl_seq_GET(keywords, i);
            VISIT(c, expr, kw->value);
        }
        keys = PyTuple_New(n);
        if (keys == NULL) {
            return ERROR;
        }
        for (i = begin; i < end; i++) {
            key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
            PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key));
        }
        ADDOP_LOAD_CONST_NEW(c, loc, keys);
        ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n);
        return SUCCESS;
    }
    if (big) {
        ADDOP_I(c, NO_LOCATION, BUILD_MAP, 0);
    }
    for (i = begin; i < end; i++) {
        kw = asdl_seq_GET(keywords, i);
        ADDOP_LOAD_CONST(c, loc, kw->arg);
        VISIT(c, expr, kw->value);
        if (big) {
            ADDOP_I(c, NO_LOCATION, MAP_ADD, 1);
        }
    }
    if (!big) {
        ADDOP_I(c, loc, BUILD_MAP, n);
    }
    return SUCCESS;
}

/* Used by compiler_call_helper and maybe_optimize_method_call to emit
 * a tuple of keyword names before CALL.
 */
static int
compiler_call_simple_kw_helper(struct compiler *c, location loc,
                               asdl_keyword_seq *keywords, Py_ssize_t nkwelts)
{
    PyObject *names;
    names = PyTuple_New(nkwelts);
    if (names == NULL) {
        return ERROR;
    }
    for (int i = 0; i < nkwelts; i++) {
        keyword_ty kw = asdl_seq_GET(keywords, i);
        PyTuple_SET_ITEM(names, i, Py_NewRef(kw->arg));
    }
    ADDOP_LOAD_CONST_NEW(c, loc, names);
    return SUCCESS;
}


/* shared code between compiler_call and compiler_class */
static int
compiler_call_helper(struct compiler *c, location loc,
                     int n, /* Args already pushed */
                     asdl_expr_seq *args,
                     asdl_keyword_seq *keywords)
{
    Py_ssize_t i, nseen, nelts, nkwelts;

    RETURN_IF_ERROR(validate_keywords(c, keywords));

    nelts = asdl_seq_LEN(args);
    nkwelts = asdl_seq_LEN(keywords);

    if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) {
         goto ex_call;
    }
    for (i = 0; i < nelts; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        if (elt->kind == Starred_kind) {
            goto ex_call;
        }
    }
    for (i = 0; i < nkwelts; i++) {
        keyword_ty kw = asdl_seq_GET(keywords, i);
        if (kw->arg == NULL) {
            goto ex_call;
        }
    }

    /* No * or ** args, so can use faster calling sequence */
    for (i = 0; i < nelts; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        assert(elt->kind != Starred_kind);
        VISIT(c, expr, elt);
    }
    if (nkwelts) {
        VISIT_SEQ(c, keyword, keywords);
        RETURN_IF_ERROR(
            compiler_call_simple_kw_helper(c, loc, keywords, nkwelts));
        ADDOP_I(c, loc, CALL_KW, n + nelts + nkwelts);
    }
    else {
        ADDOP_I(c, loc, CALL, n + nelts);
    }
    return SUCCESS;

ex_call:

    /* Do positional arguments. */
    if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) {
        VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value);
    }
    else {
        RETURN_IF_ERROR(starunpack_helper(c, loc, args, n, BUILD_LIST,
                                          LIST_APPEND, LIST_EXTEND, 1));
    }
    /* Then keyword arguments */
    if (nkwelts) {
        /* Has a new dict been pushed */
        int have_dict = 0;

        nseen = 0;  /* the number of keyword arguments on the stack following */
        for (i = 0; i < nkwelts; i++) {
            keyword_ty kw = asdl_seq_GET(keywords, i);
            if (kw->arg == NULL) {
                /* A keyword argument unpacking. */
                if (nseen) {
                    RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, i - nseen, i));
                    if (have_dict) {
                        ADDOP_I(c, loc, DICT_MERGE, 1);
                    }
                    have_dict = 1;
                    nseen = 0;
                }
                if (!have_dict) {
                    ADDOP_I(c, loc, BUILD_MAP, 0);
                    have_dict = 1;
                }
                VISIT(c, expr, kw->value);
                ADDOP_I(c, loc, DICT_MERGE, 1);
            }
            else {
                nseen++;
            }
        }
        if (nseen) {
            /* Pack up any trailing keyword arguments. */
            RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, nkwelts - nseen, nkwelts));
            if (have_dict) {
                ADDOP_I(c, loc, DICT_MERGE, 1);
            }
            have_dict = 1;
        }
        assert(have_dict);
    }
    ADDOP_I(c, loc, CALL_FUNCTION_EX, nkwelts > 0);
    return SUCCESS;
}


/* List and set comprehensions and generator expressions work by creating a
  nested function to perform the actual iteration. This means that the
  iteration variables don't leak into the current scope.
  The defined function is called immediately following its definition, with the
  result of that call being the result of the expression.
  The LC/SC version returns the populated container, while the GE version is
  flagged in symtable.c as a generator, so it returns the generator object
  when the function is called.

  Possible cleanups:
    - iterate over the generator sequence instead of using recursion
*/


static int
compiler_comprehension_generator(struct compiler *c, location loc,
                                 asdl_comprehension_seq *generators, int gen_index,
                                 int depth,
                                 expr_ty elt, expr_ty val, int type,
                                 int iter_on_stack)
{
    comprehension_ty gen;
    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
    if (gen->is_async) {
        return compiler_async_comprehension_generator(
            c, loc, generators, gen_index, depth, elt, val, type,
            iter_on_stack);
    } else {
        return compiler_sync_comprehension_generator(
            c, loc, generators, gen_index, depth, elt, val, type,
            iter_on_stack);
    }
}

static int
compiler_sync_comprehension_generator(struct compiler *c, location loc,
                                      asdl_comprehension_seq *generators,
                                      int gen_index, int depth,
                                      expr_ty elt, expr_ty val, int type,
                                      int iter_on_stack)
{
    /* generate code for the iterator, then each of the ifs,
       and then write to the element */

    NEW_JUMP_TARGET_LABEL(c, start);
    NEW_JUMP_TARGET_LABEL(c, if_cleanup);
    NEW_JUMP_TARGET_LABEL(c, anchor);

    comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators,
                                                          gen_index);

    if (!iter_on_stack) {
        if (gen_index == 0) {
            /* Receive outermost iter as an implicit argument */
            c->u->u_metadata.u_argcount = 1;
            ADDOP_I(c, loc, LOAD_FAST, 0);
        }
        else {
            /* Sub-iter - calculate on the fly */
            /* Fast path for the temporary variable assignment idiom:
                for y in [f(x)]
            */
            asdl_expr_seq *elts;
            switch (gen->iter->kind) {
                case List_kind:
                    elts = gen->iter->v.List.elts;
                    break;
                case Tuple_kind:
                    elts = gen->iter->v.Tuple.elts;
                    break;
                default:
                    elts = NULL;
            }
            if (asdl_seq_LEN(elts) == 1) {
                expr_ty elt = asdl_seq_GET(elts, 0);
                if (elt->kind != Starred_kind) {
                    VISIT(c, expr, elt);
                    start = NO_LABEL;
                }
            }
            if (IS_LABEL(start)) {
                VISIT(c, expr, gen->iter);
                ADDOP(c, loc, GET_ITER);
            }
        }
    }
    if (IS_LABEL(start)) {
        depth++;
        USE_LABEL(c, start);
        ADDOP_JUMP(c, loc, FOR_ITER, anchor);
    }
    VISIT(c, expr, gen->target);

    /* XXX this needs to be cleaned up...a lot! */
    Py_ssize_t n = asdl_seq_LEN(gen->ifs);
    for (Py_ssize_t i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0));
    }

    if (++gen_index < asdl_seq_LEN(generators)) {
        RETURN_IF_ERROR(
            compiler_comprehension_generator(c, loc,
                                             generators, gen_index, depth,
                                             elt, val, type, 0));
    }

    location elt_loc = LOC(elt);

    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP_YIELD(c, elt_loc);
            ADDOP(c, elt_loc, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, elt_loc, SET_ADD, depth + 1);
            break;
        case COMP_DICTCOMP:
            /* With '{k: v}', k is evaluated before v, so we do
               the same. */
            VISIT(c, expr, elt);
            VISIT(c, expr, val);
            elt_loc = LOCATION(elt->lineno,
                               val->end_lineno,
                               elt->col_offset,
                               val->end_col_offset);
            ADDOP_I(c, elt_loc, MAP_ADD, depth + 1);
            break;
        default:
            return ERROR;
        }
    }

    USE_LABEL(c, if_cleanup);
    if (IS_LABEL(start)) {
        ADDOP_JUMP(c, elt_loc, JUMP, start);

        USE_LABEL(c, anchor);
        ADDOP(c, NO_LOCATION, END_FOR);
    }

    return SUCCESS;
}

static int
compiler_async_comprehension_generator(struct compiler *c, location loc,
                                      asdl_comprehension_seq *generators,
                                      int gen_index, int depth,
                                      expr_ty elt, expr_ty val, int type,
                                      int iter_on_stack)
{
    NEW_JUMP_TARGET_LABEL(c, start);
    NEW_JUMP_TARGET_LABEL(c, except);
    NEW_JUMP_TARGET_LABEL(c, if_cleanup);

    comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators,
                                                          gen_index);

    if (!iter_on_stack) {
        if (gen_index == 0) {
            /* Receive outermost iter as an implicit argument */
            c->u->u_metadata.u_argcount = 1;
            ADDOP_I(c, loc, LOAD_FAST, 0);
        }
        else {
            /* Sub-iter - calculate on the fly */
            VISIT(c, expr, gen->iter);
            ADDOP(c, loc, GET_AITER);
        }
    }

    USE_LABEL(c, start);
    /* Runtime will push a block here, so we need to account for that */
    RETURN_IF_ERROR(
        compiler_push_fblock(c, loc, ASYNC_COMPREHENSION_GENERATOR,
                             start, NO_LABEL, NULL));

    ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
    ADDOP(c, loc, GET_ANEXT);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADD_YIELD_FROM(c, loc, 1);
    ADDOP(c, loc, POP_BLOCK);
    VISIT(c, expr, gen->target);

    Py_ssize_t n = asdl_seq_LEN(gen->ifs);
    for (Py_ssize_t i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0));
    }

    depth++;
    if (++gen_index < asdl_seq_LEN(generators)) {
        RETURN_IF_ERROR(
            compiler_comprehension_generator(c, loc,
                                             generators, gen_index, depth,
                                             elt, val, type, 0));
    }

    location elt_loc = LOC(elt);
    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP_YIELD(c, elt_loc);
            ADDOP(c, elt_loc, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, elt_loc, SET_ADD, depth + 1);
            break;
        case COMP_DICTCOMP:
            /* With '{k: v}', k is evaluated before v, so we do
               the same. */
            VISIT(c, expr, elt);
            VISIT(c, expr, val);
            elt_loc = LOCATION(elt->lineno,
                               val->end_lineno,
                               elt->col_offset,
                               val->end_col_offset);
            ADDOP_I(c, elt_loc, MAP_ADD, depth + 1);
            break;
        default:
            return ERROR;
        }
    }

    USE_LABEL(c, if_cleanup);
    ADDOP_JUMP(c, elt_loc, JUMP, start);

    compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start);

    USE_LABEL(c, except);

    ADDOP(c, loc, END_ASYNC_FOR);

    return SUCCESS;
}

typedef struct {
    PyObject *pushed_locals;
    PyObject *temp_symbols;
    PyObject *fast_hidden;
    jump_target_label cleanup;
    jump_target_label end;
} inlined_comprehension_state;

static int
push_inlined_comprehension_state(struct compiler *c, location loc,
                                 PySTEntryObject *entry,
                                 inlined_comprehension_state *state)
{
    int in_class_block = (c->u->u_ste->ste_type == ClassBlock) && !c->u->u_in_inlined_comp;
    c->u->u_in_inlined_comp++;
    // iterate over names bound in the comprehension and ensure we isolate
    // them from the outer scope as needed
    PyObject *k, *v;
    Py_ssize_t pos = 0;
    while (PyDict_Next(entry->ste_symbols, &pos, &k, &v)) {
        assert(PyLong_Check(v));
        long symbol = PyLong_AS_LONG(v);
        // only values bound in the comprehension (DEF_LOCAL) need to be handled
        // at all; DEF_LOCAL | DEF_NONLOCAL can occur in the case of an
        // assignment expression to a nonlocal in the comprehension, these don't
        // need handling here since they shouldn't be isolated
        if ((symbol & DEF_LOCAL && !(symbol & DEF_NONLOCAL)) || in_class_block) {
            if (!_PyST_IsFunctionLike(c->u->u_ste)) {
                // non-function scope: override this name to use fast locals
                PyObject *orig;
                if (PyDict_GetItemRef(c->u->u_metadata.u_fasthidden, k, &orig) < 0) {
                    return ERROR;
                }
                int orig_is_true = (orig == Py_True);
                Py_XDECREF(orig);
                if (!orig_is_true) {
                    if (PyDict_SetItem(c->u->u_metadata.u_fasthidden, k, Py_True) < 0) {
                        return ERROR;
                    }
                    if (state->fast_hidden == NULL) {
                        state->fast_hidden = PySet_New(NULL);
                        if (state->fast_hidden == NULL) {
                            return ERROR;
                        }
                    }
                    if (PySet_Add(state->fast_hidden, k) < 0) {
                        return ERROR;
                    }
                }
            }
            long scope = (symbol >> SCOPE_OFFSET) & SCOPE_MASK;
            PyObject *outv = PyDict_GetItemWithError(c->u->u_ste->ste_symbols, k);
            if (outv == NULL) {
                outv = _PyLong_GetZero();
            }
            assert(PyLong_Check(outv));
            long outsc = (PyLong_AS_LONG(outv) >> SCOPE_OFFSET) & SCOPE_MASK;
            if (scope != outsc && !(scope == CELL && outsc == FREE)) {
                // If a name has different scope inside than outside the
                // comprehension, we need to temporarily handle it with the
                // right scope while compiling the comprehension. (If it's free
                // in outer scope and cell in inner scope, we can't treat it as
                // both cell and free in the same function, but treating it as
                // free throughout is fine; it's *_DEREF either way.)

                if (state->temp_symbols == NULL) {
                    state->temp_symbols = PyDict_New();
                    if (state->temp_symbols == NULL) {
                        return ERROR;
                    }
                }
                // update the symbol to the in-comprehension version and save
                // the outer version; we'll restore it after running the
                // comprehension
                Py_INCREF(outv);
                if (PyDict_SetItem(c->u->u_ste->ste_symbols, k, v) < 0) {
                    Py_DECREF(outv);
                    return ERROR;
                }
                if (PyDict_SetItem(state->temp_symbols, k, outv) < 0) {
                    Py_DECREF(outv);
                    return ERROR;
                }
                Py_DECREF(outv);
            }
            // local names bound in comprehension must be isolated from
            // outer scope; push existing value (which may be NULL if
            // not defined) on stack
            if (state->pushed_locals == NULL) {
                state->pushed_locals = PyList_New(0);
                if (state->pushed_locals == NULL) {
                    return ERROR;
                }
            }
            // in the case of a cell, this will actually push the cell
            // itself to the stack, then we'll create a new one for the
            // comprehension and restore the original one after
            ADDOP_NAME(c, loc, LOAD_FAST_AND_CLEAR, k, varnames);
            if (scope == CELL) {
                if (outsc == FREE) {
                    ADDOP_NAME(c, loc, MAKE_CELL, k, freevars);
                } else {
                    ADDOP_NAME(c, loc, MAKE_CELL, k, cellvars);
                }
            }
            if (PyList_Append(state->pushed_locals, k) < 0) {
                return ERROR;
            }
        }
    }
    if (state->pushed_locals) {
        // Outermost iterable expression was already evaluated and is on the
        // stack, we need to swap it back to TOS. This also rotates the order of
        // `pushed_locals` on the stack, but this will be reversed when we swap
        // out the comprehension result in pop_inlined_comprehension_state
        ADDOP_I(c, loc, SWAP, PyList_GET_SIZE(state->pushed_locals) + 1);

        // Add our own cleanup handler to restore comprehension locals in case
        // of exception, so they have the correct values inside an exception
        // handler or finally block.
        NEW_JUMP_TARGET_LABEL(c, cleanup);
        state->cleanup = cleanup;
        NEW_JUMP_TARGET_LABEL(c, end);
        state->end = end;

        // no need to push an fblock for this "virtual" try/finally; there can't
        // be return/continue/break inside a comprehension
        ADDOP_JUMP(c, loc, SETUP_FINALLY, cleanup);
    }

    return SUCCESS;
}

static int
restore_inlined_comprehension_locals(struct compiler *c, location loc,
                                     inlined_comprehension_state state)
{
    PyObject *k;
    // pop names we pushed to stack earlier
    Py_ssize_t npops = PyList_GET_SIZE(state.pushed_locals);
    // Preserve the comprehension result (or exception) as TOS. This
    // reverses the SWAP we did in push_inlined_comprehension_state to get
    // the outermost iterable to TOS, so we can still just iterate
    // pushed_locals in simple reverse order
    ADDOP_I(c, loc, SWAP, npops + 1);
    for (Py_ssize_t i = npops - 1; i >= 0; --i) {
        k = PyList_GetItem(state.pushed_locals, i);
        if (k == NULL) {
            return ERROR;
        }
        ADDOP_NAME(c, loc, STORE_FAST_MAYBE_NULL, k, varnames);
    }
    return SUCCESS;
}

static int
pop_inlined_comprehension_state(struct compiler *c, location loc,
                                inlined_comprehension_state state)
{
    c->u->u_in_inlined_comp--;
    PyObject *k, *v;
    Py_ssize_t pos = 0;
    if (state.temp_symbols) {
        while (PyDict_Next(state.temp_symbols, &pos, &k, &v)) {
            if (PyDict_SetItem(c->u->u_ste->ste_symbols, k, v)) {
                return ERROR;
            }
        }
        Py_CLEAR(state.temp_symbols);
    }
    if (state.pushed_locals) {
        ADDOP(c, NO_LOCATION, POP_BLOCK);
        ADDOP_JUMP(c, NO_LOCATION, JUMP, state.end);

        // cleanup from an exception inside the comprehension
        USE_LABEL(c, state.cleanup);
        // discard incomplete comprehension result (beneath exc on stack)
        ADDOP_I(c, NO_LOCATION, SWAP, 2);
        ADDOP(c, NO_LOCATION, POP_TOP);
        if (restore_inlined_comprehension_locals(c, loc, state) < 0) {
            return ERROR;
        }
        ADDOP_I(c, NO_LOCATION, RERAISE, 0);

        USE_LABEL(c, state.end);
        if (restore_inlined_comprehension_locals(c, loc, state) < 0) {
            return ERROR;
        }
        Py_CLEAR(state.pushed_locals);
    }
    if (state.fast_hidden) {
        while (PySet_Size(state.fast_hidden) > 0) {
            PyObject *k = PySet_Pop(state.fast_hidden);
            if (k == NULL) {
                return ERROR;
            }
            // we set to False instead of clearing, so we can track which names
            // were temporarily fast-locals and should use CO_FAST_HIDDEN
            if (PyDict_SetItem(c->u->u_metadata.u_fasthidden, k, Py_False)) {
                Py_DECREF(k);
                return ERROR;
            }
            Py_DECREF(k);
        }
        Py_CLEAR(state.fast_hidden);
    }
    return SUCCESS;
}

static inline int
compiler_comprehension_iter(struct compiler *c, location loc,
                            comprehension_ty comp)
{
    VISIT(c, expr, comp->iter);
    if (comp->is_async) {
        ADDOP(c, loc, GET_AITER);
    }
    else {
        ADDOP(c, loc, GET_ITER);
    }
    return SUCCESS;
}

static int
compiler_comprehension(struct compiler *c, expr_ty e, int type,
                       identifier name, asdl_comprehension_seq *generators, expr_ty elt,
                       expr_ty val)
{
    PyCodeObject *co = NULL;
    inlined_comprehension_state inline_state = {NULL, NULL, NULL, NO_LABEL, NO_LABEL};
    comprehension_ty outermost;
    int scope_type = c->u->u_scope_type;
    int is_top_level_await = IS_TOP_LEVEL_AWAIT(c);
    PySTEntryObject *entry = _PySymtable_Lookup(c->c_st, (void *)e);
    if (entry == NULL) {
        goto error;
    }
    int is_inlined = entry->ste_comp_inlined;
    int is_async_generator = entry->ste_coroutine;

    location loc = LOC(e);

    outermost = (comprehension_ty) asdl_seq_GET(generators, 0);
    if (is_inlined) {
        if (compiler_comprehension_iter(c, loc, outermost)) {
            goto error;
        }
        if (push_inlined_comprehension_state(c, loc, entry, &inline_state)) {
            goto error;
        }
    }
    else {
        if (compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
                                (void *)e, e->lineno) < 0)
        {
            goto error;
        }
    }
    Py_CLEAR(entry);

    if (is_async_generator && type != COMP_GENEXP &&
        scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
        scope_type != COMPILER_SCOPE_COMPREHENSION &&
        !is_top_level_await)
    {
        compiler_error(c, loc, "asynchronous comprehension outside of "
                               "an asynchronous function");
        goto error_in_scope;
    }

    if (type != COMP_GENEXP) {
        int op;
        switch (type) {
        case COMP_LISTCOMP:
            op = BUILD_LIST;
            break;
        case COMP_SETCOMP:
            op = BUILD_SET;
            break;
        case COMP_DICTCOMP:
            op = BUILD_MAP;
            break;
        default:
            PyErr_Format(PyExc_SystemError,
                         "unknown comprehension type %d", type);
            goto error_in_scope;
        }

        ADDOP_I(c, loc, op, 0);
        if (is_inlined) {
            ADDOP_I(c, loc, SWAP, 2);
        }
    }

    if (compiler_comprehension_generator(c, loc, generators, 0, 0,
                                         elt, val, type, is_inlined) < 0) {
        goto error_in_scope;
    }

    if (is_inlined) {
        if (pop_inlined_comprehension_state(c, loc, inline_state)) {
            goto error;
        }
        return SUCCESS;
    }

    if (type != COMP_GENEXP) {
        ADDOP(c, LOC(e), RETURN_VALUE);
    }
    if (type == COMP_GENEXP) {
        if (wrap_in_stopiteration_handler(c) < 0) {
            goto error_in_scope;
        }
    }

    co = optimize_and_assemble(c, 1);
    compiler_exit_scope(c);
    if (is_top_level_await && is_async_generator){
        c->u->u_ste->ste_coroutine = 1;
    }
    if (co == NULL) {
        goto error;
    }

    loc = LOC(e);
    if (compiler_make_closure(c, loc, co, 0) < 0) {
        goto error;
    }
    Py_CLEAR(co);

    if (compiler_comprehension_iter(c, loc, outermost)) {
        goto error;
    }

    ADDOP_I(c, loc, CALL, 0);

    if (is_async_generator && type != COMP_GENEXP) {
        ADDOP_I(c, loc, GET_AWAITABLE, 0);
        ADDOP_LOAD_CONST(c, loc, Py_None);
        ADD_YIELD_FROM(c, loc, 1);
    }

    return SUCCESS;
error_in_scope:
    if (!is_inlined) {
        compiler_exit_scope(c);
    }
error:
    Py_XDECREF(co);
    Py_XDECREF(entry);
    Py_XDECREF(inline_state.pushed_locals);
    Py_XDECREF(inline_state.temp_symbols);
    Py_XDECREF(inline_state.fast_hidden);
    return ERROR;
}

static int
compiler_genexp(struct compiler *c, expr_ty e)
{
    assert(e->kind == GeneratorExp_kind);
    _Py_DECLARE_STR(anon_genexpr, "<genexpr>");
    return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr),
                                  e->v.GeneratorExp.generators,
                                  e->v.GeneratorExp.elt, NULL);
}

static int
compiler_listcomp(struct compiler *c, expr_ty e)
{
    assert(e->kind == ListComp_kind);
    _Py_DECLARE_STR(anon_listcomp, "<listcomp>");
    return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp),
                                  e->v.ListComp.generators,
                                  e->v.ListComp.elt, NULL);
}

static int
compiler_setcomp(struct compiler *c, expr_ty e)
{
    assert(e->kind == SetComp_kind);
    _Py_DECLARE_STR(anon_setcomp, "<setcomp>");
    return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp),
                                  e->v.SetComp.generators,
                                  e->v.SetComp.elt, NULL);
}


static int
compiler_dictcomp(struct compiler *c, expr_ty e)
{
    assert(e->kind == DictComp_kind);
    _Py_DECLARE_STR(anon_dictcomp, "<dictcomp>");
    return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp),
                                  e->v.DictComp.generators,
                                  e->v.DictComp.key, e->v.DictComp.value);
}


static int
compiler_visit_keyword(struct compiler *c, keyword_ty k)
{
    VISIT(c, expr, k->value);
    return SUCCESS;
}


static int
compiler_with_except_finish(struct compiler *c, jump_target_label cleanup) {
    NEW_JUMP_TARGET_LABEL(c, suppress);
    ADDOP(c, NO_LOCATION, TO_BOOL);
    ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_TRUE, suppress);
    ADDOP_I(c, NO_LOCATION, RERAISE, 2);

    USE_LABEL(c, suppress);
    ADDOP(c, NO_LOCATION, POP_TOP); /* exc_value */
    ADDOP(c, NO_LOCATION, POP_BLOCK);
    ADDOP(c, NO_LOCATION, POP_EXCEPT);
    ADDOP(c, NO_LOCATION, POP_TOP);
    ADDOP(c, NO_LOCATION, POP_TOP);
    NEW_JUMP_TARGET_LABEL(c, exit);
    ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);

    USE_LABEL(c, cleanup);
    POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);

    USE_LABEL(c, exit);
    return SUCCESS;
}

/*
   Implements the async with statement.

   The semantics outlined in that PEP are as follows:

   async with EXPR as VAR:
       BLOCK

   It is implemented roughly as:

   context = EXPR
   exit = context.__aexit__  # not calling it
   value = await context.__aenter__()
   try:
       VAR = value  # if VAR present in the syntax
       BLOCK
   finally:
       if an exception was raised:
           exc = copy of (exception, instance, traceback)
       else:
           exc = (None, None, None)
       if not (await exit(*exc)):
           raise
 */
static int
compiler_async_with(struct compiler *c, stmt_ty s, int pos)
{
    location loc = LOC(s);
    withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);

    assert(s->kind == AsyncWith_kind);
    if (IS_TOP_LEVEL_AWAIT(c)){
        c->u->u_ste->ste_coroutine = 1;
    } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
        return compiler_error(c, loc, "'async with' outside async function");
    }

    NEW_JUMP_TARGET_LABEL(c, block);
    NEW_JUMP_TARGET_LABEL(c, final);
    NEW_JUMP_TARGET_LABEL(c, exit);
    NEW_JUMP_TARGET_LABEL(c, cleanup);

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);

    ADDOP(c, loc, BEFORE_ASYNC_WITH);
    ADDOP_I(c, loc, GET_AWAITABLE, 1);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADD_YIELD_FROM(c, loc, 1);

    ADDOP_JUMP(c, loc, SETUP_WITH, final);

    /* SETUP_WITH pushes a finally block. */
    USE_LABEL(c, block);
    RETURN_IF_ERROR(compiler_push_fblock(c, loc, ASYNC_WITH, block, final, s));

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
        /* Discard result from context.__aenter__() */
        ADDOP(c, loc, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) {
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
    }
    else {
        RETURN_IF_ERROR(compiler_async_with(c, s, pos));
    }

    compiler_pop_fblock(c, ASYNC_WITH, block);

    ADDOP(c, loc, POP_BLOCK);
    /* End of body; start the cleanup */

    /* For successful outcome:
     * call __exit__(None, None, None)
     */
    RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc));
    ADDOP_I(c, loc, GET_AWAITABLE, 2);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADD_YIELD_FROM(c, loc, 1);

    ADDOP(c, loc, POP_TOP);

    ADDOP_JUMP(c, loc, JUMP, exit);

    /* For exceptional outcome: */
    USE_LABEL(c, final);

    ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
    ADDOP(c, loc, PUSH_EXC_INFO);
    ADDOP(c, loc, WITH_EXCEPT_START);
    ADDOP_I(c, loc, GET_AWAITABLE, 2);
    ADDOP_LOAD_CONST(c, loc, Py_None);
    ADD_YIELD_FROM(c, loc, 1);
    RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup));

    USE_LABEL(c, exit);
    return SUCCESS;
}


/*
   Implements the with statement from PEP 343.
   with EXPR as VAR:
       BLOCK
   is implemented as:
        <code for EXPR>
        SETUP_WITH  E
        <code to store to VAR> or POP_TOP
        <code for BLOCK>
        LOAD_CONST (None, None, None)
        CALL_FUNCTION_EX 0
        JUMP  EXIT
    E:  WITH_EXCEPT_START (calls EXPR.__exit__)
        POP_JUMP_IF_TRUE T:
        RERAISE
    T:  POP_TOP (remove exception from stack)
        POP_EXCEPT
        POP_TOP
    EXIT:
 */

static int
compiler_with(struct compiler *c, stmt_ty s, int pos)
{
    withitem_ty item = asdl_seq_GET(s->v.With.items, pos);

    assert(s->kind == With_kind);

    NEW_JUMP_TARGET_LABEL(c, block);
    NEW_JUMP_TARGET_LABEL(c, final);
    NEW_JUMP_TARGET_LABEL(c, exit);
    NEW_JUMP_TARGET_LABEL(c, cleanup);

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);
    /* Will push bound __exit__ */
    location loc = LOC(s);
    ADDOP(c, loc, BEFORE_WITH);
    ADDOP_JUMP(c, loc, SETUP_WITH, final);

    /* SETUP_WITH pushes a finally block. */
    USE_LABEL(c, block);
    RETURN_IF_ERROR(compiler_push_fblock(c, loc, WITH, block, final, s));

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__enter__() */
        ADDOP(c, loc, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.With.items)) {
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.With.body)
    }
    else {
        RETURN_IF_ERROR(compiler_with(c, s, pos));
    }

    ADDOP(c, NO_LOCATION, POP_BLOCK);
    compiler_pop_fblock(c, WITH, block);

    /* End of body; start the cleanup. */

    /* For successful outcome:
     * call __exit__(None, None, None)
     */
    loc = LOC(s);
    RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc));
    ADDOP(c, loc, POP_TOP);
    ADDOP_JUMP(c, loc, JUMP, exit);

    /* For exceptional outcome: */
    USE_LABEL(c, final);

    ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
    ADDOP(c, loc, PUSH_EXC_INFO);
    ADDOP(c, loc, WITH_EXCEPT_START);
    RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup));

    USE_LABEL(c, exit);
    return SUCCESS;
}

static int
compiler_visit_expr1(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    switch (e->kind) {
    case NamedExpr_kind:
        VISIT(c, expr, e->v.NamedExpr.value);
        ADDOP_I(c, loc, COPY, 1);
        VISIT(c, expr, e->v.NamedExpr.target);
        break;
    case BoolOp_kind:
        return compiler_boolop(c, e);
    case BinOp_kind:
        VISIT(c, expr, e->v.BinOp.left);
        VISIT(c, expr, e->v.BinOp.right);
        ADDOP_BINARY(c, loc, e->v.BinOp.op);
        break;
    case UnaryOp_kind:
        VISIT(c, expr, e->v.UnaryOp.operand);
        if (e->v.UnaryOp.op == UAdd) {
            ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_UNARY_POSITIVE);
        }
        else if (e->v.UnaryOp.op == Not) {
            ADDOP(c, loc, TO_BOOL);
            ADDOP(c, loc, UNARY_NOT);
        }
        else {
            ADDOP(c, loc, unaryop(e->v.UnaryOp.op));
        }
        break;
    case Lambda_kind:
        return compiler_lambda(c, e);
    case IfExp_kind:
        return compiler_ifexp(c, e);
    case Dict_kind:
        return compiler_dict(c, e);
    case Set_kind:
        return compiler_set(c, e);
    case GeneratorExp_kind:
        return compiler_genexp(c, e);
    case ListComp_kind:
        return compiler_listcomp(c, e);
    case SetComp_kind:
        return compiler_setcomp(c, e);
    case DictComp_kind:
        return compiler_dictcomp(c, e);
    case Yield_kind:
        if (!_PyST_IsFunctionLike(c->u->u_ste)) {
            return compiler_error(c, loc, "'yield' outside function");
        }
        if (e->v.Yield.value) {
            VISIT(c, expr, e->v.Yield.value);
        }
        else {
            ADDOP_LOAD_CONST(c, loc, Py_None);
        }
        ADDOP_YIELD(c, loc);
        break;
    case YieldFrom_kind:
        if (!_PyST_IsFunctionLike(c->u->u_ste)) {
            return compiler_error(c, loc, "'yield' outside function");
        }
        if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) {
            return compiler_error(c, loc, "'yield from' inside async function");
        }
        VISIT(c, expr, e->v.YieldFrom.value);
        ADDOP(c, loc, GET_YIELD_FROM_ITER);
        ADDOP_LOAD_CONST(c, loc, Py_None);
        ADD_YIELD_FROM(c, loc, 0);
        break;
    case Await_kind:
        if (!IS_TOP_LEVEL_AWAIT(c)){
            if (!_PyST_IsFunctionLike(c->u->u_ste)) {
                return compiler_error(c, loc, "'await' outside function");
            }

            if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
                    c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION) {
                return compiler_error(c, loc, "'await' outside async function");
            }
        }

        VISIT(c, expr, e->v.Await.value);
        ADDOP_I(c, loc, GET_AWAITABLE, 0);
        ADDOP_LOAD_CONST(c, loc, Py_None);
        ADD_YIELD_FROM(c, loc, 1);
        break;
    case Compare_kind:
        return compiler_compare(c, e);
    case Call_kind:
        return compiler_call(c, e);
    case Constant_kind:
        ADDOP_LOAD_CONST(c, loc, e->v.Constant.value);
        break;
    case JoinedStr_kind:
        return compiler_joined_str(c, e);
    case FormattedValue_kind:
        return compiler_formatted_value(c, e);
    /* The following exprs can be assignment targets. */
    case Attribute_kind:
        if (e->v.Attribute.ctx == Load && can_optimize_super_call(c, e)) {
            RETURN_IF_ERROR(load_args_for_super(c, e->v.Attribute.value));
            int opcode = asdl_seq_LEN(e->v.Attribute.value->v.Call.args) ?
                LOAD_SUPER_ATTR : LOAD_ZERO_SUPER_ATTR;
            ADDOP_NAME(c, loc, opcode, e->v.Attribute.attr, names);
            loc = update_start_location_to_match_attr(c, loc, e);
            ADDOP(c, loc, NOP);
            return SUCCESS;
        }
        VISIT(c, expr, e->v.Attribute.value);
        loc = LOC(e);
        loc = update_start_location_to_match_attr(c, loc, e);
        switch (e->v.Attribute.ctx) {
        case Load:
            ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names);
            break;
        case Store:
            if (forbidden_name(c, loc, e->v.Attribute.attr, e->v.Attribute.ctx)) {
                return ERROR;
            }
            ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names);
            break;
        case Del:
            ADDOP_NAME(c, loc, DELETE_ATTR, e->v.Attribute.attr, names);
            break;
        }
        break;
    case Subscript_kind:
        return compiler_subscript(c, e);
    case Starred_kind:
        switch (e->v.Starred.ctx) {
        case Store:
            /* In all legitimate cases, the Starred node was already replaced
             * by compiler_list/compiler_tuple. XXX: is that okay? */
            return compiler_error(c, loc,
                "starred assignment target must be in a list or tuple");
        default:
            return compiler_error(c, loc,
                "can't use starred expression here");
        }
        break;
    case Slice_kind:
    {
        int n = compiler_slice(c, e);
        RETURN_IF_ERROR(n);
        ADDOP_I(c, loc, BUILD_SLICE, n);
        break;
    }
    case Name_kind:
        return compiler_nameop(c, loc, e->v.Name.id, e->v.Name.ctx);
    /* child nodes of List and Tuple will have expr_context set */
    case List_kind:
        return compiler_list(c, e);
    case Tuple_kind:
        return compiler_tuple(c, e);
    }
    return SUCCESS;
}

static int
compiler_visit_expr(struct compiler *c, expr_ty e)
{
    int res = compiler_visit_expr1(c, e);
    return res;
}

static bool
is_two_element_slice(expr_ty s)
{
    return s->kind == Slice_kind &&
           s->v.Slice.step == NULL;
}

static int
compiler_augassign(struct compiler *c, stmt_ty s)
{
    assert(s->kind == AugAssign_kind);
    expr_ty e = s->v.AugAssign.target;

    location loc = LOC(e);

    switch (e->kind) {
    case Attribute_kind:
        VISIT(c, expr, e->v.Attribute.value);
        ADDOP_I(c, loc, COPY, 1);
        loc = update_start_location_to_match_attr(c, loc, e);
        ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names);
        break;
    case Subscript_kind:
        VISIT(c, expr, e->v.Subscript.value);
        if (is_two_element_slice(e->v.Subscript.slice)) {
            RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice));
            ADDOP_I(c, loc, COPY, 3);
            ADDOP_I(c, loc, COPY, 3);
            ADDOP_I(c, loc, COPY, 3);
            ADDOP(c, loc, BINARY_SLICE);
        }
        else {
            VISIT(c, expr, e->v.Subscript.slice);
            ADDOP_I(c, loc, COPY, 2);
            ADDOP_I(c, loc, COPY, 2);
            ADDOP(c, loc, BINARY_SUBSCR);
        }
        break;
    case Name_kind:
        RETURN_IF_ERROR(compiler_nameop(c, loc, e->v.Name.id, Load));
        break;
    default:
        PyErr_Format(PyExc_SystemError,
            "invalid node type (%d) for augmented assignment",
            e->kind);
        return ERROR;
    }

    loc = LOC(s);

    VISIT(c, expr, s->v.AugAssign.value);
    ADDOP_INPLACE(c, loc, s->v.AugAssign.op);

    loc = LOC(e);

    switch (e->kind) {
    case Attribute_kind:
        loc = update_start_location_to_match_attr(c, loc, e);
        ADDOP_I(c, loc, SWAP, 2);
        ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names);
        break;
    case Subscript_kind:
        if (is_two_element_slice(e->v.Subscript.slice)) {
            ADDOP_I(c, loc, SWAP, 4);
            ADDOP_I(c, loc, SWAP, 3);
            ADDOP_I(c, loc, SWAP, 2);
            ADDOP(c, loc, STORE_SLICE);
        }
        else {
            ADDOP_I(c, loc, SWAP, 3);
            ADDOP_I(c, loc, SWAP, 2);
            ADDOP(c, loc, STORE_SUBSCR);
        }
        break;
    case Name_kind:
        return compiler_nameop(c, loc, e->v.Name.id, Store);
    default:
        Py_UNREACHABLE();
    }
    return SUCCESS;
}

static int
check_ann_expr(struct compiler *c, expr_ty e)
{
    VISIT(c, expr, e);
    ADDOP(c, LOC(e), POP_TOP);
    return SUCCESS;
}

static int
check_annotation(struct compiler *c, stmt_ty s)
{
    /* Annotations of complex targets does not produce anything
       under annotations future */
    if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
        return SUCCESS;
    }

    /* Annotations are only evaluated in a module or class. */
    if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
        c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
        return check_ann_expr(c, s->v.AnnAssign.annotation);
    }
    return SUCCESS;
}

static int
check_ann_subscr(struct compiler *c, expr_ty e)
{
    /* We check that everything in a subscript is defined at runtime. */
    switch (e->kind) {
    case Slice_kind:
        if (e->v.Slice.lower && check_ann_expr(c, e->v.Slice.lower) < 0) {
            return ERROR;
        }
        if (e->v.Slice.upper && check_ann_expr(c, e->v.Slice.upper) < 0) {
            return ERROR;
        }
        if (e->v.Slice.step && check_ann_expr(c, e->v.Slice.step) < 0) {
            return ERROR;
        }
        return SUCCESS;
    case Tuple_kind: {
        /* extended slice */
        asdl_expr_seq *elts = e->v.Tuple.elts;
        Py_ssize_t i, n = asdl_seq_LEN(elts);
        for (i = 0; i < n; i++) {
            RETURN_IF_ERROR(check_ann_subscr(c, asdl_seq_GET(elts, i)));
        }
        return SUCCESS;
    }
    default:
        return check_ann_expr(c, e);
    }
}

static int
compiler_annassign(struct compiler *c, stmt_ty s)
{
    location loc = LOC(s);
    expr_ty targ = s->v.AnnAssign.target;
    PyObject* mangled;

    assert(s->kind == AnnAssign_kind);

    /* We perform the actual assignment first. */
    if (s->v.AnnAssign.value) {
        VISIT(c, expr, s->v.AnnAssign.value);
        VISIT(c, expr, targ);
    }
    switch (targ->kind) {
    case Name_kind:
        if (forbidden_name(c, loc, targ->v.Name.id, Store)) {
            return ERROR;
        }
        /* If we have a simple name in a module or class, store annotation. */
        if (s->v.AnnAssign.simple &&
            (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
             c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
            if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
                VISIT(c, annexpr, s->v.AnnAssign.annotation)
            }
            else {
                VISIT(c, expr, s->v.AnnAssign.annotation);
            }
            ADDOP_NAME(c, loc, LOAD_NAME, &_Py_ID(__annotations__), names);
            mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
            ADDOP_LOAD_CONST_NEW(c, loc, mangled);
            ADDOP(c, loc, STORE_SUBSCR);
        }
        break;
    case Attribute_kind:
        if (forbidden_name(c, loc, targ->v.Attribute.attr, Store)) {
            return ERROR;
        }
        if (!s->v.AnnAssign.value &&
            check_ann_expr(c, targ->v.Attribute.value) < 0) {
            return ERROR;
        }
        break;
    case Subscript_kind:
        if (!s->v.AnnAssign.value &&
            (check_ann_expr(c, targ->v.Subscript.value) < 0 ||
             check_ann_subscr(c, targ->v.Subscript.slice) < 0)) {
                return ERROR;
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid node type (%d) for annotated assignment",
                     targ->kind);
        return ERROR;
    }
    /* Annotation is evaluated last. */
    if (!s->v.AnnAssign.simple && check_annotation(c, s) < 0) {
        return ERROR;
    }
    return SUCCESS;
}

/* Raises a SyntaxError and returns 0.
   If something goes wrong, a different exception may be raised.
*/

static int
compiler_error(struct compiler *c, location loc,
               const char *format, ...)
{
    va_list vargs;
    va_start(vargs, format);
    PyObject *msg = PyUnicode_FromFormatV(format, vargs);
    va_end(vargs);
    if (msg == NULL) {
        return ERROR;
    }
    PyObject *loc_obj = PyErr_ProgramTextObject(c->c_filename, loc.lineno);
    if (loc_obj == NULL) {
        loc_obj = Py_None;
    }
    PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename,
                                   loc.lineno, loc.col_offset + 1, loc_obj,
                                   loc.end_lineno, loc.end_col_offset + 1);
    Py_DECREF(msg);
    if (args == NULL) {
        goto exit;
    }
    PyErr_SetObject(PyExc_SyntaxError, args);
 exit:
    Py_DECREF(loc_obj);
    Py_XDECREF(args);
    return ERROR;
}

/* Emits a SyntaxWarning and returns 1 on success.
   If a SyntaxWarning raised as error, replaces it with a SyntaxError
   and returns 0.
*/
static int
compiler_warn(struct compiler *c, location loc,
              const char *format, ...)
{
    va_list vargs;
    va_start(vargs, format);
    PyObject *msg = PyUnicode_FromFormatV(format, vargs);
    va_end(vargs);
    if (msg == NULL) {
        return ERROR;
    }
    if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
                                 loc.lineno, NULL, NULL) < 0)
    {
        if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
            /* Replace the SyntaxWarning exception with a SyntaxError
               to get a more accurate error report */
            PyErr_Clear();
            assert(PyUnicode_AsUTF8(msg) != NULL);
            compiler_error(c, loc, PyUnicode_AsUTF8(msg));
        }
        Py_DECREF(msg);
        return ERROR;
    }
    Py_DECREF(msg);
    return SUCCESS;
}

static int
compiler_subscript(struct compiler *c, expr_ty e)
{
    location loc = LOC(e);
    expr_context_ty ctx = e->v.Subscript.ctx;
    int op = 0;

    if (ctx == Load) {
        RETURN_IF_ERROR(check_subscripter(c, e->v.Subscript.value));
        RETURN_IF_ERROR(check_index(c, e->v.Subscript.value, e->v.Subscript.slice));
    }

    VISIT(c, expr, e->v.Subscript.value);
    if (is_two_element_slice(e->v.Subscript.slice) && ctx != Del) {
        RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice));
        if (ctx == Load) {
            ADDOP(c, loc, BINARY_SLICE);
        }
        else {
            assert(ctx == Store);
            ADDOP(c, loc, STORE_SLICE);
        }
    }
    else {
        VISIT(c, expr, e->v.Subscript.slice);
        switch (ctx) {
            case Load:    op = BINARY_SUBSCR; break;
            case Store:   op = STORE_SUBSCR; break;
            case Del:     op = DELETE_SUBSCR; break;
        }
        assert(op);
        ADDOP(c, loc, op);
    }
    return SUCCESS;
}

/* Returns the number of the values emitted,
 * thus are needed to build the slice, or -1 if there is an error. */
static int
compiler_slice(struct compiler *c, expr_ty s)
{
    int n = 2;
    assert(s->kind == Slice_kind);

    /* only handles the cases where BUILD_SLICE is emitted */
    if (s->v.Slice.lower) {
        VISIT(c, expr, s->v.Slice.lower);
    }
    else {
        ADDOP_LOAD_CONST(c, LOC(s), Py_None);
    }

    if (s->v.Slice.upper) {
        VISIT(c, expr, s->v.Slice.upper);
    }
    else {
        ADDOP_LOAD_CONST(c, LOC(s), Py_None);
    }

    if (s->v.Slice.step) {
        n++;
        VISIT(c, expr, s->v.Slice.step);
    }
    return n;
}


// PEP 634: Structural Pattern Matching

// To keep things simple, all compiler_pattern_* and pattern_helper_* routines
// follow the convention of consuming TOS (the subject for the given pattern)
// and calling jump_to_fail_pop on failure (no match).

// When calling into these routines, it's important that pc->on_top be kept
// updated to reflect the current number of items that we are using on the top
// of the stack: they will be popped on failure, and any name captures will be
// stored *underneath* them on success. This lets us defer all names stores
// until the *entire* pattern matches.

#define WILDCARD_CHECK(N) \
    ((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name)

#define WILDCARD_STAR_CHECK(N) \
    ((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name)

// Limit permitted subexpressions, even if the parser & AST validator let them through
#define MATCH_VALUE_EXPR(N) \
    ((N)->kind == Constant_kind || (N)->kind == Attribute_kind)

// Allocate or resize pc->fail_pop to allow for n items to be popped on failure.
static int
ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n)
{
    Py_ssize_t size = n + 1;
    if (size <= pc->fail_pop_size) {
        return SUCCESS;
    }
    Py_ssize_t needed = sizeof(jump_target_label) * size;
    jump_target_label *resized = PyObject_Realloc(pc->fail_pop, needed);
    if (resized == NULL) {
        PyErr_NoMemory();
        return ERROR;
    }
    pc->fail_pop = resized;
    while (pc->fail_pop_size < size) {
        NEW_JUMP_TARGET_LABEL(c, new_block);
        pc->fail_pop[pc->fail_pop_size++] = new_block;
    }
    return SUCCESS;
}

// Use op to jump to the correct fail_pop block.
static int
jump_to_fail_pop(struct compiler *c, location loc,
                 pattern_context *pc, int op)
{
    // Pop any items on the top of the stack, plus any objects we were going to
    // capture on success:
    Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores);
    RETURN_IF_ERROR(ensure_fail_pop(c, pc, pops));
    ADDOP_JUMP(c, loc, op, pc->fail_pop[pops]);
    return SUCCESS;
}

// Build all of the fail_pop blocks and reset fail_pop.
static int
emit_and_reset_fail_pop(struct compiler *c, location loc,
                        pattern_context *pc)
{
    if (!pc->fail_pop_size) {
        assert(pc->fail_pop == NULL);
        return SUCCESS;
    }
    while (--pc->fail_pop_size) {
        USE_LABEL(c, pc->fail_pop[pc->fail_pop_size]);
        if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, loc) < 0) {
            pc->fail_pop_size = 0;
            PyObject_Free(pc->fail_pop);
            pc->fail_pop = NULL;
            return ERROR;
        }
    }
    USE_LABEL(c, pc->fail_pop[0]);
    PyObject_Free(pc->fail_pop);
    pc->fail_pop = NULL;
    return SUCCESS;
}

static int
compiler_error_duplicate_store(struct compiler *c, location loc, identifier n)
{
    return compiler_error(c, loc,
        "multiple assignments to name %R in pattern", n);
}

// Duplicate the effect of 3.10's ROT_* instructions using SWAPs.
static int
pattern_helper_rotate(struct compiler *c, location loc, Py_ssize_t count)
{
    while (1 < count) {
        ADDOP_I(c, loc, SWAP, count--);
    }
    return SUCCESS;
}

static int
pattern_helper_store_name(struct compiler *c, location loc,
                          identifier n, pattern_context *pc)
{
    if (n == NULL) {
        ADDOP(c, loc, POP_TOP);
        return SUCCESS;
    }
    if (forbidden_name(c, loc, n, Store)) {
        return ERROR;
    }
    // Can't assign to the same name twice:
    int duplicate = PySequence_Contains(pc->stores, n);
    RETURN_IF_ERROR(duplicate);
    if (duplicate) {
        return compiler_error_duplicate_store(c, loc, n);
    }
    // Rotate this object underneath any items we need to preserve:
    Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1;
    RETURN_IF_ERROR(pattern_helper_rotate(c, loc, rotations));
    RETURN_IF_ERROR(PyList_Append(pc->stores, n));
    return SUCCESS;
}


static int
pattern_unpack_helper(struct compiler *c, location loc,
                      asdl_pattern_seq *elts)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    int seen_star = 0;
    for (Py_ssize_t i = 0; i < n; i++) {
        pattern_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == MatchStar_kind && !seen_star) {
            if ((i >= (1 << 8)) ||
                (n-i-1 >= (INT_MAX >> 8))) {
                return compiler_error(c, loc,
                    "too many expressions in "
                    "star-unpacking sequence pattern");
            }
            ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8)));
            seen_star = 1;
        }
        else if (elt->kind == MatchStar_kind) {
            return compiler_error(c, loc,
                "multiple starred expressions in sequence pattern");
        }
    }
    if (!seen_star) {
        ADDOP_I(c, loc, UNPACK_SEQUENCE, n);
    }
    return SUCCESS;
}

static int
pattern_helper_sequence_unpack(struct compiler *c, location loc,
                               asdl_pattern_seq *patterns, Py_ssize_t star,
                               pattern_context *pc)
{
    RETURN_IF_ERROR(pattern_unpack_helper(c, loc, patterns));
    Py_ssize_t size = asdl_seq_LEN(patterns);
    // We've now got a bunch of new subjects on the stack. They need to remain
    // there after each subpattern match:
    pc->on_top += size;
    for (Py_ssize_t i = 0; i < size; i++) {
        // One less item to keep track of each time we loop through:
        pc->on_top--;
        pattern_ty pattern = asdl_seq_GET(patterns, i);
        RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
    }
    return SUCCESS;
}

// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of
// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a
// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc.
static int
pattern_helper_sequence_subscr(struct compiler *c, location loc,
                               asdl_pattern_seq *patterns, Py_ssize_t star,
                               pattern_context *pc)
{
    // We need to keep the subject around for extracting elements:
    pc->on_top++;
    Py_ssize_t size = asdl_seq_LEN(patterns);
    for (Py_ssize_t i = 0; i < size; i++) {
        pattern_ty pattern = asdl_seq_GET(patterns, i);
        if (WILDCARD_CHECK(pattern)) {
            continue;
        }
        if (i == star) {
            assert(WILDCARD_STAR_CHECK(pattern));
            continue;
        }
        ADDOP_I(c, loc, COPY, 1);
        if (i < star) {
            ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(i));
        }
        else {
            // The subject may not support negative indexing! Compute a
            // nonnegative index:
            ADDOP(c, loc, GET_LEN);
            ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(size - i));
            ADDOP_BINARY(c, loc, Sub);
        }
        ADDOP(c, loc, BINARY_SUBSCR);
        RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
    }
    // Pop the subject, we're done with it:
    pc->on_top--;
    ADDOP(c, loc, POP_TOP);
    return SUCCESS;
}

// Like compiler_pattern, but turn off checks for irrefutability.
static int
compiler_pattern_subpattern(struct compiler *c,
                            pattern_ty p, pattern_context *pc)
{
    int allow_irrefutable = pc->allow_irrefutable;
    pc->allow_irrefutable = 1;
    RETURN_IF_ERROR(compiler_pattern(c, p, pc));
    pc->allow_irrefutable = allow_irrefutable;
    return SUCCESS;
}

static int
compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    assert(p->kind == MatchAs_kind);
    if (p->v.MatchAs.pattern == NULL) {
        // An irrefutable match:
        if (!pc->allow_irrefutable) {
            if (p->v.MatchAs.name) {
                const char *e = "name capture %R makes remaining patterns unreachable";
                return compiler_error(c, LOC(p), e, p->v.MatchAs.name);
            }
            const char *e = "wildcard makes remaining patterns unreachable";
            return compiler_error(c, LOC(p), e);
        }
        return pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc);
    }
    // Need to make a copy for (possibly) storing later:
    pc->on_top++;
    ADDOP_I(c, LOC(p), COPY, 1);
    RETURN_IF_ERROR(compiler_pattern(c, p->v.MatchAs.pattern, pc));
    // Success! Store it:
    pc->on_top--;
    RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc));
    return SUCCESS;
}

static int
compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    assert(p->kind == MatchStar_kind);
    RETURN_IF_ERROR(
        pattern_helper_store_name(c, LOC(p), p->v.MatchStar.name, pc));
    return SUCCESS;
}

static int
validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns)
{
    // Any errors will point to the pattern rather than the arg name as the
    // parser is only supplying identifiers rather than Name or keyword nodes
    Py_ssize_t nattrs = asdl_seq_LEN(attrs);
    for (Py_ssize_t i = 0; i < nattrs; i++) {
        identifier attr = ((identifier)asdl_seq_GET(attrs, i));
        location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i));
        if (forbidden_name(c, loc, attr, Store)) {
            return ERROR;
        }
        for (Py_ssize_t j = i + 1; j < nattrs; j++) {
            identifier other = ((identifier)asdl_seq_GET(attrs, j));
            if (!PyUnicode_Compare(attr, other)) {
                location loc = LOC((pattern_ty) asdl_seq_GET(patterns, j));
                compiler_error(c, loc, "attribute name repeated in class pattern: %U", attr);
                return ERROR;
            }
        }
    }
    return SUCCESS;
}

static int
compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    assert(p->kind == MatchClass_kind);
    asdl_pattern_seq *patterns = p->v.MatchClass.patterns;
    asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs;
    asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns;
    Py_ssize_t nargs = asdl_seq_LEN(patterns);
    Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs);
    Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns);
    if (nattrs != nkwd_patterns) {
        // AST validator shouldn't let this happen, but if it does,
        // just fail, don't crash out of the interpreter
        const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern";
        return compiler_error(c, LOC(p), e, nattrs, nkwd_patterns);
    }
    if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) {
        const char *e = "too many sub-patterns in class pattern %R";
        return compiler_error(c, LOC(p), e, p->v.MatchClass.cls);
    }
    if (nattrs) {
        RETURN_IF_ERROR(validate_kwd_attrs(c, kwd_attrs, kwd_patterns));
    }
    VISIT(c, expr, p->v.MatchClass.cls);
    PyObject *attr_names = PyTuple_New(nattrs);
    if (attr_names == NULL) {
        return ERROR;
    }
    Py_ssize_t i;
    for (i = 0; i < nattrs; i++) {
        PyObject *name = asdl_seq_GET(kwd_attrs, i);
        PyTuple_SET_ITEM(attr_names, i, Py_NewRef(name));
    }
    ADDOP_LOAD_CONST_NEW(c, LOC(p), attr_names);
    ADDOP_I(c, LOC(p), MATCH_CLASS, nargs);
    ADDOP_I(c, LOC(p), COPY, 1);
    ADDOP_LOAD_CONST(c, LOC(p), Py_None);
    ADDOP_I(c, LOC(p), IS_OP, 1);
    // TOS is now a tuple of (nargs + nattrs) attributes (or None):
    pc->on_top++;
    RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, nargs + nattrs);
    pc->on_top += nargs + nattrs - 1;
    for (i = 0; i < nargs + nattrs; i++) {
        pc->on_top--;
        pattern_ty pattern;
        if (i < nargs) {
            // Positional:
            pattern = asdl_seq_GET(patterns, i);
        }
        else {
            // Keyword:
            pattern = asdl_seq_GET(kwd_patterns, i - nargs);
        }
        if (WILDCARD_CHECK(pattern)) {
            ADDOP(c, LOC(p), POP_TOP);
            continue;
        }
        RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
    }
    // Success! Pop the tuple of attributes:
    return SUCCESS;
}

static int
compiler_pattern_mapping(struct compiler *c, pattern_ty p,
                         pattern_context *pc)
{
    assert(p->kind == MatchMapping_kind);
    asdl_expr_seq *keys = p->v.MatchMapping.keys;
    asdl_pattern_seq *patterns = p->v.MatchMapping.patterns;
    Py_ssize_t size = asdl_seq_LEN(keys);
    Py_ssize_t npatterns = asdl_seq_LEN(patterns);
    if (size != npatterns) {
        // AST validator shouldn't let this happen, but if it does,
        // just fail, don't crash out of the interpreter
        const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern";
        return compiler_error(c, LOC(p), e, size, npatterns);
    }
    // We have a double-star target if "rest" is set
    PyObject *star_target = p->v.MatchMapping.rest;
    // We need to keep the subject on top during the mapping and length checks:
    pc->on_top++;
    ADDOP(c, LOC(p), MATCH_MAPPING);
    RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    if (!size && !star_target) {
        // If the pattern is just "{}", we're done! Pop the subject:
        pc->on_top--;
        ADDOP(c, LOC(p), POP_TOP);
        return SUCCESS;
    }
    if (size) {
        // If the pattern has any keys in it, perform a length check:
        ADDOP(c, LOC(p), GET_LEN);
        ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size));
        ADDOP_COMPARE(c, LOC(p), GtE);
        RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    }
    if (INT_MAX < size - 1) {
        return compiler_error(c, LOC(p), "too many sub-patterns in mapping pattern");
    }
    // Collect all of the keys into a tuple for MATCH_KEYS and
    // **rest. They can either be dotted names or literals:

    // Maintaining a set of Constant_kind kind keys allows us to raise a
    // SyntaxError in the case of duplicates.
    PyObject *seen = PySet_New(NULL);
    if (seen == NULL) {
        return ERROR;
    }

    // NOTE: goto error on failure in the loop below to avoid leaking `seen`
    for (Py_ssize_t i = 0; i < size; i++) {
        expr_ty key = asdl_seq_GET(keys, i);
        if (key == NULL) {
            const char *e = "can't use NULL keys in MatchMapping "
                            "(set 'rest' parameter instead)";
            location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i));
            compiler_error(c, loc, e);
            goto error;
        }

        if (key->kind == Constant_kind) {
            int in_seen = PySet_Contains(seen, key->v.Constant.value);
            if (in_seen < 0) {
                goto error;
            }
            if (in_seen) {
                const char *e = "mapping pattern checks duplicate key (%R)";
                compiler_error(c, LOC(p), e, key->v.Constant.value);
                goto error;
            }
            if (PySet_Add(seen, key->v.Constant.value)) {
                goto error;
            }
        }

        else if (key->kind != Attribute_kind) {
            const char *e = "mapping pattern keys may only match literals and attribute lookups";
            compiler_error(c, LOC(p), e);
            goto error;
        }
        if (compiler_visit_expr(c, key) < 0) {
            goto error;
        }
    }

    // all keys have been checked; there are no duplicates
    Py_DECREF(seen);

    ADDOP_I(c, LOC(p), BUILD_TUPLE, size);
    ADDOP(c, LOC(p), MATCH_KEYS);
    // There's now a tuple of keys and a tuple of values on top of the subject:
    pc->on_top += 2;
    ADDOP_I(c, LOC(p), COPY, 1);
    ADDOP_LOAD_CONST(c, LOC(p), Py_None);
    ADDOP_I(c, LOC(p), IS_OP, 1);
    RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    // So far so good. Use that tuple of values on the stack to match
    // sub-patterns against:
    ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size);
    pc->on_top += size - 1;
    for (Py_ssize_t i = 0; i < size; i++) {
        pc->on_top--;
        pattern_ty pattern = asdl_seq_GET(patterns, i);
        RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
    }
    // If we get this far, it's a match! Whatever happens next should consume
    // the tuple of keys and the subject:
    pc->on_top -= 2;
    if (star_target) {
        // If we have a starred name, bind a dict of remaining items to it (this may
        // seem a bit inefficient, but keys is rarely big enough to actually impact
        // runtime):
        // rest = dict(TOS1)
        // for key in TOS:
        //     del rest[key]
        ADDOP_I(c, LOC(p), BUILD_MAP, 0);           // [subject, keys, empty]
        ADDOP_I(c, LOC(p), SWAP, 3);                // [empty, keys, subject]
        ADDOP_I(c, LOC(p), DICT_UPDATE, 2);         // [copy, keys]
        ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size);  // [copy, keys...]
        while (size) {
            ADDOP_I(c, LOC(p), COPY, 1 + size--);   // [copy, keys..., copy]
            ADDOP_I(c, LOC(p), SWAP, 2);            // [copy, keys..., copy, key]
            ADDOP(c, LOC(p), DELETE_SUBSCR);        // [copy, keys...]
        }
        RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), star_target, pc));
    }
    else {
        ADDOP(c, LOC(p), POP_TOP);  // Tuple of keys.
        ADDOP(c, LOC(p), POP_TOP);  // Subject.
    }
    return SUCCESS;

error:
    Py_DECREF(seen);
    return ERROR;
}

static int
compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    assert(p->kind == MatchOr_kind);
    NEW_JUMP_TARGET_LABEL(c, end);
    Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns);
    assert(size > 1);
    // We're going to be messing with pc. Keep the original info handy:
    pattern_context old_pc = *pc;
    Py_INCREF(pc->stores);
    // control is the list of names bound by the first alternative. It is used
    // for checking different name bindings in alternatives, and for correcting
    // the order in which extracted elements are placed on the stack.
    PyObject *control = NULL;
    // NOTE: We can't use returning macros anymore! goto error on error.
    for (Py_ssize_t i = 0; i < size; i++) {
        pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i);
        PyObject *pc_stores = PyList_New(0);
        if (pc_stores == NULL) {
            goto error;
        }
        Py_SETREF(pc->stores, pc_stores);
        // An irrefutable sub-pattern must be last, if it is allowed at all:
        pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable;
        pc->fail_pop = NULL;
        pc->fail_pop_size = 0;
        pc->on_top = 0;
        if (codegen_addop_i(INSTR_SEQUENCE(c), COPY, 1, LOC(alt)) < 0 ||
            compiler_pattern(c, alt, pc) < 0) {
            goto error;
        }
        // Success!
        Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
        if (!i) {
            // This is the first alternative, so save its stores as a "control"
            // for the others (they can't bind a different set of names, and
            // might need to be reordered):
            assert(control == NULL);
            control = Py_NewRef(pc->stores);
        }
        else if (nstores != PyList_GET_SIZE(control)) {
            goto diff;
        }
        else if (nstores) {
            // There were captures. Check to see if we differ from control:
            Py_ssize_t icontrol = nstores;
            while (icontrol--) {
                PyObject *name = PyList_GET_ITEM(control, icontrol);
                Py_ssize_t istores = PySequence_Index(pc->stores, name);
                if (istores < 0) {
                    PyErr_Clear();
                    goto diff;
                }
                if (icontrol != istores) {
                    // Reorder the names on the stack to match the order of the
                    // names in control. There's probably a better way of doing
                    // this; the current solution is potentially very
                    // inefficient when each alternative subpattern binds lots
                    // of names in different orders. It's fine for reasonable
                    // cases, though, and the peephole optimizer will ensure
                    // that the final code is as efficient as possible.
                    assert(istores < icontrol);
                    Py_ssize_t rotations = istores + 1;
                    // Perform the same rotation on pc->stores:
                    PyObject *rotated = PyList_GetSlice(pc->stores, 0,
                                                        rotations);
                    if (rotated == NULL ||
                        PyList_SetSlice(pc->stores, 0, rotations, NULL) ||
                        PyList_SetSlice(pc->stores, icontrol - istores,
                                        icontrol - istores, rotated))
                    {
                        Py_XDECREF(rotated);
                        goto error;
                    }
                    Py_DECREF(rotated);
                    // That just did:
                    // rotated = pc_stores[:rotations]
                    // del pc_stores[:rotations]
                    // pc_stores[icontrol-istores:icontrol-istores] = rotated
                    // Do the same thing to the stack, using several
                    // rotations:
                    while (rotations--) {
                        if (pattern_helper_rotate(c, LOC(alt), icontrol + 1) < 0) {
                            goto error;
                        }
                    }
                }
            }
        }
        assert(control);
        if (codegen_addop_j(INSTR_SEQUENCE(c), LOC(alt), JUMP, end) < 0 ||
            emit_and_reset_fail_pop(c, LOC(alt), pc) < 0)
        {
            goto error;
        }
    }
    Py_DECREF(pc->stores);
    *pc = old_pc;
    Py_INCREF(pc->stores);
    // Need to NULL this for the PyObject_Free call in the error block.
    old_pc.fail_pop = NULL;
    // No match. Pop the remaining copy of the subject and fail:
    if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, LOC(p)) < 0 ||
        jump_to_fail_pop(c, LOC(p), pc, JUMP) < 0) {
        goto error;
    }

    USE_LABEL(c, end);
    Py_ssize_t nstores = PyList_GET_SIZE(control);
    // There's a bunch of stuff on the stack between where the new stores
    // are and where they need to be:
    // - The other stores.
    // - A copy of the subject.
    // - Anything else that may be on top of the stack.
    // - Any previous stores we've already stashed away on the stack.
    Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores);
    for (Py_ssize_t i = 0; i < nstores; i++) {
        // Rotate this capture to its proper place on the stack:
        if (pattern_helper_rotate(c, LOC(p), nrots) < 0) {
            goto error;
        }
        // Update the list of previous stores with this new name, checking for
        // duplicates:
        PyObject *name = PyList_GET_ITEM(control, i);
        int dupe = PySequence_Contains(pc->stores, name);
        if (dupe < 0) {
            goto error;
        }
        if (dupe) {
            compiler_error_duplicate_store(c, LOC(p), name);
            goto error;
        }
        if (PyList_Append(pc->stores, name)) {
            goto error;
        }
    }
    Py_DECREF(old_pc.stores);
    Py_DECREF(control);
    // NOTE: Returning macros are safe again.
    // Pop the copy of the subject:
    ADDOP(c, LOC(p), POP_TOP);
    return SUCCESS;
diff:
    compiler_error(c, LOC(p), "alternative patterns bind different names");
error:
    PyObject_Free(old_pc.fail_pop);
    Py_DECREF(old_pc.stores);
    Py_XDECREF(control);
    return ERROR;
}


static int
compiler_pattern_sequence(struct compiler *c, pattern_ty p,
                          pattern_context *pc)
{
    assert(p->kind == MatchSequence_kind);
    asdl_pattern_seq *patterns = p->v.MatchSequence.patterns;
    Py_ssize_t size = asdl_seq_LEN(patterns);
    Py_ssize_t star = -1;
    int only_wildcard = 1;
    int star_wildcard = 0;
    // Find a starred name, if it exists. There may be at most one:
    for (Py_ssize_t i = 0; i < size; i++) {
        pattern_ty pattern = asdl_seq_GET(patterns, i);
        if (pattern->kind == MatchStar_kind) {
            if (star >= 0) {
                const char *e = "multiple starred names in sequence pattern";
                return compiler_error(c, LOC(p), e);
            }
            star_wildcard = WILDCARD_STAR_CHECK(pattern);
            only_wildcard &= star_wildcard;
            star = i;
            continue;
        }
        only_wildcard &= WILDCARD_CHECK(pattern);
    }
    // We need to keep the subject on top during the sequence and length checks:
    pc->on_top++;
    ADDOP(c, LOC(p), MATCH_SEQUENCE);
    RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    if (star < 0) {
        // No star: len(subject) == size
        ADDOP(c, LOC(p), GET_LEN);
        ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size));
        ADDOP_COMPARE(c, LOC(p), Eq);
        RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    }
    else if (size > 1) {
        // Star: len(subject) >= size - 1
        ADDOP(c, LOC(p), GET_LEN);
        ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size - 1));
        ADDOP_COMPARE(c, LOC(p), GtE);
        RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    }
    // Whatever comes next should consume the subject:
    pc->on_top--;
    if (only_wildcard) {
        // Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc.
        ADDOP(c, LOC(p), POP_TOP);
    }
    else if (star_wildcard) {
        RETURN_IF_ERROR(pattern_helper_sequence_subscr(c, LOC(p), patterns, star, pc));
    }
    else {
        RETURN_IF_ERROR(pattern_helper_sequence_unpack(c, LOC(p), patterns, star, pc));
    }
    return SUCCESS;
}

static int
compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    assert(p->kind == MatchValue_kind);
    expr_ty value = p->v.MatchValue.value;
    if (!MATCH_VALUE_EXPR(value)) {
        const char *e = "patterns may only match literals and attribute lookups";
        return compiler_error(c, LOC(p), e);
    }
    VISIT(c, expr, value);
    ADDOP_COMPARE(c, LOC(p), Eq);
    ADDOP(c, LOC(p), TO_BOOL);
    RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    return SUCCESS;
}

static int
compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    assert(p->kind == MatchSingleton_kind);
    ADDOP_LOAD_CONST(c, LOC(p), p->v.MatchSingleton.value);
    ADDOP_COMPARE(c, LOC(p), Is);
    RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
    return SUCCESS;
}

static int
compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc)
{
    switch (p->kind) {
        case MatchValue_kind:
            return compiler_pattern_value(c, p, pc);
        case MatchSingleton_kind:
            return compiler_pattern_singleton(c, p, pc);
        case MatchSequence_kind:
            return compiler_pattern_sequence(c, p, pc);
        case MatchMapping_kind:
            return compiler_pattern_mapping(c, p, pc);
        case MatchClass_kind:
            return compiler_pattern_class(c, p, pc);
        case MatchStar_kind:
            return compiler_pattern_star(c, p, pc);
        case MatchAs_kind:
            return compiler_pattern_as(c, p, pc);
        case MatchOr_kind:
            return compiler_pattern_or(c, p, pc);
    }
    // AST validator shouldn't let this happen, but if it does,
    // just fail, don't crash out of the interpreter
    const char *e = "invalid match pattern node in AST (kind=%d)";
    return compiler_error(c, LOC(p), e, p->kind);
}

static int
compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc)
{
    VISIT(c, expr, s->v.Match.subject);
    NEW_JUMP_TARGET_LABEL(c, end);
    Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases);
    assert(cases > 0);
    match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1);
    int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases;
    for (Py_ssize_t i = 0; i < cases - has_default; i++) {
        m = asdl_seq_GET(s->v.Match.cases, i);
        // Only copy the subject if we're *not* on the last case:
        if (i != cases - has_default - 1) {
            ADDOP_I(c, LOC(m->pattern), COPY, 1);
        }
        pc->stores = PyList_New(0);
        if (pc->stores == NULL) {
            return ERROR;
        }
        // Irrefutable cases must be either guarded, last, or both:
        pc->allow_irrefutable = m->guard != NULL || i == cases - 1;
        pc->fail_pop = NULL;
        pc->fail_pop_size = 0;
        pc->on_top = 0;
        // NOTE: Can't use returning macros here (they'll leak pc->stores)!
        if (compiler_pattern(c, m->pattern, pc) < 0) {
            Py_DECREF(pc->stores);
            return ERROR;
        }
        assert(!pc->on_top);
        // It's a match! Store all of the captured names (they're on the stack).
        Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
        for (Py_ssize_t n = 0; n < nstores; n++) {
            PyObject *name = PyList_GET_ITEM(pc->stores, n);
            if (compiler_nameop(c, LOC(m->pattern), name, Store) < 0) {
                Py_DECREF(pc->stores);
                return ERROR;
            }
        }
        Py_DECREF(pc->stores);
        // NOTE: Returning macros are safe again.
        if (m->guard) {
            RETURN_IF_ERROR(ensure_fail_pop(c, pc, 0));
            RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, pc->fail_pop[0], 0));
        }
        // Success! Pop the subject off, we're done with it:
        if (i != cases - has_default - 1) {
            ADDOP(c, LOC(m->pattern), POP_TOP);
        }
        VISIT_SEQ(c, stmt, m->body);
        ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
        // If the pattern fails to match, we want the line number of the
        // cleanup to be associated with the failed pattern, not the last line
        // of the body
        RETURN_IF_ERROR(emit_and_reset_fail_pop(c, LOC(m->pattern), pc));
    }
    if (has_default) {
        // A trailing "case _" is common, and lets us save a bit of redundant
        // pushing and popping in the loop above:
        m = asdl_seq_GET(s->v.Match.cases, cases - 1);
        if (cases == 1) {
            // No matches. Done with the subject:
            ADDOP(c, LOC(m->pattern), POP_TOP);
        }
        else {
            // Show line coverage for default case (it doesn't create bytecode)
            ADDOP(c, LOC(m->pattern), NOP);
        }
        if (m->guard) {
            RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, end, 0));
        }
        VISIT_SEQ(c, stmt, m->body);
    }
    USE_LABEL(c, end);
    return SUCCESS;
}

static int
compiler_match(struct compiler *c, stmt_ty s)
{
    pattern_context pc;
    pc.fail_pop = NULL;
    int result = compiler_match_inner(c, s, &pc);
    PyObject_Free(pc.fail_pop);
    return result;
}

#undef WILDCARD_CHECK
#undef WILDCARD_STAR_CHECK

static PyObject *
consts_dict_keys_inorder(PyObject *dict)
{
    PyObject *consts, *k, *v;
    Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);

    consts = PyList_New(size);   /* PyCode_Optimize() requires a list */
    if (consts == NULL)
        return NULL;
    while (PyDict_Next(dict, &pos, &k, &v)) {
        i = PyLong_AS_LONG(v);
        /* The keys of the dictionary can be tuples wrapping a constant.
         * (see dict_add_o and _PyCode_ConstantKey). In that case
         * the object we want is always second. */
        if (PyTuple_CheckExact(k)) {
            k = PyTuple_GET_ITEM(k, 1);
        }
        assert(i < size);
        assert(i >= 0);
        PyList_SET_ITEM(consts, i, Py_NewRef(k));
    }
    return consts;
}

static int
compute_code_flags(struct compiler *c)
{
    PySTEntryObject *ste = c->u->u_ste;
    int flags = 0;
    if (_PyST_IsFunctionLike(c->u->u_ste)) {
        flags |= CO_NEWLOCALS | CO_OPTIMIZED;
        if (ste->ste_nested)
            flags |= CO_NESTED;
        if (ste->ste_generator && !ste->ste_coroutine)
            flags |= CO_GENERATOR;
        if (!ste->ste_generator && ste->ste_coroutine)
            flags |= CO_COROUTINE;
        if (ste->ste_generator && ste->ste_coroutine)
            flags |= CO_ASYNC_GENERATOR;
        if (ste->ste_varargs)
            flags |= CO_VARARGS;
        if (ste->ste_varkeywords)
            flags |= CO_VARKEYWORDS;
    }

    /* (Only) inherit compilerflags in PyCF_MASK */
    flags |= (c->c_flags.cf_flags & PyCF_MASK);

    if ((IS_TOP_LEVEL_AWAIT(c)) &&
         ste->ste_coroutine &&
         !ste->ste_generator) {
        flags |= CO_COROUTINE;
    }

    return flags;
}

// Merge *obj* with constant cache.
// Unlike merge_consts_recursive(), this function doesn't work recursively.
int
_PyCompile_ConstCacheMergeOne(PyObject *const_cache, PyObject **obj)
{
    assert(PyDict_CheckExact(const_cache));
    PyObject *key = _PyCode_ConstantKey(*obj);
    if (key == NULL) {
        return ERROR;
    }

    // t is borrowed reference
    PyObject *t = PyDict_SetDefault(const_cache, key, key);
    Py_DECREF(key);
    if (t == NULL) {
        return ERROR;
    }
    if (t == key) {  // obj is new constant.
        return SUCCESS;
    }

    if (PyTuple_CheckExact(t)) {
        // t is still borrowed reference
        t = PyTuple_GET_ITEM(t, 1);
    }

    Py_SETREF(*obj, Py_NewRef(t));
    return SUCCESS;
}

static int
add_return_at_end(struct compiler *c, int addNone)
{
    /* Make sure every instruction stream that falls off the end returns None.
     * This also ensures that no jump target offsets are out of bounds.
     */
    if (addNone) {
        ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
    }
    ADDOP(c, NO_LOCATION, RETURN_VALUE);
    return SUCCESS;
}

static PyCodeObject *
optimize_and_assemble_code_unit(struct compiler_unit *u, PyObject *const_cache,
                   int code_flags, PyObject *filename)
{
    cfg_builder *g = NULL;
    instr_sequence optimized_instrs;
    memset(&optimized_instrs, 0, sizeof(instr_sequence));

    PyCodeObject *co = NULL;
    PyObject *consts = consts_dict_keys_inorder(u->u_metadata.u_consts);
    if (consts == NULL) {
        goto error;
    }
    g = instr_sequence_to_cfg(&u->u_instr_sequence);
    if (g == NULL) {
        goto error;
    }
    int nlocals = (int)PyDict_GET_SIZE(u->u_metadata.u_varnames);
    int nparams = (int)PyList_GET_SIZE(u->u_ste->ste_varnames);
    assert(u->u_metadata.u_firstlineno);

    if (_PyCfg_OptimizeCodeUnit(g, consts, const_cache, nlocals,
                                nparams, u->u_metadata.u_firstlineno) < 0) {
        goto error;
    }

    int stackdepth;
    int nlocalsplus;
    if (_PyCfg_OptimizedCfgToInstructionSequence(g, &u->u_metadata, code_flags,
                                                 &stackdepth, &nlocalsplus,
                                                 &optimized_instrs) < 0) {
        goto error;
    }

    /** Assembly **/

    co = _PyAssemble_MakeCodeObject(&u->u_metadata, const_cache, consts,
                                    stackdepth, &optimized_instrs, nlocalsplus,
                                    code_flags, filename);

error:
    Py_XDECREF(consts);
    instr_sequence_fini(&optimized_instrs);
    _PyCfgBuilder_Free(g);
    return co;
}

static PyCodeObject *
optimize_and_assemble(struct compiler *c, int addNone)
{
    struct compiler_unit *u = c->u;
    PyObject *const_cache = c->c_const_cache;
    PyObject *filename = c->c_filename;

    int code_flags = compute_code_flags(c);
    if (code_flags < 0) {
        return NULL;
    }

    if (add_return_at_end(c, addNone) < 0) {
        return NULL;
    }

    return optimize_and_assemble_code_unit(u, const_cache, code_flags, filename);
}

/* Access to compiler optimizations for unit tests.
 *
 * _PyCompile_CodeGen takes and AST, applies code-gen and
 * returns the unoptimized CFG as an instruction list.
 *
 * _PyCompile_OptimizeCfg takes an instruction list, constructs
 * a CFG, optimizes it and converts back to an instruction list.
 *
 * An instruction list is a PyList where each item is either
 * a tuple describing a single instruction:
 * (opcode, oparg, lineno, end_lineno, col, end_col), or
 * a jump target label marking the beginning of a basic block.
 */

static int
instructions_to_instr_sequence(PyObject *instructions, instr_sequence *seq)
{
    assert(PyList_Check(instructions));

    Py_ssize_t num_insts = PyList_GET_SIZE(instructions);
    bool *is_target = PyMem_Calloc(num_insts, sizeof(bool));
    if (is_target == NULL) {
        return ERROR;
    }
    for (Py_ssize_t i = 0; i < num_insts; i++) {
        PyObject *item = PyList_GET_ITEM(instructions, i);
        if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) {
            PyErr_SetString(PyExc_ValueError, "expected a 6-tuple");
            goto error;
        }
        int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0));
        if (PyErr_Occurred()) {
            goto error;
        }
        if (HAS_TARGET(opcode)) {
            int oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1));
            if (PyErr_Occurred()) {
                goto error;
            }
            if (oparg < 0 || oparg >= num_insts) {
                PyErr_SetString(PyExc_ValueError, "label out of range");
                goto error;
            }
            is_target[oparg] = true;
        }
    }

    for (int i = 0; i < num_insts; i++) {
        if (is_target[i]) {
            if (_PyCompile_InstructionSequence_UseLabel(seq, i) < 0) {
                goto error;
            }
        }
        PyObject *item = PyList_GET_ITEM(instructions, i);
        if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) {
            PyErr_SetString(PyExc_ValueError, "expected a 6-tuple");
            goto error;
        }
        int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0));
        if (PyErr_Occurred()) {
            goto error;
        }
        int oparg;
        if (OPCODE_HAS_ARG(opcode)) {
            oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1));
            if (PyErr_Occurred()) {
                goto error;
            }
        }
        else {
            oparg = 0;
        }
        location loc;
        loc.lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 2));
        if (PyErr_Occurred()) {
            goto error;
        }
        loc.end_lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 3));
        if (PyErr_Occurred()) {
            goto error;
        }
        loc.col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 4));
        if (PyErr_Occurred()) {
            goto error;
        }
        loc.end_col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 5));
        if (PyErr_Occurred()) {
            goto error;
        }
        if (_PyCompile_InstructionSequence_Addop(seq, opcode, oparg, loc) < 0) {
            goto error;
        }
    }
    PyMem_Free(is_target);
    return SUCCESS;
error:
    PyMem_Free(is_target);
    return ERROR;
}

static cfg_builder*
instructions_to_cfg(PyObject *instructions)
{
    cfg_builder *g = NULL;
    instr_sequence seq;
    memset(&seq, 0, sizeof(instr_sequence));

    if (instructions_to_instr_sequence(instructions, &seq) < 0) {
        goto error;
    }
    g = instr_sequence_to_cfg(&seq);
    if (g == NULL) {
        goto error;
    }
    instr_sequence_fini(&seq);
    return g;
error:
    _PyCfgBuilder_Free(g);
    instr_sequence_fini(&seq);
    return NULL;
}

static PyObject *
instr_sequence_to_instructions(instr_sequence *seq)
{
    PyObject *instructions = PyList_New(0);
    if (instructions == NULL) {
        return NULL;
    }
    for (int i = 0; i < seq->s_used; i++) {
        instruction *instr = &seq->s_instrs[i];
        location loc = instr->i_loc;
        int arg = HAS_TARGET(instr->i_opcode) ?
                  seq->s_labelmap[instr->i_oparg] : instr->i_oparg;

        PyObject *inst_tuple = Py_BuildValue(
            "(iiiiii)", instr->i_opcode, arg,
            loc.lineno, loc.end_lineno,
            loc.col_offset, loc.end_col_offset);
        if (inst_tuple == NULL) {
            goto error;
        }

        int res = PyList_Append(instructions, inst_tuple);
        Py_DECREF(inst_tuple);
        if (res != 0) {
            goto error;
        }
    }
    return instructions;
error:
    Py_XDECREF(instructions);
    return NULL;
}

static PyObject *
cfg_to_instructions(cfg_builder *g)
{
    instr_sequence seq;
    memset(&seq, 0, sizeof(seq));
    if (_PyCfg_ToInstructionSequence(g, &seq) < 0) {
        return NULL;
    }
    PyObject *res = instr_sequence_to_instructions(&seq);
    instr_sequence_fini(&seq);
    return res;
}

// C implementation of inspect.cleandoc()
//
// Difference from inspect.cleandoc():
// - Do not remove leading and trailing blank lines to keep lineno.
PyObject *
_PyCompile_CleanDoc(PyObject *doc)
{
    doc = PyObject_CallMethod(doc, "expandtabs", NULL);
    if (doc == NULL) {
        return NULL;
    }

    Py_ssize_t doc_size;
    const char *doc_utf8 = PyUnicode_AsUTF8AndSize(doc, &doc_size);
    if (doc_utf8 == NULL) {
        Py_DECREF(doc);
        return NULL;
    }
    const char *p = doc_utf8;
    const char *pend = p + doc_size;

    // First pass: find minimum indentation of any non-blank lines
    // after first line.
    while (p < pend && *p++ != '\n') {
    }

    Py_ssize_t margin = PY_SSIZE_T_MAX;
    while (p < pend) {
        const char *s = p;
        while (*p == ' ') p++;
        if (p < pend && *p != '\n') {
            margin = Py_MIN(margin, p - s);
        }
        while (p < pend && *p++ != '\n') {
        }
    }
    if (margin == PY_SSIZE_T_MAX) {
        margin = 0;
    }

    // Second pass: write cleandoc into buff.

    // copy first line without leading spaces.
    p = doc_utf8;
    while (*p == ' ') {
        p++;
    }
    if (p == doc_utf8 && margin == 0 ) {
        // doc is already clean.
        return doc;
    }

    char *buff = PyMem_Malloc(doc_size);
    if (buff == NULL){
        Py_DECREF(doc);
        PyErr_NoMemory();
        return NULL;
    }

    char *w = buff;

    while (p < pend) {
        int ch = *w++ = *p++;
        if (ch == '\n') {
            break;
        }
    }

    // copy subsequent lines without margin.
    while (p < pend) {
        for (Py_ssize_t i = 0; i < margin; i++, p++) {
            if (*p != ' ') {
                assert(*p == '\n' || *p == '\0');
                break;
            }
        }
        while (p < pend) {
            int ch = *w++ = *p++;
            if (ch == '\n') {
                break;
            }
        }
    }

    Py_DECREF(doc);
    PyObject *res = PyUnicode_FromStringAndSize(buff, w - buff);
    PyMem_Free(buff);
    return res;
}


PyObject *
_PyCompile_CodeGen(PyObject *ast, PyObject *filename, PyCompilerFlags *pflags,
                   int optimize, int compile_mode)
{
    PyObject *res = NULL;
    PyObject *metadata = NULL;

    if (!PyAST_Check(ast)) {
        PyErr_SetString(PyExc_TypeError, "expected an AST");
        return NULL;
    }

    PyArena *arena = _PyArena_New();
    if (arena == NULL) {
        return NULL;
    }

    mod_ty mod = PyAST_obj2mod(ast, arena, compile_mode);
    if (mod == NULL || !_PyAST_Validate(mod)) {
        _PyArena_Free(arena);
        return NULL;
    }

    struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena);
    if (c == NULL) {
        _PyArena_Free(arena);
        return NULL;
    }

    if (compiler_codegen(c, mod) < 0) {
        goto finally;
    }

    _PyCompile_CodeUnitMetadata *umd = &c->u->u_metadata;
    metadata = PyDict_New();
    if (metadata == NULL) {
        goto finally;
    }
#define SET_MATADATA_ITEM(key, value) \
    if (value != NULL) { \
        if (PyDict_SetItemString(metadata, key, value) < 0) goto finally; \
    }

    SET_MATADATA_ITEM("name", umd->u_name);
    SET_MATADATA_ITEM("qualname", umd->u_qualname);
    SET_MATADATA_ITEM("consts", umd->u_consts);
    SET_MATADATA_ITEM("names", umd->u_names);
    SET_MATADATA_ITEM("varnames", umd->u_varnames);
    SET_MATADATA_ITEM("cellvars", umd->u_cellvars);
    SET_MATADATA_ITEM("freevars", umd->u_freevars);
#undef SET_MATADATA_ITEM

#define SET_MATADATA_INT(key, value) do { \
        PyObject *v = PyLong_FromLong((long)value); \
        if (v == NULL) goto finally; \
        int res = PyDict_SetItemString(metadata, key, v); \
        Py_XDECREF(v); \
        if (res < 0) goto finally; \
    } while (0);

    SET_MATADATA_INT("argcount", umd->u_argcount);
    SET_MATADATA_INT("posonlyargcount", umd->u_posonlyargcount);
    SET_MATADATA_INT("kwonlyargcount", umd->u_kwonlyargcount);
#undef SET_MATADATA_INT

    int addNone = mod->kind != Expression_kind;
    if (add_return_at_end(c, addNone) < 0) {
        goto finally;
    }

    PyObject *insts = instr_sequence_to_instructions(INSTR_SEQUENCE(c));
    if (insts == NULL) {
        goto finally;
    }
    res = PyTuple_Pack(2, insts, metadata);
    Py_DECREF(insts);

finally:
    Py_XDECREF(metadata);
    compiler_exit_scope(c);
    compiler_free(c);
    _PyArena_Free(arena);
    return res;
}

PyObject *
_PyCompile_OptimizeCfg(PyObject *instructions, PyObject *consts, int nlocals)
{
    cfg_builder *g = NULL;
    PyObject *res = NULL;
    PyObject *const_cache = PyDict_New();
    if (const_cache == NULL) {
        return NULL;
    }

    g = instructions_to_cfg(instructions);
    if (g == NULL) {
        goto error;
    }
    int nparams = 0, firstlineno = 1;
    if (_PyCfg_OptimizeCodeUnit(g, consts, const_cache, nlocals,
                                nparams, firstlineno) < 0) {
        goto error;
    }
    res = cfg_to_instructions(g);
error:
    Py_DECREF(const_cache);
    _PyCfgBuilder_Free(g);
    return res;
}

int _PyCfg_JumpLabelsToTargets(cfg_builder *g);

PyCodeObject *
_PyCompile_Assemble(_PyCompile_CodeUnitMetadata *umd, PyObject *filename,
                    PyObject *instructions)
{
    cfg_builder *g = NULL;
    PyCodeObject *co = NULL;
    instr_sequence optimized_instrs;
    memset(&optimized_instrs, 0, sizeof(instr_sequence));

    PyObject *const_cache = PyDict_New();
    if (const_cache == NULL) {
        return NULL;
    }

    g = instructions_to_cfg(instructions);
    if (g == NULL) {
        goto error;
    }

    if (_PyCfg_JumpLabelsToTargets(g) < 0) {
        goto error;
    }

    int code_flags = 0;
    int stackdepth, nlocalsplus;
    if (_PyCfg_OptimizedCfgToInstructionSequence(g, umd, code_flags,
                                                 &stackdepth, &nlocalsplus,
                                                 &optimized_instrs) < 0) {
        goto error;
    }

    PyObject *consts = consts_dict_keys_inorder(umd->u_consts);
    if (consts == NULL) {
        goto error;
    }
    co = _PyAssemble_MakeCodeObject(umd, const_cache,
                                    consts, stackdepth, &optimized_instrs,
                                    nlocalsplus, code_flags, filename);
    Py_DECREF(consts);

error:
    Py_DECREF(const_cache);
    _PyCfgBuilder_Free(g);
    instr_sequence_fini(&optimized_instrs);
    return co;
}


/* Retained for API compatibility.
 * Optimization is now done in _PyCfg_OptimizeCodeUnit */

PyObject *
PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts),
                PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj))
{
    return Py_NewRef(code);
}