summaryrefslogtreecommitdiffstats
path: root/Lib/dos_8x3/complex.py
blob: f4892f30b6a3350948932301ecf6e97ab951e1e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Complex numbers
# ---------------

# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part).  In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# Polar([r [,phi [,fullcircle]]]) ->
#	the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
#	(r and phi default to 0)
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
#            the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# (I suppose it would be easy to implement a cmath module.)
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar   for *,/,pow


import types, math

if not hasattr(math, 'hypot'):
	def hypot(x, y):
		# XXX I know there's a way to compute this without possibly causing
		# overflow, but I can't remember what it is right now...
		return math.sqrt(x*x + y*y)
	math.hypot = hypot

twopi = math.pi*2.0
halfpi = math.pi/2.0

def IsComplex(obj):
	return hasattr(obj, 're') and hasattr(obj, 'im')

def Polar(r = 0, phi = 0, fullcircle = twopi):
	phi = phi * (twopi / fullcircle)
	return Complex(math.cos(phi)*r, math.sin(phi)*r)

class Complex:

	def __init__(self, re=0, im=0):
		if IsComplex(re):
			im = im + re.im
			re = re.re
		if IsComplex(im):
			re = re - im.im
			im = im.re
		self.re = re
		self.im = im

	def __setattr__(self, name, value):
		if hasattr(self, name):
			raise TypeError, "Complex numbers have set-once attributes"
		self.__dict__[name] = value

	def __repr__(self):
		if not self.im:
			return 'Complex(%s)' % `self.re`
		else:
			return 'Complex(%s, %s)' % (`self.re`, `self.im`)

	def __str__(self):
		if not self.im:
			return `self.re`
		else:
			return 'Complex(%s, %s)' % (`self.re`, `self.im`)

	def __coerce__(self, other):
		if IsComplex(other):
			return self, other
		return self, Complex(other)	# May fail

	def __cmp__(self, other):
		return cmp(self.re, other.re) or cmp(self.im, other.im)

	def __hash__(self):
		if not self.im: return hash(self.re)
		mod = sys.maxint + 1L
		return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)

	def __neg__(self):
		return Complex(-self.re, -self.im)

	def __pos__(self):
		return self

	def __abs__(self):
		return math.hypot(self.re, self.im)
		##return math.sqrt(self.re*self.re + self.im*self.im)


	def __int__(self):
		if self.im:
			raise ValueError, "can't convert Complex with nonzero im to int"
		return int(self.re)

	def __long__(self):
		if self.im:
			raise ValueError, "can't convert Complex with nonzero im to long"
		return long(self.re)

	def __float__(self):
		if self.im:
			raise ValueError, "can't convert Complex with nonzero im to float"
		return float(self.re)

	def __nonzero__(self):
		return not (self.re == self.im == 0)

	abs = radius = __abs__

	def angle(self, fullcircle = twopi):
		return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)

	phi = angle

	def __add__(self, other):
		return Complex(self.re + other.re, self.im + other.im)

	__radd__ = __add__

	def __sub__(self, other):
		return Complex(self.re - other.re, self.im - other.im)

	def __rsub__(self, other):
		return Complex(other.re - self.re, other.im - self.im)

	def __mul__(self, other):
		return Complex(self.re*other.re - self.im*other.im,
		               self.re*other.im + self.im*other.re)

	__rmul__ = __mul__

	def __div__(self, other):
		# Deviating from the general principle of not forcing re or im
		# to be floats, we cast to float here, otherwise division
		# of Complex numbers with integer re and im parts would use
		# the (truncating) integer division
		d = float(other.re*other.re + other.im*other.im)
		if not d: raise ZeroDivisionError, 'Complex division'
		return Complex((self.re*other.re + self.im*other.im) / d,
		               (self.im*other.re - self.re*other.im) / d)

	def __rdiv__(self, other):
		return other / self

	def __pow__(self, n, z=None):
		if z is not None:
			raise TypeError, 'Complex does not support ternary pow()'
		if IsComplex(n):
			if n.im: raise TypeError, 'Complex to the Complex power'
			n = n.re
		r = pow(self.abs(), n)
		phi = n*self.angle()
		return Complex(math.cos(phi)*r, math.sin(phi)*r)
	
	def __rpow__(self, base):
		return pow(base, self)


# Everything below this point is part of the test suite

def checkop(expr, a, b, value, fuzz = 1e-6):
	import sys
	print '       ', a, 'and', b,
	try:
		result = eval(expr)
	except:
		result = sys.exc_type
	print '->', result
	if (type(result) == type('') or type(value) == type('')):
		ok = result == value
	else:
		ok = abs(result - value) <= fuzz
	if not ok:
		print '!!\t!!\t!! should be', value, 'diff', abs(result - value)


def test():
	testsuite = {
		'a+b': [
			(1, 10, 11),
			(1, Complex(0,10), Complex(1,10)),
			(Complex(0,10), 1, Complex(1,10)),
			(Complex(0,10), Complex(1), Complex(1,10)),
			(Complex(1), Complex(0,10), Complex(1,10)),
		],
		'a-b': [
			(1, 10, -9),
			(1, Complex(0,10), Complex(1,-10)),
			(Complex(0,10), 1, Complex(-1,10)),
			(Complex(0,10), Complex(1), Complex(-1,10)),
			(Complex(1), Complex(0,10), Complex(1,-10)),
		],
		'a*b': [
			(1, 10, 10),
			(1, Complex(0,10), Complex(0, 10)),
			(Complex(0,10), 1, Complex(0,10)),
			(Complex(0,10), Complex(1), Complex(0,10)),
			(Complex(1), Complex(0,10), Complex(0,10)),
		],
		'a/b': [
			(1., 10, 0.1),
			(1, Complex(0,10), Complex(0, -0.1)),
			(Complex(0, 10), 1, Complex(0, 10)),
			(Complex(0, 10), Complex(1), Complex(0, 10)),
			(Complex(1), Complex(0,10), Complex(0, -0.1)),
		],
		'pow(a,b)': [
			(1, 10, 1),
			(1, Complex(0,10), 'TypeError'),
			(Complex(0,10), 1, Complex(0,10)),
			(Complex(0,10), Complex(1), Complex(0,10)),
			(Complex(1), Complex(0,10), 'TypeError'),
			(2, Complex(4,0), 16),
		],
		'cmp(a,b)': [
			(1, 10, -1),
			(1, Complex(0,10), 1),
			(Complex(0,10), 1, -1),
			(Complex(0,10), Complex(1), -1),
			(Complex(1), Complex(0,10), 1),
		],
	}
	exprs = testsuite.keys()
	exprs.sort()
	for expr in exprs:
		print expr + ':'
		t = (expr,)
		for item in testsuite[expr]:
			apply(checkop, t+item)
	

if __name__ == '__main__':
	test()