1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
"""Word completion for GNU readline 2.0.
This requires the latest extension to the readline module. The completer
completes keywords, built-ins and globals in a selectable namespace (which
defaults to __main__); when completing NAME.NAME..., it evaluates (!) the
expression up to the last dot and completes its attributes.
It's very cool to do "import sys" type "sys.", hit the
completion key (twice), and see the list of names defined by the
sys module!
Tip: to use the tab key as the completion key, call
readline.parse_and_bind("tab: complete")
Notes:
- Exceptions raised by the completer function are *ignored* (and
generally cause the completion to fail). This is a feature -- since
readline sets the tty device in raw (or cbreak) mode, printing a
traceback wouldn't work well without some complicated hoopla to save,
reset and restore the tty state.
- The evaluation of the NAME.NAME... form may cause arbitrary
application defined code to be executed if an object with a
__getattr__ hook is found. Since it is the responsibility of the
application (or the user) to enable this feature, I consider this an
acceptable risk. More complicated expressions (e.g. function calls or
indexing operations) are *not* evaluated.
- GNU readline is also used by the built-in functions input() and
raw_input(), and thus these also benefit/suffer from the completer
features. Clearly an interactive application can benefit by
specifying its own completer function and using raw_input() for all
its input.
- When the original stdin is not a tty device, GNU readline is never
used, and this module (and the readline module) are silently inactive.
"""
import __builtin__
import __main__
__all__ = ["Completer"]
class Completer:
def __init__(self, namespace = None):
"""Create a new completer for the command line.
Completer([namespace]) -> completer instance.
If unspecified, the default namespace where completions are performed
is __main__ (technically, __main__.__dict__). Namespaces should be
given as dictionaries.
Completer instances should be used as the completion mechanism of
readline via the set_completer() call:
readline.set_completer(Completer(my_namespace).complete)
"""
if namespace and not isinstance(namespace, dict):
raise TypeError,'namespace must be a dictionary'
# Don't bind to namespace quite yet, but flag whether the user wants a
# specific namespace or to use __main__.__dict__. This will allow us
# to bind to __main__.__dict__ at completion time, not now.
if namespace is None:
self.use_main_ns = 1
else:
self.use_main_ns = 0
self.namespace = namespace
def complete(self, text, state):
"""Return the next possible completion for 'text'.
This is called successively with state == 0, 1, 2, ... until it
returns None. The completion should begin with 'text'.
"""
if self.use_main_ns:
self.namespace = __main__.__dict__
if state == 0:
if "." in text:
self.matches = self.attr_matches(text)
else:
self.matches = self.global_matches(text)
try:
return self.matches[state]
except IndexError:
return None
def _callable_postfix(self, val, word):
if hasattr(val, '__call__'):
word = word + "("
return word
def global_matches(self, text):
"""Compute matches when text is a simple name.
Return a list of all keywords, built-in functions and names currently
defined in self.namespace that match.
"""
import keyword
matches = []
n = len(text)
for word in keyword.kwlist:
if word[:n] == text:
matches.append(word)
for nspace in [__builtin__.__dict__, self.namespace]:
for word, val in nspace.items():
if word[:n] == text and word != "__builtins__":
matches.append(self._callable_postfix(val, word))
return matches
def attr_matches(self, text):
"""Compute matches when text contains a dot.
Assuming the text is of the form NAME.NAME....[NAME], and is
evaluatable in self.namespace, it will be evaluated and its attributes
(as revealed by dir()) are used as possible completions. (For class
instances, class members are also considered.)
WARNING: this can still invoke arbitrary C code, if an object
with a __getattr__ hook is evaluated.
"""
import re
m = re.match(r"(\w+(\.\w+)*)\.(\w*)", text)
if not m:
return []
expr, attr = m.group(1, 3)
try:
thisobject = eval(expr, self.namespace)
except Exception:
return []
# get the content of the object, except __builtins__
words = dir(thisobject)
if "__builtins__" in words:
words.remove("__builtins__")
if hasattr(thisobject, '__class__'):
words.append('__class__')
words.extend(get_class_members(thisobject.__class__))
matches = []
n = len(attr)
for word in words:
if word[:n] == attr and hasattr(thisobject, word):
val = getattr(thisobject, word)
word = self._callable_postfix(val, "%s.%s" % (expr, word))
matches.append(word)
return matches
def get_class_members(klass):
ret = dir(klass)
if hasattr(klass,'__bases__'):
for base in klass.__bases__:
ret = ret + get_class_members(base)
return ret
try:
import readline
except ImportError:
pass
else:
readline.set_completer(Completer().complete)
|