summaryrefslogtreecommitdiffstats
path: root/Lib/test/lock_tests.py
blob: d69bcc9496843f372ca6078c0e6601cc59677643 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
"""
Various tests for synchronization primitives.
"""

import os
import sys
import time
from _thread import start_new_thread, TIMEOUT_MAX
import threading
import unittest
import weakref

from test import support
from test.support import threading_helper


requires_fork = unittest.skipUnless(hasattr(os, 'fork'),
                                    "platform doesn't support fork "
                                     "(no _at_fork_reinit method)")


def _wait():
    # A crude wait/yield function not relying on synchronization primitives.
    time.sleep(0.01)

class Bunch(object):
    """
    A bunch of threads.
    """
    def __init__(self, f, n, wait_before_exit=False):
        """
        Construct a bunch of `n` threads running the same function `f`.
        If `wait_before_exit` is True, the threads won't terminate until
        do_finish() is called.
        """
        self.f = f
        self.n = n
        self.started = []
        self.finished = []
        self._can_exit = not wait_before_exit
        self.wait_thread = threading_helper.wait_threads_exit()
        self.wait_thread.__enter__()

        def task():
            tid = threading.get_ident()
            self.started.append(tid)
            try:
                f()
            finally:
                self.finished.append(tid)
                while not self._can_exit:
                    _wait()

        try:
            for i in range(n):
                start_new_thread(task, ())
        except:
            self._can_exit = True
            raise

    def wait_for_started(self):
        while len(self.started) < self.n:
            _wait()

    def wait_for_finished(self):
        while len(self.finished) < self.n:
            _wait()
        # Wait for threads exit
        self.wait_thread.__exit__(None, None, None)

    def do_finish(self):
        self._can_exit = True


class BaseTestCase(unittest.TestCase):
    def setUp(self):
        self._threads = threading_helper.threading_setup()

    def tearDown(self):
        threading_helper.threading_cleanup(*self._threads)
        support.reap_children()

    def assertTimeout(self, actual, expected):
        # The waiting and/or time.monotonic() can be imprecise, which
        # is why comparing to the expected value would sometimes fail
        # (especially under Windows).
        self.assertGreaterEqual(actual, expected * 0.6)
        # Test nothing insane happened
        self.assertLess(actual, expected * 10.0)


class BaseLockTests(BaseTestCase):
    """
    Tests for both recursive and non-recursive locks.
    """

    def test_constructor(self):
        lock = self.locktype()
        del lock

    def test_repr(self):
        lock = self.locktype()
        self.assertRegex(repr(lock), "<unlocked .* object (.*)?at .*>")
        del lock

    def test_locked_repr(self):
        lock = self.locktype()
        lock.acquire()
        self.assertRegex(repr(lock), "<locked .* object (.*)?at .*>")
        del lock

    def test_acquire_destroy(self):
        lock = self.locktype()
        lock.acquire()
        del lock

    def test_acquire_release(self):
        lock = self.locktype()
        lock.acquire()
        lock.release()
        del lock

    def test_try_acquire(self):
        lock = self.locktype()
        self.assertTrue(lock.acquire(False))
        lock.release()

    def test_try_acquire_contended(self):
        lock = self.locktype()
        lock.acquire()
        result = []
        def f():
            result.append(lock.acquire(False))
        Bunch(f, 1).wait_for_finished()
        self.assertFalse(result[0])
        lock.release()

    def test_acquire_contended(self):
        lock = self.locktype()
        lock.acquire()
        N = 5
        def f():
            lock.acquire()
            lock.release()

        b = Bunch(f, N)
        b.wait_for_started()
        _wait()
        self.assertEqual(len(b.finished), 0)
        lock.release()
        b.wait_for_finished()
        self.assertEqual(len(b.finished), N)

    def test_with(self):
        lock = self.locktype()
        def f():
            lock.acquire()
            lock.release()
        def _with(err=None):
            with lock:
                if err is not None:
                    raise err
        _with()
        # Check the lock is unacquired
        Bunch(f, 1).wait_for_finished()
        self.assertRaises(TypeError, _with, TypeError)
        # Check the lock is unacquired
        Bunch(f, 1).wait_for_finished()

    def test_thread_leak(self):
        # The lock shouldn't leak a Thread instance when used from a foreign
        # (non-threading) thread.
        lock = self.locktype()
        def f():
            lock.acquire()
            lock.release()
        n = len(threading.enumerate())
        # We run many threads in the hope that existing threads ids won't
        # be recycled.
        Bunch(f, 15).wait_for_finished()
        if len(threading.enumerate()) != n:
            # There is a small window during which a Thread instance's
            # target function has finished running, but the Thread is still
            # alive and registered.  Avoid spurious failures by waiting a
            # bit more (seen on a buildbot).
            time.sleep(0.4)
            self.assertEqual(n, len(threading.enumerate()))

    def test_timeout(self):
        lock = self.locktype()
        # Can't set timeout if not blocking
        self.assertRaises(ValueError, lock.acquire, False, 1)
        # Invalid timeout values
        self.assertRaises(ValueError, lock.acquire, timeout=-100)
        self.assertRaises(OverflowError, lock.acquire, timeout=1e100)
        self.assertRaises(OverflowError, lock.acquire, timeout=TIMEOUT_MAX + 1)
        # TIMEOUT_MAX is ok
        lock.acquire(timeout=TIMEOUT_MAX)
        lock.release()
        t1 = time.monotonic()
        self.assertTrue(lock.acquire(timeout=5))
        t2 = time.monotonic()
        # Just a sanity test that it didn't actually wait for the timeout.
        self.assertLess(t2 - t1, 5)
        results = []
        def f():
            t1 = time.monotonic()
            results.append(lock.acquire(timeout=0.5))
            t2 = time.monotonic()
            results.append(t2 - t1)
        Bunch(f, 1).wait_for_finished()
        self.assertFalse(results[0])
        self.assertTimeout(results[1], 0.5)

    def test_weakref_exists(self):
        lock = self.locktype()
        ref = weakref.ref(lock)
        self.assertIsNotNone(ref())

    def test_weakref_deleted(self):
        lock = self.locktype()
        ref = weakref.ref(lock)
        del lock
        self.assertIsNone(ref())


class LockTests(BaseLockTests):
    """
    Tests for non-recursive, weak locks
    (which can be acquired and released from different threads).
    """
    def test_reacquire(self):
        # Lock needs to be released before re-acquiring.
        lock = self.locktype()
        phase = []

        def f():
            lock.acquire()
            phase.append(None)
            lock.acquire()
            phase.append(None)

        with threading_helper.wait_threads_exit():
            start_new_thread(f, ())
            while len(phase) == 0:
                _wait()
            _wait()
            self.assertEqual(len(phase), 1)
            lock.release()
            while len(phase) == 1:
                _wait()
            self.assertEqual(len(phase), 2)

    def test_different_thread(self):
        # Lock can be released from a different thread.
        lock = self.locktype()
        lock.acquire()
        def f():
            lock.release()
        b = Bunch(f, 1)
        b.wait_for_finished()
        lock.acquire()
        lock.release()

    def test_state_after_timeout(self):
        # Issue #11618: check that lock is in a proper state after a
        # (non-zero) timeout.
        lock = self.locktype()
        lock.acquire()
        self.assertFalse(lock.acquire(timeout=0.01))
        lock.release()
        self.assertFalse(lock.locked())
        self.assertTrue(lock.acquire(blocking=False))

    @requires_fork
    def test_at_fork_reinit(self):
        def use_lock(lock):
            # make sure that the lock still works normally
            # after _at_fork_reinit()
            lock.acquire()
            lock.release()

        # unlocked
        lock = self.locktype()
        lock._at_fork_reinit()
        use_lock(lock)

        # locked: _at_fork_reinit() resets the lock to the unlocked state
        lock2 = self.locktype()
        lock2.acquire()
        lock2._at_fork_reinit()
        use_lock(lock2)


class RLockTests(BaseLockTests):
    """
    Tests for recursive locks.
    """
    def test_reacquire(self):
        lock = self.locktype()
        lock.acquire()
        lock.acquire()
        lock.release()
        lock.acquire()
        lock.release()
        lock.release()

    def test_release_unacquired(self):
        # Cannot release an unacquired lock
        lock = self.locktype()
        self.assertRaises(RuntimeError, lock.release)
        lock.acquire()
        lock.acquire()
        lock.release()
        lock.acquire()
        lock.release()
        lock.release()
        self.assertRaises(RuntimeError, lock.release)

    def test_release_save_unacquired(self):
        # Cannot _release_save an unacquired lock
        lock = self.locktype()
        self.assertRaises(RuntimeError, lock._release_save)
        lock.acquire()
        lock.acquire()
        lock.release()
        lock.acquire()
        lock.release()
        lock.release()
        self.assertRaises(RuntimeError, lock._release_save)

    def test_different_thread(self):
        # Cannot release from a different thread
        lock = self.locktype()
        def f():
            lock.acquire()
        b = Bunch(f, 1, True)
        try:
            self.assertRaises(RuntimeError, lock.release)
        finally:
            b.do_finish()
        b.wait_for_finished()

    def test__is_owned(self):
        lock = self.locktype()
        self.assertFalse(lock._is_owned())
        lock.acquire()
        self.assertTrue(lock._is_owned())
        lock.acquire()
        self.assertTrue(lock._is_owned())
        result = []
        def f():
            result.append(lock._is_owned())
        Bunch(f, 1).wait_for_finished()
        self.assertFalse(result[0])
        lock.release()
        self.assertTrue(lock._is_owned())
        lock.release()
        self.assertFalse(lock._is_owned())


class EventTests(BaseTestCase):
    """
    Tests for Event objects.
    """

    def test_is_set(self):
        evt = self.eventtype()
        self.assertFalse(evt.is_set())
        evt.set()
        self.assertTrue(evt.is_set())
        evt.set()
        self.assertTrue(evt.is_set())
        evt.clear()
        self.assertFalse(evt.is_set())
        evt.clear()
        self.assertFalse(evt.is_set())

    def _check_notify(self, evt):
        # All threads get notified
        N = 5
        results1 = []
        results2 = []
        def f():
            results1.append(evt.wait())
            results2.append(evt.wait())
        b = Bunch(f, N)
        b.wait_for_started()
        _wait()
        self.assertEqual(len(results1), 0)
        evt.set()
        b.wait_for_finished()
        self.assertEqual(results1, [True] * N)
        self.assertEqual(results2, [True] * N)

    def test_notify(self):
        evt = self.eventtype()
        self._check_notify(evt)
        # Another time, after an explicit clear()
        evt.set()
        evt.clear()
        self._check_notify(evt)

    def test_timeout(self):
        evt = self.eventtype()
        results1 = []
        results2 = []
        N = 5
        def f():
            results1.append(evt.wait(0.0))
            t1 = time.monotonic()
            r = evt.wait(0.5)
            t2 = time.monotonic()
            results2.append((r, t2 - t1))
        Bunch(f, N).wait_for_finished()
        self.assertEqual(results1, [False] * N)
        for r, dt in results2:
            self.assertFalse(r)
            self.assertTimeout(dt, 0.5)
        # The event is set
        results1 = []
        results2 = []
        evt.set()
        Bunch(f, N).wait_for_finished()
        self.assertEqual(results1, [True] * N)
        for r, dt in results2:
            self.assertTrue(r)

    def test_set_and_clear(self):
        # Issue #13502: check that wait() returns true even when the event is
        # cleared before the waiting thread is woken up.
        evt = self.eventtype()
        results = []
        timeout = 0.250
        N = 5
        def f():
            results.append(evt.wait(timeout * 4))
        b = Bunch(f, N)
        b.wait_for_started()
        time.sleep(timeout)
        evt.set()
        evt.clear()
        b.wait_for_finished()
        self.assertEqual(results, [True] * N)

    @requires_fork
    def test_at_fork_reinit(self):
        # ensure that condition is still using a Lock after reset
        evt = self.eventtype()
        with evt._cond:
            self.assertFalse(evt._cond.acquire(False))
        evt._at_fork_reinit()
        with evt._cond:
            self.assertFalse(evt._cond.acquire(False))


class ConditionTests(BaseTestCase):
    """
    Tests for condition variables.
    """

    def test_acquire(self):
        cond = self.condtype()
        # Be default we have an RLock: the condition can be acquired multiple
        # times.
        cond.acquire()
        cond.acquire()
        cond.release()
        cond.release()
        lock = threading.Lock()
        cond = self.condtype(lock)
        cond.acquire()
        self.assertFalse(lock.acquire(False))
        cond.release()
        self.assertTrue(lock.acquire(False))
        self.assertFalse(cond.acquire(False))
        lock.release()
        with cond:
            self.assertFalse(lock.acquire(False))

    def test_unacquired_wait(self):
        cond = self.condtype()
        self.assertRaises(RuntimeError, cond.wait)

    def test_unacquired_notify(self):
        cond = self.condtype()
        self.assertRaises(RuntimeError, cond.notify)

    def _check_notify(self, cond):
        # Note that this test is sensitive to timing.  If the worker threads
        # don't execute in a timely fashion, the main thread may think they
        # are further along then they are.  The main thread therefore issues
        # _wait() statements to try to make sure that it doesn't race ahead
        # of the workers.
        # Secondly, this test assumes that condition variables are not subject
        # to spurious wakeups.  The absence of spurious wakeups is an implementation
        # detail of Condition Variables in current CPython, but in general, not
        # a guaranteed property of condition variables as a programming
        # construct.  In particular, it is possible that this can no longer
        # be conveniently guaranteed should their implementation ever change.
        N = 5
        ready = []
        results1 = []
        results2 = []
        phase_num = 0
        def f():
            cond.acquire()
            ready.append(phase_num)
            result = cond.wait()
            cond.release()
            results1.append((result, phase_num))
            cond.acquire()
            ready.append(phase_num)
            result = cond.wait()
            cond.release()
            results2.append((result, phase_num))
        b = Bunch(f, N)
        b.wait_for_started()
        # first wait, to ensure all workers settle into cond.wait() before
        # we continue. See issues #8799 and #30727.
        while len(ready) < 5:
            _wait()
        ready.clear()
        self.assertEqual(results1, [])
        # Notify 3 threads at first
        cond.acquire()
        cond.notify(3)
        _wait()
        phase_num = 1
        cond.release()
        while len(results1) < 3:
            _wait()
        self.assertEqual(results1, [(True, 1)] * 3)
        self.assertEqual(results2, [])
        # make sure all awaken workers settle into cond.wait()
        while len(ready) < 3:
            _wait()
        # Notify 5 threads: they might be in their first or second wait
        cond.acquire()
        cond.notify(5)
        _wait()
        phase_num = 2
        cond.release()
        while len(results1) + len(results2) < 8:
            _wait()
        self.assertEqual(results1, [(True, 1)] * 3 + [(True, 2)] * 2)
        self.assertEqual(results2, [(True, 2)] * 3)
        # make sure all workers settle into cond.wait()
        while len(ready) < 5:
            _wait()
        # Notify all threads: they are all in their second wait
        cond.acquire()
        cond.notify_all()
        _wait()
        phase_num = 3
        cond.release()
        while len(results2) < 5:
            _wait()
        self.assertEqual(results1, [(True, 1)] * 3 + [(True,2)] * 2)
        self.assertEqual(results2, [(True, 2)] * 3 + [(True, 3)] * 2)
        b.wait_for_finished()

    def test_notify(self):
        cond = self.condtype()
        self._check_notify(cond)
        # A second time, to check internal state is still ok.
        self._check_notify(cond)

    def test_timeout(self):
        cond = self.condtype()
        results = []
        N = 5
        def f():
            cond.acquire()
            t1 = time.monotonic()
            result = cond.wait(0.5)
            t2 = time.monotonic()
            cond.release()
            results.append((t2 - t1, result))
        Bunch(f, N).wait_for_finished()
        self.assertEqual(len(results), N)
        for dt, result in results:
            self.assertTimeout(dt, 0.5)
            # Note that conceptually (that"s the condition variable protocol)
            # a wait() may succeed even if no one notifies us and before any
            # timeout occurs.  Spurious wakeups can occur.
            # This makes it hard to verify the result value.
            # In practice, this implementation has no spurious wakeups.
            self.assertFalse(result)

    def test_waitfor(self):
        cond = self.condtype()
        state = 0
        def f():
            with cond:
                result = cond.wait_for(lambda : state==4)
                self.assertTrue(result)
                self.assertEqual(state, 4)
        b = Bunch(f, 1)
        b.wait_for_started()
        for i in range(4):
            time.sleep(0.01)
            with cond:
                state += 1
                cond.notify()
        b.wait_for_finished()

    def test_waitfor_timeout(self):
        cond = self.condtype()
        state = 0
        success = []
        def f():
            with cond:
                dt = time.monotonic()
                result = cond.wait_for(lambda : state==4, timeout=0.1)
                dt = time.monotonic() - dt
                self.assertFalse(result)
                self.assertTimeout(dt, 0.1)
                success.append(None)
        b = Bunch(f, 1)
        b.wait_for_started()
        # Only increment 3 times, so state == 4 is never reached.
        for i in range(3):
            time.sleep(0.01)
            with cond:
                state += 1
                cond.notify()
        b.wait_for_finished()
        self.assertEqual(len(success), 1)


class BaseSemaphoreTests(BaseTestCase):
    """
    Common tests for {bounded, unbounded} semaphore objects.
    """

    def test_constructor(self):
        self.assertRaises(ValueError, self.semtype, value = -1)
        self.assertRaises(ValueError, self.semtype, value = -sys.maxsize)

    def test_acquire(self):
        sem = self.semtype(1)
        sem.acquire()
        sem.release()
        sem = self.semtype(2)
        sem.acquire()
        sem.acquire()
        sem.release()
        sem.release()

    def test_acquire_destroy(self):
        sem = self.semtype()
        sem.acquire()
        del sem

    def test_acquire_contended(self):
        sem = self.semtype(7)
        sem.acquire()
        N = 10
        sem_results = []
        results1 = []
        results2 = []
        phase_num = 0
        def f():
            sem_results.append(sem.acquire())
            results1.append(phase_num)
            sem_results.append(sem.acquire())
            results2.append(phase_num)
        b = Bunch(f, 10)
        b.wait_for_started()
        while len(results1) + len(results2) < 6:
            _wait()
        self.assertEqual(results1 + results2, [0] * 6)
        phase_num = 1
        for i in range(7):
            sem.release()
        while len(results1) + len(results2) < 13:
            _wait()
        self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7)
        phase_num = 2
        for i in range(6):
            sem.release()
        while len(results1) + len(results2) < 19:
            _wait()
        self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7 + [2] * 6)
        # The semaphore is still locked
        self.assertFalse(sem.acquire(False))
        # Final release, to let the last thread finish
        sem.release()
        b.wait_for_finished()
        self.assertEqual(sem_results, [True] * (6 + 7 + 6 + 1))

    def test_multirelease(self):
        sem = self.semtype(7)
        sem.acquire()
        results1 = []
        results2 = []
        phase_num = 0
        def f():
            sem.acquire()
            results1.append(phase_num)
            sem.acquire()
            results2.append(phase_num)
        b = Bunch(f, 10)
        b.wait_for_started()
        while len(results1) + len(results2) < 6:
            _wait()
        self.assertEqual(results1 + results2, [0] * 6)
        phase_num = 1
        sem.release(7)
        while len(results1) + len(results2) < 13:
            _wait()
        self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7)
        phase_num = 2
        sem.release(6)
        while len(results1) + len(results2) < 19:
            _wait()
        self.assertEqual(sorted(results1 + results2), [0] * 6 + [1] * 7 + [2] * 6)
        # The semaphore is still locked
        self.assertFalse(sem.acquire(False))
        # Final release, to let the last thread finish
        sem.release()
        b.wait_for_finished()

    def test_try_acquire(self):
        sem = self.semtype(2)
        self.assertTrue(sem.acquire(False))
        self.assertTrue(sem.acquire(False))
        self.assertFalse(sem.acquire(False))
        sem.release()
        self.assertTrue(sem.acquire(False))

    def test_try_acquire_contended(self):
        sem = self.semtype(4)
        sem.acquire()
        results = []
        def f():
            results.append(sem.acquire(False))
            results.append(sem.acquire(False))
        Bunch(f, 5).wait_for_finished()
        # There can be a thread switch between acquiring the semaphore and
        # appending the result, therefore results will not necessarily be
        # ordered.
        self.assertEqual(sorted(results), [False] * 7 + [True] *  3 )

    def test_acquire_timeout(self):
        sem = self.semtype(2)
        self.assertRaises(ValueError, sem.acquire, False, timeout=1.0)
        self.assertTrue(sem.acquire(timeout=0.005))
        self.assertTrue(sem.acquire(timeout=0.005))
        self.assertFalse(sem.acquire(timeout=0.005))
        sem.release()
        self.assertTrue(sem.acquire(timeout=0.005))
        t = time.monotonic()
        self.assertFalse(sem.acquire(timeout=0.5))
        dt = time.monotonic() - t
        self.assertTimeout(dt, 0.5)

    def test_default_value(self):
        # The default initial value is 1.
        sem = self.semtype()
        sem.acquire()
        def f():
            sem.acquire()
            sem.release()
        b = Bunch(f, 1)
        b.wait_for_started()
        _wait()
        self.assertFalse(b.finished)
        sem.release()
        b.wait_for_finished()

    def test_with(self):
        sem = self.semtype(2)
        def _with(err=None):
            with sem:
                self.assertTrue(sem.acquire(False))
                sem.release()
                with sem:
                    self.assertFalse(sem.acquire(False))
                    if err:
                        raise err
        _with()
        self.assertTrue(sem.acquire(False))
        sem.release()
        self.assertRaises(TypeError, _with, TypeError)
        self.assertTrue(sem.acquire(False))
        sem.release()

class SemaphoreTests(BaseSemaphoreTests):
    """
    Tests for unbounded semaphores.
    """

    def test_release_unacquired(self):
        # Unbounded releases are allowed and increment the semaphore's value
        sem = self.semtype(1)
        sem.release()
        sem.acquire()
        sem.acquire()
        sem.release()


class BoundedSemaphoreTests(BaseSemaphoreTests):
    """
    Tests for bounded semaphores.
    """

    def test_release_unacquired(self):
        # Cannot go past the initial value
        sem = self.semtype()
        self.assertRaises(ValueError, sem.release)
        sem.acquire()
        sem.release()
        self.assertRaises(ValueError, sem.release)


class BarrierTests(BaseTestCase):
    """
    Tests for Barrier objects.
    """
    N = 5
    defaultTimeout = 2.0

    def setUp(self):
        self.barrier = self.barriertype(self.N, timeout=self.defaultTimeout)
    def tearDown(self):
        self.barrier.abort()

    def run_threads(self, f):
        b = Bunch(f, self.N-1)
        f()
        b.wait_for_finished()

    def multipass(self, results, n):
        m = self.barrier.parties
        self.assertEqual(m, self.N)
        for i in range(n):
            results[0].append(True)
            self.assertEqual(len(results[1]), i * m)
            self.barrier.wait()
            results[1].append(True)
            self.assertEqual(len(results[0]), (i + 1) * m)
            self.barrier.wait()
        self.assertEqual(self.barrier.n_waiting, 0)
        self.assertFalse(self.barrier.broken)

    def test_barrier(self, passes=1):
        """
        Test that a barrier is passed in lockstep
        """
        results = [[],[]]
        def f():
            self.multipass(results, passes)
        self.run_threads(f)

    def test_barrier_10(self):
        """
        Test that a barrier works for 10 consecutive runs
        """
        return self.test_barrier(10)

    def test_wait_return(self):
        """
        test the return value from barrier.wait
        """
        results = []
        def f():
            r = self.barrier.wait()
            results.append(r)

        self.run_threads(f)
        self.assertEqual(sum(results), sum(range(self.N)))

    def test_action(self):
        """
        Test the 'action' callback
        """
        results = []
        def action():
            results.append(True)
        barrier = self.barriertype(self.N, action)
        def f():
            barrier.wait()
            self.assertEqual(len(results), 1)

        self.run_threads(f)

    def test_abort(self):
        """
        Test that an abort will put the barrier in a broken state
        """
        results1 = []
        results2 = []
        def f():
            try:
                i = self.barrier.wait()
                if i == self.N//2:
                    raise RuntimeError
                self.barrier.wait()
                results1.append(True)
            except threading.BrokenBarrierError:
                results2.append(True)
            except RuntimeError:
                self.barrier.abort()
                pass

        self.run_threads(f)
        self.assertEqual(len(results1), 0)
        self.assertEqual(len(results2), self.N-1)
        self.assertTrue(self.barrier.broken)

    def test_reset(self):
        """
        Test that a 'reset' on a barrier frees the waiting threads
        """
        results1 = []
        results2 = []
        results3 = []
        def f():
            i = self.barrier.wait()
            if i == self.N//2:
                # Wait until the other threads are all in the barrier.
                while self.barrier.n_waiting < self.N-1:
                    time.sleep(0.001)
                self.barrier.reset()
            else:
                try:
                    self.barrier.wait()
                    results1.append(True)
                except threading.BrokenBarrierError:
                    results2.append(True)
            # Now, pass the barrier again
            self.barrier.wait()
            results3.append(True)

        self.run_threads(f)
        self.assertEqual(len(results1), 0)
        self.assertEqual(len(results2), self.N-1)
        self.assertEqual(len(results3), self.N)


    def test_abort_and_reset(self):
        """
        Test that a barrier can be reset after being broken.
        """
        results1 = []
        results2 = []
        results3 = []
        barrier2 = self.barriertype(self.N)
        def f():
            try:
                i = self.barrier.wait()
                if i == self.N//2:
                    raise RuntimeError
                self.barrier.wait()
                results1.append(True)
            except threading.BrokenBarrierError:
                results2.append(True)
            except RuntimeError:
                self.barrier.abort()
                pass
            # Synchronize and reset the barrier.  Must synchronize first so
            # that everyone has left it when we reset, and after so that no
            # one enters it before the reset.
            if barrier2.wait() == self.N//2:
                self.barrier.reset()
            barrier2.wait()
            self.barrier.wait()
            results3.append(True)

        self.run_threads(f)
        self.assertEqual(len(results1), 0)
        self.assertEqual(len(results2), self.N-1)
        self.assertEqual(len(results3), self.N)

    def test_timeout(self):
        """
        Test wait(timeout)
        """
        def f():
            i = self.barrier.wait()
            if i == self.N // 2:
                # One thread is late!
                time.sleep(1.0)
            # Default timeout is 2.0, so this is shorter.
            self.assertRaises(threading.BrokenBarrierError,
                              self.barrier.wait, 0.5)
        self.run_threads(f)

    def test_default_timeout(self):
        """
        Test the barrier's default timeout
        """
        # create a barrier with a low default timeout
        barrier = self.barriertype(self.N, timeout=0.3)
        def f():
            i = barrier.wait()
            if i == self.N // 2:
                # One thread is later than the default timeout of 0.3s.
                time.sleep(1.0)
            self.assertRaises(threading.BrokenBarrierError, barrier.wait)
        self.run_threads(f)

    def test_single_thread(self):
        b = self.barriertype(1)
        b.wait()
        b.wait()