1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
-- Testcases for functions in math.
--
-- Each line takes the form:
--
-- <testid> <function> <input_value> -> <output_value> <flags>
--
-- where:
--
-- <testid> is a short name identifying the test,
--
-- <function> is the function to be tested (exp, cos, asinh, ...),
--
-- <input_value> is a string representing a floating-point value
--
-- <output_value> is the expected (ideal) output value, again
-- represented as a string.
--
-- <flags> is a list of the floating-point flags required by C99
--
-- The possible flags are:
--
-- divide-by-zero : raised when a finite input gives a
-- mathematically infinite result.
--
-- overflow : raised when a finite input gives a finite result that
-- is too large to fit in the usual range of an IEEE 754 double.
--
-- invalid : raised for invalid inputs (e.g., sqrt(-1))
--
-- ignore-sign : indicates that the sign of the result is
-- unspecified; e.g., if the result is given as inf,
-- then both -inf and inf should be accepted as correct.
--
-- Flags may appear in any order.
--
-- Lines beginning with '--' (like this one) start a comment, and are
-- ignored. Blank lines, or lines containing only whitespace, are also
-- ignored.
-- Many of the values below were computed with the help of
-- version 2.4 of the MPFR library for multiple-precision
-- floating-point computations with correct rounding. All output
-- values in this file are (modulo yet-to-be-discovered bugs)
-- correctly rounded, provided that each input and output decimal
-- floating-point value below is interpreted as a representation of
-- the corresponding nearest IEEE 754 double-precision value. See the
-- MPFR homepage at http://www.mpfr.org for more information about the
-- MPFR project.
-------------------------
-- erf: error function --
-------------------------
erf0000 erf 0.0 -> 0.0
erf0001 erf -0.0 -> -0.0
erf0002 erf inf -> 1.0
erf0003 erf -inf -> -1.0
erf0004 erf nan -> nan
-- tiny values
erf0010 erf 1e-308 -> 1.1283791670955125e-308
erf0011 erf 5e-324 -> 4.9406564584124654e-324
erf0012 erf 1e-10 -> 1.1283791670955126e-10
-- small integers
erf0020 erf 1 -> 0.84270079294971489
erf0021 erf 2 -> 0.99532226501895271
erf0022 erf 3 -> 0.99997790950300136
erf0023 erf 4 -> 0.99999998458274209
erf0024 erf 5 -> 0.99999999999846256
erf0025 erf 6 -> 1.0
erf0030 erf -1 -> -0.84270079294971489
erf0031 erf -2 -> -0.99532226501895271
erf0032 erf -3 -> -0.99997790950300136
erf0033 erf -4 -> -0.99999998458274209
erf0034 erf -5 -> -0.99999999999846256
erf0035 erf -6 -> -1.0
-- huge values should all go to +/-1, depending on sign
erf0040 erf -40 -> -1.0
erf0041 erf 1e16 -> 1.0
erf0042 erf -1e150 -> -1.0
erf0043 erf 1.7e308 -> 1.0
-- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
-- incorrectly signalled overflow on some platforms.
erf0100 erf 26.2 -> 1.0
erf0101 erf 26.4 -> 1.0
erf0102 erf 26.6 -> 1.0
erf0103 erf 26.8 -> 1.0
erf0104 erf 27.0 -> 1.0
erf0105 erf 27.2 -> 1.0
erf0106 erf 27.4 -> 1.0
erf0107 erf 27.6 -> 1.0
erf0110 erf -26.2 -> -1.0
erf0111 erf -26.4 -> -1.0
erf0112 erf -26.6 -> -1.0
erf0113 erf -26.8 -> -1.0
erf0114 erf -27.0 -> -1.0
erf0115 erf -27.2 -> -1.0
erf0116 erf -27.4 -> -1.0
erf0117 erf -27.6 -> -1.0
----------------------------------------
-- erfc: complementary error function --
----------------------------------------
erfc0000 erfc 0.0 -> 1.0
erfc0001 erfc -0.0 -> 1.0
erfc0002 erfc inf -> 0.0
erfc0003 erfc -inf -> 2.0
erfc0004 erfc nan -> nan
-- tiny values
erfc0010 erfc 1e-308 -> 1.0
erfc0011 erfc 5e-324 -> 1.0
erfc0012 erfc 1e-10 -> 0.99999999988716204
-- small integers
erfc0020 erfc 1 -> 0.15729920705028513
erfc0021 erfc 2 -> 0.0046777349810472662
erfc0022 erfc 3 -> 2.2090496998585441e-05
erfc0023 erfc 4 -> 1.541725790028002e-08
erfc0024 erfc 5 -> 1.5374597944280349e-12
erfc0025 erfc 6 -> 2.1519736712498913e-17
erfc0030 erfc -1 -> 1.8427007929497148
erfc0031 erfc -2 -> 1.9953222650189528
erfc0032 erfc -3 -> 1.9999779095030015
erfc0033 erfc -4 -> 1.9999999845827421
erfc0034 erfc -5 -> 1.9999999999984626
erfc0035 erfc -6 -> 2.0
-- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
erfc0040 erfc 20 -> 5.3958656116079012e-176
erfc0041 erfc 25 -> 8.3001725711965228e-274
erfc0042 erfc 27 -> 5.2370464393526292e-319
erfc0043 erfc 28 -> 0.0
-- huge values
erfc0050 erfc -40 -> 2.0
erfc0051 erfc 1e16 -> 0.0
erfc0052 erfc -1e150 -> 2.0
erfc0053 erfc 1.7e308 -> 0.0
-- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
-- incorrectly signalled overflow on some platforms.
erfc0100 erfc 26.2 -> 1.6432507924389461e-300
erfc0101 erfc 26.4 -> 4.4017768588035426e-305
erfc0102 erfc 26.6 -> 1.0885125885442269e-309
erfc0103 erfc 26.8 -> 2.4849621571966629e-314
erfc0104 erfc 27.0 -> 5.2370464393526292e-319
erfc0105 erfc 27.2 -> 9.8813129168249309e-324
erfc0106 erfc 27.4 -> 0.0
erfc0107 erfc 27.6 -> 0.0
erfc0110 erfc -26.2 -> 2.0
erfc0111 erfc -26.4 -> 2.0
erfc0112 erfc -26.6 -> 2.0
erfc0113 erfc -26.8 -> 2.0
erfc0114 erfc -27.0 -> 2.0
erfc0115 erfc -27.2 -> 2.0
erfc0116 erfc -27.4 -> 2.0
erfc0117 erfc -27.6 -> 2.0
---------------------------------------------------------
-- lgamma: log of absolute value of the gamma function --
---------------------------------------------------------
-- special values
lgam0000 lgamma 0.0 -> inf divide-by-zero
lgam0001 lgamma -0.0 -> inf divide-by-zero
lgam0002 lgamma inf -> inf
lgam0003 lgamma -inf -> inf
lgam0004 lgamma nan -> nan
-- negative integers
lgam0010 lgamma -1 -> inf divide-by-zero
lgam0011 lgamma -2 -> inf divide-by-zero
lgam0012 lgamma -1e16 -> inf divide-by-zero
lgam0013 lgamma -1e300 -> inf divide-by-zero
lgam0014 lgamma -1.79e308 -> inf divide-by-zero
-- small positive integers give factorials
lgam0020 lgamma 1 -> 0.0
lgam0021 lgamma 2 -> 0.0
lgam0022 lgamma 3 -> 0.69314718055994529
lgam0023 lgamma 4 -> 1.791759469228055
lgam0024 lgamma 5 -> 3.1780538303479458
lgam0025 lgamma 6 -> 4.7874917427820458
-- half integers
lgam0030 lgamma 0.5 -> 0.57236494292470008
lgam0031 lgamma 1.5 -> -0.12078223763524522
lgam0032 lgamma 2.5 -> 0.28468287047291918
lgam0033 lgamma 3.5 -> 1.2009736023470743
lgam0034 lgamma -0.5 -> 1.2655121234846454
lgam0035 lgamma -1.5 -> 0.86004701537648098
lgam0036 lgamma -2.5 -> -0.056243716497674054
lgam0037 lgamma -3.5 -> -1.309006684993042
-- values near 0
lgam0040 lgamma 0.1 -> 2.252712651734206
lgam0041 lgamma 0.01 -> 4.5994798780420219
lgam0042 lgamma 1e-8 -> 18.420680738180209
lgam0043 lgamma 1e-16 -> 36.841361487904734
lgam0044 lgamma 1e-30 -> 69.077552789821368
lgam0045 lgamma 1e-160 -> 368.41361487904732
lgam0046 lgamma 1e-308 -> 709.19620864216608
lgam0047 lgamma 5.6e-309 -> 709.77602713741896
lgam0048 lgamma 5.5e-309 -> 709.79404564292167
lgam0049 lgamma 1e-309 -> 711.49879373516012
lgam0050 lgamma 1e-323 -> 743.74692474082133
lgam0051 lgamma 5e-324 -> 744.44007192138122
lgam0060 lgamma -0.1 -> 2.3689613327287886
lgam0061 lgamma -0.01 -> 4.6110249927528013
lgam0062 lgamma -1e-8 -> 18.420680749724522
lgam0063 lgamma -1e-16 -> 36.841361487904734
lgam0064 lgamma -1e-30 -> 69.077552789821368
lgam0065 lgamma -1e-160 -> 368.41361487904732
lgam0066 lgamma -1e-308 -> 709.19620864216608
lgam0067 lgamma -5.6e-309 -> 709.77602713741896
lgam0068 lgamma -5.5e-309 -> 709.79404564292167
lgam0069 lgamma -1e-309 -> 711.49879373516012
lgam0070 lgamma -1e-323 -> 743.74692474082133
lgam0071 lgamma -5e-324 -> 744.44007192138122
-- values near negative integers
lgam0080 lgamma -0.99999999999999989 -> 36.736800569677101
lgam0081 lgamma -1.0000000000000002 -> 36.043653389117154
lgam0082 lgamma -1.9999999999999998 -> 35.350506208557213
lgam0083 lgamma -2.0000000000000004 -> 34.657359027997266
lgam0084 lgamma -100.00000000000001 -> -331.85460524980607
lgam0085 lgamma -99.999999999999986 -> -331.85460524980596
-- large inputs
lgam0100 lgamma 170 -> 701.43726380873704
lgam0101 lgamma 171 -> 706.57306224578736
lgam0102 lgamma 171.624 -> 709.78077443669895
lgam0103 lgamma 171.625 -> 709.78591682948365
lgam0104 lgamma 172 -> 711.71472580228999
lgam0105 lgamma 2000 -> 13198.923448054265
lgam0106 lgamma 2.55998332785163e305 -> 1.7976931348623099e+308
lgam0107 lgamma 2.55998332785164e305 -> inf overflow
lgam0108 lgamma 1.7e308 -> inf overflow
-- inputs for which gamma(x) is tiny
lgam0120 lgamma -100.5 -> -364.90096830942736
lgam0121 lgamma -160.5 -> -656.88005261126432
lgam0122 lgamma -170.5 -> -707.99843314507882
lgam0123 lgamma -171.5 -> -713.14301641168481
lgam0124 lgamma -176.5 -> -738.95247590846486
lgam0125 lgamma -177.5 -> -744.13144651738037
lgam0126 lgamma -178.5 -> -749.3160351186001
lgam0130 lgamma -1000.5 -> -5914.4377011168517
lgam0131 lgamma -30000.5 -> -279278.6629959144
lgam0132 lgamma -4503599627370495.5 -> -1.5782258434492883e+17
-- results close to 0: positive argument ...
lgam0150 lgamma 0.99999999999999989 -> 6.4083812134800075e-17
lgam0151 lgamma 1.0000000000000002 -> -1.2816762426960008e-16
lgam0152 lgamma 1.9999999999999998 -> -9.3876980655431170e-17
lgam0153 lgamma 2.0000000000000004 -> 1.8775396131086244e-16
-- ... and negative argument
lgam0160 lgamma -2.7476826467 -> -5.2477408147689136e-11
lgam0161 lgamma -2.457024738 -> 3.3464637541912932e-10
---------------------------
-- gamma: Gamma function --
---------------------------
-- special values
gam0000 gamma 0.0 -> inf divide-by-zero
gam0001 gamma -0.0 -> -inf divide-by-zero
gam0002 gamma inf -> inf
gam0003 gamma -inf -> nan invalid
gam0004 gamma nan -> nan
-- negative integers inputs are invalid
gam0010 gamma -1 -> nan invalid
gam0011 gamma -2 -> nan invalid
gam0012 gamma -1e16 -> nan invalid
gam0013 gamma -1e300 -> nan invalid
-- small positive integers give factorials
gam0020 gamma 1 -> 1
gam0021 gamma 2 -> 1
gam0022 gamma 3 -> 2
gam0023 gamma 4 -> 6
gam0024 gamma 5 -> 24
gam0025 gamma 6 -> 120
-- half integers
gam0030 gamma 0.5 -> 1.7724538509055161
gam0031 gamma 1.5 -> 0.88622692545275805
gam0032 gamma 2.5 -> 1.3293403881791370
gam0033 gamma 3.5 -> 3.3233509704478426
gam0034 gamma -0.5 -> -3.5449077018110322
gam0035 gamma -1.5 -> 2.3632718012073548
gam0036 gamma -2.5 -> -0.94530872048294190
gam0037 gamma -3.5 -> 0.27008820585226911
-- values near 0
gam0040 gamma 0.1 -> 9.5135076986687306
gam0041 gamma 0.01 -> 99.432585119150602
gam0042 gamma 1e-8 -> 99999999.422784343
gam0043 gamma 1e-16 -> 10000000000000000
gam0044 gamma 1e-30 -> 9.9999999999999988e+29
gam0045 gamma 1e-160 -> 1.0000000000000000e+160
gam0046 gamma 1e-308 -> 1.0000000000000000e+308
gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
gam0048 gamma 5.5e-309 -> inf overflow
gam0049 gamma 1e-309 -> inf overflow
gam0050 gamma 1e-323 -> inf overflow
gam0051 gamma 5e-324 -> inf overflow
gam0060 gamma -0.1 -> -10.686287021193193
gam0061 gamma -0.01 -> -100.58719796441078
gam0062 gamma -1e-8 -> -100000000.57721567
gam0063 gamma -1e-16 -> -10000000000000000
gam0064 gamma -1e-30 -> -9.9999999999999988e+29
gam0065 gamma -1e-160 -> -1.0000000000000000e+160
gam0066 gamma -1e-308 -> -1.0000000000000000e+308
gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
gam0068 gamma -5.5e-309 -> -inf overflow
gam0069 gamma -1e-309 -> -inf overflow
gam0070 gamma -1e-323 -> -inf overflow
gam0071 gamma -5e-324 -> -inf overflow
-- values near negative integers
gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
-- large inputs
gam0100 gamma 170 -> 4.2690680090047051e+304
gam0101 gamma 171 -> 7.2574156153079990e+306
gam0102 gamma 171.624 -> 1.7942117599248104e+308
gam0103 gamma 171.625 -> inf overflow
gam0104 gamma 172 -> inf overflow
gam0105 gamma 2000 -> inf overflow
gam0106 gamma 1.7e308 -> inf overflow
-- inputs for which gamma(x) is tiny
gam0120 gamma -100.5 -> -3.3536908198076787e-159
gam0121 gamma -160.5 -> -5.2555464470078293e-286
gam0122 gamma -170.5 -> -3.3127395215386074e-308
gam0123 gamma -171.5 -> 1.9316265431711902e-310
gam0124 gamma -176.5 -> -1.1956388629358166e-321
gam0125 gamma -177.5 -> 4.9406564584124654e-324
gam0126 gamma -178.5 -> -0.0
gam0127 gamma -179.5 -> 0.0
gam0128 gamma -201.0001 -> 0.0
gam0129 gamma -202.9999 -> -0.0
gam0130 gamma -1000.5 -> -0.0
gam0131 gamma -1000000000.3 -> -0.0
gam0132 gamma -4503599627370495.5 -> 0.0
-- inputs that cause problems for the standard reflection formula,
-- thanks to loss of accuracy in 1-x
gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
-----------------------------------------------------------
-- log1p: log(1 + x), without precision loss for small x --
-----------------------------------------------------------
-- special values
log1p0000 log1p 0.0 -> 0.0
log1p0001 log1p -0.0 -> -0.0
log1p0002 log1p inf -> inf
log1p0003 log1p -inf -> nan invalid
log1p0004 log1p nan -> nan
-- singularity at -1.0
log1p0010 log1p -1.0 -> -inf divide-by-zero
log1p0011 log1p -0.9999999999999999 -> -36.736800569677101
-- finite values < 1.0 are invalid
log1p0020 log1p -1.0000000000000002 -> nan invalid
log1p0021 log1p -1.1 -> nan invalid
log1p0022 log1p -2.0 -> nan invalid
log1p0023 log1p -1e300 -> nan invalid
-- tiny x: log1p(x) ~ x
log1p0110 log1p 5e-324 -> 5e-324
log1p0111 log1p 1e-320 -> 1e-320
log1p0112 log1p 1e-300 -> 1e-300
log1p0113 log1p 1e-150 -> 1e-150
log1p0114 log1p 1e-20 -> 1e-20
log1p0120 log1p -5e-324 -> -5e-324
log1p0121 log1p -1e-320 -> -1e-320
log1p0122 log1p -1e-300 -> -1e-300
log1p0123 log1p -1e-150 -> -1e-150
log1p0124 log1p -1e-20 -> -1e-20
-- some (mostly) random small and moderate-sized values
log1p0200 log1p -0.89156889782277482 -> -2.2216403106762863
log1p0201 log1p -0.23858496047770464 -> -0.27257668276980057
log1p0202 log1p -0.011641726191307515 -> -0.011710021654495657
log1p0203 log1p -0.0090126398571693817 -> -0.0090534993825007650
log1p0204 log1p -0.00023442805985712781 -> -0.00023445554240995693
log1p0205 log1p -1.5672870980936349e-5 -> -1.5672993801662046e-5
log1p0206 log1p -7.9650013274825295e-6 -> -7.9650330482740401e-6
log1p0207 log1p -2.5202948343227410e-7 -> -2.5202951519170971e-7
log1p0208 log1p -8.2446372820745855e-11 -> -8.2446372824144559e-11
log1p0209 log1p -8.1663670046490789e-12 -> -8.1663670046824230e-12
log1p0210 log1p 7.0351735084656292e-18 -> 7.0351735084656292e-18
log1p0211 log1p 5.2732161907375226e-12 -> 5.2732161907236188e-12
log1p0212 log1p 1.0000000000000000e-10 -> 9.9999999995000007e-11
log1p0213 log1p 2.1401273266000197e-9 -> 2.1401273243099470e-9
log1p0214 log1p 1.2668914653979560e-8 -> 1.2668914573728861e-8
log1p0215 log1p 1.6250007816299069e-6 -> 1.6249994613175672e-6
log1p0216 log1p 8.3740495645839399e-6 -> 8.3740145024266269e-6
log1p0217 log1p 3.0000000000000001e-5 -> 2.9999550008999799e-5
log1p0218 log1p 0.0070000000000000001 -> 0.0069756137364252423
log1p0219 log1p 0.013026235315053002 -> 0.012942123564008787
log1p0220 log1p 0.013497160797236184 -> 0.013406885521915038
log1p0221 log1p 0.027625599078135284 -> 0.027250897463483054
log1p0222 log1p 0.14179687245544870 -> 0.13260322540908789
-- large values
log1p0300 log1p 1.7976931348623157e+308 -> 709.78271289338397
log1p0301 log1p 1.0000000000000001e+300 -> 690.77552789821368
log1p0302 log1p 1.0000000000000001e+70 -> 161.18095650958321
log1p0303 log1p 10000000000.000000 -> 23.025850930040455
-- other values transferred from testLog1p in test_math
log1p0400 log1p -0.63212055882855767 -> -1.0000000000000000
log1p0401 log1p 1.7182818284590451 -> 1.0000000000000000
log1p0402 log1p 1.0000000000000000 -> 0.69314718055994529
log1p0403 log1p 1.2379400392853803e+27 -> 62.383246250395075
-----------------------------------------------------------
-- expm1: exp(x) - 1, without precision loss for small x --
-----------------------------------------------------------
-- special values
expm10000 expm1 0.0 -> 0.0
expm10001 expm1 -0.0 -> -0.0
expm10002 expm1 inf -> inf
expm10003 expm1 -inf -> -1.0
expm10004 expm1 nan -> nan
-- expm1(x) ~ x for tiny x
expm10010 expm1 5e-324 -> 5e-324
expm10011 expm1 1e-320 -> 1e-320
expm10012 expm1 1e-300 -> 1e-300
expm10013 expm1 1e-150 -> 1e-150
expm10014 expm1 1e-20 -> 1e-20
expm10020 expm1 -5e-324 -> -5e-324
expm10021 expm1 -1e-320 -> -1e-320
expm10022 expm1 -1e-300 -> -1e-300
expm10023 expm1 -1e-150 -> -1e-150
expm10024 expm1 -1e-20 -> -1e-20
-- moderate sized values, where direct evaluation runs into trouble
expm10100 expm1 1e-10 -> 1.0000000000500000e-10
expm10101 expm1 -9.9999999999999995e-08 -> -9.9999995000000163e-8
expm10102 expm1 3.0000000000000001e-05 -> 3.0000450004500034e-5
expm10103 expm1 -0.0070000000000000001 -> -0.0069755570667648951
expm10104 expm1 -0.071499208740094633 -> -0.069002985744820250
expm10105 expm1 -0.063296004180116799 -> -0.061334416373633009
expm10106 expm1 0.02390954035597756 -> 0.024197665143819942
expm10107 expm1 0.085637352649044901 -> 0.089411184580357767
expm10108 expm1 0.5966174947411006 -> 0.81596588596501485
expm10109 expm1 0.30247206212075139 -> 0.35319987035848677
expm10110 expm1 0.74574727375889516 -> 1.1080161116737459
expm10111 expm1 0.97767512926555711 -> 1.6582689207372185
expm10112 expm1 0.8450154566787712 -> 1.3280137976535897
expm10113 expm1 -0.13979260323125264 -> -0.13046144381396060
expm10114 expm1 -0.52899322039643271 -> -0.41080213643695923
expm10115 expm1 -0.74083261478900631 -> -0.52328317124797097
expm10116 expm1 -0.93847766984546055 -> -0.60877704724085946
expm10117 expm1 10.0 -> 22025.465794806718
expm10118 expm1 27.0 -> 532048240600.79865
expm10119 expm1 123 -> 2.6195173187490626e+53
expm10120 expm1 -12.0 -> -0.99999385578764666
expm10121 expm1 -35.100000000000001 -> -0.99999999999999944
-- extreme negative values
expm10201 expm1 -37.0 -> -0.99999999999999989
expm10200 expm1 -38.0 -> -1.0
expm10210 expm1 -710.0 -> -1.0
-- the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so
-- well when exp(x/2) is subnormal or underflows to zero; check we're
-- not using it!
expm10211 expm1 -1420.0 -> -1.0
expm10212 expm1 -1450.0 -> -1.0
expm10213 expm1 -1500.0 -> -1.0
expm10214 expm1 -1e50 -> -1.0
expm10215 expm1 -1.79e308 -> -1.0
-- extreme positive values
expm10300 expm1 300 -> 1.9424263952412558e+130
expm10301 expm1 700 -> 1.0142320547350045e+304
-- the next test (expm10302) is disabled because it causes failure on
-- OS X 10.4/Intel: apparently all values over 709.78 produce an
-- overflow on that platform. See issue #7575.
-- expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308
expm10303 expm1 709.78271289348402 -> inf overflow
expm10304 expm1 1000 -> inf overflow
expm10305 expm1 1e50 -> inf overflow
expm10306 expm1 1.79e308 -> inf overflow
-- weaker version of expm10302
expm10307 expm1 709.5 -> 1.3549863193146328e+308
-------------------------
-- log2: log to base 2 --
-------------------------
-- special values
log20000 log2 0.0 -> -inf divide-by-zero
log20001 log2 -0.0 -> -inf divide-by-zero
log20002 log2 inf -> inf
log20003 log2 -inf -> nan invalid
log20004 log2 nan -> nan
-- exact value at 1.0
log20010 log2 1.0 -> 0.0
-- negatives
log20020 log2 -5e-324 -> nan invalid
log20021 log2 -1.0 -> nan invalid
log20022 log2 -1.7e-308 -> nan invalid
-- exact values at powers of 2
log20100 log2 2.0 -> 1.0
log20101 log2 4.0 -> 2.0
log20102 log2 8.0 -> 3.0
log20103 log2 16.0 -> 4.0
log20104 log2 32.0 -> 5.0
log20105 log2 64.0 -> 6.0
log20106 log2 128.0 -> 7.0
log20107 log2 256.0 -> 8.0
log20108 log2 512.0 -> 9.0
log20109 log2 1024.0 -> 10.0
log20110 log2 2048.0 -> 11.0
log20200 log2 0.5 -> -1.0
log20201 log2 0.25 -> -2.0
log20202 log2 0.125 -> -3.0
log20203 log2 0.0625 -> -4.0
-- values close to 1.0
log20300 log2 1.0000000000000002 -> 3.2034265038149171e-16
log20301 log2 1.0000000001 -> 1.4426951601859516e-10
log20302 log2 1.00001 -> 1.4426878274712997e-5
log20310 log2 0.9999999999999999 -> -1.6017132519074588e-16
log20311 log2 0.9999999999 -> -1.4426951603302210e-10
log20312 log2 0.99999 -> -1.4427022544056922e-5
-- tiny values
log20400 log2 5e-324 -> -1074.0
log20401 log2 1e-323 -> -1073.0
log20402 log2 1.5e-323 -> -1072.4150374992789
log20403 log2 2e-323 -> -1072.0
log20410 log2 1e-308 -> -1023.1538532253076
log20411 log2 2.2250738585072014e-308 -> -1022.0
log20412 log2 4.4501477170144028e-308 -> -1021.0
log20413 log2 1e-307 -> -1019.8319251304202
-- huge values
log20500 log2 1.7976931348623157e+308 -> 1024.0
log20501 log2 1.7e+308 -> 1023.9193879716706
log20502 log2 8.9884656743115795e+307 -> 1023.0
-- selection of random values
log20600 log2 -7.2174324841039838e+289 -> nan invalid
log20601 log2 -2.861319734089617e+265 -> nan invalid
log20602 log2 -4.3507646894008962e+257 -> nan invalid
log20603 log2 -6.6717265307520224e+234 -> nan invalid
log20604 log2 -3.9118023786619294e+229 -> nan invalid
log20605 log2 -1.5478221302505161e+206 -> nan invalid
log20606 log2 -1.4380485131364602e+200 -> nan invalid
log20607 log2 -3.7235198730382645e+185 -> nan invalid
log20608 log2 -1.0472242235095724e+184 -> nan invalid
log20609 log2 -5.0141781956163884e+160 -> nan invalid
log20610 log2 -2.1157958031160324e+124 -> nan invalid
log20611 log2 -7.9677558612567718e+90 -> nan invalid
log20612 log2 -5.5553906194063732e+45 -> nan invalid
log20613 log2 -16573900952607.953 -> nan invalid
log20614 log2 -37198371019.888618 -> nan invalid
log20615 log2 -6.0727115121422674e-32 -> nan invalid
log20616 log2 -2.5406841656526057e-38 -> nan invalid
log20617 log2 -4.9056766703267657e-43 -> nan invalid
log20618 log2 -2.1646786075228305e-71 -> nan invalid
log20619 log2 -2.470826790488573e-78 -> nan invalid
log20620 log2 -3.8661709303489064e-165 -> nan invalid
log20621 log2 -1.0516496976649986e-182 -> nan invalid
log20622 log2 -1.5935458614317996e-255 -> nan invalid
log20623 log2 -2.8750977267336654e-293 -> nan invalid
log20624 log2 -7.6079466794732585e-296 -> nan invalid
log20625 log2 3.2073253539988545e-307 -> -1018.1505544209213
log20626 log2 1.674937885472249e-244 -> -809.80634755783126
log20627 log2 1.0911259044931283e-214 -> -710.76679472274213
log20628 log2 2.0275372624809709e-154 -> -510.55719818383272
log20629 log2 7.3926087369631841e-115 -> -379.13564735312292
log20630 log2 1.3480198206342423e-86 -> -285.25497445094436
log20631 log2 8.9927384655719947e-83 -> -272.55127136401637
log20632 log2 3.1452398713597487e-60 -> -197.66251564496875
log20633 log2 7.0706573215457351e-55 -> -179.88420087782217
log20634 log2 3.1258285390731669e-49 -> -161.13023800505653
log20635 log2 8.2253046627829942e-41 -> -133.15898277355879
log20636 log2 7.8691367397519897e+49 -> 165.75068202732419
log20637 log2 2.9920561983925013e+64 -> 214.18453534573757
log20638 log2 4.7827254553946841e+77 -> 258.04629628445673
log20639 log2 3.1903566496481868e+105 -> 350.47616767491166
log20640 log2 5.6195082449502419e+113 -> 377.86831861008250
log20641 log2 9.9625658250651047e+125 -> 418.55752921228753
log20642 log2 2.7358945220961532e+145 -> 483.13158636923413
log20643 log2 2.785842387926931e+174 -> 579.49360214860280
log20644 log2 2.4169172507252751e+193 -> 642.40529039289652
log20645 log2 3.1689091206395632e+205 -> 682.65924573798395
log20646 log2 2.535995592365391e+208 -> 692.30359597460460
log20647 log2 6.2011236566089916e+233 -> 776.64177576730913
log20648 log2 2.1843274820677632e+253 -> 841.57499717289647
log20649 log2 8.7493931063474791e+297 -> 989.74182713073981
|