1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
|
from test.support import requires_IEEE_754, cpython_only
from test.test_math import parse_testfile, test_file
import test.test_math as test_math
import unittest
import cmath, math
from cmath import phase, polar, rect, pi
import platform
import sys
import sysconfig
INF = float('inf')
NAN = float('nan')
complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
complex_infinities = [complex(x, y) for x, y in [
(INF, 0.0), # 1st quadrant
(INF, 2.3),
(INF, INF),
(2.3, INF),
(0.0, INF),
(-0.0, INF), # 2nd quadrant
(-2.3, INF),
(-INF, INF),
(-INF, 2.3),
(-INF, 0.0),
(-INF, -0.0), # 3rd quadrant
(-INF, -2.3),
(-INF, -INF),
(-2.3, -INF),
(-0.0, -INF),
(0.0, -INF), # 4th quadrant
(2.3, -INF),
(INF, -INF),
(INF, -2.3),
(INF, -0.0)
]]
complex_nans = [complex(x, y) for x, y in [
(NAN, -INF),
(NAN, -2.3),
(NAN, -0.0),
(NAN, 0.0),
(NAN, 2.3),
(NAN, INF),
(-INF, NAN),
(-2.3, NAN),
(-0.0, NAN),
(0.0, NAN),
(2.3, NAN),
(INF, NAN)
]]
class CMathTests(unittest.TestCase):
# list of all functions in cmath
test_functions = [getattr(cmath, fname) for fname in [
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
'sqrt', 'tan', 'tanh']]
# test first and second arguments independently for 2-argument log
test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
test_functions.append(lambda x : cmath.log(14.-27j, x))
def setUp(self):
self.test_values = open(test_file)
def tearDown(self):
self.test_values.close()
def assertFloatIdentical(self, x, y):
"""Fail unless floats x and y are identical, in the sense that:
(1) both x and y are nans, or
(2) both x and y are infinities, with the same sign, or
(3) both x and y are zeros, with the same sign, or
(4) x and y are both finite and nonzero, and x == y
"""
msg = 'floats {!r} and {!r} are not identical'
if math.isnan(x) or math.isnan(y):
if math.isnan(x) and math.isnan(y):
return
elif x == y:
if x != 0.0:
return
# both zero; check that signs match
elif math.copysign(1.0, x) == math.copysign(1.0, y):
return
else:
msg += ': zeros have different signs'
self.fail(msg.format(x, y))
def assertComplexIdentical(self, x, y):
"""Fail unless complex numbers x and y have equal values and signs.
In particular, if x and y both have real (or imaginary) part
zero, but the zeros have different signs, this test will fail.
"""
self.assertFloatIdentical(x.real, y.real)
self.assertFloatIdentical(x.imag, y.imag)
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
msg=None):
"""Fail if the two floating-point numbers are not almost equal.
Determine whether floating-point values a and b are equal to within
a (small) rounding error. The default values for rel_err and
abs_err are chosen to be suitable for platforms where a float is
represented by an IEEE 754 double. They allow an error of between
9 and 19 ulps.
"""
# special values testing
if math.isnan(a):
if math.isnan(b):
return
self.fail(msg or '{!r} should be nan'.format(b))
if math.isinf(a):
if a == b:
return
self.fail(msg or 'finite result where infinity expected: '
'expected {!r}, got {!r}'.format(a, b))
# if both a and b are zero, check whether they have the same sign
# (in theory there are examples where it would be legitimate for a
# and b to have opposite signs; in practice these hardly ever
# occur).
if not a and not b:
if math.copysign(1., a) != math.copysign(1., b):
self.fail(msg or 'zero has wrong sign: expected {!r}, '
'got {!r}'.format(a, b))
# if a-b overflows, or b is infinite, return False. Again, in
# theory there are examples where a is within a few ulps of the
# max representable float, and then b could legitimately be
# infinite. In practice these examples are rare.
try:
absolute_error = abs(b-a)
except OverflowError:
pass
else:
# test passes if either the absolute error or the relative
# error is sufficiently small. The defaults amount to an
# error of between 9 ulps and 19 ulps on an IEEE-754 compliant
# machine.
if absolute_error <= max(abs_err, rel_err * abs(a)):
return
self.fail(msg or
'{!r} and {!r} are not sufficiently close'.format(a, b))
def test_constants(self):
e_expected = 2.71828182845904523536
pi_expected = 3.14159265358979323846
self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
self.assertAlmostEqual(cmath.e, e_expected, places=9,
msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
def test_infinity_and_nan_constants(self):
self.assertEqual(cmath.inf.real, math.inf)
self.assertEqual(cmath.inf.imag, 0.0)
self.assertEqual(cmath.infj.real, 0.0)
self.assertEqual(cmath.infj.imag, math.inf)
self.assertTrue(math.isnan(cmath.nan.real))
self.assertEqual(cmath.nan.imag, 0.0)
self.assertEqual(cmath.nanj.real, 0.0)
self.assertTrue(math.isnan(cmath.nanj.imag))
# Check consistency with reprs.
self.assertEqual(repr(cmath.inf), "inf")
self.assertEqual(repr(cmath.infj), "infj")
self.assertEqual(repr(cmath.nan), "nan")
self.assertEqual(repr(cmath.nanj), "nanj")
def test_user_object(self):
# Test automatic calling of __complex__ and __float__ by cmath
# functions
# some random values to use as test values; we avoid values
# for which any of the functions in cmath is undefined
# (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
cx_arg = 4.419414439 + 1.497100113j
flt_arg = -6.131677725
# a variety of non-complex numbers, used to check that
# non-complex return values from __complex__ give an error
non_complexes = ["not complex", 1, 5, 2., None,
object(), NotImplemented]
# Now we introduce a variety of classes whose instances might
# end up being passed to the cmath functions
# usual case: new-style class implementing __complex__
class MyComplex(object):
def __init__(self, value):
self.value = value
def __complex__(self):
return self.value
# old-style class implementing __complex__
class MyComplexOS:
def __init__(self, value):
self.value = value
def __complex__(self):
return self.value
# classes for which __complex__ raises an exception
class SomeException(Exception):
pass
class MyComplexException(object):
def __complex__(self):
raise SomeException
class MyComplexExceptionOS:
def __complex__(self):
raise SomeException
# some classes not providing __float__ or __complex__
class NeitherComplexNorFloat(object):
pass
class NeitherComplexNorFloatOS:
pass
class MyInt(object):
def __int__(self): return 2
def __index__(self): return 2
class MyIntOS:
def __int__(self): return 2
def __index__(self): return 2
# other possible combinations of __float__ and __complex__
# that should work
class FloatAndComplex(object):
def __float__(self):
return flt_arg
def __complex__(self):
return cx_arg
class FloatAndComplexOS:
def __float__(self):
return flt_arg
def __complex__(self):
return cx_arg
class JustFloat(object):
def __float__(self):
return flt_arg
class JustFloatOS:
def __float__(self):
return flt_arg
for f in self.test_functions:
# usual usage
self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
# other combinations of __float__ and __complex__
self.assertEqual(f(FloatAndComplex()), f(cx_arg))
self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
self.assertEqual(f(JustFloat()), f(flt_arg))
self.assertEqual(f(JustFloatOS()), f(flt_arg))
# TypeError should be raised for classes not providing
# either __complex__ or __float__, even if they provide
# __int__ or __index__. An old-style class
# currently raises AttributeError instead of a TypeError;
# this could be considered a bug.
self.assertRaises(TypeError, f, NeitherComplexNorFloat())
self.assertRaises(TypeError, f, MyInt())
self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
self.assertRaises(Exception, f, MyIntOS())
# non-complex return value from __complex__ -> TypeError
for bad_complex in non_complexes:
self.assertRaises(TypeError, f, MyComplex(bad_complex))
self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
# exceptions in __complex__ should be propagated correctly
self.assertRaises(SomeException, f, MyComplexException())
self.assertRaises(SomeException, f, MyComplexExceptionOS())
def test_input_type(self):
# ints should be acceptable inputs to all cmath
# functions, by virtue of providing a __float__ method
for f in self.test_functions:
for arg in [2, 2.]:
self.assertEqual(f(arg), f(arg.__float__()))
# but strings should give a TypeError
for f in self.test_functions:
for arg in ["a", "long_string", "0", "1j", ""]:
self.assertRaises(TypeError, f, arg)
def test_cmath_matches_math(self):
# check that corresponding cmath and math functions are equal
# for floats in the appropriate range
# test_values in (0, 1)
test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
# test_values for functions defined on [-1., 1.]
unit_interval = test_values + [-x for x in test_values] + \
[0., 1., -1.]
# test_values for log, log10, sqrt
positive = test_values + [1.] + [1./x for x in test_values]
nonnegative = [0.] + positive
# test_values for functions defined on the whole real line
real_line = [0.] + positive + [-x for x in positive]
test_functions = {
'acos' : unit_interval,
'asin' : unit_interval,
'atan' : real_line,
'cos' : real_line,
'cosh' : real_line,
'exp' : real_line,
'log' : positive,
'log10' : positive,
'sin' : real_line,
'sinh' : real_line,
'sqrt' : nonnegative,
'tan' : real_line,
'tanh' : real_line}
for fn, values in test_functions.items():
float_fn = getattr(math, fn)
complex_fn = getattr(cmath, fn)
for v in values:
z = complex_fn(v)
self.rAssertAlmostEqual(float_fn(v), z.real)
self.assertEqual(0., z.imag)
# test two-argument version of log with various bases
for base in [0.5, 2., 10.]:
for v in positive:
z = cmath.log(v, base)
self.rAssertAlmostEqual(math.log(v, base), z.real)
self.assertEqual(0., z.imag)
@requires_IEEE_754
def test_specific_values(self):
# Some tests need to be skipped on ancient OS X versions.
# See issue #27953.
SKIP_ON_TIGER = {'tan0064'}
osx_version = None
if sys.platform == 'darwin':
version_txt = platform.mac_ver()[0]
try:
osx_version = tuple(map(int, version_txt.split('.')))
except ValueError:
pass
def rect_complex(z):
"""Wrapped version of rect that accepts a complex number instead of
two float arguments."""
return cmath.rect(z.real, z.imag)
def polar_complex(z):
"""Wrapped version of polar that returns a complex number instead of
two floats."""
return complex(*polar(z))
for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
arg = complex(ar, ai)
expected = complex(er, ei)
# Skip certain tests on OS X 10.4.
if osx_version is not None and osx_version < (10, 5):
if id in SKIP_ON_TIGER:
continue
if fn == 'rect':
function = rect_complex
elif fn == 'polar':
function = polar_complex
else:
function = getattr(cmath, fn)
if 'divide-by-zero' in flags or 'invalid' in flags:
try:
actual = function(arg)
except ValueError:
continue
else:
self.fail('ValueError not raised in test '
'{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
if 'overflow' in flags:
try:
actual = function(arg)
except OverflowError:
continue
else:
self.fail('OverflowError not raised in test '
'{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
actual = function(arg)
if 'ignore-real-sign' in flags:
actual = complex(abs(actual.real), actual.imag)
expected = complex(abs(expected.real), expected.imag)
if 'ignore-imag-sign' in flags:
actual = complex(actual.real, abs(actual.imag))
expected = complex(expected.real, abs(expected.imag))
# for the real part of the log function, we allow an
# absolute error of up to 2e-15.
if fn in ('log', 'log10'):
real_abs_err = 2e-15
else:
real_abs_err = 5e-323
error_message = (
'{}: {}(complex({!r}, {!r}))\n'
'Expected: complex({!r}, {!r})\n'
'Received: complex({!r}, {!r})\n'
'Received value insufficiently close to expected value.'
).format(id, fn, ar, ai,
expected.real, expected.imag,
actual.real, actual.imag)
self.rAssertAlmostEqual(expected.real, actual.real,
abs_err=real_abs_err,
msg=error_message)
self.rAssertAlmostEqual(expected.imag, actual.imag,
msg=error_message)
def check_polar(self, func):
def check(arg, expected):
got = func(arg)
for e, g in zip(expected, got):
self.rAssertAlmostEqual(e, g)
check(0, (0., 0.))
check(1, (1., 0.))
check(-1, (1., pi))
check(1j, (1., pi / 2))
check(-3j, (3., -pi / 2))
inf = float('inf')
check(complex(inf, 0), (inf, 0.))
check(complex(-inf, 0), (inf, pi))
check(complex(3, inf), (inf, pi / 2))
check(complex(5, -inf), (inf, -pi / 2))
check(complex(inf, inf), (inf, pi / 4))
check(complex(inf, -inf), (inf, -pi / 4))
check(complex(-inf, inf), (inf, 3 * pi / 4))
check(complex(-inf, -inf), (inf, -3 * pi / 4))
nan = float('nan')
check(complex(nan, 0), (nan, nan))
check(complex(0, nan), (nan, nan))
check(complex(nan, nan), (nan, nan))
check(complex(inf, nan), (inf, nan))
check(complex(-inf, nan), (inf, nan))
check(complex(nan, inf), (inf, nan))
check(complex(nan, -inf), (inf, nan))
def test_polar(self):
self.check_polar(polar)
@cpython_only
def test_polar_errno(self):
# Issue #24489: check a previously set C errno doesn't disturb polar()
from _testcapi import set_errno
def polar_with_errno_set(z):
set_errno(11)
try:
return polar(z)
finally:
set_errno(0)
self.check_polar(polar_with_errno_set)
def test_phase(self):
self.assertAlmostEqual(phase(0), 0.)
self.assertAlmostEqual(phase(1.), 0.)
self.assertAlmostEqual(phase(-1.), pi)
self.assertAlmostEqual(phase(-1.+1E-300j), pi)
self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
self.assertAlmostEqual(phase(1j), pi/2)
self.assertAlmostEqual(phase(-1j), -pi/2)
# zeros
self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
self.assertEqual(phase(complex(-0.0, 0.0)), pi)
self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
# infinities
self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
self.assertEqual(phase(complex(INF, -2.3)), -0.0)
self.assertEqual(phase(complex(INF, -0.0)), -0.0)
self.assertEqual(phase(complex(INF, 0.0)), 0.0)
self.assertEqual(phase(complex(INF, 2.3)), 0.0)
self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
# real or imaginary part NaN
for z in complex_nans:
self.assertTrue(math.isnan(phase(z)))
def test_abs(self):
# zeros
for z in complex_zeros:
self.assertEqual(abs(z), 0.0)
# infinities
for z in complex_infinities:
self.assertEqual(abs(z), INF)
# real or imaginary part NaN
self.assertEqual(abs(complex(NAN, -INF)), INF)
self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
self.assertEqual(abs(complex(NAN, INF)), INF)
self.assertEqual(abs(complex(-INF, NAN)), INF)
self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
self.assertEqual(abs(complex(INF, NAN)), INF)
self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
@requires_IEEE_754
def test_abs_overflows(self):
# result overflows
self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
def assertCEqual(self, a, b):
eps = 1E-7
if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
self.fail((a ,b))
def test_rect(self):
self.assertCEqual(rect(0, 0), (0, 0))
self.assertCEqual(rect(1, 0), (1., 0))
self.assertCEqual(rect(1, -pi), (-1., 0))
self.assertCEqual(rect(1, pi/2), (0, 1.))
self.assertCEqual(rect(1, -pi/2), (0, -1.))
def test_isfinite(self):
real_vals = [float('-inf'), -2.3, -0.0,
0.0, 2.3, float('inf'), float('nan')]
for x in real_vals:
for y in real_vals:
z = complex(x, y)
self.assertEqual(cmath.isfinite(z),
math.isfinite(x) and math.isfinite(y))
def test_isnan(self):
self.assertFalse(cmath.isnan(1))
self.assertFalse(cmath.isnan(1j))
self.assertFalse(cmath.isnan(INF))
self.assertTrue(cmath.isnan(NAN))
self.assertTrue(cmath.isnan(complex(NAN, 0)))
self.assertTrue(cmath.isnan(complex(0, NAN)))
self.assertTrue(cmath.isnan(complex(NAN, NAN)))
self.assertTrue(cmath.isnan(complex(NAN, INF)))
self.assertTrue(cmath.isnan(complex(INF, NAN)))
def test_isinf(self):
self.assertFalse(cmath.isinf(1))
self.assertFalse(cmath.isinf(1j))
self.assertFalse(cmath.isinf(NAN))
self.assertTrue(cmath.isinf(INF))
self.assertTrue(cmath.isinf(complex(INF, 0)))
self.assertTrue(cmath.isinf(complex(0, INF)))
self.assertTrue(cmath.isinf(complex(INF, INF)))
self.assertTrue(cmath.isinf(complex(NAN, INF)))
self.assertTrue(cmath.isinf(complex(INF, NAN)))
@requires_IEEE_754
def testTanhSign(self):
for z in complex_zeros:
self.assertComplexIdentical(cmath.tanh(z), z)
# The algorithm used for atan and atanh makes use of the system
# log1p function; If that system function doesn't respect the sign
# of zero, then atan and atanh will also have difficulties with
# the sign of complex zeros.
@requires_IEEE_754
def testAtanSign(self):
for z in complex_zeros:
self.assertComplexIdentical(cmath.atan(z), z)
@requires_IEEE_754
def testAtanhSign(self):
for z in complex_zeros:
self.assertComplexIdentical(cmath.atanh(z), z)
class IsCloseTests(test_math.IsCloseTests):
isclose = cmath.isclose
def test_reject_complex_tolerances(self):
with self.assertRaises(TypeError):
self.isclose(1j, 1j, rel_tol=1j)
with self.assertRaises(TypeError):
self.isclose(1j, 1j, abs_tol=1j)
with self.assertRaises(TypeError):
self.isclose(1j, 1j, rel_tol=1j, abs_tol=1j)
def test_complex_values(self):
# test complex values that are close to within 12 decimal places
complex_examples = [(1.0+1.0j, 1.000000000001+1.0j),
(1.0+1.0j, 1.0+1.000000000001j),
(-1.0+1.0j, -1.000000000001+1.0j),
(1.0-1.0j, 1.0-0.999999999999j),
]
self.assertAllClose(complex_examples, rel_tol=1e-12)
self.assertAllNotClose(complex_examples, rel_tol=1e-13)
def test_complex_near_zero(self):
# test values near zero that are near to within three decimal places
near_zero_examples = [(0.001j, 0),
(0.001, 0),
(0.001+0.001j, 0),
(-0.001+0.001j, 0),
(0.001-0.001j, 0),
(-0.001-0.001j, 0),
]
self.assertAllClose(near_zero_examples, abs_tol=1.5e-03)
self.assertAllNotClose(near_zero_examples, abs_tol=0.5e-03)
self.assertIsClose(0.001-0.001j, 0.001+0.001j, abs_tol=2e-03)
self.assertIsNotClose(0.001-0.001j, 0.001+0.001j, abs_tol=1e-03)
if __name__ == "__main__":
unittest.main()
|