summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_fractions.py
blob: 499e3b6e656faa96f6d54d02c5054a7365516225 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
"""Tests for Lib/fractions.py."""

from decimal import Decimal
from test.support import requires_IEEE_754
import math
import numbers
import operator
import fractions
import functools
import os
import sys
import typing
import unittest
from copy import copy, deepcopy
import pickle
from pickle import dumps, loads
F = fractions.Fraction

#locate file with float format test values
test_dir = os.path.dirname(__file__) or os.curdir
format_testfile = os.path.join(test_dir, 'mathdata', 'formatfloat_testcases.txt')

class DummyFloat(object):
    """Dummy float class for testing comparisons with Fractions"""

    def __init__(self, value):
        if not isinstance(value, float):
            raise TypeError("DummyFloat can only be initialized from float")
        self.value = value

    def _richcmp(self, other, op):
        if isinstance(other, numbers.Rational):
            return op(F.from_float(self.value), other)
        elif isinstance(other, DummyFloat):
            return op(self.value, other.value)
        else:
            return NotImplemented

    def __eq__(self, other): return self._richcmp(other, operator.eq)
    def __le__(self, other): return self._richcmp(other, operator.le)
    def __lt__(self, other): return self._richcmp(other, operator.lt)
    def __ge__(self, other): return self._richcmp(other, operator.ge)
    def __gt__(self, other): return self._richcmp(other, operator.gt)

    # shouldn't be calling __float__ at all when doing comparisons
    def __float__(self):
        assert False, "__float__ should not be invoked for comparisons"

    # same goes for subtraction
    def __sub__(self, other):
        assert False, "__sub__ should not be invoked for comparisons"
    __rsub__ = __sub__


class DummyRational(object):
    """Test comparison of Fraction with a naive rational implementation."""

    def __init__(self, num, den):
        g = math.gcd(num, den)
        self.num = num // g
        self.den = den // g

    def __eq__(self, other):
        if isinstance(other, fractions.Fraction):
            return (self.num == other._numerator and
                    self.den == other._denominator)
        else:
            return NotImplemented

    def __lt__(self, other):
        return(self.num * other._denominator < self.den * other._numerator)

    def __gt__(self, other):
        return(self.num * other._denominator > self.den * other._numerator)

    def __le__(self, other):
        return(self.num * other._denominator <= self.den * other._numerator)

    def __ge__(self, other):
        return(self.num * other._denominator >= self.den * other._numerator)

    # this class is for testing comparisons; conversion to float
    # should never be used for a comparison, since it loses accuracy
    def __float__(self):
        assert False, "__float__ should not be invoked"

class DummyFraction(fractions.Fraction):
    """Dummy Fraction subclass for copy and deepcopy testing."""


def _components(r):
    return (r.numerator, r.denominator)


class FractionTest(unittest.TestCase):

    def assertTypedEquals(self, expected, actual):
        """Asserts that both the types and values are the same."""
        self.assertEqual(type(expected), type(actual))
        self.assertEqual(expected, actual)

    def assertTypedTupleEquals(self, expected, actual):
        """Asserts that both the types and values in the tuples are the same."""
        self.assertTupleEqual(expected, actual)
        self.assertListEqual(list(map(type, expected)), list(map(type, actual)))

    def assertRaisesMessage(self, exc_type, message,
                            callable, *args, **kwargs):
        """Asserts that callable(*args, **kwargs) raises exc_type(message)."""
        try:
            callable(*args, **kwargs)
        except exc_type as e:
            self.assertEqual(message, str(e))
        else:
            self.fail("%s not raised" % exc_type.__name__)

    def testInit(self):
        self.assertEqual((0, 1), _components(F()))
        self.assertEqual((7, 1), _components(F(7)))
        self.assertEqual((7, 3), _components(F(F(7, 3))))

        self.assertEqual((-1, 1), _components(F(-1, 1)))
        self.assertEqual((-1, 1), _components(F(1, -1)))
        self.assertEqual((1, 1), _components(F(-2, -2)))
        self.assertEqual((1, 2), _components(F(5, 10)))
        self.assertEqual((7, 15), _components(F(7, 15)))
        self.assertEqual((10**23, 1), _components(F(10**23)))

        self.assertEqual((3, 77), _components(F(F(3, 7), 11)))
        self.assertEqual((-9, 5), _components(F(2, F(-10, 9))))
        self.assertEqual((2486, 2485), _components(F(F(22, 7), F(355, 113))))

        self.assertRaisesMessage(ZeroDivisionError, "Fraction(12, 0)",
                                 F, 12, 0)
        self.assertRaises(TypeError, F, 1.5 + 3j)

        self.assertRaises(TypeError, F, "3/2", 3)
        self.assertRaises(TypeError, F, 3, 0j)
        self.assertRaises(TypeError, F, 3, 1j)
        self.assertRaises(TypeError, F, 1, 2, 3)

    @requires_IEEE_754
    def testInitFromFloat(self):
        self.assertEqual((5, 2), _components(F(2.5)))
        self.assertEqual((0, 1), _components(F(-0.0)))
        self.assertEqual((3602879701896397, 36028797018963968),
                         _components(F(0.1)))
        # bug 16469: error types should be consistent with float -> int
        self.assertRaises(ValueError, F, float('nan'))
        self.assertRaises(OverflowError, F, float('inf'))
        self.assertRaises(OverflowError, F, float('-inf'))

    def testInitFromDecimal(self):
        self.assertEqual((11, 10),
                         _components(F(Decimal('1.1'))))
        self.assertEqual((7, 200),
                         _components(F(Decimal('3.5e-2'))))
        self.assertEqual((0, 1),
                         _components(F(Decimal('.000e20'))))
        # bug 16469: error types should be consistent with decimal -> int
        self.assertRaises(ValueError, F, Decimal('nan'))
        self.assertRaises(ValueError, F, Decimal('snan'))
        self.assertRaises(OverflowError, F, Decimal('inf'))
        self.assertRaises(OverflowError, F, Decimal('-inf'))

    def testFromString(self):
        self.assertEqual((5, 1), _components(F("5")))
        self.assertEqual((3, 2), _components(F("3/2")))
        self.assertEqual((3, 2), _components(F("3 / 2")))
        self.assertEqual((3, 2), _components(F(" \n  +3/2")))
        self.assertEqual((-3, 2), _components(F("-3/2  ")))
        self.assertEqual((13, 2), _components(F("    013/02 \n  ")))
        self.assertEqual((16, 5), _components(F(" 3.2 ")))
        self.assertEqual((-16, 5), _components(F(" -3.2 ")))
        self.assertEqual((-3, 1), _components(F(" -3. ")))
        self.assertEqual((3, 5), _components(F(" .6 ")))
        self.assertEqual((1, 3125), _components(F("32.e-5")))
        self.assertEqual((1000000, 1), _components(F("1E+06")))
        self.assertEqual((-12300, 1), _components(F("-1.23e4")))
        self.assertEqual((0, 1), _components(F(" .0e+0\t")))
        self.assertEqual((0, 1), _components(F("-0.000e0")))
        self.assertEqual((123, 1), _components(F("1_2_3")))
        self.assertEqual((41, 107), _components(F("1_2_3/3_2_1")))
        self.assertEqual((6283, 2000), _components(F("3.14_15")))
        self.assertEqual((6283, 2*10**13), _components(F("3.14_15e-1_0")))
        self.assertEqual((101, 100), _components(F("1.01")))
        self.assertEqual((101, 100), _components(F("1.0_1")))

        self.assertRaisesMessage(
            ZeroDivisionError, "Fraction(3, 0)",
            F, "3/0")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '3/'",
            F, "3/")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '/2'",
            F, "/2")
        self.assertRaisesMessage(
            # Denominators don't need a sign.
            ValueError, "Invalid literal for Fraction: '3/+2'",
            F, "3/+2")
        self.assertRaisesMessage(
            # Imitate float's parsing.
            ValueError, "Invalid literal for Fraction: '+ 3/2'",
            F, "+ 3/2")
        self.assertRaisesMessage(
            # Avoid treating '.' as a regex special character.
            ValueError, "Invalid literal for Fraction: '3a2'",
            F, "3a2")
        self.assertRaisesMessage(
            # Don't accept combinations of decimals and rationals.
            ValueError, "Invalid literal for Fraction: '3/7.2'",
            F, "3/7.2")
        self.assertRaisesMessage(
            # Don't accept combinations of decimals and rationals.
            ValueError, "Invalid literal for Fraction: '3.2/7'",
            F, "3.2/7")
        self.assertRaisesMessage(
            # Allow 3. and .3, but not .
            ValueError, "Invalid literal for Fraction: '.'",
            F, ".")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '_'",
            F, "_")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '_1'",
            F, "_1")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1__2'",
            F, "1__2")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '/_'",
            F, "/_")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1_/'",
            F, "1_/")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '_1/'",
            F, "_1/")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1__2/'",
            F, "1__2/")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1/_'",
            F, "1/_")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1/_1'",
            F, "1/_1")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1/1__2'",
            F, "1/1__2")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1._111'",
            F, "1._111")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1.1__1'",
            F, "1.1__1")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1.1e+_1'",
            F, "1.1e+_1")
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1.1e+1__1'",
            F, "1.1e+1__1")
        # Test catastrophic backtracking.
        val = "9"*50 + "_"
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '" + val + "'",
            F, val)
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1/" + val + "'",
            F, "1/" + val)
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1." + val + "'",
            F, "1." + val)
        self.assertRaisesMessage(
            ValueError, "Invalid literal for Fraction: '1.1+e" + val + "'",
            F, "1.1+e" + val)

    def testImmutable(self):
        r = F(7, 3)
        r.__init__(2, 15)
        self.assertEqual((7, 3), _components(r))

        self.assertRaises(AttributeError, setattr, r, 'numerator', 12)
        self.assertRaises(AttributeError, setattr, r, 'denominator', 6)
        self.assertEqual((7, 3), _components(r))

        # But if you _really_ need to:
        r._numerator = 4
        r._denominator = 2
        self.assertEqual((4, 2), _components(r))
        # Which breaks some important operations:
        self.assertNotEqual(F(4, 2), r)

    def testFromFloat(self):
        self.assertRaises(TypeError, F.from_float, 3+4j)
        self.assertEqual((10, 1), _components(F.from_float(10)))
        bigint = 1234567890123456789
        self.assertEqual((bigint, 1), _components(F.from_float(bigint)))
        self.assertEqual((0, 1), _components(F.from_float(-0.0)))
        self.assertEqual((10, 1), _components(F.from_float(10.0)))
        self.assertEqual((-5, 2), _components(F.from_float(-2.5)))
        self.assertEqual((99999999999999991611392, 1),
                         _components(F.from_float(1e23)))
        self.assertEqual(float(10**23), float(F.from_float(1e23)))
        self.assertEqual((3602879701896397, 1125899906842624),
                         _components(F.from_float(3.2)))
        self.assertEqual(3.2, float(F.from_float(3.2)))

        inf = 1e1000
        nan = inf - inf
        # bug 16469: error types should be consistent with float -> int
        self.assertRaisesMessage(
            OverflowError, "cannot convert Infinity to integer ratio",
            F.from_float, inf)
        self.assertRaisesMessage(
            OverflowError, "cannot convert Infinity to integer ratio",
            F.from_float, -inf)
        self.assertRaisesMessage(
            ValueError, "cannot convert NaN to integer ratio",
            F.from_float, nan)

    def testFromDecimal(self):
        self.assertRaises(TypeError, F.from_decimal, 3+4j)
        self.assertEqual(F(10, 1), F.from_decimal(10))
        self.assertEqual(F(0), F.from_decimal(Decimal("-0")))
        self.assertEqual(F(5, 10), F.from_decimal(Decimal("0.5")))
        self.assertEqual(F(5, 1000), F.from_decimal(Decimal("5e-3")))
        self.assertEqual(F(5000), F.from_decimal(Decimal("5e3")))
        self.assertEqual(1 - F(1, 10**30),
                         F.from_decimal(Decimal("0." + "9" * 30)))

        # bug 16469: error types should be consistent with decimal -> int
        self.assertRaisesMessage(
            OverflowError, "cannot convert Infinity to integer ratio",
            F.from_decimal, Decimal("inf"))
        self.assertRaisesMessage(
            OverflowError, "cannot convert Infinity to integer ratio",
            F.from_decimal, Decimal("-inf"))
        self.assertRaisesMessage(
            ValueError, "cannot convert NaN to integer ratio",
            F.from_decimal, Decimal("nan"))
        self.assertRaisesMessage(
            ValueError, "cannot convert NaN to integer ratio",
            F.from_decimal, Decimal("snan"))

    def test_is_integer(self):
        self.assertTrue(F(1, 1).is_integer())
        self.assertTrue(F(-1, 1).is_integer())
        self.assertTrue(F(1, -1).is_integer())
        self.assertTrue(F(2, 2).is_integer())
        self.assertTrue(F(-2, 2).is_integer())
        self.assertTrue(F(2, -2).is_integer())

        self.assertFalse(F(1, 2).is_integer())
        self.assertFalse(F(-1, 2).is_integer())
        self.assertFalse(F(1, -2).is_integer())
        self.assertFalse(F(-1, -2).is_integer())

    def test_as_integer_ratio(self):
        self.assertEqual(F(4, 6).as_integer_ratio(), (2, 3))
        self.assertEqual(F(-4, 6).as_integer_ratio(), (-2, 3))
        self.assertEqual(F(4, -6).as_integer_ratio(), (-2, 3))
        self.assertEqual(F(0, 6).as_integer_ratio(), (0, 1))

    def testLimitDenominator(self):
        rpi = F('3.1415926535897932')
        self.assertEqual(rpi.limit_denominator(10000), F(355, 113))
        self.assertEqual(-rpi.limit_denominator(10000), F(-355, 113))
        self.assertEqual(rpi.limit_denominator(113), F(355, 113))
        self.assertEqual(rpi.limit_denominator(112), F(333, 106))
        self.assertEqual(F(201, 200).limit_denominator(100), F(1))
        self.assertEqual(F(201, 200).limit_denominator(101), F(102, 101))
        self.assertEqual(F(0).limit_denominator(10000), F(0))
        for i in (0, -1):
            self.assertRaisesMessage(
                ValueError, "max_denominator should be at least 1",
                F(1).limit_denominator, i)

    def testConversions(self):
        self.assertTypedEquals(-1, math.trunc(F(-11, 10)))
        self.assertTypedEquals(1, math.trunc(F(11, 10)))
        self.assertTypedEquals(-2, math.floor(F(-11, 10)))
        self.assertTypedEquals(-1, math.ceil(F(-11, 10)))
        self.assertTypedEquals(-1, math.ceil(F(-10, 10)))
        self.assertTypedEquals(-1, int(F(-11, 10)))
        self.assertTypedEquals(0, round(F(-1, 10)))
        self.assertTypedEquals(0, round(F(-5, 10)))
        self.assertTypedEquals(-2, round(F(-15, 10)))
        self.assertTypedEquals(-1, round(F(-7, 10)))

        self.assertEqual(False, bool(F(0, 1)))
        self.assertEqual(True, bool(F(3, 2)))
        self.assertTypedEquals(0.1, float(F(1, 10)))

        # Check that __float__ isn't implemented by converting the
        # numerator and denominator to float before dividing.
        self.assertRaises(OverflowError, float, int('2'*400+'7'))
        self.assertAlmostEqual(2.0/3,
                               float(F(int('2'*400+'7'), int('3'*400+'1'))))

        self.assertTypedEquals(0.1+0j, complex(F(1,10)))

    def testSupportsInt(self):
        # See bpo-44547.
        f = F(3, 2)
        self.assertIsInstance(f, typing.SupportsInt)
        self.assertEqual(int(f), 1)
        self.assertEqual(type(int(f)), int)

    def testIntGuaranteesIntReturn(self):
        # Check that int(some_fraction) gives a result of exact type `int`
        # even if the fraction is using some other Integral type for its
        # numerator and denominator.

        class CustomInt(int):
            """
            Subclass of int with just enough machinery to convince the Fraction
            constructor to produce something with CustomInt numerator and
            denominator.
            """

            @property
            def numerator(self):
                return self

            @property
            def denominator(self):
                return CustomInt(1)

            def __mul__(self, other):
                return CustomInt(int(self) * int(other))

            def __floordiv__(self, other):
                return CustomInt(int(self) // int(other))

        f = F(CustomInt(13), CustomInt(5))

        self.assertIsInstance(f.numerator, CustomInt)
        self.assertIsInstance(f.denominator, CustomInt)
        self.assertIsInstance(f, typing.SupportsInt)
        self.assertEqual(int(f), 2)
        self.assertEqual(type(int(f)), int)

    def testBoolGuarateesBoolReturn(self):
        # Ensure that __bool__ is used on numerator which guarantees a bool
        # return.  See also bpo-39274.
        @functools.total_ordering
        class CustomValue:
            denominator = 1

            def __init__(self, value):
                self.value = value

            def __bool__(self):
                return bool(self.value)

            @property
            def numerator(self):
                # required to preserve `self` during instantiation
                return self

            def __eq__(self, other):
                raise AssertionError("Avoid comparisons in Fraction.__bool__")

            __lt__ = __eq__

        # We did not implement all abstract methods, so register:
        numbers.Rational.register(CustomValue)

        numerator = CustomValue(1)
        r = F(numerator)
        # ensure the numerator was not lost during instantiation:
        self.assertIs(r.numerator, numerator)
        self.assertIs(bool(r), True)

        numerator = CustomValue(0)
        r = F(numerator)
        self.assertIs(bool(r), False)

    def testRound(self):
        self.assertTypedEquals(F(-200), round(F(-150), -2))
        self.assertTypedEquals(F(-200), round(F(-250), -2))
        self.assertTypedEquals(F(30), round(F(26), -1))
        self.assertTypedEquals(F(-2, 10), round(F(-15, 100), 1))
        self.assertTypedEquals(F(-2, 10), round(F(-25, 100), 1))

    def testArithmetic(self):
        self.assertEqual(F(1, 2), F(1, 10) + F(2, 5))
        self.assertEqual(F(-3, 10), F(1, 10) - F(2, 5))
        self.assertEqual(F(1, 25), F(1, 10) * F(2, 5))
        self.assertEqual(F(5, 6), F(2, 3) * F(5, 4))
        self.assertEqual(F(1, 4), F(1, 10) / F(2, 5))
        self.assertEqual(F(-15, 8), F(3, 4) / F(-2, 5))
        self.assertRaises(ZeroDivisionError, operator.truediv, F(1), F(0))
        self.assertTypedEquals(2, F(9, 10) // F(2, 5))
        self.assertTypedEquals(10**23, F(10**23, 1) // F(1))
        self.assertEqual(F(5, 6), F(7, 3) % F(3, 2))
        self.assertEqual(F(2, 3), F(-7, 3) % F(3, 2))
        self.assertEqual((F(1), F(5, 6)), divmod(F(7, 3), F(3, 2)))
        self.assertEqual((F(-2), F(2, 3)), divmod(F(-7, 3), F(3, 2)))
        self.assertEqual(F(8, 27), F(2, 3) ** F(3))
        self.assertEqual(F(27, 8), F(2, 3) ** F(-3))
        self.assertTypedEquals(2.0, F(4) ** F(1, 2))
        self.assertEqual(F(1, 1), +F(1, 1))
        z = pow(F(-1), F(1, 2))
        self.assertAlmostEqual(z.real, 0)
        self.assertEqual(z.imag, 1)
        # Regression test for #27539.
        p = F(-1, 2) ** 0
        self.assertEqual(p, F(1, 1))
        self.assertEqual(p.numerator, 1)
        self.assertEqual(p.denominator, 1)
        p = F(-1, 2) ** -1
        self.assertEqual(p, F(-2, 1))
        self.assertEqual(p.numerator, -2)
        self.assertEqual(p.denominator, 1)
        p = F(-1, 2) ** -2
        self.assertEqual(p, F(4, 1))
        self.assertEqual(p.numerator, 4)
        self.assertEqual(p.denominator, 1)

    def testLargeArithmetic(self):
        self.assertTypedEquals(
            F(10101010100808080808080808101010101010000000000000000,
              1010101010101010101010101011111111101010101010101010101010101),
            F(10**35+1, 10**27+1) % F(10**27+1, 10**35-1)
        )
        self.assertTypedEquals(
            F(7, 1901475900342344102245054808064),
            F(-2**100, 3) % F(5, 2**100)
        )
        self.assertTypedTupleEquals(
            (9999999999999999,
             F(10101010100808080808080808101010101010000000000000000,
               1010101010101010101010101011111111101010101010101010101010101)),
            divmod(F(10**35+1, 10**27+1), F(10**27+1, 10**35-1))
        )
        self.assertTypedEquals(
            -2 ** 200 // 15,
            F(-2**100, 3) // F(5, 2**100)
        )
        self.assertTypedEquals(
            1,
            F(5, 2**100) // F(3, 2**100)
        )
        self.assertTypedEquals(
            (1, F(2, 2**100)),
            divmod(F(5, 2**100), F(3, 2**100))
        )
        self.assertTypedTupleEquals(
            (-2 ** 200 // 15,
             F(7, 1901475900342344102245054808064)),
            divmod(F(-2**100, 3), F(5, 2**100))
        )

    def testMixedArithmetic(self):
        self.assertTypedEquals(F(11, 10), F(1, 10) + 1)
        self.assertTypedEquals(1.1, F(1, 10) + 1.0)
        self.assertTypedEquals(1.1 + 0j, F(1, 10) + (1.0 + 0j))
        self.assertTypedEquals(F(11, 10), 1 + F(1, 10))
        self.assertTypedEquals(1.1, 1.0 + F(1, 10))
        self.assertTypedEquals(1.1 + 0j, (1.0 + 0j) + F(1, 10))

        self.assertTypedEquals(F(-9, 10), F(1, 10) - 1)
        self.assertTypedEquals(-0.9, F(1, 10) - 1.0)
        self.assertTypedEquals(-0.9 + 0j, F(1, 10) - (1.0 + 0j))
        self.assertTypedEquals(F(9, 10), 1 - F(1, 10))
        self.assertTypedEquals(0.9, 1.0 - F(1, 10))
        self.assertTypedEquals(0.9 + 0j, (1.0 + 0j) - F(1, 10))

        self.assertTypedEquals(F(1, 10), F(1, 10) * 1)
        self.assertTypedEquals(0.1, F(1, 10) * 1.0)
        self.assertTypedEquals(0.1 + 0j, F(1, 10) * (1.0 + 0j))
        self.assertTypedEquals(F(1, 10), 1 * F(1, 10))
        self.assertTypedEquals(0.1, 1.0 * F(1, 10))
        self.assertTypedEquals(0.1 + 0j, (1.0 + 0j) * F(1, 10))

        self.assertTypedEquals(F(1, 10), F(1, 10) / 1)
        self.assertTypedEquals(0.1, F(1, 10) / 1.0)
        self.assertTypedEquals(0.1 + 0j, F(1, 10) / (1.0 + 0j))
        self.assertTypedEquals(F(10, 1), 1 / F(1, 10))
        self.assertTypedEquals(10.0, 1.0 / F(1, 10))
        self.assertTypedEquals(10.0 + 0j, (1.0 + 0j) / F(1, 10))

        self.assertTypedEquals(0, F(1, 10) // 1)
        self.assertTypedEquals(0.0, F(1, 10) // 1.0)
        self.assertTypedEquals(10, 1 // F(1, 10))
        self.assertTypedEquals(10**23, 10**22 // F(1, 10))
        self.assertTypedEquals(1.0 // 0.1, 1.0 // F(1, 10))

        self.assertTypedEquals(F(1, 10), F(1, 10) % 1)
        self.assertTypedEquals(0.1, F(1, 10) % 1.0)
        self.assertTypedEquals(F(0, 1), 1 % F(1, 10))
        self.assertTypedEquals(1.0 % 0.1, 1.0 % F(1, 10))
        self.assertTypedEquals(0.1, F(1, 10) % float('inf'))
        self.assertTypedEquals(float('-inf'), F(1, 10) % float('-inf'))
        self.assertTypedEquals(float('inf'), F(-1, 10) % float('inf'))
        self.assertTypedEquals(-0.1, F(-1, 10) % float('-inf'))

        self.assertTypedTupleEquals((0, F(1, 10)), divmod(F(1, 10), 1))
        self.assertTypedTupleEquals(divmod(0.1, 1.0), divmod(F(1, 10), 1.0))
        self.assertTypedTupleEquals((10, F(0)), divmod(1, F(1, 10)))
        self.assertTypedTupleEquals(divmod(1.0, 0.1), divmod(1.0, F(1, 10)))
        self.assertTypedTupleEquals(divmod(0.1, float('inf')), divmod(F(1, 10), float('inf')))
        self.assertTypedTupleEquals(divmod(0.1, float('-inf')), divmod(F(1, 10), float('-inf')))
        self.assertTypedTupleEquals(divmod(-0.1, float('inf')), divmod(F(-1, 10), float('inf')))
        self.assertTypedTupleEquals(divmod(-0.1, float('-inf')), divmod(F(-1, 10), float('-inf')))

        # ** has more interesting conversion rules.
        self.assertTypedEquals(F(100, 1), F(1, 10) ** -2)
        self.assertTypedEquals(F(100, 1), F(10, 1) ** 2)
        self.assertTypedEquals(0.1, F(1, 10) ** 1.0)
        self.assertTypedEquals(0.1 + 0j, F(1, 10) ** (1.0 + 0j))
        self.assertTypedEquals(4 , 2 ** F(2, 1))
        z = pow(-1, F(1, 2))
        self.assertAlmostEqual(0, z.real)
        self.assertEqual(1, z.imag)
        self.assertTypedEquals(F(1, 4) , 2 ** F(-2, 1))
        self.assertTypedEquals(2.0 , 4 ** F(1, 2))
        self.assertTypedEquals(0.25, 2.0 ** F(-2, 1))
        self.assertTypedEquals(1.0 + 0j, (1.0 + 0j) ** F(1, 10))
        self.assertRaises(ZeroDivisionError, operator.pow,
                          F(0, 1), -2)

    def testMixingWithDecimal(self):
        # Decimal refuses mixed arithmetic (but not mixed comparisons)
        self.assertRaises(TypeError, operator.add,
                          F(3,11), Decimal('3.1415926'))
        self.assertRaises(TypeError, operator.add,
                          Decimal('3.1415926'), F(3,11))

    def testComparisons(self):
        self.assertTrue(F(1, 2) < F(2, 3))
        self.assertFalse(F(1, 2) < F(1, 2))
        self.assertTrue(F(1, 2) <= F(2, 3))
        self.assertTrue(F(1, 2) <= F(1, 2))
        self.assertFalse(F(2, 3) <= F(1, 2))
        self.assertTrue(F(1, 2) == F(1, 2))
        self.assertFalse(F(1, 2) == F(1, 3))
        self.assertFalse(F(1, 2) != F(1, 2))
        self.assertTrue(F(1, 2) != F(1, 3))

    def testComparisonsDummyRational(self):
        self.assertTrue(F(1, 2) == DummyRational(1, 2))
        self.assertTrue(DummyRational(1, 2) == F(1, 2))
        self.assertFalse(F(1, 2) == DummyRational(3, 4))
        self.assertFalse(DummyRational(3, 4) == F(1, 2))

        self.assertTrue(F(1, 2) < DummyRational(3, 4))
        self.assertFalse(F(1, 2) < DummyRational(1, 2))
        self.assertFalse(F(1, 2) < DummyRational(1, 7))
        self.assertFalse(F(1, 2) > DummyRational(3, 4))
        self.assertFalse(F(1, 2) > DummyRational(1, 2))
        self.assertTrue(F(1, 2) > DummyRational(1, 7))
        self.assertTrue(F(1, 2) <= DummyRational(3, 4))
        self.assertTrue(F(1, 2) <= DummyRational(1, 2))
        self.assertFalse(F(1, 2) <= DummyRational(1, 7))
        self.assertFalse(F(1, 2) >= DummyRational(3, 4))
        self.assertTrue(F(1, 2) >= DummyRational(1, 2))
        self.assertTrue(F(1, 2) >= DummyRational(1, 7))

        self.assertTrue(DummyRational(1, 2) < F(3, 4))
        self.assertFalse(DummyRational(1, 2) < F(1, 2))
        self.assertFalse(DummyRational(1, 2) < F(1, 7))
        self.assertFalse(DummyRational(1, 2) > F(3, 4))
        self.assertFalse(DummyRational(1, 2) > F(1, 2))
        self.assertTrue(DummyRational(1, 2) > F(1, 7))
        self.assertTrue(DummyRational(1, 2) <= F(3, 4))
        self.assertTrue(DummyRational(1, 2) <= F(1, 2))
        self.assertFalse(DummyRational(1, 2) <= F(1, 7))
        self.assertFalse(DummyRational(1, 2) >= F(3, 4))
        self.assertTrue(DummyRational(1, 2) >= F(1, 2))
        self.assertTrue(DummyRational(1, 2) >= F(1, 7))

    def testComparisonsDummyFloat(self):
        x = DummyFloat(1./3.)
        y = F(1, 3)
        self.assertTrue(x != y)
        self.assertTrue(x < y or x > y)
        self.assertFalse(x == y)
        self.assertFalse(x <= y and x >= y)
        self.assertTrue(y != x)
        self.assertTrue(y < x or y > x)
        self.assertFalse(y == x)
        self.assertFalse(y <= x and y >= x)

    def testMixedLess(self):
        self.assertTrue(2 < F(5, 2))
        self.assertFalse(2 < F(4, 2))
        self.assertTrue(F(5, 2) < 3)
        self.assertFalse(F(4, 2) < 2)

        self.assertTrue(F(1, 2) < 0.6)
        self.assertFalse(F(1, 2) < 0.4)
        self.assertTrue(0.4 < F(1, 2))
        self.assertFalse(0.5 < F(1, 2))

        self.assertFalse(float('inf') < F(1, 2))
        self.assertTrue(float('-inf') < F(0, 10))
        self.assertFalse(float('nan') < F(-3, 7))
        self.assertTrue(F(1, 2) < float('inf'))
        self.assertFalse(F(17, 12) < float('-inf'))
        self.assertFalse(F(144, -89) < float('nan'))

    def testMixedLessEqual(self):
        self.assertTrue(0.5 <= F(1, 2))
        self.assertFalse(0.6 <= F(1, 2))
        self.assertTrue(F(1, 2) <= 0.5)
        self.assertFalse(F(1, 2) <= 0.4)
        self.assertTrue(2 <= F(4, 2))
        self.assertFalse(2 <= F(3, 2))
        self.assertTrue(F(4, 2) <= 2)
        self.assertFalse(F(5, 2) <= 2)

        self.assertFalse(float('inf') <= F(1, 2))
        self.assertTrue(float('-inf') <= F(0, 10))
        self.assertFalse(float('nan') <= F(-3, 7))
        self.assertTrue(F(1, 2) <= float('inf'))
        self.assertFalse(F(17, 12) <= float('-inf'))
        self.assertFalse(F(144, -89) <= float('nan'))

    def testBigFloatComparisons(self):
        # Because 10**23 can't be represented exactly as a float:
        self.assertFalse(F(10**23) == float(10**23))
        # The first test demonstrates why these are important.
        self.assertFalse(1e23 < float(F(math.trunc(1e23) + 1)))
        self.assertTrue(1e23 < F(math.trunc(1e23) + 1))
        self.assertFalse(1e23 <= F(math.trunc(1e23) - 1))
        self.assertTrue(1e23 > F(math.trunc(1e23) - 1))
        self.assertFalse(1e23 >= F(math.trunc(1e23) + 1))

    def testBigComplexComparisons(self):
        self.assertFalse(F(10**23) == complex(10**23))
        self.assertRaises(TypeError, operator.gt, F(10**23), complex(10**23))
        self.assertRaises(TypeError, operator.le, F(10**23), complex(10**23))

        x = F(3, 8)
        z = complex(0.375, 0.0)
        w = complex(0.375, 0.2)
        self.assertTrue(x == z)
        self.assertFalse(x != z)
        self.assertFalse(x == w)
        self.assertTrue(x != w)
        for op in operator.lt, operator.le, operator.gt, operator.ge:
            self.assertRaises(TypeError, op, x, z)
            self.assertRaises(TypeError, op, z, x)
            self.assertRaises(TypeError, op, x, w)
            self.assertRaises(TypeError, op, w, x)

    def testMixedEqual(self):
        self.assertTrue(0.5 == F(1, 2))
        self.assertFalse(0.6 == F(1, 2))
        self.assertTrue(F(1, 2) == 0.5)
        self.assertFalse(F(1, 2) == 0.4)
        self.assertTrue(2 == F(4, 2))
        self.assertFalse(2 == F(3, 2))
        self.assertTrue(F(4, 2) == 2)
        self.assertFalse(F(5, 2) == 2)
        self.assertFalse(F(5, 2) == float('nan'))
        self.assertFalse(float('nan') == F(3, 7))
        self.assertFalse(F(5, 2) == float('inf'))
        self.assertFalse(float('-inf') == F(2, 5))

    def testStringification(self):
        self.assertEqual("Fraction(7, 3)", repr(F(7, 3)))
        self.assertEqual("Fraction(6283185307, 2000000000)",
                         repr(F('3.1415926535')))
        self.assertEqual("Fraction(-1, 100000000000000000000)",
                         repr(F(1, -10**20)))
        self.assertEqual("7/3", str(F(7, 3)))
        self.assertEqual("7", str(F(7, 1)))

    def testHash(self):
        hmod = sys.hash_info.modulus
        hinf = sys.hash_info.inf
        self.assertEqual(hash(2.5), hash(F(5, 2)))
        self.assertEqual(hash(10**50), hash(F(10**50)))
        self.assertNotEqual(hash(float(10**23)), hash(F(10**23)))
        self.assertEqual(hinf, hash(F(1, hmod)))
        # Check that __hash__ produces the same value as hash(), for
        # consistency with int and Decimal.  (See issue #10356.)
        self.assertEqual(hash(F(-1)), F(-1).__hash__())

    def testApproximatePi(self):
        # Algorithm borrowed from
        # http://docs.python.org/lib/decimal-recipes.html
        three = F(3)
        lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
        while abs(s - lasts) > F(1, 10**9):
            lasts = s
            n, na = n+na, na+8
            d, da = d+da, da+32
            t = (t * n) / d
            s += t
        self.assertAlmostEqual(math.pi, s)

    def testApproximateCos1(self):
        # Algorithm borrowed from
        # http://docs.python.org/lib/decimal-recipes.html
        x = F(1)
        i, lasts, s, fact, num, sign = 0, 0, F(1), 1, 1, 1
        while abs(s - lasts) > F(1, 10**9):
            lasts = s
            i += 2
            fact *= i * (i-1)
            num *= x * x
            sign *= -1
            s += num / fact * sign
        self.assertAlmostEqual(math.cos(1), s)

    def test_copy_deepcopy_pickle(self):
        r = F(13, 7)
        dr = DummyFraction(13, 7)
        for proto in range(0, pickle.HIGHEST_PROTOCOL + 1):
            self.assertEqual(r, loads(dumps(r, proto)))
        self.assertEqual(id(r), id(copy(r)))
        self.assertEqual(id(r), id(deepcopy(r)))
        self.assertNotEqual(id(dr), id(copy(dr)))
        self.assertNotEqual(id(dr), id(deepcopy(dr)))
        self.assertTypedEquals(dr, copy(dr))
        self.assertTypedEquals(dr, deepcopy(dr))

    def test_slots(self):
        # Issue 4998
        r = F(13, 7)
        self.assertRaises(AttributeError, setattr, r, 'a', 10)

    def test_int_subclass(self):
        class myint(int):
            def __mul__(self, other):
                return type(self)(int(self) * int(other))
            def __floordiv__(self, other):
                return type(self)(int(self) // int(other))
            def __mod__(self, other):
                x = type(self)(int(self) % int(other))
                return x
            @property
            def numerator(self):
                return type(self)(int(self))
            @property
            def denominator(self):
                return type(self)(1)

        f = fractions.Fraction(myint(1 * 3), myint(2 * 3))
        self.assertEqual(f.numerator, 1)
        self.assertEqual(f.denominator, 2)
        self.assertEqual(type(f.numerator), myint)
        self.assertEqual(type(f.denominator), myint)

    def test_format_no_presentation_type(self):
        # Triples (fraction, specification, expected_result)
        testcases = [
            (F(1, 3), '', '1/3'),
            (F(-1, 3), '', '-1/3'),
            (F(3), '', '3'),
            (F(-3), '', '-3'),
        ]
        for fraction, spec, expected in testcases:
            with self.subTest(fraction=fraction, spec=spec):
                self.assertEqual(format(fraction, spec), expected)

    def test_format_e_presentation_type(self):
        # Triples (fraction, specification, expected_result)
        testcases = [
            (F(2, 3), '.6e', '6.666667e-01'),
            (F(3, 2), '.6e', '1.500000e+00'),
            (F(2, 13), '.6e', '1.538462e-01'),
            (F(2, 23), '.6e', '8.695652e-02'),
            (F(2, 33), '.6e', '6.060606e-02'),
            (F(13, 2), '.6e', '6.500000e+00'),
            (F(20, 2), '.6e', '1.000000e+01'),
            (F(23, 2), '.6e', '1.150000e+01'),
            (F(33, 2), '.6e', '1.650000e+01'),
            (F(2, 3), '.6e', '6.666667e-01'),
            (F(3, 2), '.6e', '1.500000e+00'),
            # Zero
            (F(0), '.3e', '0.000e+00'),
            # Powers of 10, to exercise the log10 boundary logic
            (F(1, 1000), '.3e', '1.000e-03'),
            (F(1, 100), '.3e', '1.000e-02'),
            (F(1, 10), '.3e', '1.000e-01'),
            (F(1, 1), '.3e', '1.000e+00'),
            (F(10), '.3e', '1.000e+01'),
            (F(100), '.3e', '1.000e+02'),
            (F(1000), '.3e', '1.000e+03'),
            # Boundary where we round up to the next power of 10
            (F('99.999994999999'), '.6e', '9.999999e+01'),
            (F('99.999995'), '.6e', '1.000000e+02'),
            (F('99.999995000001'), '.6e', '1.000000e+02'),
            # Negatives
            (F(-2, 3), '.6e', '-6.666667e-01'),
            (F(-3, 2), '.6e', '-1.500000e+00'),
            (F(-100), '.6e', '-1.000000e+02'),
            # Large and small
            (F('1e1000'), '.3e', '1.000e+1000'),
            (F('1e-1000'), '.3e', '1.000e-1000'),
            # Using 'E' instead of 'e' should give us a capital 'E'
            (F(2, 3), '.6E', '6.666667E-01'),
            # Tiny precision
            (F(2, 3), '.1e', '6.7e-01'),
            (F('0.995'), '.0e', '1e+00'),
            # Default precision is 6
            (F(22, 7), 'e', '3.142857e+00'),
            # Alternate form forces a decimal point
            (F('0.995'), '#.0e', '1.e+00'),
            # Check that padding takes the exponent into account.
            (F(22, 7), '11.6e', '3.142857e+00'),
            (F(22, 7), '12.6e', '3.142857e+00'),
            (F(22, 7), '13.6e', ' 3.142857e+00'),
            # Thousands separators
            (F('1234567.123456'), ',.5e', '1.23457e+06'),
            (F('123.123456'), '012_.2e', '0_001.23e+02'),
            # z flag is legal, but never makes a difference to the output
            (F(-1, 7**100), 'z.6e', '-3.091690e-85'),
        ]
        for fraction, spec, expected in testcases:
            with self.subTest(fraction=fraction, spec=spec):
                self.assertEqual(format(fraction, spec), expected)

    def test_format_f_presentation_type(self):
        # Triples (fraction, specification, expected_result)
        testcases = [
            # Simple .f formatting
            (F(0, 1), '.2f', '0.00'),
            (F(1, 3), '.2f', '0.33'),
            (F(2, 3), '.2f', '0.67'),
            (F(4, 3), '.2f', '1.33'),
            (F(1, 8), '.2f', '0.12'),
            (F(3, 8), '.2f', '0.38'),
            (F(1, 13), '.2f', '0.08'),
            (F(1, 199), '.2f', '0.01'),
            (F(1, 200), '.2f', '0.00'),
            (F(22, 7), '.5f', '3.14286'),
            (F('399024789'), '.2f', '399024789.00'),
            # Large precision (more than float can provide)
            (F(104348, 33215), '.50f',
             '3.14159265392142104470871594159265392142104470871594'),
            # Precision defaults to 6 if not given
            (F(22, 7), 'f', '3.142857'),
            (F(0), 'f', '0.000000'),
            (F(-22, 7), 'f', '-3.142857'),
            # Round-ties-to-even checks
            (F('1.225'), '.2f', '1.22'),
            (F('1.2250000001'), '.2f', '1.23'),
            (F('1.2349999999'), '.2f', '1.23'),
            (F('1.235'), '.2f', '1.24'),
            (F('1.245'), '.2f', '1.24'),
            (F('1.2450000001'), '.2f', '1.25'),
            (F('1.2549999999'), '.2f', '1.25'),
            (F('1.255'), '.2f', '1.26'),
            (F('-1.225'), '.2f', '-1.22'),
            (F('-1.2250000001'), '.2f', '-1.23'),
            (F('-1.2349999999'), '.2f', '-1.23'),
            (F('-1.235'), '.2f', '-1.24'),
            (F('-1.245'), '.2f', '-1.24'),
            (F('-1.2450000001'), '.2f', '-1.25'),
            (F('-1.2549999999'), '.2f', '-1.25'),
            (F('-1.255'), '.2f', '-1.26'),
            # Negatives and sign handling
            (F(2, 3), '.2f', '0.67'),
            (F(2, 3), '-.2f', '0.67'),
            (F(2, 3), '+.2f', '+0.67'),
            (F(2, 3), ' .2f', ' 0.67'),
            (F(-2, 3), '.2f', '-0.67'),
            (F(-2, 3), '-.2f', '-0.67'),
            (F(-2, 3), '+.2f', '-0.67'),
            (F(-2, 3), ' .2f', '-0.67'),
            # Formatting to zero places
            (F(1, 2), '.0f', '0'),
            (F(-1, 2), '.0f', '-0'),
            (F(22, 7), '.0f', '3'),
            (F(-22, 7), '.0f', '-3'),
            # Formatting to zero places, alternate form
            (F(1, 2), '#.0f', '0.'),
            (F(-1, 2), '#.0f', '-0.'),
            (F(22, 7), '#.0f', '3.'),
            (F(-22, 7), '#.0f', '-3.'),
            # z flag for suppressing negative zeros
            (F('-0.001'), 'z.2f', '0.00'),
            (F('-0.001'), '-z.2f', '0.00'),
            (F('-0.001'), '+z.2f', '+0.00'),
            (F('-0.001'), ' z.2f', ' 0.00'),
            (F('0.001'), 'z.2f', '0.00'),
            (F('0.001'), '-z.2f', '0.00'),
            (F('0.001'), '+z.2f', '+0.00'),
            (F('0.001'), ' z.2f', ' 0.00'),
            # Specifying a minimum width
            (F(2, 3), '6.2f', '  0.67'),
            (F(12345), '6.2f', '12345.00'),
            (F(12345), '12f', '12345.000000'),
            # Fill and alignment
            (F(2, 3), '>6.2f', '  0.67'),
            (F(2, 3), '<6.2f', '0.67  '),
            (F(2, 3), '^3.2f', '0.67'),
            (F(2, 3), '^4.2f', '0.67'),
            (F(2, 3), '^5.2f', '0.67 '),
            (F(2, 3), '^6.2f', ' 0.67 '),
            (F(2, 3), '^7.2f', ' 0.67  '),
            (F(2, 3), '^8.2f', '  0.67  '),
            # '=' alignment
            (F(-2, 3), '=+8.2f', '-   0.67'),
            (F(2, 3), '=+8.2f', '+   0.67'),
            # Fill character
            (F(-2, 3), 'X>3.2f', '-0.67'),
            (F(-2, 3), 'X>7.2f', 'XX-0.67'),
            (F(-2, 3), 'X<7.2f', '-0.67XX'),
            (F(-2, 3), 'X^7.2f', 'X-0.67X'),
            (F(-2, 3), 'X=7.2f', '-XX0.67'),
            (F(-2, 3), ' >7.2f', '  -0.67'),
            # Corner cases: weird fill characters
            (F(-2, 3), '\x00>7.2f', '\x00\x00-0.67'),
            (F(-2, 3), '\n>7.2f', '\n\n-0.67'),
            (F(-2, 3), '\t>7.2f', '\t\t-0.67'),
            (F(-2, 3), '>>7.2f', '>>-0.67'),
            (F(-2, 3), '<>7.2f', '<<-0.67'),
            (F(-2, 3), '→>7.2f', '→→-0.67'),
            # Zero-padding
            (F(-2, 3), '07.2f', '-000.67'),
            (F(-2, 3), '-07.2f', '-000.67'),
            (F(2, 3), '+07.2f', '+000.67'),
            (F(2, 3), ' 07.2f', ' 000.67'),
            # An isolated zero is a minimum width, not a zero-pad flag.
            # So unlike zero-padding, it's legal in combination with alignment.
            (F(2, 3), '0.2f', '0.67'),
            (F(2, 3), '>0.2f', '0.67'),
            (F(2, 3), '<0.2f', '0.67'),
            (F(2, 3), '^0.2f', '0.67'),
            (F(2, 3), '=0.2f', '0.67'),
            # Corner case: zero-padding _and_ a zero minimum width.
            (F(2, 3), '00.2f', '0.67'),
            # Thousands separator (only affects portion before the point)
            (F(2, 3), ',.2f', '0.67'),
            (F(2, 3), ',.7f', '0.6666667'),
            (F('123456.789'), ',.2f', '123,456.79'),
            (F('1234567'), ',.2f', '1,234,567.00'),
            (F('12345678'), ',.2f', '12,345,678.00'),
            (F('12345678'), ',f', '12,345,678.000000'),
            # Underscore as thousands separator
            (F(2, 3), '_.2f', '0.67'),
            (F(2, 3), '_.7f', '0.6666667'),
            (F('123456.789'), '_.2f', '123_456.79'),
            (F('1234567'), '_.2f', '1_234_567.00'),
            (F('12345678'), '_.2f', '12_345_678.00'),
            # Thousands and zero-padding
            (F('1234.5678'), '07,.2f', '1,234.57'),
            (F('1234.5678'), '08,.2f', '1,234.57'),
            (F('1234.5678'), '09,.2f', '01,234.57'),
            (F('1234.5678'), '010,.2f', '001,234.57'),
            (F('1234.5678'), '011,.2f', '0,001,234.57'),
            (F('1234.5678'), '012,.2f', '0,001,234.57'),
            (F('1234.5678'), '013,.2f', '00,001,234.57'),
            (F('1234.5678'), '014,.2f', '000,001,234.57'),
            (F('1234.5678'), '015,.2f', '0,000,001,234.57'),
            (F('1234.5678'), '016,.2f', '0,000,001,234.57'),
            (F('-1234.5678'), '07,.2f', '-1,234.57'),
            (F('-1234.5678'), '08,.2f', '-1,234.57'),
            (F('-1234.5678'), '09,.2f', '-1,234.57'),
            (F('-1234.5678'), '010,.2f', '-01,234.57'),
            (F('-1234.5678'), '011,.2f', '-001,234.57'),
            (F('-1234.5678'), '012,.2f', '-0,001,234.57'),
            (F('-1234.5678'), '013,.2f', '-0,001,234.57'),
            (F('-1234.5678'), '014,.2f', '-00,001,234.57'),
            (F('-1234.5678'), '015,.2f', '-000,001,234.57'),
            (F('-1234.5678'), '016,.2f', '-0,000,001,234.57'),
            # Corner case: no decimal point
            (F('-1234.5678'), '06,.0f', '-1,235'),
            (F('-1234.5678'), '07,.0f', '-01,235'),
            (F('-1234.5678'), '08,.0f', '-001,235'),
            (F('-1234.5678'), '09,.0f', '-0,001,235'),
            # Corner-case - zero-padding specified through fill and align
            # instead of the zero-pad character - in this case, treat '0' as a
            # regular fill character and don't attempt to insert commas into
            # the filled portion. This differs from the int and float
            # behaviour.
            (F('1234.5678'), '0=12,.2f', '00001,234.57'),
            # Corner case where it's not clear whether the '0' indicates zero
            # padding or gives the minimum width, but there's still an obvious
            # answer to give. We want this to work in case the minimum width
            # is being inserted programmatically: spec = f'{width}.2f'.
            (F('12.34'), '0.2f', '12.34'),
            (F('12.34'), 'X>0.2f', '12.34'),
            # 'F' should work identically to 'f'
            (F(22, 7), '.5F', '3.14286'),
            # %-specifier
            (F(22, 7), '.2%', '314.29%'),
            (F(1, 7), '.2%', '14.29%'),
            (F(1, 70), '.2%', '1.43%'),
            (F(1, 700), '.2%', '0.14%'),
            (F(1, 7000), '.2%', '0.01%'),
            (F(1, 70000), '.2%', '0.00%'),
            (F(1, 7), '.0%', '14%'),
            (F(1, 7), '#.0%', '14.%'),
            (F(100, 7), ',.2%', '1,428.57%'),
            (F(22, 7), '7.2%', '314.29%'),
            (F(22, 7), '8.2%', ' 314.29%'),
            (F(22, 7), '08.2%', '0314.29%'),
            # Test cases from #67790 and discuss.python.org Ideas thread.
            (F(1, 3), '.2f', '0.33'),
            (F(1, 8), '.2f', '0.12'),
            (F(3, 8), '.2f', '0.38'),
            (F(2545, 1000), '.2f', '2.54'),
            (F(2549, 1000), '.2f', '2.55'),
            (F(2635, 1000), '.2f', '2.64'),
            (F(1, 100), '.1f', '0.0'),
            (F(49, 1000), '.1f', '0.0'),
            (F(51, 1000), '.1f', '0.1'),
            (F(149, 1000), '.1f', '0.1'),
            (F(151, 1000), '.1f', '0.2'),
        ]
        for fraction, spec, expected in testcases:
            with self.subTest(fraction=fraction, spec=spec):
                self.assertEqual(format(fraction, spec), expected)

    def test_format_g_presentation_type(self):
        # Triples (fraction, specification, expected_result)
        testcases = [
            (F('0.000012345678'), '.6g', '1.23457e-05'),
            (F('0.00012345678'), '.6g', '0.000123457'),
            (F('0.0012345678'), '.6g', '0.00123457'),
            (F('0.012345678'), '.6g', '0.0123457'),
            (F('0.12345678'), '.6g', '0.123457'),
            (F('1.2345678'), '.6g', '1.23457'),
            (F('12.345678'), '.6g', '12.3457'),
            (F('123.45678'), '.6g', '123.457'),
            (F('1234.5678'), '.6g', '1234.57'),
            (F('12345.678'), '.6g', '12345.7'),
            (F('123456.78'), '.6g', '123457'),
            (F('1234567.8'), '.6g', '1.23457e+06'),
            # Rounding up cases
            (F('9.99999e+2'), '.4g', '1000'),
            (F('9.99999e-8'), '.4g', '1e-07'),
            (F('9.99999e+8'), '.4g', '1e+09'),
            # Check round-ties-to-even behaviour
            (F('-0.115'), '.2g', '-0.12'),
            (F('-0.125'), '.2g', '-0.12'),
            (F('-0.135'), '.2g', '-0.14'),
            (F('-0.145'), '.2g', '-0.14'),
            (F('0.115'), '.2g', '0.12'),
            (F('0.125'), '.2g', '0.12'),
            (F('0.135'), '.2g', '0.14'),
            (F('0.145'), '.2g', '0.14'),
            # Trailing zeros and decimal point suppressed by default ...
            (F(0), '.6g', '0'),
            (F('123.400'), '.6g', '123.4'),
            (F('123.000'), '.6g', '123'),
            (F('120.000'), '.6g', '120'),
            (F('12000000'), '.6g', '1.2e+07'),
            # ... but not when alternate form is in effect
            (F(0), '#.6g', '0.00000'),
            (F('123.400'), '#.6g', '123.400'),
            (F('123.000'), '#.6g', '123.000'),
            (F('120.000'), '#.6g', '120.000'),
            (F('12000000'), '#.6g', '1.20000e+07'),
            # 'G' format (uses 'E' instead of 'e' for the exponent indicator)
            (F('123.45678'), '.6G', '123.457'),
            (F('1234567.8'), '.6G', '1.23457E+06'),
            # Default precision is 6 significant figures
            (F('3.1415926535'), 'g', '3.14159'),
            # Precision 0 is treated the same as precision 1.
            (F('0.000031415'), '.0g', '3e-05'),
            (F('0.00031415'), '.0g', '0.0003'),
            (F('0.31415'), '.0g', '0.3'),
            (F('3.1415'), '.0g', '3'),
            (F('3.1415'), '#.0g', '3.'),
            (F('31.415'), '.0g', '3e+01'),
            (F('31.415'), '#.0g', '3.e+01'),
            (F('0.000031415'), '.1g', '3e-05'),
            (F('0.00031415'), '.1g', '0.0003'),
            (F('0.31415'), '.1g', '0.3'),
            (F('3.1415'), '.1g', '3'),
            (F('3.1415'), '#.1g', '3.'),
            (F('31.415'), '.1g', '3e+01'),
            # Thousands separator
            (F(2**64), '_.25g', '18_446_744_073_709_551_616'),
            # As with 'e' format, z flag is legal, but has no effect
            (F(-1, 7**100), 'zg', '-3.09169e-85'),
        ]
        for fraction, spec, expected in testcases:
            with self.subTest(fraction=fraction, spec=spec):
                self.assertEqual(format(fraction, spec), expected)

    def test_invalid_formats(self):
        fraction = F(2, 3)
        with self.assertRaises(TypeError):
            format(fraction, None)

        invalid_specs = [
            'Q6f',  # regression test
            # illegal to use fill or alignment when zero padding
            'X>010f',
            'X<010f',
            'X^010f',
            'X=010f',
            '0>010f',
            '0<010f',
            '0^010f',
            '0=010f',
            '>010f',
            '<010f',
            '^010f',
            '=010e',
            '=010f',
            '=010g',
            '=010%',
            '>00.2f',
            '>00f',
            # Too many zeros - minimum width should not have leading zeros
            '006f',
            # Leading zeros in precision
            '.010f',
            '.02f',
            '.000f',
            # Missing precision
            '.e',
            '.f',
            '.g',
            '.%',
            # Z instead of z for negative zero suppression
            'Z.2f'
        ]
        for spec in invalid_specs:
            with self.subTest(spec=spec):
                with self.assertRaises(ValueError):
                    format(fraction, spec)

    @requires_IEEE_754
    def test_float_format_testfile(self):
        with open(format_testfile, encoding="utf-8") as testfile:
            for line in testfile:
                if line.startswith('--'):
                    continue
                line = line.strip()
                if not line:
                    continue

                lhs, rhs = map(str.strip, line.split('->'))
                fmt, arg = lhs.split()
                if fmt == '%r':
                    continue
                fmt2 = fmt[1:]
                with self.subTest(fmt=fmt, arg=arg):
                    f = F(float(arg))
                    self.assertEqual(format(f, fmt2), rhs)
                    if f:  # skip negative zero
                        self.assertEqual(format(-f, fmt2), '-' + rhs)
                    f = F(arg)
                    self.assertEqual(float(format(f, fmt2)), float(rhs))
                    self.assertEqual(float(format(-f, fmt2)), float('-' + rhs))


if __name__ == '__main__':
    unittest.main()