summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_math_integer.py
blob: 09a98d93bd636c983a38bf672f5bc2df0977d530 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from decimal import Decimal
from fractions import Fraction
import unittest
from test import support


class IntSubclass(int):
    pass

# Class providing an __index__ method.
class MyIndexable(object):
    def __init__(self, value):
        self.value = value

    def __index__(self):
        return self.value

# Here's a pure Python version of the math.integer.factorial algorithm, for
# documentation and comparison purposes.
#
# Formula:
#
#   factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n))
#
# where
#
#   factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j
#
# The outer product above is an infinite product, but once i >= n.bit_length,
# (n >> i) < 1 and the corresponding term of the product is empty.  So only the
# finitely many terms for 0 <= i < n.bit_length() contribute anything.
#
# We iterate downwards from i == n.bit_length() - 1 to i == 0.  The inner
# product in the formula above starts at 1 for i == n.bit_length(); for each i
# < n.bit_length() we get the inner product for i from that for i + 1 by
# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}.  In Python terms,
# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2).

def count_set_bits(n):
    """Number of '1' bits in binary expansion of a nonnnegative integer."""
    return 1 + count_set_bits(n & n - 1) if n else 0

def partial_product(start, stop):
    """Product of integers in range(start, stop, 2), computed recursively.
    start and stop should both be odd, with start <= stop.

    """
    numfactors = (stop - start) >> 1
    if not numfactors:
        return 1
    elif numfactors == 1:
        return start
    else:
        mid = (start + numfactors) | 1
        return partial_product(start, mid) * partial_product(mid, stop)

def py_factorial(n):
    """Factorial of nonnegative integer n, via "Binary Split Factorial Formula"
    described at http://www.luschny.de/math/factorial/binarysplitfact.html

    """
    inner = outer = 1
    for i in reversed(range(n.bit_length())):
        inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1)
        outer *= inner
    return outer << (n - count_set_bits(n))


class IntMathTests(unittest.TestCase):
    import math.integer as module

    def assertIntEqual(self, actual, expected):
        self.assertEqual(actual, expected)
        self.assertIs(type(actual), int)

    def test_factorial(self):
        factorial = self.module.factorial
        self.assertEqual(factorial(0), 1)
        total = 1
        for i in range(1, 1000):
            total *= i
            self.assertEqual(factorial(i), total)
            self.assertEqual(factorial(i), py_factorial(i))

        self.assertIntEqual(factorial(False), 1)
        self.assertIntEqual(factorial(True), 1)
        for i in range(3):
            expected = factorial(i)
            self.assertIntEqual(factorial(IntSubclass(i)), expected)
            self.assertIntEqual(factorial(MyIndexable(i)), expected)

        self.assertRaises(ValueError, factorial, -1)
        self.assertRaises(ValueError, factorial, -10**1000)

    def test_factorial_non_integers(self):
        factorial = self.module.factorial
        self.assertRaises(TypeError, factorial, 5.0)
        self.assertRaises(TypeError, factorial, 5.2)
        self.assertRaises(TypeError, factorial, -1.0)
        self.assertRaises(TypeError, factorial, -1e100)
        self.assertRaises(TypeError, factorial, Decimal('5'))
        self.assertRaises(TypeError, factorial, Decimal('5.2'))
        self.assertRaises(TypeError, factorial, Fraction(5, 1))
        self.assertRaises(TypeError, factorial, "5")

    # Other implementations may place different upper bounds.
    @support.cpython_only
    def test_factorial_huge_inputs(self):
        factorial = self.module.factorial
        # Currently raises OverflowError for inputs that are too large
        # to fit into a C long.
        self.assertRaises(OverflowError, factorial, 10**100)
        self.assertRaises(TypeError, factorial, 1e100)

    def test_gcd(self):
        gcd = self.module.gcd
        self.assertEqual(gcd(0, 0), 0)
        self.assertEqual(gcd(1, 0), 1)
        self.assertEqual(gcd(-1, 0), 1)
        self.assertEqual(gcd(0, 1), 1)
        self.assertEqual(gcd(0, -1), 1)
        self.assertEqual(gcd(7, 1), 1)
        self.assertEqual(gcd(7, -1), 1)
        self.assertEqual(gcd(-23, 15), 1)
        self.assertEqual(gcd(120, 84), 12)
        self.assertEqual(gcd(84, -120), 12)
        self.assertEqual(gcd(1216342683557601535506311712,
                             436522681849110124616458784), 32)
        c = 652560
        x = 434610456570399902378880679233098819019853229470286994367836600566
        y = 1064502245825115327754847244914921553977
        a = x * c
        b = y * c
        self.assertEqual(gcd(a, b), c)
        self.assertEqual(gcd(b, a), c)
        self.assertEqual(gcd(-a, b), c)
        self.assertEqual(gcd(b, -a), c)
        self.assertEqual(gcd(a, -b), c)
        self.assertEqual(gcd(-b, a), c)
        self.assertEqual(gcd(-a, -b), c)
        self.assertEqual(gcd(-b, -a), c)
        c = 576559230871654959816130551884856912003141446781646602790216406874
        a = x * c
        b = y * c
        self.assertEqual(gcd(a, b), c)
        self.assertEqual(gcd(b, a), c)
        self.assertEqual(gcd(-a, b), c)
        self.assertEqual(gcd(b, -a), c)
        self.assertEqual(gcd(a, -b), c)
        self.assertEqual(gcd(-b, a), c)
        self.assertEqual(gcd(-a, -b), c)
        self.assertEqual(gcd(-b, -a), c)

        self.assertRaises(TypeError, gcd, 120.0, 84)
        self.assertRaises(TypeError, gcd, 120, 84.0)
        self.assertIntEqual(gcd(IntSubclass(120), IntSubclass(84)), 12)
        self.assertIntEqual(gcd(MyIndexable(120), MyIndexable(84)), 12)

    def test_lcm(self):
        lcm = self.module.lcm
        self.assertEqual(lcm(0, 0), 0)
        self.assertEqual(lcm(1, 0), 0)
        self.assertEqual(lcm(-1, 0), 0)
        self.assertEqual(lcm(0, 1), 0)
        self.assertEqual(lcm(0, -1), 0)
        self.assertEqual(lcm(7, 1), 7)
        self.assertEqual(lcm(7, -1), 7)
        self.assertEqual(lcm(-23, 15), 345)
        self.assertEqual(lcm(120, 84), 840)
        self.assertEqual(lcm(84, -120), 840)
        self.assertEqual(lcm(1216342683557601535506311712,
                             436522681849110124616458784),
                             16592536571065866494401400422922201534178938447014944)

        x = 43461045657039990237
        y = 10645022458251153277
        for c in (652560,
                  57655923087165495981):
            a = x * c
            b = y * c
            d = x * y * c
            self.assertEqual(lcm(a, b), d)
            self.assertEqual(lcm(b, a), d)
            self.assertEqual(lcm(-a, b), d)
            self.assertEqual(lcm(b, -a), d)
            self.assertEqual(lcm(a, -b), d)
            self.assertEqual(lcm(-b, a), d)
            self.assertEqual(lcm(-a, -b), d)
            self.assertEqual(lcm(-b, -a), d)

        self.assertEqual(lcm(), 1)
        self.assertEqual(lcm(120), 120)
        self.assertEqual(lcm(-120), 120)
        self.assertEqual(lcm(120, 84, 102), 14280)
        self.assertEqual(lcm(120, 0, 84), 0)

        self.assertRaises(TypeError, lcm, 120.0)
        self.assertRaises(TypeError, lcm, 120.0, 84)
        self.assertRaises(TypeError, lcm, 120, 84.0)
        self.assertRaises(TypeError, lcm, 120, 0, 84.0)
        self.assertEqual(lcm(MyIndexable(120), MyIndexable(84)), 840)

    def test_isqrt(self):
        isqrt = self.module.isqrt
        # Test a variety of inputs, large and small.
        test_values = (
            list(range(1000))
            + list(range(10**6 - 1000, 10**6 + 1000))
            + [2**e + i for e in range(60, 200) for i in range(-40, 40)]
            + [3**9999, 10**5001]
        )

        for value in test_values:
            with self.subTest(value=value):
                s = isqrt(value)
                self.assertIs(type(s), int)
                self.assertLessEqual(s*s, value)
                self.assertLess(value, (s+1)*(s+1))

        # Negative values
        with self.assertRaises(ValueError):
            isqrt(-1)

        # Integer-like things
        self.assertIntEqual(isqrt(True), 1)
        self.assertIntEqual(isqrt(False), 0)
        self.assertIntEqual(isqrt(MyIndexable(1729)), 41)

        with self.assertRaises(ValueError):
            isqrt(MyIndexable(-3))

        # Non-integer-like things
        bad_values = [
            3.5, "a string", Decimal("3.5"), 3.5j,
            100.0, -4.0,
        ]
        for value in bad_values:
            with self.subTest(value=value):
                with self.assertRaises(TypeError):
                    isqrt(value)

    @support.bigmemtest(2**32, memuse=0.85)
    def test_isqrt_huge(self, size):
        isqrt = self.module.isqrt
        if size & 1:
            size += 1
        v = 1 << size
        w = isqrt(v)
        self.assertEqual(w.bit_length(), size // 2 + 1)
        self.assertEqual(w.bit_count(), 1)

    def test_perm(self):
        perm = self.module.perm
        factorial = self.module.factorial
        # Test if factorial definition is satisfied
        for n in range(500):
            for k in (range(n + 1) if n < 100 else range(30) if n < 200 else range(10)):
                self.assertEqual(perm(n, k),
                                 factorial(n) // factorial(n - k))

        # Test for Pascal's identity
        for n in range(1, 100):
            for k in range(1, n):
                self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))

        # Test corner cases
        for n in range(1, 100):
            self.assertEqual(perm(n, 0), 1)
            self.assertEqual(perm(n, 1), n)
            self.assertEqual(perm(n, n), factorial(n))

        # Test one argument form
        for n in range(20):
            self.assertEqual(perm(n), factorial(n))
            self.assertEqual(perm(n, None), factorial(n))

        # Raises TypeError if any argument is non-integer or argument count is
        # not 1 or 2
        self.assertRaises(TypeError, perm, 10, 1.0)
        self.assertRaises(TypeError, perm, 10, Decimal(1.0))
        self.assertRaises(TypeError, perm, 10, Fraction(1, 1))
        self.assertRaises(TypeError, perm, 10, "1")
        self.assertRaises(TypeError, perm, 10.0, 1)
        self.assertRaises(TypeError, perm, Decimal(10.0), 1)
        self.assertRaises(TypeError, perm, Fraction(10, 1), 1)
        self.assertRaises(TypeError, perm, "10", 1)

        self.assertRaises(TypeError, perm)
        self.assertRaises(TypeError, perm, 10, 1, 3)
        self.assertRaises(TypeError, perm)

        # Raises Value error if not k or n are negative numbers
        self.assertRaises(ValueError, perm, -1, 1)
        self.assertRaises(ValueError, perm, -2**1000, 1)
        self.assertRaises(ValueError, perm, 1, -1)
        self.assertRaises(ValueError, perm, 1, -2**1000)

        # Returns zero if k is greater than n
        self.assertEqual(perm(1, 2), 0)
        self.assertEqual(perm(1, 2**1000), 0)

        n = 2**1000
        self.assertEqual(perm(n, 0), 1)
        self.assertEqual(perm(n, 1), n)
        self.assertEqual(perm(n, 2), n * (n-1))
        if support.check_impl_detail(cpython=True):
            self.assertRaises(OverflowError, perm, n, n)

        for n, k in (True, True), (True, False), (False, False):
            self.assertIntEqual(perm(n, k), 1)
        self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
        self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
        for k in range(3):
            self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
            self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)

    def test_comb(self):
        comb = self.module.comb
        factorial = self.module.factorial
        # Test if factorial definition is satisfied
        for n in range(500):
            for k in (range(n + 1) if n < 100 else range(30) if n < 200 else range(10)):
                self.assertEqual(comb(n, k), factorial(n)
                    // (factorial(k) * factorial(n - k)))

        # Test for Pascal's identity
        for n in range(1, 100):
            for k in range(1, n):
                self.assertEqual(comb(n, k), comb(n - 1, k - 1) + comb(n - 1, k))

        # Test corner cases
        for n in range(100):
            self.assertEqual(comb(n, 0), 1)
            self.assertEqual(comb(n, n), 1)

        for n in range(1, 100):
            self.assertEqual(comb(n, 1), n)
            self.assertEqual(comb(n, n - 1), n)

        # Test Symmetry
        for n in range(100):
            for k in range(n // 2):
                self.assertEqual(comb(n, k), comb(n, n - k))

        # Raises TypeError if any argument is non-integer or argument count is
        # not 2
        self.assertRaises(TypeError, comb, 10, 1.0)
        self.assertRaises(TypeError, comb, 10, Decimal(1.0))
        self.assertRaises(TypeError, comb, 10, "1")
        self.assertRaises(TypeError, comb, 10.0, 1)
        self.assertRaises(TypeError, comb, Decimal(10.0), 1)
        self.assertRaises(TypeError, comb, "10", 1)

        self.assertRaises(TypeError, comb, 10)
        self.assertRaises(TypeError, comb, 10, 1, 3)
        self.assertRaises(TypeError, comb)

        # Raises Value error if not k or n are negative numbers
        self.assertRaises(ValueError, comb, -1, 1)
        self.assertRaises(ValueError, comb, -2**1000, 1)
        self.assertRaises(ValueError, comb, 1, -1)
        self.assertRaises(ValueError, comb, 1, -2**1000)

        # Returns zero if k is greater than n
        self.assertEqual(comb(1, 2), 0)
        self.assertEqual(comb(1, 2**1000), 0)

        n = 2**1000
        self.assertEqual(comb(n, 0), 1)
        self.assertEqual(comb(n, 1), n)
        self.assertEqual(comb(n, 2), n * (n-1) // 2)
        self.assertEqual(comb(n, n), 1)
        self.assertEqual(comb(n, n-1), n)
        self.assertEqual(comb(n, n-2), n * (n-1) // 2)
        if support.check_impl_detail(cpython=True):
            self.assertRaises(OverflowError, comb, n, n//2)

        for n, k in (True, True), (True, False), (False, False):
            self.assertIntEqual(comb(n, k), 1)
        self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
        self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
        for k in range(3):
            self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
            self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)


class MathTests(IntMathTests):
    import math as module


class MiscTests(unittest.TestCase):

    def test_module_name(self):
        import math.integer
        self.assertEqual(math.integer.__name__, 'math.integer')
        for name in dir(math.integer):
            if not name.startswith('_'):
                obj = getattr(math.integer, name)
                self.assertEqual(obj.__module__, 'math.integer')


if __name__ == '__main__':
    unittest.main()