summaryrefslogtreecommitdiffstats
path: root/Lib/typing.py
blob: 8e61f50477bcc21945ad086daf36ff7498e5b718 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
"""
The typing module: Support for gradual typing as defined by PEP 484 and subsequent PEPs.

Among other things, the module includes the following:
* Generic, Protocol, and internal machinery to support generic aliases.
  All subscripted types like X[int], Union[int, str] are generic aliases.
* Various "special forms" that have unique meanings in type annotations:
  NoReturn, Never, ClassVar, Self, Concatenate, Unpack, and others.
* Classes whose instances can be type arguments to generic classes and functions:
  TypeVar, ParamSpec, TypeVarTuple.
* Public helper functions: get_type_hints, overload, cast, final, and others.
* Several protocols to support duck-typing:
  SupportsFloat, SupportsIndex, SupportsAbs, and others.
* Special types: NewType, NamedTuple, TypedDict.
* Deprecated aliases for builtin types and collections.abc ABCs.

Any name not present in __all__ is an implementation detail
that may be changed without notice. Use at your own risk!
"""

from abc import abstractmethod, ABCMeta
import collections
from collections import defaultdict
import collections.abc
import copyreg
import functools
import operator
import sys
import types
from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType, GenericAlias

from _typing import (
    _idfunc,
    TypeVar,
    ParamSpec,
    TypeVarTuple,
    ParamSpecArgs,
    ParamSpecKwargs,
    TypeAliasType,
    Generic,
    NoDefault,
)

# Please keep __all__ alphabetized within each category.
__all__ = [
    # Super-special typing primitives.
    'Annotated',
    'Any',
    'Callable',
    'ClassVar',
    'Concatenate',
    'Final',
    'ForwardRef',
    'Generic',
    'Literal',
    'Optional',
    'ParamSpec',
    'Protocol',
    'Tuple',
    'Type',
    'TypeVar',
    'TypeVarTuple',
    'Union',

    # ABCs (from collections.abc).
    'AbstractSet',  # collections.abc.Set.
    'ByteString',
    'Container',
    'ContextManager',
    'Hashable',
    'ItemsView',
    'Iterable',
    'Iterator',
    'KeysView',
    'Mapping',
    'MappingView',
    'MutableMapping',
    'MutableSequence',
    'MutableSet',
    'Sequence',
    'Sized',
    'ValuesView',
    'Awaitable',
    'AsyncIterator',
    'AsyncIterable',
    'Coroutine',
    'Collection',
    'AsyncGenerator',
    'AsyncContextManager',

    # Structural checks, a.k.a. protocols.
    'Reversible',
    'SupportsAbs',
    'SupportsBytes',
    'SupportsComplex',
    'SupportsFloat',
    'SupportsIndex',
    'SupportsInt',
    'SupportsRound',

    # Concrete collection types.
    'ChainMap',
    'Counter',
    'Deque',
    'Dict',
    'DefaultDict',
    'List',
    'OrderedDict',
    'Set',
    'FrozenSet',
    'NamedTuple',  # Not really a type.
    'TypedDict',  # Not really a type.
    'Generator',

    # Other concrete types.
    'BinaryIO',
    'IO',
    'Match',
    'Pattern',
    'TextIO',

    # One-off things.
    'AnyStr',
    'assert_type',
    'assert_never',
    'cast',
    'clear_overloads',
    'dataclass_transform',
    'final',
    'get_args',
    'get_origin',
    'get_overloads',
    'get_protocol_members',
    'get_type_hints',
    'is_protocol',
    'is_typeddict',
    'LiteralString',
    'Never',
    'NewType',
    'no_type_check',
    'no_type_check_decorator',
    'NoDefault',
    'NoReturn',
    'NotRequired',
    'overload',
    'override',
    'ParamSpecArgs',
    'ParamSpecKwargs',
    'ReadOnly',
    'Required',
    'reveal_type',
    'runtime_checkable',
    'Self',
    'Text',
    'TYPE_CHECKING',
    'TypeAlias',
    'TypeGuard',
    'TypeIs',
    'TypeAliasType',
    'Unpack',
]


def _type_convert(arg, module=None, *, allow_special_forms=False):
    """For converting None to type(None), and strings to ForwardRef."""
    if arg is None:
        return type(None)
    if isinstance(arg, str):
        return ForwardRef(arg, module=module, is_class=allow_special_forms)
    return arg


def _type_check(arg, msg, is_argument=True, module=None, *, allow_special_forms=False):
    """Check that the argument is a type, and return it (internal helper).

    As a special case, accept None and return type(None) instead. Also wrap strings
    into ForwardRef instances. Consider several corner cases, for example plain
    special forms like Union are not valid, while Union[int, str] is OK, etc.
    The msg argument is a human-readable error message, e.g.::

        "Union[arg, ...]: arg should be a type."

    We append the repr() of the actual value (truncated to 100 chars).
    """
    invalid_generic_forms = (Generic, Protocol)
    if not allow_special_forms:
        invalid_generic_forms += (ClassVar,)
        if is_argument:
            invalid_generic_forms += (Final,)

    arg = _type_convert(arg, module=module, allow_special_forms=allow_special_forms)
    if (isinstance(arg, _GenericAlias) and
            arg.__origin__ in invalid_generic_forms):
        raise TypeError(f"{arg} is not valid as type argument")
    if arg in (Any, LiteralString, NoReturn, Never, Self, TypeAlias):
        return arg
    if allow_special_forms and arg in (ClassVar, Final):
        return arg
    if isinstance(arg, _SpecialForm) or arg in (Generic, Protocol):
        raise TypeError(f"Plain {arg} is not valid as type argument")
    if type(arg) is tuple:
        raise TypeError(f"{msg} Got {arg!r:.100}.")
    return arg


def _is_param_expr(arg):
    return arg is ... or isinstance(arg,
            (tuple, list, ParamSpec, _ConcatenateGenericAlias))


def _should_unflatten_callable_args(typ, args):
    """Internal helper for munging collections.abc.Callable's __args__.

    The canonical representation for a Callable's __args__ flattens the
    argument types, see https://github.com/python/cpython/issues/86361.

    For example::

        >>> import collections.abc
        >>> P = ParamSpec('P')
        >>> collections.abc.Callable[[int, int], str].__args__ == (int, int, str)
        True
        >>> collections.abc.Callable[P, str].__args__ == (P, str)
        True

    As a result, if we need to reconstruct the Callable from its __args__,
    we need to unflatten it.
    """
    return (
        typ.__origin__ is collections.abc.Callable
        and not (len(args) == 2 and _is_param_expr(args[0]))
    )


def _type_repr(obj):
    """Return the repr() of an object, special-casing types (internal helper).

    If obj is a type, we return a shorter version than the default
    type.__repr__, based on the module and qualified name, which is
    typically enough to uniquely identify a type.  For everything
    else, we fall back on repr(obj).
    """
    # When changing this function, don't forget about
    # `_collections_abc._type_repr`, which does the same thing
    # and must be consistent with this one.
    if isinstance(obj, type):
        if obj.__module__ == 'builtins':
            return obj.__qualname__
        return f'{obj.__module__}.{obj.__qualname__}'
    if obj is ...:
        return '...'
    if isinstance(obj, types.FunctionType):
        return obj.__name__
    if isinstance(obj, tuple):
        # Special case for `repr` of types with `ParamSpec`:
        return '[' + ', '.join(_type_repr(t) for t in obj) + ']'
    return repr(obj)


def _collect_parameters(args):
    """Collect all type variables and parameter specifications in args
    in order of first appearance (lexicographic order).

    For example::

        >>> P = ParamSpec('P')
        >>> T = TypeVar('T')
        >>> _collect_parameters((T, Callable[P, T]))
        (~T, ~P)
    """
    # required type parameter cannot appear after parameter with default
    default_encountered = False
    # or after TypeVarTuple
    type_var_tuple_encountered = False
    parameters = []
    for t in args:
        if isinstance(t, type):
            # We don't want __parameters__ descriptor of a bare Python class.
            pass
        elif isinstance(t, tuple):
            # `t` might be a tuple, when `ParamSpec` is substituted with
            # `[T, int]`, or `[int, *Ts]`, etc.
            for x in t:
                for collected in _collect_parameters([x]):
                    if collected not in parameters:
                        parameters.append(collected)
        elif hasattr(t, '__typing_subst__'):
            if t not in parameters:
                if type_var_tuple_encountered and t.has_default():
                    raise TypeError('Type parameter with a default'
                                    ' follows TypeVarTuple')

                if t.has_default():
                    default_encountered = True
                elif default_encountered:
                    raise TypeError(f'Type parameter {t!r} without a default'
                                    ' follows type parameter with a default')

                parameters.append(t)
        else:
            if _is_unpacked_typevartuple(t):
                type_var_tuple_encountered = True
            for x in getattr(t, '__parameters__', ()):
                if x not in parameters:
                    parameters.append(x)
    return tuple(parameters)


def _check_generic_specialization(cls, arguments):
    """Check correct count for parameters of a generic cls (internal helper).

    This gives a nice error message in case of count mismatch.
    """
    expected_len = len(cls.__parameters__)
    if not expected_len:
        raise TypeError(f"{cls} is not a generic class")
    actual_len = len(arguments)
    if actual_len != expected_len:
        # deal with defaults
        if actual_len < expected_len:
            # If the parameter at index `actual_len` in the parameters list
            # has a default, then all parameters after it must also have
            # one, because we validated as much in _collect_parameters().
            # That means that no error needs to be raised here, despite
            # the number of arguments being passed not matching the number
            # of parameters: all parameters that aren't explicitly
            # specialized in this call are parameters with default values.
            if cls.__parameters__[actual_len].has_default():
                return

            expected_len -= sum(p.has_default() for p in cls.__parameters__)
            expect_val = f"at least {expected_len}"
        else:
            expect_val = expected_len

        raise TypeError(f"Too {'many' if actual_len > expected_len else 'few'} arguments"
                        f" for {cls}; actual {actual_len}, expected {expect_val}")


def _unpack_args(*args):
    newargs = []
    for arg in args:
        subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
        if subargs is not None and not (subargs and subargs[-1] is ...):
            newargs.extend(subargs)
        else:
            newargs.append(arg)
    return newargs

def _deduplicate(params, *, unhashable_fallback=False):
    # Weed out strict duplicates, preserving the first of each occurrence.
    try:
        return dict.fromkeys(params)
    except TypeError:
        if not unhashable_fallback:
            raise
        # Happens for cases like `Annotated[dict, {'x': IntValidator()}]`
        return _deduplicate_unhashable(params)

def _deduplicate_unhashable(unhashable_params):
    new_unhashable = []
    for t in unhashable_params:
        if t not in new_unhashable:
            new_unhashable.append(t)
    return new_unhashable

def _compare_args_orderless(first_args, second_args):
    first_unhashable = _deduplicate_unhashable(first_args)
    second_unhashable = _deduplicate_unhashable(second_args)
    t = list(second_unhashable)
    try:
        for elem in first_unhashable:
            t.remove(elem)
    except ValueError:
        return False
    return not t

def _remove_dups_flatten(parameters):
    """Internal helper for Union creation and substitution.

    Flatten Unions among parameters, then remove duplicates.
    """
    # Flatten out Union[Union[...], ...].
    params = []
    for p in parameters:
        if isinstance(p, (_UnionGenericAlias, types.UnionType)):
            params.extend(p.__args__)
        else:
            params.append(p)

    return tuple(_deduplicate(params, unhashable_fallback=True))


def _flatten_literal_params(parameters):
    """Internal helper for Literal creation: flatten Literals among parameters."""
    params = []
    for p in parameters:
        if isinstance(p, _LiteralGenericAlias):
            params.extend(p.__args__)
        else:
            params.append(p)
    return tuple(params)


_cleanups = []
_caches = {}


def _tp_cache(func=None, /, *, typed=False):
    """Internal wrapper caching __getitem__ of generic types.

    For non-hashable arguments, the original function is used as a fallback.
    """
    def decorator(func):
        # The callback 'inner' references the newly created lru_cache
        # indirectly by performing a lookup in the global '_caches' dictionary.
        # This breaks a reference that can be problematic when combined with
        # C API extensions that leak references to types. See GH-98253.

        cache = functools.lru_cache(typed=typed)(func)
        _caches[func] = cache
        _cleanups.append(cache.cache_clear)
        del cache

        @functools.wraps(func)
        def inner(*args, **kwds):
            try:
                return _caches[func](*args, **kwds)
            except TypeError:
                pass  # All real errors (not unhashable args) are raised below.
            return func(*args, **kwds)
        return inner

    if func is not None:
        return decorator(func)

    return decorator


def _deprecation_warning_for_no_type_params_passed(funcname: str) -> None:
    import warnings

    depr_message = (
        f"Failing to pass a value to the 'type_params' parameter "
        f"of {funcname!r} is deprecated, as it leads to incorrect behaviour "
        f"when calling {funcname} on a stringified annotation "
        f"that references a PEP 695 type parameter. "
        f"It will be disallowed in Python 3.15."
    )
    warnings.warn(depr_message, category=DeprecationWarning, stacklevel=3)


class _Sentinel:
    __slots__ = ()
    def __repr__(self):
        return '<sentinel>'


_sentinel = _Sentinel()


def _eval_type(t, globalns, localns, type_params=_sentinel, *, recursive_guard=frozenset()):
    """Evaluate all forward references in the given type t.

    For use of globalns and localns see the docstring for get_type_hints().
    recursive_guard is used to prevent infinite recursion with a recursive
    ForwardRef.
    """
    if type_params is _sentinel:
        _deprecation_warning_for_no_type_params_passed("typing._eval_type")
        type_params = ()
    if isinstance(t, ForwardRef):
        return t._evaluate(globalns, localns, type_params, recursive_guard=recursive_guard)
    if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)):
        if isinstance(t, GenericAlias):
            args = tuple(
                ForwardRef(arg) if isinstance(arg, str) else arg
                for arg in t.__args__
            )
            is_unpacked = t.__unpacked__
            if _should_unflatten_callable_args(t, args):
                t = t.__origin__[(args[:-1], args[-1])]
            else:
                t = t.__origin__[args]
            if is_unpacked:
                t = Unpack[t]

        ev_args = tuple(
            _eval_type(
                a, globalns, localns, type_params, recursive_guard=recursive_guard
            )
            for a in t.__args__
        )
        if ev_args == t.__args__:
            return t
        if isinstance(t, GenericAlias):
            return GenericAlias(t.__origin__, ev_args)
        if isinstance(t, types.UnionType):
            return functools.reduce(operator.or_, ev_args)
        else:
            return t.copy_with(ev_args)
    return t


class _Final:
    """Mixin to prohibit subclassing."""

    __slots__ = ('__weakref__',)

    def __init_subclass__(cls, /, *args, **kwds):
        if '_root' not in kwds:
            raise TypeError("Cannot subclass special typing classes")


class _NotIterable:
    """Mixin to prevent iteration, without being compatible with Iterable.

    That is, we could do::

        def __iter__(self): raise TypeError()

    But this would make users of this mixin duck type-compatible with
    collections.abc.Iterable - isinstance(foo, Iterable) would be True.

    Luckily, we can instead prevent iteration by setting __iter__ to None, which
    is treated specially.
    """

    __slots__ = ()
    __iter__ = None


# Internal indicator of special typing constructs.
# See __doc__ instance attribute for specific docs.
class _SpecialForm(_Final, _NotIterable, _root=True):
    __slots__ = ('_name', '__doc__', '_getitem')

    def __init__(self, getitem):
        self._getitem = getitem
        self._name = getitem.__name__
        self.__doc__ = getitem.__doc__

    def __getattr__(self, item):
        if item in {'__name__', '__qualname__'}:
            return self._name

        raise AttributeError(item)

    def __mro_entries__(self, bases):
        raise TypeError(f"Cannot subclass {self!r}")

    def __repr__(self):
        return 'typing.' + self._name

    def __reduce__(self):
        return self._name

    def __call__(self, *args, **kwds):
        raise TypeError(f"Cannot instantiate {self!r}")

    def __or__(self, other):
        return Union[self, other]

    def __ror__(self, other):
        return Union[other, self]

    def __instancecheck__(self, obj):
        raise TypeError(f"{self} cannot be used with isinstance()")

    def __subclasscheck__(self, cls):
        raise TypeError(f"{self} cannot be used with issubclass()")

    @_tp_cache
    def __getitem__(self, parameters):
        return self._getitem(self, parameters)


class _TypedCacheSpecialForm(_SpecialForm, _root=True):
    def __getitem__(self, parameters):
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        return self._getitem(self, *parameters)


class _AnyMeta(type):
    def __instancecheck__(self, obj):
        if self is Any:
            raise TypeError("typing.Any cannot be used with isinstance()")
        return super().__instancecheck__(obj)

    def __repr__(self):
        if self is Any:
            return "typing.Any"
        return super().__repr__()  # respect to subclasses


class Any(metaclass=_AnyMeta):
    """Special type indicating an unconstrained type.

    - Any is compatible with every type.
    - Any assumed to have all methods.
    - All values assumed to be instances of Any.

    Note that all the above statements are true from the point of view of
    static type checkers. At runtime, Any should not be used with instance
    checks.
    """

    def __new__(cls, *args, **kwargs):
        if cls is Any:
            raise TypeError("Any cannot be instantiated")
        return super().__new__(cls)


@_SpecialForm
def NoReturn(self, parameters):
    """Special type indicating functions that never return.

    Example::

        from typing import NoReturn

        def stop() -> NoReturn:
            raise Exception('no way')

    NoReturn can also be used as a bottom type, a type that
    has no values. Starting in Python 3.11, the Never type should
    be used for this concept instead. Type checkers should treat the two
    equivalently.
    """
    raise TypeError(f"{self} is not subscriptable")

# This is semantically identical to NoReturn, but it is implemented
# separately so that type checkers can distinguish between the two
# if they want.
@_SpecialForm
def Never(self, parameters):
    """The bottom type, a type that has no members.

    This can be used to define a function that should never be
    called, or a function that never returns::

        from typing import Never

        def never_call_me(arg: Never) -> None:
            pass

        def int_or_str(arg: int | str) -> None:
            never_call_me(arg)  # type checker error
            match arg:
                case int():
                    print("It's an int")
                case str():
                    print("It's a str")
                case _:
                    never_call_me(arg)  # OK, arg is of type Never
    """
    raise TypeError(f"{self} is not subscriptable")


@_SpecialForm
def Self(self, parameters):
    """Used to spell the type of "self" in classes.

    Example::

        from typing import Self

        class Foo:
            def return_self(self) -> Self:
                ...
                return self

    This is especially useful for:
        - classmethods that are used as alternative constructors
        - annotating an `__enter__` method which returns self
    """
    raise TypeError(f"{self} is not subscriptable")


@_SpecialForm
def LiteralString(self, parameters):
    """Represents an arbitrary literal string.

    Example::

        from typing import LiteralString

        def run_query(sql: LiteralString) -> None:
            ...

        def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
            run_query("SELECT * FROM students")  # OK
            run_query(literal_string)  # OK
            run_query("SELECT * FROM " + literal_string)  # OK
            run_query(arbitrary_string)  # type checker error
            run_query(  # type checker error
                f"SELECT * FROM students WHERE name = {arbitrary_string}"
            )

    Only string literals and other LiteralStrings are compatible
    with LiteralString. This provides a tool to help prevent
    security issues such as SQL injection.
    """
    raise TypeError(f"{self} is not subscriptable")


@_SpecialForm
def ClassVar(self, parameters):
    """Special type construct to mark class variables.

    An annotation wrapped in ClassVar indicates that a given
    attribute is intended to be used as a class variable and
    should not be set on instances of that class.

    Usage::

        class Starship:
            stats: ClassVar[dict[str, int]] = {} # class variable
            damage: int = 10                     # instance variable

    ClassVar accepts only types and cannot be further subscribed.

    Note that ClassVar is not a class itself, and should not
    be used with isinstance() or issubclass().
    """
    item = _type_check(parameters, f'{self} accepts only single type.', allow_special_forms=True)
    return _GenericAlias(self, (item,))

@_SpecialForm
def Final(self, parameters):
    """Special typing construct to indicate final names to type checkers.

    A final name cannot be re-assigned or overridden in a subclass.

    For example::

        MAX_SIZE: Final = 9000
        MAX_SIZE += 1  # Error reported by type checker

        class Connection:
            TIMEOUT: Final[int] = 10

        class FastConnector(Connection):
            TIMEOUT = 1  # Error reported by type checker

    There is no runtime checking of these properties.
    """
    item = _type_check(parameters, f'{self} accepts only single type.', allow_special_forms=True)
    return _GenericAlias(self, (item,))

@_SpecialForm
def Union(self, parameters):
    """Union type; Union[X, Y] means either X or Y.

    On Python 3.10 and higher, the | operator
    can also be used to denote unions;
    X | Y means the same thing to the type checker as Union[X, Y].

    To define a union, use e.g. Union[int, str]. Details:
    - The arguments must be types and there must be at least one.
    - None as an argument is a special case and is replaced by
      type(None).
    - Unions of unions are flattened, e.g.::

        assert Union[Union[int, str], float] == Union[int, str, float]

    - Unions of a single argument vanish, e.g.::

        assert Union[int] == int  # The constructor actually returns int

    - Redundant arguments are skipped, e.g.::

        assert Union[int, str, int] == Union[int, str]

    - When comparing unions, the argument order is ignored, e.g.::

        assert Union[int, str] == Union[str, int]

    - You cannot subclass or instantiate a union.
    - You can use Optional[X] as a shorthand for Union[X, None].
    """
    if parameters == ():
        raise TypeError("Cannot take a Union of no types.")
    if not isinstance(parameters, tuple):
        parameters = (parameters,)
    msg = "Union[arg, ...]: each arg must be a type."
    parameters = tuple(_type_check(p, msg) for p in parameters)
    parameters = _remove_dups_flatten(parameters)
    if len(parameters) == 1:
        return parameters[0]
    if len(parameters) == 2 and type(None) in parameters:
        return _UnionGenericAlias(self, parameters, name="Optional")
    return _UnionGenericAlias(self, parameters)

def _make_union(left, right):
    """Used from the C implementation of TypeVar.

    TypeVar.__or__ calls this instead of returning types.UnionType
    because we want to allow unions between TypeVars and strings
    (forward references).
    """
    return Union[left, right]

@_SpecialForm
def Optional(self, parameters):
    """Optional[X] is equivalent to Union[X, None]."""
    arg = _type_check(parameters, f"{self} requires a single type.")
    return Union[arg, type(None)]

@_TypedCacheSpecialForm
@_tp_cache(typed=True)
def Literal(self, *parameters):
    """Special typing form to define literal types (a.k.a. value types).

    This form can be used to indicate to type checkers that the corresponding
    variable or function parameter has a value equivalent to the provided
    literal (or one of several literals)::

        def validate_simple(data: Any) -> Literal[True]:  # always returns True
            ...

        MODE = Literal['r', 'rb', 'w', 'wb']
        def open_helper(file: str, mode: MODE) -> str:
            ...

        open_helper('/some/path', 'r')  # Passes type check
        open_helper('/other/path', 'typo')  # Error in type checker

    Literal[...] cannot be subclassed. At runtime, an arbitrary value
    is allowed as type argument to Literal[...], but type checkers may
    impose restrictions.
    """
    # There is no '_type_check' call because arguments to Literal[...] are
    # values, not types.
    parameters = _flatten_literal_params(parameters)

    try:
        parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))
    except TypeError:  # unhashable parameters
        pass

    return _LiteralGenericAlias(self, parameters)


@_SpecialForm
def TypeAlias(self, parameters):
    """Special form for marking type aliases.

    Use TypeAlias to indicate that an assignment should
    be recognized as a proper type alias definition by type
    checkers.

    For example::

        Predicate: TypeAlias = Callable[..., bool]

    It's invalid when used anywhere except as in the example above.
    """
    raise TypeError(f"{self} is not subscriptable")


@_SpecialForm
def Concatenate(self, parameters):
    """Special form for annotating higher-order functions.

    ``Concatenate`` can be used in conjunction with ``ParamSpec`` and
    ``Callable`` to represent a higher-order function which adds, removes or
    transforms the parameters of a callable.

    For example::

        Callable[Concatenate[int, P], int]

    See PEP 612 for detailed information.
    """
    if parameters == ():
        raise TypeError("Cannot take a Concatenate of no types.")
    if not isinstance(parameters, tuple):
        parameters = (parameters,)
    if not (parameters[-1] is ... or isinstance(parameters[-1], ParamSpec)):
        raise TypeError("The last parameter to Concatenate should be a "
                        "ParamSpec variable or ellipsis.")
    msg = "Concatenate[arg, ...]: each arg must be a type."
    parameters = (*(_type_check(p, msg) for p in parameters[:-1]), parameters[-1])
    return _ConcatenateGenericAlias(self, parameters)


@_SpecialForm
def TypeGuard(self, parameters):
    """Special typing construct for marking user-defined type predicate functions.

    ``TypeGuard`` can be used to annotate the return type of a user-defined
    type predicate function.  ``TypeGuard`` only accepts a single type argument.
    At runtime, functions marked this way should return a boolean.

    ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
    type checkers to determine a more precise type of an expression within a
    program's code flow.  Usually type narrowing is done by analyzing
    conditional code flow and applying the narrowing to a block of code.  The
    conditional expression here is sometimes referred to as a "type predicate".

    Sometimes it would be convenient to use a user-defined boolean function
    as a type predicate.  Such a function should use ``TypeGuard[...]`` or
    ``TypeIs[...]`` as its return type to alert static type checkers to
    this intention. ``TypeGuard`` should be used over ``TypeIs`` when narrowing
    from an incompatible type (e.g., ``list[object]`` to ``list[int]``) or when
    the function does not return ``True`` for all instances of the narrowed type.

    Using  ``-> TypeGuard[NarrowedType]`` tells the static type checker that
    for a given function:

    1. The return value is a boolean.
    2. If the return value is ``True``, the type of its argument
       is ``NarrowedType``.

    For example::

         def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
             '''Determines whether all objects in the list are strings'''
             return all(isinstance(x, str) for x in val)

         def func1(val: list[object]):
             if is_str_list(val):
                 # Type of ``val`` is narrowed to ``list[str]``.
                 print(" ".join(val))
             else:
                 # Type of ``val`` remains as ``list[object]``.
                 print("Not a list of strings!")

    Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
    form of ``TypeA`` (it can even be a wider form) and this may lead to
    type-unsafe results.  The main reason is to allow for things like
    narrowing ``list[object]`` to ``list[str]`` even though the latter is not
    a subtype of the former, since ``list`` is invariant.  The responsibility of
    writing type-safe type predicates is left to the user.

    ``TypeGuard`` also works with type variables.  For more information, see
    PEP 647 (User-Defined Type Guards).
    """
    item = _type_check(parameters, f'{self} accepts only single type.')
    return _GenericAlias(self, (item,))


@_SpecialForm
def TypeIs(self, parameters):
    """Special typing construct for marking user-defined type predicate functions.

    ``TypeIs`` can be used to annotate the return type of a user-defined
    type predicate function.  ``TypeIs`` only accepts a single type argument.
    At runtime, functions marked this way should return a boolean and accept
    at least one argument.

    ``TypeIs`` aims to benefit *type narrowing* -- a technique used by static
    type checkers to determine a more precise type of an expression within a
    program's code flow.  Usually type narrowing is done by analyzing
    conditional code flow and applying the narrowing to a block of code.  The
    conditional expression here is sometimes referred to as a "type predicate".

    Sometimes it would be convenient to use a user-defined boolean function
    as a type predicate.  Such a function should use ``TypeIs[...]`` or
    ``TypeGuard[...]`` as its return type to alert static type checkers to
    this intention.  ``TypeIs`` usually has more intuitive behavior than
    ``TypeGuard``, but it cannot be used when the input and output types
    are incompatible (e.g., ``list[object]`` to ``list[int]``) or when the
    function does not return ``True`` for all instances of the narrowed type.

    Using  ``-> TypeIs[NarrowedType]`` tells the static type checker that for
    a given function:

    1. The return value is a boolean.
    2. If the return value is ``True``, the type of its argument
       is the intersection of the argument's original type and
       ``NarrowedType``.
    3. If the return value is ``False``, the type of its argument
       is narrowed to exclude ``NarrowedType``.

    For example::

        from typing import assert_type, final, TypeIs

        class Parent: pass
        class Child(Parent): pass
        @final
        class Unrelated: pass

        def is_parent(val: object) -> TypeIs[Parent]:
            return isinstance(val, Parent)

        def run(arg: Child | Unrelated):
            if is_parent(arg):
                # Type of ``arg`` is narrowed to the intersection
                # of ``Parent`` and ``Child``, which is equivalent to
                # ``Child``.
                assert_type(arg, Child)
            else:
                # Type of ``arg`` is narrowed to exclude ``Parent``,
                # so only ``Unrelated`` is left.
                assert_type(arg, Unrelated)

    The type inside ``TypeIs`` must be consistent with the type of the
    function's argument; if it is not, static type checkers will raise
    an error.  An incorrectly written ``TypeIs`` function can lead to
    unsound behavior in the type system; it is the user's responsibility
    to write such functions in a type-safe manner.

    ``TypeIs`` also works with type variables.  For more information, see
    PEP 742 (Narrowing types with ``TypeIs``).
    """
    item = _type_check(parameters, f'{self} accepts only single type.')
    return _GenericAlias(self, (item,))


class ForwardRef(_Final, _root=True):
    """Internal wrapper to hold a forward reference."""

    __slots__ = ('__forward_arg__', '__forward_code__',
                 '__forward_evaluated__', '__forward_value__',
                 '__forward_is_argument__', '__forward_is_class__',
                 '__forward_module__')

    def __init__(self, arg, is_argument=True, module=None, *, is_class=False):
        if not isinstance(arg, str):
            raise TypeError(f"Forward reference must be a string -- got {arg!r}")

        # If we do `def f(*args: *Ts)`, then we'll have `arg = '*Ts'`.
        # Unfortunately, this isn't a valid expression on its own, so we
        # do the unpacking manually.
        if arg.startswith('*'):
            arg_to_compile = f'({arg},)[0]'  # E.g. (*Ts,)[0] or (*tuple[int, int],)[0]
        else:
            arg_to_compile = arg
        try:
            code = compile(arg_to_compile, '<string>', 'eval')
        except SyntaxError:
            raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}")

        self.__forward_arg__ = arg
        self.__forward_code__ = code
        self.__forward_evaluated__ = False
        self.__forward_value__ = None
        self.__forward_is_argument__ = is_argument
        self.__forward_is_class__ = is_class
        self.__forward_module__ = module

    def _evaluate(self, globalns, localns, type_params=_sentinel, *, recursive_guard):
        if type_params is _sentinel:
            _deprecation_warning_for_no_type_params_passed("typing.ForwardRef._evaluate")
            type_params = ()
        if self.__forward_arg__ in recursive_guard:
            return self
        if not self.__forward_evaluated__ or localns is not globalns:
            if globalns is None and localns is None:
                globalns = localns = {}
            elif globalns is None:
                globalns = localns
            elif localns is None:
                localns = globalns
            if self.__forward_module__ is not None:
                globalns = getattr(
                    sys.modules.get(self.__forward_module__, None), '__dict__', globalns
                )
            if type_params:
                # "Inject" type parameters into the local namespace
                # (unless they are shadowed by assignments *in* the local namespace),
                # as a way of emulating annotation scopes when calling `eval()`
                locals_to_pass = {param.__name__: param for param in type_params} | localns
            else:
                locals_to_pass = localns
            type_ = _type_check(
                eval(self.__forward_code__, globalns, locals_to_pass),
                "Forward references must evaluate to types.",
                is_argument=self.__forward_is_argument__,
                allow_special_forms=self.__forward_is_class__,
            )
            self.__forward_value__ = _eval_type(
                type_,
                globalns,
                localns,
                type_params,
                recursive_guard=(recursive_guard | {self.__forward_arg__}),
            )
            self.__forward_evaluated__ = True
        return self.__forward_value__

    def __eq__(self, other):
        if not isinstance(other, ForwardRef):
            return NotImplemented
        if self.__forward_evaluated__ and other.__forward_evaluated__:
            return (self.__forward_arg__ == other.__forward_arg__ and
                    self.__forward_value__ == other.__forward_value__)
        return (self.__forward_arg__ == other.__forward_arg__ and
                self.__forward_module__ == other.__forward_module__)

    def __hash__(self):
        return hash((self.__forward_arg__, self.__forward_module__))

    def __or__(self, other):
        return Union[self, other]

    def __ror__(self, other):
        return Union[other, self]

    def __repr__(self):
        if self.__forward_module__ is None:
            module_repr = ''
        else:
            module_repr = f', module={self.__forward_module__!r}'
        return f'ForwardRef({self.__forward_arg__!r}{module_repr})'


def _is_unpacked_typevartuple(x: Any) -> bool:
    return ((not isinstance(x, type)) and
            getattr(x, '__typing_is_unpacked_typevartuple__', False))


def _is_typevar_like(x: Any) -> bool:
    return isinstance(x, (TypeVar, ParamSpec)) or _is_unpacked_typevartuple(x)


def _typevar_subst(self, arg):
    msg = "Parameters to generic types must be types."
    arg = _type_check(arg, msg, is_argument=True)
    if ((isinstance(arg, _GenericAlias) and arg.__origin__ is Unpack) or
        (isinstance(arg, GenericAlias) and getattr(arg, '__unpacked__', False))):
        raise TypeError(f"{arg} is not valid as type argument")
    return arg


def _typevartuple_prepare_subst(self, alias, args):
    params = alias.__parameters__
    typevartuple_index = params.index(self)
    for param in params[typevartuple_index + 1:]:
        if isinstance(param, TypeVarTuple):
            raise TypeError(f"More than one TypeVarTuple parameter in {alias}")

    alen = len(args)
    plen = len(params)
    left = typevartuple_index
    right = plen - typevartuple_index - 1
    var_tuple_index = None
    fillarg = None
    for k, arg in enumerate(args):
        if not isinstance(arg, type):
            subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
            if subargs and len(subargs) == 2 and subargs[-1] is ...:
                if var_tuple_index is not None:
                    raise TypeError("More than one unpacked arbitrary-length tuple argument")
                var_tuple_index = k
                fillarg = subargs[0]
    if var_tuple_index is not None:
        left = min(left, var_tuple_index)
        right = min(right, alen - var_tuple_index - 1)
    elif left + right > alen:
        raise TypeError(f"Too few arguments for {alias};"
                        f" actual {alen}, expected at least {plen-1}")
    if left == alen - right and self.has_default():
        replacement = _unpack_args(self.__default__)
    else:
        replacement = args[left: alen - right]

    return (
        *args[:left],
        *([fillarg]*(typevartuple_index - left)),
        replacement,
        *([fillarg]*(plen - right - left - typevartuple_index - 1)),
        *args[alen - right:],
    )


def _paramspec_subst(self, arg):
    if isinstance(arg, (list, tuple)):
        arg = tuple(_type_check(a, "Expected a type.") for a in arg)
    elif not _is_param_expr(arg):
        raise TypeError(f"Expected a list of types, an ellipsis, "
                        f"ParamSpec, or Concatenate. Got {arg}")
    return arg


def _paramspec_prepare_subst(self, alias, args):
    params = alias.__parameters__
    i = params.index(self)
    if i == len(args) and self.has_default():
        args = [*args, self.__default__]
    if i >= len(args):
        raise TypeError(f"Too few arguments for {alias}")
    # Special case where Z[[int, str, bool]] == Z[int, str, bool] in PEP 612.
    if len(params) == 1 and not _is_param_expr(args[0]):
        assert i == 0
        args = (args,)
    # Convert lists to tuples to help other libraries cache the results.
    elif isinstance(args[i], list):
        args = (*args[:i], tuple(args[i]), *args[i+1:])
    return args


@_tp_cache
def _generic_class_getitem(cls, args):
    """Parameterizes a generic class.

    At least, parameterizing a generic class is the *main* thing this method
    does. For example, for some generic class `Foo`, this is called when we
    do `Foo[int]` - there, with `cls=Foo` and `args=int`.

    However, note that this method is also called when defining generic
    classes in the first place with `class Foo(Generic[T]): ...`.
    """
    if not isinstance(args, tuple):
        args = (args,)

    args = tuple(_type_convert(p) for p in args)
    is_generic_or_protocol = cls in (Generic, Protocol)

    if is_generic_or_protocol:
        # Generic and Protocol can only be subscripted with unique type variables.
        if not args:
            raise TypeError(
                f"Parameter list to {cls.__qualname__}[...] cannot be empty"
            )
        if not all(_is_typevar_like(p) for p in args):
            raise TypeError(
                f"Parameters to {cls.__name__}[...] must all be type variables "
                f"or parameter specification variables.")
        if len(set(args)) != len(args):
            raise TypeError(
                f"Parameters to {cls.__name__}[...] must all be unique")
    else:
        # Subscripting a regular Generic subclass.
        for param in cls.__parameters__:
            prepare = getattr(param, '__typing_prepare_subst__', None)
            if prepare is not None:
                args = prepare(cls, args)
        _check_generic_specialization(cls, args)

        new_args = []
        for param, new_arg in zip(cls.__parameters__, args):
            if isinstance(param, TypeVarTuple):
                new_args.extend(new_arg)
            else:
                new_args.append(new_arg)
        args = tuple(new_args)

    return _GenericAlias(cls, args)


def _generic_init_subclass(cls, *args, **kwargs):
    super(Generic, cls).__init_subclass__(*args, **kwargs)
    tvars = []
    if '__orig_bases__' in cls.__dict__:
        error = Generic in cls.__orig_bases__
    else:
        error = (Generic in cls.__bases__ and
                    cls.__name__ != 'Protocol' and
                    type(cls) != _TypedDictMeta)
    if error:
        raise TypeError("Cannot inherit from plain Generic")
    if '__orig_bases__' in cls.__dict__:
        tvars = _collect_parameters(cls.__orig_bases__)
        # Look for Generic[T1, ..., Tn].
        # If found, tvars must be a subset of it.
        # If not found, tvars is it.
        # Also check for and reject plain Generic,
        # and reject multiple Generic[...].
        gvars = None
        for base in cls.__orig_bases__:
            if (isinstance(base, _GenericAlias) and
                    base.__origin__ is Generic):
                if gvars is not None:
                    raise TypeError(
                        "Cannot inherit from Generic[...] multiple times.")
                gvars = base.__parameters__
        if gvars is not None:
            tvarset = set(tvars)
            gvarset = set(gvars)
            if not tvarset <= gvarset:
                s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
                s_args = ', '.join(str(g) for g in gvars)
                raise TypeError(f"Some type variables ({s_vars}) are"
                                f" not listed in Generic[{s_args}]")
            tvars = gvars
    cls.__parameters__ = tuple(tvars)


def _is_dunder(attr):
    return attr.startswith('__') and attr.endswith('__')

class _BaseGenericAlias(_Final, _root=True):
    """The central part of the internal API.

    This represents a generic version of type 'origin' with type arguments 'params'.
    There are two kind of these aliases: user defined and special. The special ones
    are wrappers around builtin collections and ABCs in collections.abc. These must
    have 'name' always set. If 'inst' is False, then the alias can't be instantiated;
    this is used by e.g. typing.List and typing.Dict.
    """

    def __init__(self, origin, *, inst=True, name=None):
        self._inst = inst
        self._name = name
        self.__origin__ = origin
        self.__slots__ = None  # This is not documented.

    def __call__(self, *args, **kwargs):
        if not self._inst:
            raise TypeError(f"Type {self._name} cannot be instantiated; "
                            f"use {self.__origin__.__name__}() instead")
        result = self.__origin__(*args, **kwargs)
        try:
            result.__orig_class__ = self
        # Some objects raise TypeError (or something even more exotic)
        # if you try to set attributes on them; we guard against that here
        except Exception:
            pass
        return result

    def __mro_entries__(self, bases):
        res = []
        if self.__origin__ not in bases:
            res.append(self.__origin__)

        # Check if any base that occurs after us in `bases` is either itself a
        # subclass of Generic, or something which will add a subclass of Generic
        # to `__bases__` via its `__mro_entries__`. If not, add Generic
        # ourselves. The goal is to ensure that Generic (or a subclass) will
        # appear exactly once in the final bases tuple. If we let it appear
        # multiple times, we risk "can't form a consistent MRO" errors.
        i = bases.index(self)
        for b in bases[i+1:]:
            if isinstance(b, _BaseGenericAlias):
                break
            if not isinstance(b, type):
                meth = getattr(b, "__mro_entries__", None)
                new_bases = meth(bases) if meth else None
                if (
                    isinstance(new_bases, tuple) and
                    any(
                        isinstance(b2, type) and issubclass(b2, Generic)
                        for b2 in new_bases
                    )
                ):
                    break
            elif issubclass(b, Generic):
                break
        else:
            res.append(Generic)
        return tuple(res)

    def __getattr__(self, attr):
        if attr in {'__name__', '__qualname__'}:
            return self._name or self.__origin__.__name__

        # We are careful for copy and pickle.
        # Also for simplicity we don't relay any dunder names
        if '__origin__' in self.__dict__ and not _is_dunder(attr):
            return getattr(self.__origin__, attr)
        raise AttributeError(attr)

    def __setattr__(self, attr, val):
        if _is_dunder(attr) or attr in {'_name', '_inst', '_nparams', '_defaults'}:
            super().__setattr__(attr, val)
        else:
            setattr(self.__origin__, attr, val)

    def __instancecheck__(self, obj):
        return self.__subclasscheck__(type(obj))

    def __subclasscheck__(self, cls):
        raise TypeError("Subscripted generics cannot be used with"
                        " class and instance checks")

    def __dir__(self):
        return list(set(super().__dir__()
                + [attr for attr in dir(self.__origin__) if not _is_dunder(attr)]))


# Special typing constructs Union, Optional, Generic, Callable and Tuple
# use three special attributes for internal bookkeeping of generic types:
# * __parameters__ is a tuple of unique free type parameters of a generic
#   type, for example, Dict[T, T].__parameters__ == (T,);
# * __origin__ keeps a reference to a type that was subscripted,
#   e.g., Union[T, int].__origin__ == Union, or the non-generic version of
#   the type.
# * __args__ is a tuple of all arguments used in subscripting,
#   e.g., Dict[T, int].__args__ == (T, int).


class _GenericAlias(_BaseGenericAlias, _root=True):
    # The type of parameterized generics.
    #
    # That is, for example, `type(List[int])` is `_GenericAlias`.
    #
    # Objects which are instances of this class include:
    # * Parameterized container types, e.g. `Tuple[int]`, `List[int]`.
    #  * Note that native container types, e.g. `tuple`, `list`, use
    #    `types.GenericAlias` instead.
    # * Parameterized classes:
    #     class C[T]: pass
    #     # C[int] is a _GenericAlias
    # * `Callable` aliases, generic `Callable` aliases, and
    #   parameterized `Callable` aliases:
    #     T = TypeVar('T')
    #     # _CallableGenericAlias inherits from _GenericAlias.
    #     A = Callable[[], None]  # _CallableGenericAlias
    #     B = Callable[[T], None]  # _CallableGenericAlias
    #     C = B[int]  # _CallableGenericAlias
    # * Parameterized `Final`, `ClassVar`, `TypeGuard`, and `TypeIs`:
    #     # All _GenericAlias
    #     Final[int]
    #     ClassVar[float]
    #     TypeGuard[bool]
    #     TypeIs[range]

    def __init__(self, origin, args, *, inst=True, name=None):
        super().__init__(origin, inst=inst, name=name)
        if not isinstance(args, tuple):
            args = (args,)
        self.__args__ = tuple(... if a is _TypingEllipsis else
                              a for a in args)
        self.__parameters__ = _collect_parameters(args)
        if not name:
            self.__module__ = origin.__module__

    def __eq__(self, other):
        if not isinstance(other, _GenericAlias):
            return NotImplemented
        return (self.__origin__ == other.__origin__
                and self.__args__ == other.__args__)

    def __hash__(self):
        return hash((self.__origin__, self.__args__))

    def __or__(self, right):
        return Union[self, right]

    def __ror__(self, left):
        return Union[left, self]

    @_tp_cache
    def __getitem__(self, args):
        # Parameterizes an already-parameterized object.
        #
        # For example, we arrive here doing something like:
        #   T1 = TypeVar('T1')
        #   T2 = TypeVar('T2')
        #   T3 = TypeVar('T3')
        #   class A(Generic[T1]): pass
        #   B = A[T2]  # B is a _GenericAlias
        #   C = B[T3]  # Invokes _GenericAlias.__getitem__
        #
        # We also arrive here when parameterizing a generic `Callable` alias:
        #   T = TypeVar('T')
        #   C = Callable[[T], None]
        #   C[int]  # Invokes _GenericAlias.__getitem__

        if self.__origin__ in (Generic, Protocol):
            # Can't subscript Generic[...] or Protocol[...].
            raise TypeError(f"Cannot subscript already-subscripted {self}")
        if not self.__parameters__:
            raise TypeError(f"{self} is not a generic class")

        # Preprocess `args`.
        if not isinstance(args, tuple):
            args = (args,)
        args = _unpack_args(*(_type_convert(p) for p in args))
        new_args = self._determine_new_args(args)
        r = self.copy_with(new_args)
        return r

    def _determine_new_args(self, args):
        # Determines new __args__ for __getitem__.
        #
        # For example, suppose we had:
        #   T1 = TypeVar('T1')
        #   T2 = TypeVar('T2')
        #   class A(Generic[T1, T2]): pass
        #   T3 = TypeVar('T3')
        #   B = A[int, T3]
        #   C = B[str]
        # `B.__args__` is `(int, T3)`, so `C.__args__` should be `(int, str)`.
        # Unfortunately, this is harder than it looks, because if `T3` is
        # anything more exotic than a plain `TypeVar`, we need to consider
        # edge cases.

        params = self.__parameters__
        # In the example above, this would be {T3: str}
        for param in params:
            prepare = getattr(param, '__typing_prepare_subst__', None)
            if prepare is not None:
                args = prepare(self, args)
        alen = len(args)
        plen = len(params)
        if alen != plen:
            raise TypeError(f"Too {'many' if alen > plen else 'few'} arguments for {self};"
                            f" actual {alen}, expected {plen}")
        new_arg_by_param = dict(zip(params, args))
        return tuple(self._make_substitution(self.__args__, new_arg_by_param))

    def _make_substitution(self, args, new_arg_by_param):
        """Create a list of new type arguments."""
        new_args = []
        for old_arg in args:
            if isinstance(old_arg, type):
                new_args.append(old_arg)
                continue

            substfunc = getattr(old_arg, '__typing_subst__', None)
            if substfunc:
                new_arg = substfunc(new_arg_by_param[old_arg])
            else:
                subparams = getattr(old_arg, '__parameters__', ())
                if not subparams:
                    new_arg = old_arg
                else:
                    subargs = []
                    for x in subparams:
                        if isinstance(x, TypeVarTuple):
                            subargs.extend(new_arg_by_param[x])
                        else:
                            subargs.append(new_arg_by_param[x])
                    new_arg = old_arg[tuple(subargs)]

            if self.__origin__ == collections.abc.Callable and isinstance(new_arg, tuple):
                # Consider the following `Callable`.
                #   C = Callable[[int], str]
                # Here, `C.__args__` should be (int, str) - NOT ([int], str).
                # That means that if we had something like...
                #   P = ParamSpec('P')
                #   T = TypeVar('T')
                #   C = Callable[P, T]
                #   D = C[[int, str], float]
                # ...we need to be careful; `new_args` should end up as
                # `(int, str, float)` rather than `([int, str], float)`.
                new_args.extend(new_arg)
            elif _is_unpacked_typevartuple(old_arg):
                # Consider the following `_GenericAlias`, `B`:
                #   class A(Generic[*Ts]): ...
                #   B = A[T, *Ts]
                # If we then do:
                #   B[float, int, str]
                # The `new_arg` corresponding to `T` will be `float`, and the
                # `new_arg` corresponding to `*Ts` will be `(int, str)`. We
                # should join all these types together in a flat list
                # `(float, int, str)` - so again, we should `extend`.
                new_args.extend(new_arg)
            elif isinstance(old_arg, tuple):
                # Corner case:
                #    P = ParamSpec('P')
                #    T = TypeVar('T')
                #    class Base(Generic[P]): ...
                # Can be substituted like this:
                #    X = Base[[int, T]]
                # In this case, `old_arg` will be a tuple:
                new_args.append(
                    tuple(self._make_substitution(old_arg, new_arg_by_param)),
                )
            else:
                new_args.append(new_arg)
        return new_args

    def copy_with(self, args):
        return self.__class__(self.__origin__, args, name=self._name, inst=self._inst)

    def __repr__(self):
        if self._name:
            name = 'typing.' + self._name
        else:
            name = _type_repr(self.__origin__)
        if self.__args__:
            args = ", ".join([_type_repr(a) for a in self.__args__])
        else:
            # To ensure the repr is eval-able.
            args = "()"
        return f'{name}[{args}]'

    def __reduce__(self):
        if self._name:
            origin = globals()[self._name]
        else:
            origin = self.__origin__
        args = tuple(self.__args__)
        if len(args) == 1 and not isinstance(args[0], tuple):
            args, = args
        return operator.getitem, (origin, args)

    def __mro_entries__(self, bases):
        if isinstance(self.__origin__, _SpecialForm):
            raise TypeError(f"Cannot subclass {self!r}")

        if self._name:  # generic version of an ABC or built-in class
            return super().__mro_entries__(bases)
        if self.__origin__ is Generic:
            if Protocol in bases:
                return ()
            i = bases.index(self)
            for b in bases[i+1:]:
                if isinstance(b, _BaseGenericAlias) and b is not self:
                    return ()
        return (self.__origin__,)

    def __iter__(self):
        yield Unpack[self]


# _nparams is the number of accepted parameters, e.g. 0 for Hashable,
# 1 for List and 2 for Dict.  It may be -1 if variable number of
# parameters are accepted (needs custom __getitem__).

class _SpecialGenericAlias(_NotIterable, _BaseGenericAlias, _root=True):
    def __init__(self, origin, nparams, *, inst=True, name=None, defaults=()):
        if name is None:
            name = origin.__name__
        super().__init__(origin, inst=inst, name=name)
        self._nparams = nparams
        self._defaults = defaults
        if origin.__module__ == 'builtins':
            self.__doc__ = f'A generic version of {origin.__qualname__}.'
        else:
            self.__doc__ = f'A generic version of {origin.__module__}.{origin.__qualname__}.'

    @_tp_cache
    def __getitem__(self, params):
        if not isinstance(params, tuple):
            params = (params,)
        msg = "Parameters to generic types must be types."
        params = tuple(_type_check(p, msg) for p in params)
        if (self._defaults
            and len(params) < self._nparams
            and len(params) + len(self._defaults) >= self._nparams
        ):
            params = (*params, *self._defaults[len(params) - self._nparams:])
        actual_len = len(params)

        if actual_len != self._nparams:
            if self._defaults:
                expected = f"at least {self._nparams - len(self._defaults)}"
            else:
                expected = str(self._nparams)
            if not self._nparams:
                raise TypeError(f"{self} is not a generic class")
            raise TypeError(f"Too {'many' if actual_len > self._nparams else 'few'} arguments for {self};"
                            f" actual {actual_len}, expected {expected}")
        return self.copy_with(params)

    def copy_with(self, params):
        return _GenericAlias(self.__origin__, params,
                             name=self._name, inst=self._inst)

    def __repr__(self):
        return 'typing.' + self._name

    def __subclasscheck__(self, cls):
        if isinstance(cls, _SpecialGenericAlias):
            return issubclass(cls.__origin__, self.__origin__)
        if not isinstance(cls, _GenericAlias):
            return issubclass(cls, self.__origin__)
        return super().__subclasscheck__(cls)

    def __reduce__(self):
        return self._name

    def __or__(self, right):
        return Union[self, right]

    def __ror__(self, left):
        return Union[left, self]


class _DeprecatedGenericAlias(_SpecialGenericAlias, _root=True):
    def __init__(
        self, origin, nparams, *, removal_version, inst=True, name=None
    ):
        super().__init__(origin, nparams, inst=inst, name=name)
        self._removal_version = removal_version

    def __instancecheck__(self, inst):
        import warnings
        warnings._deprecated(
            f"{self.__module__}.{self._name}", remove=self._removal_version
        )
        return super().__instancecheck__(inst)


class _CallableGenericAlias(_NotIterable, _GenericAlias, _root=True):
    def __repr__(self):
        assert self._name == 'Callable'
        args = self.__args__
        if len(args) == 2 and _is_param_expr(args[0]):
            return super().__repr__()
        return (f'typing.Callable'
                f'[[{", ".join([_type_repr(a) for a in args[:-1]])}], '
                f'{_type_repr(args[-1])}]')

    def __reduce__(self):
        args = self.__args__
        if not (len(args) == 2 and _is_param_expr(args[0])):
            args = list(args[:-1]), args[-1]
        return operator.getitem, (Callable, args)


class _CallableType(_SpecialGenericAlias, _root=True):
    def copy_with(self, params):
        return _CallableGenericAlias(self.__origin__, params,
                                     name=self._name, inst=self._inst)

    def __getitem__(self, params):
        if not isinstance(params, tuple) or len(params) != 2:
            raise TypeError("Callable must be used as "
                            "Callable[[arg, ...], result].")
        args, result = params
        # This relaxes what args can be on purpose to allow things like
        # PEP 612 ParamSpec.  Responsibility for whether a user is using
        # Callable[...] properly is deferred to static type checkers.
        if isinstance(args, list):
            params = (tuple(args), result)
        else:
            params = (args, result)
        return self.__getitem_inner__(params)

    @_tp_cache
    def __getitem_inner__(self, params):
        args, result = params
        msg = "Callable[args, result]: result must be a type."
        result = _type_check(result, msg)
        if args is Ellipsis:
            return self.copy_with((_TypingEllipsis, result))
        if not isinstance(args, tuple):
            args = (args,)
        args = tuple(_type_convert(arg) for arg in args)
        params = args + (result,)
        return self.copy_with(params)


class _TupleType(_SpecialGenericAlias, _root=True):
    @_tp_cache
    def __getitem__(self, params):
        if not isinstance(params, tuple):
            params = (params,)
        if len(params) >= 2 and params[-1] is ...:
            msg = "Tuple[t, ...]: t must be a type."
            params = tuple(_type_check(p, msg) for p in params[:-1])
            return self.copy_with((*params, _TypingEllipsis))
        msg = "Tuple[t0, t1, ...]: each t must be a type."
        params = tuple(_type_check(p, msg) for p in params)
        return self.copy_with(params)


class _UnionGenericAlias(_NotIterable, _GenericAlias, _root=True):
    def copy_with(self, params):
        return Union[params]

    def __eq__(self, other):
        if not isinstance(other, (_UnionGenericAlias, types.UnionType)):
            return NotImplemented
        try:  # fast path
            return set(self.__args__) == set(other.__args__)
        except TypeError:  # not hashable, slow path
            return _compare_args_orderless(self.__args__, other.__args__)

    def __hash__(self):
        return hash(frozenset(self.__args__))

    def __repr__(self):
        args = self.__args__
        if len(args) == 2:
            if args[0] is type(None):
                return f'typing.Optional[{_type_repr(args[1])}]'
            elif args[1] is type(None):
                return f'typing.Optional[{_type_repr(args[0])}]'
        return super().__repr__()

    def __instancecheck__(self, obj):
        return self.__subclasscheck__(type(obj))

    def __subclasscheck__(self, cls):
        for arg in self.__args__:
            if issubclass(cls, arg):
                return True

    def __reduce__(self):
        func, (origin, args) = super().__reduce__()
        return func, (Union, args)


def _value_and_type_iter(parameters):
    return ((p, type(p)) for p in parameters)


class _LiteralGenericAlias(_GenericAlias, _root=True):
    def __eq__(self, other):
        if not isinstance(other, _LiteralGenericAlias):
            return NotImplemented

        return set(_value_and_type_iter(self.__args__)) == set(_value_and_type_iter(other.__args__))

    def __hash__(self):
        return hash(frozenset(_value_and_type_iter(self.__args__)))


class _ConcatenateGenericAlias(_GenericAlias, _root=True):
    def copy_with(self, params):
        if isinstance(params[-1], (list, tuple)):
            return (*params[:-1], *params[-1])
        if isinstance(params[-1], _ConcatenateGenericAlias):
            params = (*params[:-1], *params[-1].__args__)
        return super().copy_with(params)


@_SpecialForm
def Unpack(self, parameters):
    """Type unpack operator.

    The type unpack operator takes the child types from some container type,
    such as `tuple[int, str]` or a `TypeVarTuple`, and 'pulls them out'.

    For example::

        # For some generic class `Foo`:
        Foo[Unpack[tuple[int, str]]]  # Equivalent to Foo[int, str]

        Ts = TypeVarTuple('Ts')
        # Specifies that `Bar` is generic in an arbitrary number of types.
        # (Think of `Ts` as a tuple of an arbitrary number of individual
        #  `TypeVar`s, which the `Unpack` is 'pulling out' directly into the
        #  `Generic[]`.)
        class Bar(Generic[Unpack[Ts]]): ...
        Bar[int]  # Valid
        Bar[int, str]  # Also valid

    From Python 3.11, this can also be done using the `*` operator::

        Foo[*tuple[int, str]]
        class Bar(Generic[*Ts]): ...

    And from Python 3.12, it can be done using built-in syntax for generics::

        Foo[*tuple[int, str]]
        class Bar[*Ts]: ...

    The operator can also be used along with a `TypedDict` to annotate
    `**kwargs` in a function signature::

        class Movie(TypedDict):
            name: str
            year: int

        # This function expects two keyword arguments - *name* of type `str` and
        # *year* of type `int`.
        def foo(**kwargs: Unpack[Movie]): ...

    Note that there is only some runtime checking of this operator. Not
    everything the runtime allows may be accepted by static type checkers.

    For more information, see PEPs 646 and 692.
    """
    item = _type_check(parameters, f'{self} accepts only single type.')
    return _UnpackGenericAlias(origin=self, args=(item,))


class _UnpackGenericAlias(_GenericAlias, _root=True):
    def __repr__(self):
        # `Unpack` only takes one argument, so __args__ should contain only
        # a single item.
        return f'typing.Unpack[{_type_repr(self.__args__[0])}]'

    def __getitem__(self, args):
        if self.__typing_is_unpacked_typevartuple__:
            return args
        return super().__getitem__(args)

    @property
    def __typing_unpacked_tuple_args__(self):
        assert self.__origin__ is Unpack
        assert len(self.__args__) == 1
        arg, = self.__args__
        if isinstance(arg, (_GenericAlias, types.GenericAlias)):
            if arg.__origin__ is not tuple:
                raise TypeError("Unpack[...] must be used with a tuple type")
            return arg.__args__
        return None

    @property
    def __typing_is_unpacked_typevartuple__(self):
        assert self.__origin__ is Unpack
        assert len(self.__args__) == 1
        return isinstance(self.__args__[0], TypeVarTuple)


class _TypingEllipsis:
    """Internal placeholder for ... (ellipsis)."""


_TYPING_INTERNALS = frozenset({
    '__parameters__', '__orig_bases__',  '__orig_class__',
    '_is_protocol', '_is_runtime_protocol', '__protocol_attrs__',
    '__non_callable_proto_members__', '__type_params__',
})

_SPECIAL_NAMES = frozenset({
    '__abstractmethods__', '__annotations__', '__dict__', '__doc__',
    '__init__', '__module__', '__new__', '__slots__',
    '__subclasshook__', '__weakref__', '__class_getitem__',
    '__match_args__', '__static_attributes__', '__firstlineno__',
})

# These special attributes will be not collected as protocol members.
EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS | _SPECIAL_NAMES | {'_MutableMapping__marker'}


def _get_protocol_attrs(cls):
    """Collect protocol members from a protocol class objects.

    This includes names actually defined in the class dictionary, as well
    as names that appear in annotations. Special names (above) are skipped.
    """
    attrs = set()
    for base in cls.__mro__[:-1]:  # without object
        if base.__name__ in {'Protocol', 'Generic'}:
            continue
        annotations = getattr(base, '__annotations__', {})
        for attr in (*base.__dict__, *annotations):
            if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES:
                attrs.add(attr)
    return attrs


def _no_init_or_replace_init(self, *args, **kwargs):
    cls = type(self)

    if cls._is_protocol:
        raise TypeError('Protocols cannot be instantiated')

    # Already using a custom `__init__`. No need to calculate correct
    # `__init__` to call. This can lead to RecursionError. See bpo-45121.
    if cls.__init__ is not _no_init_or_replace_init:
        return

    # Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.
    # The first instantiation of the subclass will call `_no_init_or_replace_init` which
    # searches for a proper new `__init__` in the MRO. The new `__init__`
    # replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent
    # instantiation of the protocol subclass will thus use the new
    # `__init__` and no longer call `_no_init_or_replace_init`.
    for base in cls.__mro__:
        init = base.__dict__.get('__init__', _no_init_or_replace_init)
        if init is not _no_init_or_replace_init:
            cls.__init__ = init
            break
    else:
        # should not happen
        cls.__init__ = object.__init__

    cls.__init__(self, *args, **kwargs)


def _caller(depth=1, default='__main__'):
    try:
        return sys._getframemodulename(depth + 1) or default
    except AttributeError:  # For platforms without _getframemodulename()
        pass
    try:
        return sys._getframe(depth + 1).f_globals.get('__name__', default)
    except (AttributeError, ValueError):  # For platforms without _getframe()
        pass
    return None

def _allow_reckless_class_checks(depth=2):
    """Allow instance and class checks for special stdlib modules.

    The abc and functools modules indiscriminately call isinstance() and
    issubclass() on the whole MRO of a user class, which may contain protocols.
    """
    return _caller(depth) in {'abc', 'functools', None}


_PROTO_ALLOWLIST = {
    'collections.abc': [
        'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
        'Hashable', 'Sized', 'Container', 'Collection', 'Reversible', 'Buffer',
    ],
    'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
}


@functools.cache
def _lazy_load_getattr_static():
    # Import getattr_static lazily so as not to slow down the import of typing.py
    # Cache the result so we don't slow down _ProtocolMeta.__instancecheck__ unnecessarily
    from inspect import getattr_static
    return getattr_static


_cleanups.append(_lazy_load_getattr_static.cache_clear)

def _pickle_psargs(psargs):
    return ParamSpecArgs, (psargs.__origin__,)

copyreg.pickle(ParamSpecArgs, _pickle_psargs)

def _pickle_pskwargs(pskwargs):
    return ParamSpecKwargs, (pskwargs.__origin__,)

copyreg.pickle(ParamSpecKwargs, _pickle_pskwargs)

del _pickle_psargs, _pickle_pskwargs


# Preload these once, as globals, as a micro-optimisation.
# This makes a significant difference to the time it takes
# to do `isinstance()`/`issubclass()` checks
# against runtime-checkable protocols with only one callable member.
_abc_instancecheck = ABCMeta.__instancecheck__
_abc_subclasscheck = ABCMeta.__subclasscheck__


def _type_check_issubclass_arg_1(arg):
    """Raise TypeError if `arg` is not an instance of `type`
    in `issubclass(arg, <protocol>)`.

    In most cases, this is verified by type.__subclasscheck__.
    Checking it again unnecessarily would slow down issubclass() checks,
    so, we don't perform this check unless we absolutely have to.

    For various error paths, however,
    we want to ensure that *this* error message is shown to the user
    where relevant, rather than a typing.py-specific error message.
    """
    if not isinstance(arg, type):
        # Same error message as for issubclass(1, int).
        raise TypeError('issubclass() arg 1 must be a class')


class _ProtocolMeta(ABCMeta):
    # This metaclass is somewhat unfortunate,
    # but is necessary for several reasons...
    def __new__(mcls, name, bases, namespace, /, **kwargs):
        if name == "Protocol" and bases == (Generic,):
            pass
        elif Protocol in bases:
            for base in bases:
                if not (
                    base in {object, Generic}
                    or base.__name__ in _PROTO_ALLOWLIST.get(base.__module__, [])
                    or (
                        issubclass(base, Generic)
                        and getattr(base, "_is_protocol", False)
                    )
                ):
                    raise TypeError(
                        f"Protocols can only inherit from other protocols, "
                        f"got {base!r}"
                    )
        return super().__new__(mcls, name, bases, namespace, **kwargs)

    def __init__(cls, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if getattr(cls, "_is_protocol", False):
            cls.__protocol_attrs__ = _get_protocol_attrs(cls)

    def __subclasscheck__(cls, other):
        if cls is Protocol:
            return type.__subclasscheck__(cls, other)
        if (
            getattr(cls, '_is_protocol', False)
            and not _allow_reckless_class_checks()
        ):
            if not getattr(cls, '_is_runtime_protocol', False):
                _type_check_issubclass_arg_1(other)
                raise TypeError(
                    "Instance and class checks can only be used with "
                    "@runtime_checkable protocols"
                )
            if (
                # this attribute is set by @runtime_checkable:
                cls.__non_callable_proto_members__
                and cls.__dict__.get("__subclasshook__") is _proto_hook
            ):
                _type_check_issubclass_arg_1(other)
                non_method_attrs = sorted(cls.__non_callable_proto_members__)
                raise TypeError(
                    "Protocols with non-method members don't support issubclass()."
                    f" Non-method members: {str(non_method_attrs)[1:-1]}."
                )
        return _abc_subclasscheck(cls, other)

    def __instancecheck__(cls, instance):
        # We need this method for situations where attributes are
        # assigned in __init__.
        if cls is Protocol:
            return type.__instancecheck__(cls, instance)
        if not getattr(cls, "_is_protocol", False):
            # i.e., it's a concrete subclass of a protocol
            return _abc_instancecheck(cls, instance)

        if (
            not getattr(cls, '_is_runtime_protocol', False) and
            not _allow_reckless_class_checks()
        ):
            raise TypeError("Instance and class checks can only be used with"
                            " @runtime_checkable protocols")

        if _abc_instancecheck(cls, instance):
            return True

        getattr_static = _lazy_load_getattr_static()
        for attr in cls.__protocol_attrs__:
            try:
                val = getattr_static(instance, attr)
            except AttributeError:
                break
            # this attribute is set by @runtime_checkable:
            if val is None and attr not in cls.__non_callable_proto_members__:
                break
        else:
            return True

        return False


@classmethod
def _proto_hook(cls, other):
    if not cls.__dict__.get('_is_protocol', False):
        return NotImplemented

    for attr in cls.__protocol_attrs__:
        for base in other.__mro__:
            # Check if the members appears in the class dictionary...
            if attr in base.__dict__:
                if base.__dict__[attr] is None:
                    return NotImplemented
                break

            # ...or in annotations, if it is a sub-protocol.
            annotations = getattr(base, '__annotations__', {})
            if (isinstance(annotations, collections.abc.Mapping) and
                    attr in annotations and
                    issubclass(other, Generic) and getattr(other, '_is_protocol', False)):
                break
        else:
            return NotImplemented
    return True


class Protocol(Generic, metaclass=_ProtocolMeta):
    """Base class for protocol classes.

    Protocol classes are defined as::

        class Proto(Protocol):
            def meth(self) -> int:
                ...

    Such classes are primarily used with static type checkers that recognize
    structural subtyping (static duck-typing).

    For example::

        class C:
            def meth(self) -> int:
                return 0

        def func(x: Proto) -> int:
            return x.meth()

        func(C())  # Passes static type check

    See PEP 544 for details. Protocol classes decorated with
    @typing.runtime_checkable act as simple-minded runtime protocols that check
    only the presence of given attributes, ignoring their type signatures.
    Protocol classes can be generic, they are defined as::

        class GenProto[T](Protocol):
            def meth(self) -> T:
                ...
    """

    __slots__ = ()
    _is_protocol = True
    _is_runtime_protocol = False

    def __init_subclass__(cls, *args, **kwargs):
        super().__init_subclass__(*args, **kwargs)

        # Determine if this is a protocol or a concrete subclass.
        if not cls.__dict__.get('_is_protocol', False):
            cls._is_protocol = any(b is Protocol for b in cls.__bases__)

        # Set (or override) the protocol subclass hook.
        if '__subclasshook__' not in cls.__dict__:
            cls.__subclasshook__ = _proto_hook

        # Prohibit instantiation for protocol classes
        if cls._is_protocol and cls.__init__ is Protocol.__init__:
            cls.__init__ = _no_init_or_replace_init


class _AnnotatedAlias(_NotIterable, _GenericAlias, _root=True):
    """Runtime representation of an annotated type.

    At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
    with extra annotations. The alias behaves like a normal typing alias.
    Instantiating is the same as instantiating the underlying type; binding
    it to types is also the same.

    The metadata itself is stored in a '__metadata__' attribute as a tuple.
    """

    def __init__(self, origin, metadata):
        if isinstance(origin, _AnnotatedAlias):
            metadata = origin.__metadata__ + metadata
            origin = origin.__origin__
        super().__init__(origin, origin, name='Annotated')
        self.__metadata__ = metadata

    def copy_with(self, params):
        assert len(params) == 1
        new_type = params[0]
        return _AnnotatedAlias(new_type, self.__metadata__)

    def __repr__(self):
        return "typing.Annotated[{}, {}]".format(
            _type_repr(self.__origin__),
            ", ".join(repr(a) for a in self.__metadata__)
        )

    def __reduce__(self):
        return operator.getitem, (
            Annotated, (self.__origin__,) + self.__metadata__
        )

    def __eq__(self, other):
        if not isinstance(other, _AnnotatedAlias):
            return NotImplemented
        return (self.__origin__ == other.__origin__
                and self.__metadata__ == other.__metadata__)

    def __hash__(self):
        return hash((self.__origin__, self.__metadata__))

    def __getattr__(self, attr):
        if attr in {'__name__', '__qualname__'}:
            return 'Annotated'
        return super().__getattr__(attr)

    def __mro_entries__(self, bases):
        return (self.__origin__,)


@_TypedCacheSpecialForm
@_tp_cache(typed=True)
def Annotated(self, *params):
    """Add context-specific metadata to a type.

    Example: Annotated[int, runtime_check.Unsigned] indicates to the
    hypothetical runtime_check module that this type is an unsigned int.
    Every other consumer of this type can ignore this metadata and treat
    this type as int.

    The first argument to Annotated must be a valid type.

    Details:

    - It's an error to call `Annotated` with less than two arguments.
    - Access the metadata via the ``__metadata__`` attribute::

        assert Annotated[int, '$'].__metadata__ == ('$',)

    - Nested Annotated types are flattened::

        assert Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]

    - Instantiating an annotated type is equivalent to instantiating the
    underlying type::

        assert Annotated[C, Ann1](5) == C(5)

    - Annotated can be used as a generic type alias::

        type Optimized[T] = Annotated[T, runtime.Optimize()]
        # type checker will treat Optimized[int]
        # as equivalent to Annotated[int, runtime.Optimize()]

        type OptimizedList[T] = Annotated[list[T], runtime.Optimize()]
        # type checker will treat OptimizedList[int]
        # as equivalent to Annotated[list[int], runtime.Optimize()]

    - Annotated cannot be used with an unpacked TypeVarTuple::

        type Variadic[*Ts] = Annotated[*Ts, Ann1]  # NOT valid

      This would be equivalent to::

        Annotated[T1, T2, T3, ..., Ann1]

      where T1, T2 etc. are TypeVars, which would be invalid, because
      only one type should be passed to Annotated.
    """
    if len(params) < 2:
        raise TypeError("Annotated[...] should be used "
                        "with at least two arguments (a type and an "
                        "annotation).")
    if _is_unpacked_typevartuple(params[0]):
        raise TypeError("Annotated[...] should not be used with an "
                        "unpacked TypeVarTuple")
    msg = "Annotated[t, ...]: t must be a type."
    origin = _type_check(params[0], msg, allow_special_forms=True)
    metadata = tuple(params[1:])
    return _AnnotatedAlias(origin, metadata)


def runtime_checkable(cls):
    """Mark a protocol class as a runtime protocol.

    Such protocol can be used with isinstance() and issubclass().
    Raise TypeError if applied to a non-protocol class.
    This allows a simple-minded structural check very similar to
    one trick ponies in collections.abc such as Iterable.

    For example::

        @runtime_checkable
        class Closable(Protocol):
            def close(self): ...

        assert isinstance(open('/some/file'), Closable)

    Warning: this will check only the presence of the required methods,
    not their type signatures!
    """
    if not issubclass(cls, Generic) or not getattr(cls, '_is_protocol', False):
        raise TypeError('@runtime_checkable can be only applied to protocol classes,'
                        ' got %r' % cls)
    cls._is_runtime_protocol = True
    # PEP 544 prohibits using issubclass()
    # with protocols that have non-method members.
    # See gh-113320 for why we compute this attribute here,
    # rather than in `_ProtocolMeta.__init__`
    cls.__non_callable_proto_members__ = set()
    for attr in cls.__protocol_attrs__:
        try:
            is_callable = callable(getattr(cls, attr, None))
        except Exception as e:
            raise TypeError(
                f"Failed to determine whether protocol member {attr!r} "
                "is a method member"
            ) from e
        else:
            if not is_callable:
                cls.__non_callable_proto_members__.add(attr)
    return cls


def cast(typ, val):
    """Cast a value to a type.

    This returns the value unchanged.  To the type checker this
    signals that the return value has the designated type, but at
    runtime we intentionally don't check anything (we want this
    to be as fast as possible).
    """
    return val


def assert_type(val, typ, /):
    """Ask a static type checker to confirm that the value is of the given type.

    At runtime this does nothing: it returns the first argument unchanged with no
    checks or side effects, no matter the actual type of the argument.

    When a static type checker encounters a call to assert_type(), it
    emits an error if the value is not of the specified type::

        def greet(name: str) -> None:
            assert_type(name, str)  # OK
            assert_type(name, int)  # type checker error
    """
    return val


_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
                  types.MethodType, types.ModuleType,
                  WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)


def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
    """Return type hints for an object.

    This is often the same as obj.__annotations__, but it handles
    forward references encoded as string literals and recursively replaces all
    'Annotated[T, ...]' with 'T' (unless 'include_extras=True').

    The argument may be a module, class, method, or function. The annotations
    are returned as a dictionary. For classes, annotations include also
    inherited members.

    TypeError is raised if the argument is not of a type that can contain
    annotations, and an empty dictionary is returned if no annotations are
    present.

    BEWARE -- the behavior of globalns and localns is counterintuitive
    (unless you are familiar with how eval() and exec() work).  The
    search order is locals first, then globals.

    - If no dict arguments are passed, an attempt is made to use the
      globals from obj (or the respective module's globals for classes),
      and these are also used as the locals.  If the object does not appear
      to have globals, an empty dictionary is used.  For classes, the search
      order is globals first then locals.

    - If one dict argument is passed, it is used for both globals and
      locals.

    - If two dict arguments are passed, they specify globals and
      locals, respectively.
    """
    if getattr(obj, '__no_type_check__', None):
        return {}
    # Classes require a special treatment.
    if isinstance(obj, type):
        hints = {}
        for base in reversed(obj.__mro__):
            if globalns is None:
                base_globals = getattr(sys.modules.get(base.__module__, None), '__dict__', {})
            else:
                base_globals = globalns
            ann = base.__dict__.get('__annotations__', {})
            if isinstance(ann, types.GetSetDescriptorType):
                ann = {}
            base_locals = dict(vars(base)) if localns is None else localns
            if localns is None and globalns is None:
                # This is surprising, but required.  Before Python 3.10,
                # get_type_hints only evaluated the globalns of
                # a class.  To maintain backwards compatibility, we reverse
                # the globalns and localns order so that eval() looks into
                # *base_globals* first rather than *base_locals*.
                # This only affects ForwardRefs.
                base_globals, base_locals = base_locals, base_globals
            for name, value in ann.items():
                if value is None:
                    value = type(None)
                if isinstance(value, str):
                    value = ForwardRef(value, is_argument=False, is_class=True)
                value = _eval_type(value, base_globals, base_locals, base.__type_params__)
                hints[name] = value
        return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}

    if globalns is None:
        if isinstance(obj, types.ModuleType):
            globalns = obj.__dict__
        else:
            nsobj = obj
            # Find globalns for the unwrapped object.
            while hasattr(nsobj, '__wrapped__'):
                nsobj = nsobj.__wrapped__
            globalns = getattr(nsobj, '__globals__', {})
        if localns is None:
            localns = globalns
    elif localns is None:
        localns = globalns
    hints = getattr(obj, '__annotations__', None)
    if hints is None:
        # Return empty annotations for something that _could_ have them.
        if isinstance(obj, _allowed_types):
            return {}
        else:
            raise TypeError('{!r} is not a module, class, method, '
                            'or function.'.format(obj))
    hints = dict(hints)
    type_params = getattr(obj, "__type_params__", ())
    for name, value in hints.items():
        if value is None:
            value = type(None)
        if isinstance(value, str):
            # class-level forward refs were handled above, this must be either
            # a module-level annotation or a function argument annotation
            value = ForwardRef(
                value,
                is_argument=not isinstance(obj, types.ModuleType),
                is_class=False,
            )
        hints[name] = _eval_type(value, globalns, localns, type_params)
    return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}


def _strip_annotations(t):
    """Strip the annotations from a given type."""
    if isinstance(t, _AnnotatedAlias):
        return _strip_annotations(t.__origin__)
    if hasattr(t, "__origin__") and t.__origin__ in (Required, NotRequired, ReadOnly):
        return _strip_annotations(t.__args__[0])
    if isinstance(t, _GenericAlias):
        stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
        if stripped_args == t.__args__:
            return t
        return t.copy_with(stripped_args)
    if isinstance(t, GenericAlias):
        stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
        if stripped_args == t.__args__:
            return t
        return GenericAlias(t.__origin__, stripped_args)
    if isinstance(t, types.UnionType):
        stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
        if stripped_args == t.__args__:
            return t
        return functools.reduce(operator.or_, stripped_args)

    return t


def get_origin(tp):
    """Get the unsubscripted version of a type.

    This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar,
    Annotated, and others. Return None for unsupported types.

    Examples::

        >>> P = ParamSpec('P')
        >>> assert get_origin(Literal[42]) is Literal
        >>> assert get_origin(int) is None
        >>> assert get_origin(ClassVar[int]) is ClassVar
        >>> assert get_origin(Generic) is Generic
        >>> assert get_origin(Generic[T]) is Generic
        >>> assert get_origin(Union[T, int]) is Union
        >>> assert get_origin(List[Tuple[T, T]][int]) is list
        >>> assert get_origin(P.args) is P
    """
    if isinstance(tp, _AnnotatedAlias):
        return Annotated
    if isinstance(tp, (_BaseGenericAlias, GenericAlias,
                       ParamSpecArgs, ParamSpecKwargs)):
        return tp.__origin__
    if tp is Generic:
        return Generic
    if isinstance(tp, types.UnionType):
        return types.UnionType
    return None


def get_args(tp):
    """Get type arguments with all substitutions performed.

    For unions, basic simplifications used by Union constructor are performed.

    Examples::

        >>> T = TypeVar('T')
        >>> assert get_args(Dict[str, int]) == (str, int)
        >>> assert get_args(int) == ()
        >>> assert get_args(Union[int, Union[T, int], str][int]) == (int, str)
        >>> assert get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
        >>> assert get_args(Callable[[], T][int]) == ([], int)
    """
    if isinstance(tp, _AnnotatedAlias):
        return (tp.__origin__,) + tp.__metadata__
    if isinstance(tp, (_GenericAlias, GenericAlias)):
        res = tp.__args__
        if _should_unflatten_callable_args(tp, res):
            res = (list(res[:-1]), res[-1])
        return res
    if isinstance(tp, types.UnionType):
        return tp.__args__
    return ()


def is_typeddict(tp):
    """Check if an annotation is a TypedDict class.

    For example::

        >>> from typing import TypedDict
        >>> class Film(TypedDict):
        ...     title: str
        ...     year: int
        ...
        >>> is_typeddict(Film)
        True
        >>> is_typeddict(dict)
        False
    """
    return isinstance(tp, _TypedDictMeta)


_ASSERT_NEVER_REPR_MAX_LENGTH = 100


def assert_never(arg: Never, /) -> Never:
    """Statically assert that a line of code is unreachable.

    Example::

        def int_or_str(arg: int | str) -> None:
            match arg:
                case int():
                    print("It's an int")
                case str():
                    print("It's a str")
                case _:
                    assert_never(arg)

    If a type checker finds that a call to assert_never() is
    reachable, it will emit an error.

    At runtime, this throws an exception when called.
    """
    value = repr(arg)
    if len(value) > _ASSERT_NEVER_REPR_MAX_LENGTH:
        value = value[:_ASSERT_NEVER_REPR_MAX_LENGTH] + '...'
    raise AssertionError(f"Expected code to be unreachable, but got: {value}")


def no_type_check(arg):
    """Decorator to indicate that annotations are not type hints.

    The argument must be a class or function; if it is a class, it
    applies recursively to all methods and classes defined in that class
    (but not to methods defined in its superclasses or subclasses).

    This mutates the function(s) or class(es) in place.
    """
    if isinstance(arg, type):
        for key in dir(arg):
            obj = getattr(arg, key)
            if (
                not hasattr(obj, '__qualname__')
                or obj.__qualname__ != f'{arg.__qualname__}.{obj.__name__}'
                or getattr(obj, '__module__', None) != arg.__module__
            ):
                # We only modify objects that are defined in this type directly.
                # If classes / methods are nested in multiple layers,
                # we will modify them when processing their direct holders.
                continue
            # Instance, class, and static methods:
            if isinstance(obj, types.FunctionType):
                obj.__no_type_check__ = True
            if isinstance(obj, types.MethodType):
                obj.__func__.__no_type_check__ = True
            # Nested types:
            if isinstance(obj, type):
                no_type_check(obj)
    try:
        arg.__no_type_check__ = True
    except TypeError:  # built-in classes
        pass
    return arg


def no_type_check_decorator(decorator):
    """Decorator to give another decorator the @no_type_check effect.

    This wraps the decorator with something that wraps the decorated
    function in @no_type_check.
    """
    import warnings
    warnings._deprecated("typing.no_type_check_decorator", remove=(3, 15))
    @functools.wraps(decorator)
    def wrapped_decorator(*args, **kwds):
        func = decorator(*args, **kwds)
        func = no_type_check(func)
        return func

    return wrapped_decorator


def _overload_dummy(*args, **kwds):
    """Helper for @overload to raise when called."""
    raise NotImplementedError(
        "You should not call an overloaded function. "
        "A series of @overload-decorated functions "
        "outside a stub module should always be followed "
        "by an implementation that is not @overload-ed.")


# {module: {qualname: {firstlineno: func}}}
_overload_registry = defaultdict(functools.partial(defaultdict, dict))


def overload(func):
    """Decorator for overloaded functions/methods.

    In a stub file, place two or more stub definitions for the same
    function in a row, each decorated with @overload.

    For example::

        @overload
        def utf8(value: None) -> None: ...
        @overload
        def utf8(value: bytes) -> bytes: ...
        @overload
        def utf8(value: str) -> bytes: ...

    In a non-stub file (i.e. a regular .py file), do the same but
    follow it with an implementation.  The implementation should *not*
    be decorated with @overload::

        @overload
        def utf8(value: None) -> None: ...
        @overload
        def utf8(value: bytes) -> bytes: ...
        @overload
        def utf8(value: str) -> bytes: ...
        def utf8(value):
            ...  # implementation goes here

    The overloads for a function can be retrieved at runtime using the
    get_overloads() function.
    """
    # classmethod and staticmethod
    f = getattr(func, "__func__", func)
    try:
        _overload_registry[f.__module__][f.__qualname__][f.__code__.co_firstlineno] = func
    except AttributeError:
        # Not a normal function; ignore.
        pass
    return _overload_dummy


def get_overloads(func):
    """Return all defined overloads for *func* as a sequence."""
    # classmethod and staticmethod
    f = getattr(func, "__func__", func)
    if f.__module__ not in _overload_registry:
        return []
    mod_dict = _overload_registry[f.__module__]
    if f.__qualname__ not in mod_dict:
        return []
    return list(mod_dict[f.__qualname__].values())


def clear_overloads():
    """Clear all overloads in the registry."""
    _overload_registry.clear()


def final(f):
    """Decorator to indicate final methods and final classes.

    Use this decorator to indicate to type checkers that the decorated
    method cannot be overridden, and decorated class cannot be subclassed.

    For example::

        class Base:
            @final
            def done(self) -> None:
                ...
        class Sub(Base):
            def done(self) -> None:  # Error reported by type checker
                ...

        @final
        class Leaf:
            ...
        class Other(Leaf):  # Error reported by type checker
            ...

    There is no runtime checking of these properties. The decorator
    attempts to set the ``__final__`` attribute to ``True`` on the decorated
    object to allow runtime introspection.
    """
    try:
        f.__final__ = True
    except (AttributeError, TypeError):
        # Skip the attribute silently if it is not writable.
        # AttributeError happens if the object has __slots__ or a
        # read-only property, TypeError if it's a builtin class.
        pass
    return f


# Some unconstrained type variables.  These were initially used by the container types.
# They were never meant for export and are now unused, but we keep them around to
# avoid breaking compatibility with users who import them.
T = TypeVar('T')  # Any type.
KT = TypeVar('KT')  # Key type.
VT = TypeVar('VT')  # Value type.
T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.
# Internal type variable used for Type[].
CT_co = TypeVar('CT_co', covariant=True, bound=type)


# A useful type variable with constraints.  This represents string types.
# (This one *is* for export!)
AnyStr = TypeVar('AnyStr', bytes, str)


# Various ABCs mimicking those in collections.abc.
_alias = _SpecialGenericAlias

Hashable = _alias(collections.abc.Hashable, 0)  # Not generic.
Awaitable = _alias(collections.abc.Awaitable, 1)
Coroutine = _alias(collections.abc.Coroutine, 3)
AsyncIterable = _alias(collections.abc.AsyncIterable, 1)
AsyncIterator = _alias(collections.abc.AsyncIterator, 1)
Iterable = _alias(collections.abc.Iterable, 1)
Iterator = _alias(collections.abc.Iterator, 1)
Reversible = _alias(collections.abc.Reversible, 1)
Sized = _alias(collections.abc.Sized, 0)  # Not generic.
Container = _alias(collections.abc.Container, 1)
Collection = _alias(collections.abc.Collection, 1)
Callable = _CallableType(collections.abc.Callable, 2)
Callable.__doc__ = \
    """Deprecated alias to collections.abc.Callable.

    Callable[[int], str] signifies a function that takes a single
    parameter of type int and returns a str.

    The subscription syntax must always be used with exactly two
    values: the argument list and the return type.
    The argument list must be a list of types, a ParamSpec,
    Concatenate or ellipsis. The return type must be a single type.

    There is no syntax to indicate optional or keyword arguments;
    such function types are rarely used as callback types.
    """
AbstractSet = _alias(collections.abc.Set, 1, name='AbstractSet')
MutableSet = _alias(collections.abc.MutableSet, 1)
# NOTE: Mapping is only covariant in the value type.
Mapping = _alias(collections.abc.Mapping, 2)
MutableMapping = _alias(collections.abc.MutableMapping, 2)
Sequence = _alias(collections.abc.Sequence, 1)
MutableSequence = _alias(collections.abc.MutableSequence, 1)
ByteString = _DeprecatedGenericAlias(
    collections.abc.ByteString, 0, removal_version=(3, 14)  # Not generic.
)
# Tuple accepts variable number of parameters.
Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
Tuple.__doc__ = \
    """Deprecated alias to builtins.tuple.

    Tuple[X, Y] is the cross-product type of X and Y.

    Example: Tuple[T1, T2] is a tuple of two elements corresponding
    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
    of an int, a float and a string.

    To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
    """
List = _alias(list, 1, inst=False, name='List')
Deque = _alias(collections.deque, 1, name='Deque')
Set = _alias(set, 1, inst=False, name='Set')
FrozenSet = _alias(frozenset, 1, inst=False, name='FrozenSet')
MappingView = _alias(collections.abc.MappingView, 1)
KeysView = _alias(collections.abc.KeysView, 1)
ItemsView = _alias(collections.abc.ItemsView, 2)
ValuesView = _alias(collections.abc.ValuesView, 1)
Dict = _alias(dict, 2, inst=False, name='Dict')
DefaultDict = _alias(collections.defaultdict, 2, name='DefaultDict')
OrderedDict = _alias(collections.OrderedDict, 2)
Counter = _alias(collections.Counter, 1)
ChainMap = _alias(collections.ChainMap, 2)
Generator = _alias(collections.abc.Generator, 3, defaults=(types.NoneType, types.NoneType))
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2, defaults=(types.NoneType,))
Type = _alias(type, 1, inst=False, name='Type')
Type.__doc__ = \
    """Deprecated alias to builtins.type.

    builtins.type or typing.Type can be used to annotate class objects.
    For example, suppose we have the following classes::

        class User: ...  # Abstract base for User classes
        class BasicUser(User): ...
        class ProUser(User): ...
        class TeamUser(User): ...

    And a function that takes a class argument that's a subclass of
    User and returns an instance of the corresponding class::

        def new_user[U](user_class: Type[U]) -> U:
            user = user_class()
            # (Here we could write the user object to a database)
            return user

        joe = new_user(BasicUser)

    At this point the type checker knows that joe has type BasicUser.
    """


@runtime_checkable
class SupportsInt(Protocol):
    """An ABC with one abstract method __int__."""

    __slots__ = ()

    @abstractmethod
    def __int__(self) -> int:
        pass


@runtime_checkable
class SupportsFloat(Protocol):
    """An ABC with one abstract method __float__."""

    __slots__ = ()

    @abstractmethod
    def __float__(self) -> float:
        pass


@runtime_checkable
class SupportsComplex(Protocol):
    """An ABC with one abstract method __complex__."""

    __slots__ = ()

    @abstractmethod
    def __complex__(self) -> complex:
        pass


@runtime_checkable
class SupportsBytes(Protocol):
    """An ABC with one abstract method __bytes__."""

    __slots__ = ()

    @abstractmethod
    def __bytes__(self) -> bytes:
        pass


@runtime_checkable
class SupportsIndex(Protocol):
    """An ABC with one abstract method __index__."""

    __slots__ = ()

    @abstractmethod
    def __index__(self) -> int:
        pass


@runtime_checkable
class SupportsAbs[T](Protocol):
    """An ABC with one abstract method __abs__ that is covariant in its return type."""

    __slots__ = ()

    @abstractmethod
    def __abs__(self) -> T:
        pass


@runtime_checkable
class SupportsRound[T](Protocol):
    """An ABC with one abstract method __round__ that is covariant in its return type."""

    __slots__ = ()

    @abstractmethod
    def __round__(self, ndigits: int = 0) -> T:
        pass


def _make_nmtuple(name, types, module, defaults = ()):
    fields = [n for n, t in types]
    types = {n: _type_check(t, f"field {n} annotation must be a type")
             for n, t in types}
    nm_tpl = collections.namedtuple(name, fields,
                                    defaults=defaults, module=module)
    nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = types
    return nm_tpl


# attributes prohibited to set in NamedTuple class syntax
_prohibited = frozenset({'__new__', '__init__', '__slots__', '__getnewargs__',
                         '_fields', '_field_defaults',
                         '_make', '_replace', '_asdict', '_source'})

_special = frozenset({'__module__', '__name__', '__annotations__'})


class NamedTupleMeta(type):
    def __new__(cls, typename, bases, ns):
        assert _NamedTuple in bases
        for base in bases:
            if base is not _NamedTuple and base is not Generic:
                raise TypeError(
                    'can only inherit from a NamedTuple type and Generic')
        bases = tuple(tuple if base is _NamedTuple else base for base in bases)
        types = ns.get('__annotations__', {})
        default_names = []
        for field_name in types:
            if field_name in ns:
                default_names.append(field_name)
            elif default_names:
                raise TypeError(f"Non-default namedtuple field {field_name} "
                                f"cannot follow default field"
                                f"{'s' if len(default_names) > 1 else ''} "
                                f"{', '.join(default_names)}")
        nm_tpl = _make_nmtuple(typename, types.items(),
                               defaults=[ns[n] for n in default_names],
                               module=ns['__module__'])
        nm_tpl.__bases__ = bases
        if Generic in bases:
            class_getitem = _generic_class_getitem
            nm_tpl.__class_getitem__ = classmethod(class_getitem)
        # update from user namespace without overriding special namedtuple attributes
        for key, val in ns.items():
            if key in _prohibited:
                raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
            elif key not in _special:
                if key not in nm_tpl._fields:
                    setattr(nm_tpl, key, val)
                try:
                    set_name = type(val).__set_name__
                except AttributeError:
                    pass
                else:
                    try:
                        set_name(val, nm_tpl, key)
                    except BaseException as e:
                        e.add_note(
                            f"Error calling __set_name__ on {type(val).__name__!r} "
                            f"instance {key!r} in {typename!r}"
                        )
                        raise

        if Generic in bases:
            nm_tpl.__init_subclass__()
        return nm_tpl


def NamedTuple(typename, fields=_sentinel, /, **kwargs):
    """Typed version of namedtuple.

    Usage::

        class Employee(NamedTuple):
            name: str
            id: int

    This is equivalent to::

        Employee = collections.namedtuple('Employee', ['name', 'id'])

    The resulting class has an extra __annotations__ attribute, giving a
    dict that maps field names to types.  (The field names are also in
    the _fields attribute, which is part of the namedtuple API.)
    An alternative equivalent functional syntax is also accepted::

        Employee = NamedTuple('Employee', [('name', str), ('id', int)])
    """
    if fields is _sentinel:
        if kwargs:
            deprecated_thing = "Creating NamedTuple classes using keyword arguments"
            deprecation_msg = (
                "{name} is deprecated and will be disallowed in Python {remove}. "
                "Use the class-based or functional syntax instead."
            )
        else:
            deprecated_thing = "Failing to pass a value for the 'fields' parameter"
            example = f"`{typename} = NamedTuple({typename!r}, [])`"
            deprecation_msg = (
                "{name} is deprecated and will be disallowed in Python {remove}. "
                "To create a NamedTuple class with 0 fields "
                "using the functional syntax, "
                "pass an empty list, e.g. "
            ) + example + "."
    elif fields is None:
        if kwargs:
            raise TypeError(
                "Cannot pass `None` as the 'fields' parameter "
                "and also specify fields using keyword arguments"
            )
        else:
            deprecated_thing = "Passing `None` as the 'fields' parameter"
            example = f"`{typename} = NamedTuple({typename!r}, [])`"
            deprecation_msg = (
                "{name} is deprecated and will be disallowed in Python {remove}. "
                "To create a NamedTuple class with 0 fields "
                "using the functional syntax, "
                "pass an empty list, e.g. "
            ) + example + "."
    elif kwargs:
        raise TypeError("Either list of fields or keywords"
                        " can be provided to NamedTuple, not both")
    if fields is _sentinel or fields is None:
        import warnings
        warnings._deprecated(deprecated_thing, message=deprecation_msg, remove=(3, 15))
        fields = kwargs.items()
    nt = _make_nmtuple(typename, fields, module=_caller())
    nt.__orig_bases__ = (NamedTuple,)
    return nt

_NamedTuple = type.__new__(NamedTupleMeta, 'NamedTuple', (), {})

def _namedtuple_mro_entries(bases):
    assert NamedTuple in bases
    return (_NamedTuple,)

NamedTuple.__mro_entries__ = _namedtuple_mro_entries


def _get_typeddict_qualifiers(annotation_type):
    while True:
        annotation_origin = get_origin(annotation_type)
        if annotation_origin is Annotated:
            annotation_args = get_args(annotation_type)
            if annotation_args:
                annotation_type = annotation_args[0]
            else:
                break
        elif annotation_origin is Required:
            yield Required
            (annotation_type,) = get_args(annotation_type)
        elif annotation_origin is NotRequired:
            yield NotRequired
            (annotation_type,) = get_args(annotation_type)
        elif annotation_origin is ReadOnly:
            yield ReadOnly
            (annotation_type,) = get_args(annotation_type)
        else:
            break


class _TypedDictMeta(type):
    def __new__(cls, name, bases, ns, total=True):
        """Create a new typed dict class object.

        This method is called when TypedDict is subclassed,
        or when TypedDict is instantiated. This way
        TypedDict supports all three syntax forms described in its docstring.
        Subclasses and instances of TypedDict return actual dictionaries.
        """
        for base in bases:
            if type(base) is not _TypedDictMeta and base is not Generic:
                raise TypeError('cannot inherit from both a TypedDict type '
                                'and a non-TypedDict base class')

        if any(issubclass(b, Generic) for b in bases):
            generic_base = (Generic,)
        else:
            generic_base = ()

        tp_dict = type.__new__(_TypedDictMeta, name, (*generic_base, dict), ns)

        if not hasattr(tp_dict, '__orig_bases__'):
            tp_dict.__orig_bases__ = bases

        annotations = {}
        own_annotations = ns.get('__annotations__', {})
        msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
        own_annotations = {
            n: _type_check(tp, msg, module=tp_dict.__module__)
            for n, tp in own_annotations.items()
        }
        required_keys = set()
        optional_keys = set()
        readonly_keys = set()
        mutable_keys = set()

        for base in bases:
            annotations.update(base.__dict__.get('__annotations__', {}))

            base_required = base.__dict__.get('__required_keys__', set())
            required_keys |= base_required
            optional_keys -= base_required

            base_optional = base.__dict__.get('__optional_keys__', set())
            required_keys -= base_optional
            optional_keys |= base_optional

            readonly_keys.update(base.__dict__.get('__readonly_keys__', ()))
            mutable_keys.update(base.__dict__.get('__mutable_keys__', ()))

        annotations.update(own_annotations)
        for annotation_key, annotation_type in own_annotations.items():
            qualifiers = set(_get_typeddict_qualifiers(annotation_type))
            if Required in qualifiers:
                is_required = True
            elif NotRequired in qualifiers:
                is_required = False
            else:
                is_required = total

            if is_required:
                required_keys.add(annotation_key)
                optional_keys.discard(annotation_key)
            else:
                optional_keys.add(annotation_key)
                required_keys.discard(annotation_key)

            if ReadOnly in qualifiers:
                if annotation_key in mutable_keys:
                    raise TypeError(
                        f"Cannot override mutable key {annotation_key!r}"
                        " with read-only key"
                    )
                readonly_keys.add(annotation_key)
            else:
                mutable_keys.add(annotation_key)
                readonly_keys.discard(annotation_key)

        assert required_keys.isdisjoint(optional_keys), (
            f"Required keys overlap with optional keys in {name}:"
            f" {required_keys=}, {optional_keys=}"
        )
        tp_dict.__annotations__ = annotations
        tp_dict.__required_keys__ = frozenset(required_keys)
        tp_dict.__optional_keys__ = frozenset(optional_keys)
        tp_dict.__readonly_keys__ = frozenset(readonly_keys)
        tp_dict.__mutable_keys__ = frozenset(mutable_keys)
        tp_dict.__total__ = total
        return tp_dict

    __call__ = dict  # static method

    def __subclasscheck__(cls, other):
        # Typed dicts are only for static structural subtyping.
        raise TypeError('TypedDict does not support instance and class checks')

    __instancecheck__ = __subclasscheck__


def TypedDict(typename, fields=_sentinel, /, *, total=True):
    """A simple typed namespace. At runtime it is equivalent to a plain dict.

    TypedDict creates a dictionary type such that a type checker will expect all
    instances to have a certain set of keys, where each key is
    associated with a value of a consistent type. This expectation
    is not checked at runtime.

    Usage::

        >>> class Point2D(TypedDict):
        ...     x: int
        ...     y: int
        ...     label: str
        ...
        >>> a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
        >>> b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check
        >>> Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
        True

    The type info can be accessed via the Point2D.__annotations__ dict, and
    the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
    TypedDict supports an additional equivalent form::

        Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})

    By default, all keys must be present in a TypedDict. It is possible
    to override this by specifying totality::

        class Point2D(TypedDict, total=False):
            x: int
            y: int

    This means that a Point2D TypedDict can have any of the keys omitted. A type
    checker is only expected to support a literal False or True as the value of
    the total argument. True is the default, and makes all items defined in the
    class body be required.

    The Required and NotRequired special forms can also be used to mark
    individual keys as being required or not required::

        class Point2D(TypedDict):
            x: int               # the "x" key must always be present (Required is the default)
            y: NotRequired[int]  # the "y" key can be omitted

    See PEP 655 for more details on Required and NotRequired.

    The ReadOnly special form can be used
    to mark individual keys as immutable for type checkers::

        class DatabaseUser(TypedDict):
            id: ReadOnly[int]  # the "id" key must not be modified
            username: str      # the "username" key can be changed

    """
    if fields is _sentinel or fields is None:
        import warnings

        if fields is _sentinel:
            deprecated_thing = "Failing to pass a value for the 'fields' parameter"
        else:
            deprecated_thing = "Passing `None` as the 'fields' parameter"

        example = f"`{typename} = TypedDict({typename!r}, {{{{}}}})`"
        deprecation_msg = (
            "{name} is deprecated and will be disallowed in Python {remove}. "
            "To create a TypedDict class with 0 fields "
            "using the functional syntax, "
            "pass an empty dictionary, e.g. "
        ) + example + "."
        warnings._deprecated(deprecated_thing, message=deprecation_msg, remove=(3, 15))
        fields = {}

    ns = {'__annotations__': dict(fields)}
    module = _caller()
    if module is not None:
        # Setting correct module is necessary to make typed dict classes pickleable.
        ns['__module__'] = module

    td = _TypedDictMeta(typename, (), ns, total=total)
    td.__orig_bases__ = (TypedDict,)
    return td

_TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {})
TypedDict.__mro_entries__ = lambda bases: (_TypedDict,)


@_SpecialForm
def Required(self, parameters):
    """Special typing construct to mark a TypedDict key as required.

    This is mainly useful for total=False TypedDicts.

    For example::

        class Movie(TypedDict, total=False):
            title: Required[str]
            year: int

        m = Movie(
            title='The Matrix',  # typechecker error if key is omitted
            year=1999,
        )

    There is no runtime checking that a required key is actually provided
    when instantiating a related TypedDict.
    """
    item = _type_check(parameters, f'{self._name} accepts only a single type.')
    return _GenericAlias(self, (item,))


@_SpecialForm
def NotRequired(self, parameters):
    """Special typing construct to mark a TypedDict key as potentially missing.

    For example::

        class Movie(TypedDict):
            title: str
            year: NotRequired[int]

        m = Movie(
            title='The Matrix',  # typechecker error if key is omitted
            year=1999,
        )
    """
    item = _type_check(parameters, f'{self._name} accepts only a single type.')
    return _GenericAlias(self, (item,))


@_SpecialForm
def ReadOnly(self, parameters):
    """A special typing construct to mark an item of a TypedDict as read-only.

    For example::

        class Movie(TypedDict):
            title: ReadOnly[str]
            year: int

        def mutate_movie(m: Movie) -> None:
            m["year"] = 1992  # allowed
            m["title"] = "The Matrix"  # typechecker error

    There is no runtime checking for this property.
    """
    item = _type_check(parameters, f'{self._name} accepts only a single type.')
    return _GenericAlias(self, (item,))


class NewType:
    """NewType creates simple unique types with almost zero runtime overhead.

    NewType(name, tp) is considered a subtype of tp
    by static type checkers. At runtime, NewType(name, tp) returns
    a dummy callable that simply returns its argument.

    Usage::

        UserId = NewType('UserId', int)

        def name_by_id(user_id: UserId) -> str:
            ...

        UserId('user')          # Fails type check

        name_by_id(42)          # Fails type check
        name_by_id(UserId(42))  # OK

        num = UserId(5) + 1     # type: int
    """

    __call__ = _idfunc

    def __init__(self, name, tp):
        self.__qualname__ = name
        if '.' in name:
            name = name.rpartition('.')[-1]
        self.__name__ = name
        self.__supertype__ = tp
        def_mod = _caller()
        if def_mod != 'typing':
            self.__module__ = def_mod

    def __mro_entries__(self, bases):
        # We defined __mro_entries__ to get a better error message
        # if a user attempts to subclass a NewType instance. bpo-46170
        superclass_name = self.__name__

        class Dummy:
            def __init_subclass__(cls):
                subclass_name = cls.__name__
                raise TypeError(
                    f"Cannot subclass an instance of NewType. Perhaps you were looking for: "
                    f"`{subclass_name} = NewType({subclass_name!r}, {superclass_name})`"
                )

        return (Dummy,)

    def __repr__(self):
        return f'{self.__module__}.{self.__qualname__}'

    def __reduce__(self):
        return self.__qualname__

    def __or__(self, other):
        return Union[self, other]

    def __ror__(self, other):
        return Union[other, self]


# Python-version-specific alias (Python 2: unicode; Python 3: str)
Text = str


# Constant that's True when type checking, but False here.
TYPE_CHECKING = False


class IO(Generic[AnyStr]):
    """Generic base class for TextIO and BinaryIO.

    This is an abstract, generic version of the return of open().

    NOTE: This does not distinguish between the different possible
    classes (text vs. binary, read vs. write vs. read/write,
    append-only, unbuffered).  The TextIO and BinaryIO subclasses
    below capture the distinctions between text vs. binary, which is
    pervasive in the interface; however we currently do not offer a
    way to track the other distinctions in the type system.
    """

    __slots__ = ()

    @property
    @abstractmethod
    def mode(self) -> str:
        pass

    @property
    @abstractmethod
    def name(self) -> str:
        pass

    @abstractmethod
    def close(self) -> None:
        pass

    @property
    @abstractmethod
    def closed(self) -> bool:
        pass

    @abstractmethod
    def fileno(self) -> int:
        pass

    @abstractmethod
    def flush(self) -> None:
        pass

    @abstractmethod
    def isatty(self) -> bool:
        pass

    @abstractmethod
    def read(self, n: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readable(self) -> bool:
        pass

    @abstractmethod
    def readline(self, limit: int = -1) -> AnyStr:
        pass

    @abstractmethod
    def readlines(self, hint: int = -1) -> List[AnyStr]:
        pass

    @abstractmethod
    def seek(self, offset: int, whence: int = 0) -> int:
        pass

    @abstractmethod
    def seekable(self) -> bool:
        pass

    @abstractmethod
    def tell(self) -> int:
        pass

    @abstractmethod
    def truncate(self, size: int = None) -> int:
        pass

    @abstractmethod
    def writable(self) -> bool:
        pass

    @abstractmethod
    def write(self, s: AnyStr) -> int:
        pass

    @abstractmethod
    def writelines(self, lines: List[AnyStr]) -> None:
        pass

    @abstractmethod
    def __enter__(self) -> 'IO[AnyStr]':
        pass

    @abstractmethod
    def __exit__(self, type, value, traceback) -> None:
        pass


class BinaryIO(IO[bytes]):
    """Typed version of the return of open() in binary mode."""

    __slots__ = ()

    @abstractmethod
    def write(self, s: Union[bytes, bytearray]) -> int:
        pass

    @abstractmethod
    def __enter__(self) -> 'BinaryIO':
        pass


class TextIO(IO[str]):
    """Typed version of the return of open() in text mode."""

    __slots__ = ()

    @property
    @abstractmethod
    def buffer(self) -> BinaryIO:
        pass

    @property
    @abstractmethod
    def encoding(self) -> str:
        pass

    @property
    @abstractmethod
    def errors(self) -> Optional[str]:
        pass

    @property
    @abstractmethod
    def line_buffering(self) -> bool:
        pass

    @property
    @abstractmethod
    def newlines(self) -> Any:
        pass

    @abstractmethod
    def __enter__(self) -> 'TextIO':
        pass


def reveal_type[T](obj: T, /) -> T:
    """Ask a static type checker to reveal the inferred type of an expression.

    When a static type checker encounters a call to ``reveal_type()``,
    it will emit the inferred type of the argument::

        x: int = 1
        reveal_type(x)

    Running a static type checker (e.g., mypy) on this example
    will produce output similar to 'Revealed type is "builtins.int"'.

    At runtime, the function prints the runtime type of the
    argument and returns the argument unchanged.
    """
    print(f"Runtime type is {type(obj).__name__!r}", file=sys.stderr)
    return obj


class _IdentityCallable(Protocol):
    def __call__[T](self, arg: T, /) -> T:
        ...


def dataclass_transform(
    *,
    eq_default: bool = True,
    order_default: bool = False,
    kw_only_default: bool = False,
    frozen_default: bool = False,
    field_specifiers: tuple[type[Any] | Callable[..., Any], ...] = (),
    **kwargs: Any,
) -> _IdentityCallable:
    """Decorator to mark an object as providing dataclass-like behaviour.

    The decorator can be applied to a function, class, or metaclass.

    Example usage with a decorator function::

        @dataclass_transform()
        def create_model[T](cls: type[T]) -> type[T]:
            ...
            return cls

        @create_model
        class CustomerModel:
            id: int
            name: str

    On a base class::

        @dataclass_transform()
        class ModelBase: ...

        class CustomerModel(ModelBase):
            id: int
            name: str

    On a metaclass::

        @dataclass_transform()
        class ModelMeta(type): ...

        class ModelBase(metaclass=ModelMeta): ...

        class CustomerModel(ModelBase):
            id: int
            name: str

    The ``CustomerModel`` classes defined above will
    be treated by type checkers similarly to classes created with
    ``@dataclasses.dataclass``.
    For example, type checkers will assume these classes have
    ``__init__`` methods that accept ``id`` and ``name``.

    The arguments to this decorator can be used to customize this behavior:
    - ``eq_default`` indicates whether the ``eq`` parameter is assumed to be
        ``True`` or ``False`` if it is omitted by the caller.
    - ``order_default`` indicates whether the ``order`` parameter is
        assumed to be True or False if it is omitted by the caller.
    - ``kw_only_default`` indicates whether the ``kw_only`` parameter is
        assumed to be True or False if it is omitted by the caller.
    - ``frozen_default`` indicates whether the ``frozen`` parameter is
        assumed to be True or False if it is omitted by the caller.
    - ``field_specifiers`` specifies a static list of supported classes
        or functions that describe fields, similar to ``dataclasses.field()``.
    - Arbitrary other keyword arguments are accepted in order to allow for
        possible future extensions.

    At runtime, this decorator records its arguments in the
    ``__dataclass_transform__`` attribute on the decorated object.
    It has no other runtime effect.

    See PEP 681 for more details.
    """
    def decorator(cls_or_fn):
        cls_or_fn.__dataclass_transform__ = {
            "eq_default": eq_default,
            "order_default": order_default,
            "kw_only_default": kw_only_default,
            "frozen_default": frozen_default,
            "field_specifiers": field_specifiers,
            "kwargs": kwargs,
        }
        return cls_or_fn
    return decorator


type _Func = Callable[..., Any]


def override[F: _Func](method: F, /) -> F:
    """Indicate that a method is intended to override a method in a base class.

    Usage::

        class Base:
            def method(self) -> None:
                pass

        class Child(Base):
            @override
            def method(self) -> None:
                super().method()

    When this decorator is applied to a method, the type checker will
    validate that it overrides a method or attribute with the same name on a
    base class.  This helps prevent bugs that may occur when a base class is
    changed without an equivalent change to a child class.

    There is no runtime checking of this property. The decorator attempts to
    set the ``__override__`` attribute to ``True`` on the decorated object to
    allow runtime introspection.

    See PEP 698 for details.
    """
    try:
        method.__override__ = True
    except (AttributeError, TypeError):
        # Skip the attribute silently if it is not writable.
        # AttributeError happens if the object has __slots__ or a
        # read-only property, TypeError if it's a builtin class.
        pass
    return method


def is_protocol(tp: type, /) -> bool:
    """Return True if the given type is a Protocol.

    Example::

        >>> from typing import Protocol, is_protocol
        >>> class P(Protocol):
        ...     def a(self) -> str: ...
        ...     b: int
        >>> is_protocol(P)
        True
        >>> is_protocol(int)
        False
    """
    return (
        isinstance(tp, type)
        and getattr(tp, '_is_protocol', False)
        and tp != Protocol
    )


def get_protocol_members(tp: type, /) -> frozenset[str]:
    """Return the set of members defined in a Protocol.

    Example::

        >>> from typing import Protocol, get_protocol_members
        >>> class P(Protocol):
        ...     def a(self) -> str: ...
        ...     b: int
        >>> get_protocol_members(P) == frozenset({'a', 'b'})
        True

    Raise a TypeError for arguments that are not Protocols.
    """
    if not is_protocol(tp):
        raise TypeError(f'{tp!r} is not a Protocol')
    return frozenset(tp.__protocol_attrs__)


def __getattr__(attr):
    """Improve the import time of the typing module.

    Soft-deprecated objects which are costly to create
    are only created on-demand here.
    """
    if attr in {"Pattern", "Match"}:
        import re
        obj = _alias(getattr(re, attr), 1)
    elif attr in {"ContextManager", "AsyncContextManager"}:
        import contextlib
        obj = _alias(getattr(contextlib, f"Abstract{attr}"), 2, name=attr, defaults=(bool | None,))
    else:
        raise AttributeError(f"module {__name__!r} has no attribute {attr!r}")
    globals()[attr] = obj
    return obj