summaryrefslogtreecommitdiffstats
path: root/Modules/cmathmodule.c
blob: 2af2e53b88fcdb4ea700255aa1445a38621f0333 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
/* Complex math module */

/* much code borrowed from mathmodule.c */

#include "Python.h"
#include "_math.h"
/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
   float.h.  We assume that FLT_RADIX is either 2 or 16. */
#include <float.h>

#if (FLT_RADIX != 2 && FLT_RADIX != 16)
#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
#endif

#ifndef M_LN2
#define M_LN2 (0.6931471805599453094) /* natural log of 2 */
#endif

#ifndef M_LN10
#define M_LN10 (2.302585092994045684) /* natural log of 10 */
#endif

/*
   CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
   inverse trig and inverse hyperbolic trig functions.  Its log is used in the
   evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
   overflow.
 */

#define CM_LARGE_DOUBLE (DBL_MAX/4.)
#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))

/*
   CM_SCALE_UP is an odd integer chosen such that multiplication by
   2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
   CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute
   square roots accurately when the real and imaginary parts of the argument
   are subnormal.
*/

#if FLT_RADIX==2
#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
#elif FLT_RADIX==16
#define CM_SCALE_UP (4*DBL_MANT_DIG+1)
#endif
#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)

/* forward declarations */
static Py_complex c_asinh(Py_complex);
static Py_complex c_atanh(Py_complex);
static Py_complex c_cosh(Py_complex);
static Py_complex c_sinh(Py_complex);
static Py_complex c_sqrt(Py_complex);
static Py_complex c_tanh(Py_complex);
static PyObject * math_error(void);

/* Code to deal with special values (infinities, NaNs, etc.). */

/* special_type takes a double and returns an integer code indicating
   the type of the double as follows:
*/

enum special_types {
    ST_NINF,            /* 0, negative infinity */
    ST_NEG,             /* 1, negative finite number (nonzero) */
    ST_NZERO,           /* 2, -0. */
    ST_PZERO,           /* 3, +0. */
    ST_POS,             /* 4, positive finite number (nonzero) */
    ST_PINF,            /* 5, positive infinity */
    ST_NAN              /* 6, Not a Number */
};

static enum special_types
special_type(double d)
{
    if (Py_IS_FINITE(d)) {
        if (d != 0) {
            if (copysign(1., d) == 1.)
                return ST_POS;
            else
                return ST_NEG;
        }
        else {
            if (copysign(1., d) == 1.)
                return ST_PZERO;
            else
                return ST_NZERO;
        }
    }
    if (Py_IS_NAN(d))
        return ST_NAN;
    if (copysign(1., d) == 1.)
        return ST_PINF;
    else
        return ST_NINF;
}

#define SPECIAL_VALUE(z, table)                                         \
    if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {           \
        errno = 0;                                              \
        return table[special_type((z).real)]                            \
                    [special_type((z).imag)];                           \
    }

#define P Py_MATH_PI
#define P14 0.25*Py_MATH_PI
#define P12 0.5*Py_MATH_PI
#define P34 0.75*Py_MATH_PI
#define INF Py_HUGE_VAL
#define N Py_NAN
#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */

/* First, the C functions that do the real work.  Each of the c_*
   functions computes and returns the C99 Annex G recommended result
   and also sets errno as follows: errno = 0 if no floating-point
   exception is associated with the result; errno = EDOM if C99 Annex
   G recommends raising divide-by-zero or invalid for this result; and
   errno = ERANGE where the overflow floating-point signal should be
   raised.
*/

static Py_complex acos_special_values[7][7];

static Py_complex
c_acos(Py_complex z)
{
    Py_complex s1, s2, r;

    SPECIAL_VALUE(z, acos_special_values);

    if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
        /* avoid unnecessary overflow for large arguments */
        r.real = atan2(fabs(z.imag), z.real);
        /* split into cases to make sure that the branch cut has the
           correct continuity on systems with unsigned zeros */
        if (z.real < 0.) {
            r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
                               M_LN2*2., z.imag);
        } else {
            r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
                              M_LN2*2., -z.imag);
        }
    } else {
        s1.real = 1.-z.real;
        s1.imag = -z.imag;
        s1 = c_sqrt(s1);
        s2.real = 1.+z.real;
        s2.imag = z.imag;
        s2 = c_sqrt(s2);
        r.real = 2.*atan2(s1.real, s2.real);
        r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
    }
    errno = 0;
    return r;
}

PyDoc_STRVAR(c_acos_doc,
"acos(x)\n"
"\n"
"Return the arc cosine of x.");


static Py_complex acosh_special_values[7][7];

static Py_complex
c_acosh(Py_complex z)
{
    Py_complex s1, s2, r;

    SPECIAL_VALUE(z, acosh_special_values);

    if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
        /* avoid unnecessary overflow for large arguments */
        r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
        r.imag = atan2(z.imag, z.real);
    } else {
        s1.real = z.real - 1.;
        s1.imag = z.imag;
        s1 = c_sqrt(s1);
        s2.real = z.real + 1.;
        s2.imag = z.imag;
        s2 = c_sqrt(s2);
        r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
        r.imag = 2.*atan2(s1.imag, s2.real);
    }
    errno = 0;
    return r;
}

PyDoc_STRVAR(c_acosh_doc,
"acosh(x)\n"
"\n"
"Return the hyperbolic arccosine of x.");


static Py_complex
c_asin(Py_complex z)
{
    /* asin(z) = -i asinh(iz) */
    Py_complex s, r;
    s.real = -z.imag;
    s.imag = z.real;
    s = c_asinh(s);
    r.real = s.imag;
    r.imag = -s.real;
    return r;
}

PyDoc_STRVAR(c_asin_doc,
"asin(x)\n"
"\n"
"Return the arc sine of x.");


static Py_complex asinh_special_values[7][7];

static Py_complex
c_asinh(Py_complex z)
{
    Py_complex s1, s2, r;

    SPECIAL_VALUE(z, asinh_special_values);

    if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
        if (z.imag >= 0.) {
            r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
                              M_LN2*2., z.real);
        } else {
            r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
                               M_LN2*2., -z.real);
        }
        r.imag = atan2(z.imag, fabs(z.real));
    } else {
        s1.real = 1.+z.imag;
        s1.imag = -z.real;
        s1 = c_sqrt(s1);
        s2.real = 1.-z.imag;
        s2.imag = z.real;
        s2 = c_sqrt(s2);
        r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
        r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
    }
    errno = 0;
    return r;
}

PyDoc_STRVAR(c_asinh_doc,
"asinh(x)\n"
"\n"
"Return the hyperbolic arc sine of x.");


static Py_complex
c_atan(Py_complex z)
{
    /* atan(z) = -i atanh(iz) */
    Py_complex s, r;
    s.real = -z.imag;
    s.imag = z.real;
    s = c_atanh(s);
    r.real = s.imag;
    r.imag = -s.real;
    return r;
}

/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
   C99 for atan2(0., 0.). */
static double
c_atan2(Py_complex z)
{
    if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
        return Py_NAN;
    if (Py_IS_INFINITY(z.imag)) {
        if (Py_IS_INFINITY(z.real)) {
            if (copysign(1., z.real) == 1.)
                /* atan2(+-inf, +inf) == +-pi/4 */
                return copysign(0.25*Py_MATH_PI, z.imag);
            else
                /* atan2(+-inf, -inf) == +-pi*3/4 */
                return copysign(0.75*Py_MATH_PI, z.imag);
        }
        /* atan2(+-inf, x) == +-pi/2 for finite x */
        return copysign(0.5*Py_MATH_PI, z.imag);
    }
    if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
        if (copysign(1., z.real) == 1.)
            /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
            return copysign(0., z.imag);
        else
            /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
            return copysign(Py_MATH_PI, z.imag);
    }
    return atan2(z.imag, z.real);
}

PyDoc_STRVAR(c_atan_doc,
"atan(x)\n"
"\n"
"Return the arc tangent of x.");


static Py_complex atanh_special_values[7][7];

static Py_complex
c_atanh(Py_complex z)
{
    Py_complex r;
    double ay, h;

    SPECIAL_VALUE(z, atanh_special_values);

    /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
    if (z.real < 0.) {
        return c_neg(c_atanh(c_neg(z)));
    }

    ay = fabs(z.imag);
    if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
        /*
           if abs(z) is large then we use the approximation
           atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
           of z.imag)
        */
        h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
        r.real = z.real/4./h/h;
        /* the two negations in the next line cancel each other out
           except when working with unsigned zeros: they're there to
           ensure that the branch cut has the correct continuity on
           systems that don't support signed zeros */
        r.imag = -copysign(Py_MATH_PI/2., -z.imag);
        errno = 0;
    } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
        /* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
        if (ay == 0.) {
            r.real = INF;
            r.imag = z.imag;
            errno = EDOM;
        } else {
            r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
            r.imag = copysign(atan2(2., -ay)/2, z.imag);
            errno = 0;
        }
    } else {
        r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
        r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
        errno = 0;
    }
    return r;
}

PyDoc_STRVAR(c_atanh_doc,
"atanh(x)\n"
"\n"
"Return the hyperbolic arc tangent of x.");


static Py_complex
c_cos(Py_complex z)
{
    /* cos(z) = cosh(iz) */
    Py_complex r;
    r.real = -z.imag;
    r.imag = z.real;
    r = c_cosh(r);
    return r;
}

PyDoc_STRVAR(c_cos_doc,
"cos(x)\n"
"\n"
"Return the cosine of x.");


/* cosh(infinity + i*y) needs to be dealt with specially */
static Py_complex cosh_special_values[7][7];

static Py_complex
c_cosh(Py_complex z)
{
    Py_complex r;
    double x_minus_one;

    /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
            (z.imag != 0.)) {
            if (z.real > 0) {
                r.real = copysign(INF, cos(z.imag));
                r.imag = copysign(INF, sin(z.imag));
            }
            else {
                r.real = copysign(INF, cos(z.imag));
                r.imag = -copysign(INF, sin(z.imag));
            }
        }
        else {
            r = cosh_special_values[special_type(z.real)]
                                   [special_type(z.imag)];
        }
        /* need to set errno = EDOM if y is +/- infinity and x is not
           a NaN */
        if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
            errno = EDOM;
        else
            errno = 0;
        return r;
    }

    if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
        /* deal correctly with cases where cosh(z.real) overflows but
           cosh(z) does not. */
        x_minus_one = z.real - copysign(1., z.real);
        r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
        r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
    } else {
        r.real = cos(z.imag) * cosh(z.real);
        r.imag = sin(z.imag) * sinh(z.real);
    }
    /* detect overflow, and set errno accordingly */
    if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
        errno = ERANGE;
    else
        errno = 0;
    return r;
}

PyDoc_STRVAR(c_cosh_doc,
"cosh(x)\n"
"\n"
"Return the hyperbolic cosine of x.");


/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
   finite y */
static Py_complex exp_special_values[7][7];

static Py_complex
c_exp(Py_complex z)
{
    Py_complex r;
    double l;

    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
            && (z.imag != 0.)) {
            if (z.real > 0) {
                r.real = copysign(INF, cos(z.imag));
                r.imag = copysign(INF, sin(z.imag));
            }
            else {
                r.real = copysign(0., cos(z.imag));
                r.imag = copysign(0., sin(z.imag));
            }
        }
        else {
            r = exp_special_values[special_type(z.real)]
                                  [special_type(z.imag)];
        }
        /* need to set errno = EDOM if y is +/- infinity and x is not
           a NaN and not -infinity */
        if (Py_IS_INFINITY(z.imag) &&
            (Py_IS_FINITE(z.real) ||
             (Py_IS_INFINITY(z.real) && z.real > 0)))
            errno = EDOM;
        else
            errno = 0;
        return r;
    }

    if (z.real > CM_LOG_LARGE_DOUBLE) {
        l = exp(z.real-1.);
        r.real = l*cos(z.imag)*Py_MATH_E;
        r.imag = l*sin(z.imag)*Py_MATH_E;
    } else {
        l = exp(z.real);
        r.real = l*cos(z.imag);
        r.imag = l*sin(z.imag);
    }
    /* detect overflow, and set errno accordingly */
    if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
        errno = ERANGE;
    else
        errno = 0;
    return r;
}

PyDoc_STRVAR(c_exp_doc,
"exp(x)\n"
"\n"
"Return the exponential value e**x.");


static Py_complex log_special_values[7][7];

static Py_complex
c_log(Py_complex z)
{
    /*
       The usual formula for the real part is log(hypot(z.real, z.imag)).
       There are four situations where this formula is potentially
       problematic:

       (1) the absolute value of z is subnormal.  Then hypot is subnormal,
       so has fewer than the usual number of bits of accuracy, hence may
       have large relative error.  This then gives a large absolute error
       in the log.  This can be solved by rescaling z by a suitable power
       of 2.

       (2) the absolute value of z is greater than DBL_MAX (e.g. when both
       z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
       Again, rescaling solves this.

       (3) the absolute value of z is close to 1.  In this case it's
       difficult to achieve good accuracy, at least in part because a
       change of 1ulp in the real or imaginary part of z can result in a
       change of billions of ulps in the correctly rounded answer.

       (4) z = 0.  The simplest thing to do here is to call the
       floating-point log with an argument of 0, and let its behaviour
       (returning -infinity, signaling a floating-point exception, setting
       errno, or whatever) determine that of c_log.  So the usual formula
       is fine here.

     */

    Py_complex r;
    double ax, ay, am, an, h;

    SPECIAL_VALUE(z, log_special_values);

    ax = fabs(z.real);
    ay = fabs(z.imag);

    if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
        r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
    } else if (ax < DBL_MIN && ay < DBL_MIN) {
        if (ax > 0. || ay > 0.) {
            /* catch cases where hypot(ax, ay) is subnormal */
            r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
                     ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
        }
        else {
            /* log(+/-0. +/- 0i) */
            r.real = -INF;
            r.imag = atan2(z.imag, z.real);
            errno = EDOM;
            return r;
        }
    } else {
        h = hypot(ax, ay);
        if (0.71 <= h && h <= 1.73) {
            am = ax > ay ? ax : ay;  /* max(ax, ay) */
            an = ax > ay ? ay : ax;  /* min(ax, ay) */
            r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
        } else {
            r.real = log(h);
        }
    }
    r.imag = atan2(z.imag, z.real);
    errno = 0;
    return r;
}


static Py_complex
c_log10(Py_complex z)
{
    Py_complex r;
    int errno_save;

    r = c_log(z);
    errno_save = errno; /* just in case the divisions affect errno */
    r.real = r.real / M_LN10;
    r.imag = r.imag / M_LN10;
    errno = errno_save;
    return r;
}

PyDoc_STRVAR(c_log10_doc,
"log10(x)\n"
"\n"
"Return the base-10 logarithm of x.");


static Py_complex
c_sin(Py_complex z)
{
    /* sin(z) = -i sin(iz) */
    Py_complex s, r;
    s.real = -z.imag;
    s.imag = z.real;
    s = c_sinh(s);
    r.real = s.imag;
    r.imag = -s.real;
    return r;
}

PyDoc_STRVAR(c_sin_doc,
"sin(x)\n"
"\n"
"Return the sine of x.");


/* sinh(infinity + i*y) needs to be dealt with specially */
static Py_complex sinh_special_values[7][7];

static Py_complex
c_sinh(Py_complex z)
{
    Py_complex r;
    double x_minus_one;

    /* special treatment for sinh(+/-inf + iy) if y is finite and
       nonzero */
    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
            && (z.imag != 0.)) {
            if (z.real > 0) {
                r.real = copysign(INF, cos(z.imag));
                r.imag = copysign(INF, sin(z.imag));
            }
            else {
                r.real = -copysign(INF, cos(z.imag));
                r.imag = copysign(INF, sin(z.imag));
            }
        }
        else {
            r = sinh_special_values[special_type(z.real)]
                                   [special_type(z.imag)];
        }
        /* need to set errno = EDOM if y is +/- infinity and x is not
           a NaN */
        if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
            errno = EDOM;
        else
            errno = 0;
        return r;
    }

    if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
        x_minus_one = z.real - copysign(1., z.real);
        r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
        r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
    } else {
        r.real = cos(z.imag) * sinh(z.real);
        r.imag = sin(z.imag) * cosh(z.real);
    }
    /* detect overflow, and set errno accordingly */
    if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
        errno = ERANGE;
    else
        errno = 0;
    return r;
}

PyDoc_STRVAR(c_sinh_doc,
"sinh(x)\n"
"\n"
"Return the hyperbolic sine of x.");


static Py_complex sqrt_special_values[7][7];

static Py_complex
c_sqrt(Py_complex z)
{
    /*
       Method: use symmetries to reduce to the case when x = z.real and y
       = z.imag are nonnegative.  Then the real part of the result is
       given by

         s = sqrt((x + hypot(x, y))/2)

       and the imaginary part is

         d = (y/2)/s

       If either x or y is very large then there's a risk of overflow in
       computation of the expression x + hypot(x, y).  We can avoid this
       by rewriting the formula for s as:

         s = 2*sqrt(x/8 + hypot(x/8, y/8))

       This costs us two extra multiplications/divisions, but avoids the
       overhead of checking for x and y large.

       If both x and y are subnormal then hypot(x, y) may also be
       subnormal, so will lack full precision.  We solve this by rescaling
       x and y by a sufficiently large power of 2 to ensure that x and y
       are normal.
    */


    Py_complex r;
    double s,d;
    double ax, ay;

    SPECIAL_VALUE(z, sqrt_special_values);

    if (z.real == 0. && z.imag == 0.) {
        r.real = 0.;
        r.imag = z.imag;
        return r;
    }

    ax = fabs(z.real);
    ay = fabs(z.imag);

    if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
        /* here we catch cases where hypot(ax, ay) is subnormal */
        ax = ldexp(ax, CM_SCALE_UP);
        s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
                  CM_SCALE_DOWN);
    } else {
        ax /= 8.;
        s = 2.*sqrt(ax + hypot(ax, ay/8.));
    }
    d = ay/(2.*s);

    if (z.real >= 0.) {
        r.real = s;
        r.imag = copysign(d, z.imag);
    } else {
        r.real = d;
        r.imag = copysign(s, z.imag);
    }
    errno = 0;
    return r;
}

PyDoc_STRVAR(c_sqrt_doc,
"sqrt(x)\n"
"\n"
"Return the square root of x.");


static Py_complex
c_tan(Py_complex z)
{
    /* tan(z) = -i tanh(iz) */
    Py_complex s, r;
    s.real = -z.imag;
    s.imag = z.real;
    s = c_tanh(s);
    r.real = s.imag;
    r.imag = -s.real;
    return r;
}

PyDoc_STRVAR(c_tan_doc,
"tan(x)\n"
"\n"
"Return the tangent of x.");


/* tanh(infinity + i*y) needs to be dealt with specially */
static Py_complex tanh_special_values[7][7];

static Py_complex
c_tanh(Py_complex z)
{
    /* Formula:

       tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
       (1+tan(y)^2 tanh(x)^2)

       To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
       as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
       by 4 exp(-2*x) instead, to avoid possible overflow in the
       computation of cosh(x).

    */

    Py_complex r;
    double tx, ty, cx, txty, denom;

    /* special treatment for tanh(+/-inf + iy) if y is finite and
       nonzero */
    if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
        if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
            && (z.imag != 0.)) {
            if (z.real > 0) {
                r.real = 1.0;
                r.imag = copysign(0.,
                                  2.*sin(z.imag)*cos(z.imag));
            }
            else {
                r.real = -1.0;
                r.imag = copysign(0.,
                                  2.*sin(z.imag)*cos(z.imag));
            }
        }
        else {
            r = tanh_special_values[special_type(z.real)]
                                   [special_type(z.imag)];
        }
        /* need to set errno = EDOM if z.imag is +/-infinity and
           z.real is finite */
        if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
            errno = EDOM;
        else
            errno = 0;
        return r;
    }

    /* danger of overflow in 2.*z.imag !*/
    if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
        r.real = copysign(1., z.real);
        r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
    } else {
        tx = tanh(z.real);
        ty = tan(z.imag);
        cx = 1./cosh(z.real);
        txty = tx*ty;
        denom = 1. + txty*txty;
        r.real = tx*(1.+ty*ty)/denom;
        r.imag = ((ty/denom)*cx)*cx;
    }
    errno = 0;
    return r;
}

PyDoc_STRVAR(c_tanh_doc,
"tanh(x)\n"
"\n"
"Return the hyperbolic tangent of x.");


static PyObject *
cmath_log(PyObject *self, PyObject *args)
{
    Py_complex x;
    Py_complex y;

    if (!PyArg_ParseTuple(args, "D|D", &x, &y))
        return NULL;

    errno = 0;
    PyFPE_START_PROTECT("complex function", return 0)
    x = c_log(x);
    if (PyTuple_GET_SIZE(args) == 2) {
        y = c_log(y);
        x = c_quot(x, y);
    }
    PyFPE_END_PROTECT(x)
    if (errno != 0)
        return math_error();
    return PyComplex_FromCComplex(x);
}

PyDoc_STRVAR(cmath_log_doc,
"log(x[, base]) -> the logarithm of x to the given base.\n\
If the base not specified, returns the natural logarithm (base e) of x.");


/* And now the glue to make them available from Python: */

static PyObject *
math_error(void)
{
    if (errno == EDOM)
        PyErr_SetString(PyExc_ValueError, "math domain error");
    else if (errno == ERANGE)
        PyErr_SetString(PyExc_OverflowError, "math range error");
    else    /* Unexpected math error */
        PyErr_SetFromErrno(PyExc_ValueError);
    return NULL;
}

static PyObject *
math_1(PyObject *args, Py_complex (*func)(Py_complex))
{
    Py_complex x,r ;
    if (!PyArg_ParseTuple(args, "D", &x))
        return NULL;
    errno = 0;
    PyFPE_START_PROTECT("complex function", return 0);
    r = (*func)(x);
    PyFPE_END_PROTECT(r);
    if (errno == EDOM) {
        PyErr_SetString(PyExc_ValueError, "math domain error");
        return NULL;
    }
    else if (errno == ERANGE) {
        PyErr_SetString(PyExc_OverflowError, "math range error");
        return NULL;
    }
    else {
        return PyComplex_FromCComplex(r);
    }
}

#define FUNC1(stubname, func) \
    static PyObject * stubname(PyObject *self, PyObject *args) { \
        return math_1(args, func); \
    }

FUNC1(cmath_acos, c_acos)
FUNC1(cmath_acosh, c_acosh)
FUNC1(cmath_asin, c_asin)
FUNC1(cmath_asinh, c_asinh)
FUNC1(cmath_atan, c_atan)
FUNC1(cmath_atanh, c_atanh)
FUNC1(cmath_cos, c_cos)
FUNC1(cmath_cosh, c_cosh)
FUNC1(cmath_exp, c_exp)
FUNC1(cmath_log10, c_log10)
FUNC1(cmath_sin, c_sin)
FUNC1(cmath_sinh, c_sinh)
FUNC1(cmath_sqrt, c_sqrt)
FUNC1(cmath_tan, c_tan)
FUNC1(cmath_tanh, c_tanh)

static PyObject *
cmath_phase(PyObject *self, PyObject *args)
{
    Py_complex z;
    double phi;
    if (!PyArg_ParseTuple(args, "D:phase", &z))
        return NULL;
    errno = 0;
    PyFPE_START_PROTECT("arg function", return 0)
    phi = c_atan2(z);
    PyFPE_END_PROTECT(phi)
    if (errno != 0)
        return math_error();
    else
        return PyFloat_FromDouble(phi);
}

PyDoc_STRVAR(cmath_phase_doc,
"phase(z) -> float\n\n\
Return argument, also known as the phase angle, of a complex.");

static PyObject *
cmath_polar(PyObject *self, PyObject *args)
{
    Py_complex z;
    double r, phi;
    if (!PyArg_ParseTuple(args, "D:polar", &z))
        return NULL;
    PyFPE_START_PROTECT("polar function", return 0)
    phi = c_atan2(z); /* should not cause any exception */
    r = c_abs(z); /* sets errno to ERANGE on overflow;  otherwise 0 */
    PyFPE_END_PROTECT(r)
    if (errno != 0)
        return math_error();
    else
        return Py_BuildValue("dd", r, phi);
}

PyDoc_STRVAR(cmath_polar_doc,
"polar(z) -> r: float, phi: float\n\n\
Convert a complex from rectangular coordinates to polar coordinates. r is\n\
the distance from 0 and phi the phase angle.");

/*
  rect() isn't covered by the C99 standard, but it's not too hard to
  figure out 'spirit of C99' rules for special value handing:

    rect(x, t) should behave like exp(log(x) + it) for positive-signed x
    rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
    rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
      gives nan +- i0 with the sign of the imaginary part unspecified.

*/

static Py_complex rect_special_values[7][7];

static PyObject *
cmath_rect(PyObject *self, PyObject *args)
{
    Py_complex z;
    double r, phi;
    if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
        return NULL;
    errno = 0;
    PyFPE_START_PROTECT("rect function", return 0)

    /* deal with special values */
    if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
        /* if r is +/-infinity and phi is finite but nonzero then
           result is (+-INF +-INF i), but we need to compute cos(phi)
           and sin(phi) to figure out the signs. */
        if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
                                  && (phi != 0.))) {
            if (r > 0) {
                z.real = copysign(INF, cos(phi));
                z.imag = copysign(INF, sin(phi));
            }
            else {
                z.real = -copysign(INF, cos(phi));
                z.imag = -copysign(INF, sin(phi));
            }
        }
        else {
            z = rect_special_values[special_type(r)]
                                   [special_type(phi)];
        }
        /* need to set errno = EDOM if r is a nonzero number and phi
           is infinite */
        if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
            errno = EDOM;
        else
            errno = 0;
    }
    else {
        z.real = r * cos(phi);
        z.imag = r * sin(phi);
        errno = 0;
    }

    PyFPE_END_PROTECT(z)
    if (errno != 0)
        return math_error();
    else
        return PyComplex_FromCComplex(z);
}

PyDoc_STRVAR(cmath_rect_doc,
"rect(r, phi) -> z: complex\n\n\
Convert from polar coordinates to rectangular coordinates.");

static PyObject *
cmath_isnan(PyObject *self, PyObject *args)
{
    Py_complex z;
    if (!PyArg_ParseTuple(args, "D:isnan", &z))
        return NULL;
    return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
}

PyDoc_STRVAR(cmath_isnan_doc,
"isnan(z) -> bool\n\
Checks if the real or imaginary part of z not a number (NaN)");

static PyObject *
cmath_isinf(PyObject *self, PyObject *args)
{
    Py_complex z;
    if (!PyArg_ParseTuple(args, "D:isnan", &z))
        return NULL;
    return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
                           Py_IS_INFINITY(z.imag));
}

PyDoc_STRVAR(cmath_isinf_doc,
"isinf(z) -> bool\n\
Checks if the real or imaginary part of z is infinite.");


PyDoc_STRVAR(module_doc,
"This module is always available. It provides access to mathematical\n"
"functions for complex numbers.");

static PyMethodDef cmath_methods[] = {
    {"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
    {"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
    {"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
    {"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
    {"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
    {"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
    {"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
    {"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
    {"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
    {"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc},
    {"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc},
    {"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
    {"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
    {"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc},
    {"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc},
    {"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc},
    {"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
    {"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
    {"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
    {"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
    {"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
    {NULL,              NULL}           /* sentinel */
};


static struct PyModuleDef cmathmodule = {
    PyModuleDef_HEAD_INIT,
    "cmath",
    module_doc,
    -1,
    cmath_methods,
    NULL,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC
PyInit_cmath(void)
{
    PyObject *m;

    m = PyModule_Create(&cmathmodule);
    if (m == NULL)
        return NULL;

    PyModule_AddObject(m, "pi",
                       PyFloat_FromDouble(Py_MATH_PI));
    PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));

    /* initialize special value tables */

#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;

    INIT_SPECIAL_VALUES(acos_special_values, {
      C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
      C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
      C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
      C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
      C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
      C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
      C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
    })

    INIT_SPECIAL_VALUES(acosh_special_values, {
      C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
      C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
      C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
      C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
      C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
      C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
      C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
    })

    INIT_SPECIAL_VALUES(asinh_special_values, {
      C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
      C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
      C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
      C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
      C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
      C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
      C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
    })

    INIT_SPECIAL_VALUES(atanh_special_values, {
      C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
      C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
      C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
      C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
      C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
      C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
      C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
    })

    INIT_SPECIAL_VALUES(cosh_special_values, {
      C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
      C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
      C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
      C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
      C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
    })

    INIT_SPECIAL_VALUES(exp_special_values, {
      C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
      C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
      C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
      C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
      C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
      C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
    })

    INIT_SPECIAL_VALUES(log_special_values, {
      C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
      C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
      C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
      C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
      C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
      C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
      C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
    })

    INIT_SPECIAL_VALUES(sinh_special_values, {
      C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
      C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
      C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
      C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
      C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
    })

    INIT_SPECIAL_VALUES(sqrt_special_values, {
      C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
      C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
      C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
      C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
      C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
      C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
      C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
    })

    INIT_SPECIAL_VALUES(tanh_special_values, {
      C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
      C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
      C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
      C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
      C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
      C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
      C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
    })

    INIT_SPECIAL_VALUES(rect_special_values, {
      C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
      C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
      C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
      C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
      C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
      C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
    })
    return m;
}