summaryrefslogtreecommitdiffstats
path: root/Modules/mathintegermodule.c
blob: de5f619c9d065ca2db1b0e230b10051a1b49bc55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
/* math.integer module -- integer-related mathematical functions */

#ifndef Py_BUILD_CORE_BUILTIN
#  define Py_BUILD_CORE_MODULE 1
#endif

#include "Python.h"
#include "pycore_abstract.h"      // _PyNumber_Index()
#include "pycore_bitutils.h"      // _Py_bit_length()
#include "pycore_long.h"          // _PyLong_GetZero()

#include "clinic/mathintegermodule.c.h"

/*[clinic input]
module math
module math.integer
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=e3d09c1c90de7fa8]*/


/*[clinic input]
math.integer.gcd

    *integers as args: array

Greatest Common Divisor.
[clinic start generated code]*/

static PyObject *
math_integer_gcd_impl(PyObject *module, PyObject * const *args,
                      Py_ssize_t args_length)
/*[clinic end generated code: output=8e9c5bab06bea203 input=a90cde2ac5281551]*/
{
    // Fast-path for the common case: gcd(int, int)
    if (args_length == 2 && PyLong_CheckExact(args[0]) && PyLong_CheckExact(args[1]))
    {
        return _PyLong_GCD(args[0], args[1]);
    }

    if (args_length == 0) {
        return PyLong_FromLong(0);
    }

    PyObject *res = PyNumber_Index(args[0]);
    if (res == NULL) {
        return NULL;
    }
    if (args_length == 1) {
        Py_SETREF(res, PyNumber_Absolute(res));
        return res;
    }

    PyObject *one = _PyLong_GetOne();  // borrowed ref
    for (Py_ssize_t i = 1; i < args_length; i++) {
        PyObject *x = _PyNumber_Index(args[i]);
        if (x == NULL) {
            Py_DECREF(res);
            return NULL;
        }
        if (res == one) {
            /* Fast path: just check arguments.
               It is okay to use identity comparison here. */
            Py_DECREF(x);
            continue;
        }
        Py_SETREF(res, _PyLong_GCD(res, x));
        Py_DECREF(x);
        if (res == NULL) {
            return NULL;
        }
    }
    return res;
}


static PyObject *
long_lcm(PyObject *a, PyObject *b)
{
    PyObject *g, *m, *f, *ab;

    if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) {
        return PyLong_FromLong(0);
    }
    g = _PyLong_GCD(a, b);
    if (g == NULL) {
        return NULL;
    }
    f = PyNumber_FloorDivide(a, g);
    Py_DECREF(g);
    if (f == NULL) {
        return NULL;
    }
    m = PyNumber_Multiply(f, b);
    Py_DECREF(f);
    if (m == NULL) {
        return NULL;
    }
    ab = PyNumber_Absolute(m);
    Py_DECREF(m);
    return ab;
}


/*[clinic input]
math.integer.lcm

    *integers as args: array

Least Common Multiple.
[clinic start generated code]*/

static PyObject *
math_integer_lcm_impl(PyObject *module, PyObject * const *args,
                      Py_ssize_t args_length)
/*[clinic end generated code: output=3e88889b866ccc28 input=261bddc85a136bdf]*/
{
    PyObject *res, *x;
    Py_ssize_t i;

    if (args_length == 0) {
        return PyLong_FromLong(1);
    }
    res = PyNumber_Index(args[0]);
    if (res == NULL) {
        return NULL;
    }
    if (args_length == 1) {
        Py_SETREF(res, PyNumber_Absolute(res));
        return res;
    }

    PyObject *zero = _PyLong_GetZero();  // borrowed ref
    for (i = 1; i < args_length; i++) {
        x = PyNumber_Index(args[i]);
        if (x == NULL) {
            Py_DECREF(res);
            return NULL;
        }
        if (res == zero) {
            /* Fast path: just check arguments.
               It is okay to use identity comparison here. */
            Py_DECREF(x);
            continue;
        }
        Py_SETREF(res, long_lcm(res, x));
        Py_DECREF(x);
        if (res == NULL) {
            return NULL;
        }
    }
    return res;
}


/* Integer square root

Given a nonnegative integer `n`, we want to compute the largest integer
`a` for which `a * a <= n`, or equivalently the integer part of the exact
square root of `n`.

We use an adaptive-precision pure-integer version of Newton's iteration. Given
a positive integer `n`, the algorithm produces at each iteration an integer
approximation `a` to the square root of `n >> s` for some even integer `s`,
with `s` decreasing as the iterations progress. On the final iteration, `s` is
zero and we have an approximation to the square root of `n` itself.

At every step, the approximation `a` is strictly within 1.0 of the true square
root, so we have

    (a - 1)**2 < (n >> s) < (a + 1)**2

After the final iteration, a check-and-correct step is needed to determine
whether `a` or `a - 1` gives the desired integer square root of `n`.

The algorithm is remarkable in its simplicity. There's no need for a
per-iteration check-and-correct step, and termination is straightforward: the
number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
for `n > 1`). The only tricky part of the correctness proof is in establishing
that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
iteration to the next. A sketch of the proof of this is given below.

In addition to the proof sketch, a formal, computer-verified proof
of correctness (using Lean) of an equivalent recursive algorithm can be found
here:

    https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean


Here's Python code equivalent to the C implementation below:

    def isqrt(n):
        """
        Return the integer part of the square root of the input.
        """
        n = operator.index(n)

        if n < 0:
            raise ValueError("isqrt() argument must be nonnegative")
        if n == 0:
            return 0

        c = (n.bit_length() - 1) // 2
        a = 1
        d = 0
        for s in reversed(range(c.bit_length())):
            # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
            e = d
            d = c >> s
            a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a

        return a - (a*a > n)


Sketch of proof of correctness
------------------------------

The delicate part of the correctness proof is showing that the loop invariant
is preserved from one iteration to the next. That is, just before the line

    a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a

is executed in the above code, we know that

    (1)  (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.

(since `e` is always the value of `d` from the previous iteration). We must
prove that after that line is executed, we have

    (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2

To facilitate the proof, we make some changes of notation. Write `m` for
`n >> 2*(c-d)`, and write `b` for the new value of `a`, so

    b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a

or equivalently:

    (2)  b = (a << d - e - 1) + (m >> d - e + 1) // a

Then we can rewrite (1) as:

    (3)  (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2

and we must show that (b - 1)**2 < m < (b + 1)**2.

From this point on, we switch to mathematical notation, so `/` means exact
division rather than integer division and `^` is used for exponentiation. We
use the `√` symbol for the exact square root. In (3), we can remove the
implicit floor operation to give:

    (4)  (a - 1)^2 < m / 4^(d - e) < (a + 1)^2

Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives

    (5)  0 <= | 2^(d-e)a - √m | < 2^(d-e)

Squaring and dividing through by `2^(d-e+1) a` gives

    (6)  0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a

We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
right-hand side of (6) with `1`, and now replacing the central
term `m / (2^(d-e+1) a)` with its floor in (6) gives

    (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1

Or equivalently, from (2):

    (7) -1 < b - √m < 1

and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
to prove.

We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
a` that was used to get line (7) above. From the definition of `c`, we have
`4^c <= n`, which implies

    (8)  4^d <= m

also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
that `2d - 2e - 1 <= d` and hence that

    (9)  4^(2d - 2e - 1) <= m

Dividing both sides by `4^(d - e)` gives

    (10)  4^(d - e - 1) <= m / 4^(d - e)

But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence

    (11)  4^(d - e - 1) < (a + 1)^2

Now taking square roots of both sides and observing that both `2^(d-e-1)` and
`a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
completes the proof sketch.

*/

/*
    The _approximate_isqrt_tab table provides approximate square roots for
    16-bit integers. For any n in the range 2**14 <= n < 2**16, the value

        a = _approximate_isqrt_tab[(n >> 8) - 64]

    is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2.

    The table was computed in Python using the expression:

        [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)]
*/

static const uint8_t _approximate_isqrt_tab[192] = {
    128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
    140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150,
    151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160,
    160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169,
    170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178,
    179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186,
    187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194,
    195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202,
    203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210,
    210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217,
    217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224,
    224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230,
    231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237,
    238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243,
    244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250,
    250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255,
};

/* Approximate square root of a large 64-bit integer.

   Given `n` satisfying `2**62 <= n < 2**64`, return `a`
   satisfying `(a - 1)**2 < n < (a + 1)**2`. */

static inline uint32_t
_approximate_isqrt(uint64_t n)
{
    uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64];
    u = (u << 7) + (uint32_t)(n >> 41) / u;
    return (u << 15) + (uint32_t)((n >> 17) / u);
}

/*[clinic input]
math.integer.isqrt

    n: object
    /

Return the integer part of the square root of the input.
[clinic start generated code]*/

static PyObject *
math_integer_isqrt(PyObject *module, PyObject *n)
/*[clinic end generated code: output=551031e41a0f5d9e input=921ddd9853133d8d]*/
{
    int a_too_large, c_bit_length;
    int64_t c, d;
    uint64_t m;
    uint32_t u;
    PyObject *a = NULL, *b;

    n = _PyNumber_Index(n);
    if (n == NULL) {
        return NULL;
    }

    if (_PyLong_IsNegative((PyLongObject *)n)) {
        PyErr_SetString(
            PyExc_ValueError,
            "isqrt() argument must be nonnegative");
        goto error;
    }
    if (_PyLong_IsZero((PyLongObject *)n)) {
        Py_DECREF(n);
        return PyLong_FromLong(0);
    }

    /* c = (n.bit_length() - 1) // 2 */
    c = _PyLong_NumBits(n);
    assert(c > 0);
    assert(!PyErr_Occurred());
    c = (c - 1) / 2;

    /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
       fast, almost branch-free algorithm. */
    if (c <= 31) {
        int shift = 31 - (int)c;
        m = (uint64_t)PyLong_AsUnsignedLongLong(n);
        Py_DECREF(n);
        if (m == (uint64_t)(-1) && PyErr_Occurred()) {
            return NULL;
        }
        u = _approximate_isqrt(m << 2*shift) >> shift;
        u -= (uint64_t)u * u > m;
        return PyLong_FromUnsignedLong(u);
    }

    /* Slow path: n >= 2**64. We perform the first five iterations in C integer
       arithmetic, then switch to using Python long integers. */

    /* From n >= 2**64 it follows that c.bit_length() >= 6. */
    c_bit_length = 6;
    while ((c >> c_bit_length) > 0) {
        ++c_bit_length;
    }

    /* Initialise d and a. */
    d = c >> (c_bit_length - 5);
    b = _PyLong_Rshift(n, 2*c - 62);
    if (b == NULL) {
        goto error;
    }
    m = (uint64_t)PyLong_AsUnsignedLongLong(b);
    Py_DECREF(b);
    if (m == (uint64_t)(-1) && PyErr_Occurred()) {
        goto error;
    }
    u = _approximate_isqrt(m) >> (31U - d);
    a = PyLong_FromUnsignedLong(u);
    if (a == NULL) {
        goto error;
    }

    for (int s = c_bit_length - 6; s >= 0; --s) {
        PyObject *q;
        int64_t e = d;

        d = c >> s;

        /* q = (n >> 2*c - e - d + 1) // a */
        q = _PyLong_Rshift(n, 2*c - d - e + 1);
        if (q == NULL) {
            goto error;
        }
        Py_SETREF(q, PyNumber_FloorDivide(q, a));
        if (q == NULL) {
            goto error;
        }

        /* a = (a << d - 1 - e) + q */
        Py_SETREF(a, _PyLong_Lshift(a, d - 1 - e));
        if (a == NULL) {
            Py_DECREF(q);
            goto error;
        }
        Py_SETREF(a, PyNumber_Add(a, q));
        Py_DECREF(q);
        if (a == NULL) {
            goto error;
        }
    }

    /* The correct result is either a or a - 1. Figure out which, and
       decrement a if necessary. */

    /* a_too_large = n < a * a */
    b = PyNumber_Multiply(a, a);
    if (b == NULL) {
        goto error;
    }
    a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
    Py_DECREF(b);
    if (a_too_large == -1) {
        goto error;
    }

    if (a_too_large) {
        Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne()));
    }
    Py_DECREF(n);
    return a;

  error:
    Py_XDECREF(a);
    Py_DECREF(n);
    return NULL;
}


static unsigned long
count_set_bits(unsigned long n)
{
    unsigned long count = 0;
    while (n != 0) {
        ++count;
        n &= n - 1; /* clear least significant bit */
    }
    return count;
}


/* Divide-and-conquer factorial algorithm
 *
 * Based on the formula and pseudo-code provided at:
 * http://www.luschny.de/math/factorial/binarysplitfact.html
 *
 * Faster algorithms exist, but they're more complicated and depend on
 * a fast prime factorization algorithm.
 *
 * Notes on the algorithm
 * ----------------------
 *
 * factorial(n) is written in the form 2**k * m, with m odd.  k and m are
 * computed separately, and then combined using a left shift.
 *
 * The function factorial_odd_part computes the odd part m (i.e., the greatest
 * odd divisor) of factorial(n), using the formula:
 *
 *   factorial_odd_part(n) =
 *
 *        product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
 *
 * Example: factorial_odd_part(20) =
 *
 *        (1) *
 *        (1) *
 *        (1 * 3 * 5) *
 *        (1 * 3 * 5 * 7 * 9) *
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 *
 * Here i goes from large to small: the first term corresponds to i=4 (any
 * larger i gives an empty product), and the last term corresponds to i=0.
 * Each term can be computed from the last by multiplying by the extra odd
 * numbers required: e.g., to get from the penultimate term to the last one,
 * we multiply by (11 * 13 * 15 * 17 * 19).
 *
 * To see a hint of why this formula works, here are the same numbers as above
 * but with the even parts (i.e., the appropriate powers of 2) included.  For
 * each subterm in the product for i, we multiply that subterm by 2**i:
 *
 *   factorial(20) =
 *
 *        (16) *
 *        (8) *
 *        (4 * 12 * 20) *
 *        (2 * 6 * 10 * 14 * 18) *
 *        (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
 *
 * The factorial_partial_product function computes the product of all odd j in
 * range(start, stop) for given start and stop.  It's used to compute the
 * partial products like (11 * 13 * 15 * 17 * 19) in the example above.  It
 * operates recursively, repeatedly splitting the range into two roughly equal
 * pieces until the subranges are small enough to be computed using only C
 * integer arithmetic.
 *
 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
 * the factorial) is computed independently in the main math_integer_factorial
 * function.  By standard results, its value is:
 *
 *    two_valuation = n//2 + n//4 + n//8 + ....
 *
 * It can be shown (e.g., by complete induction on n) that two_valuation is
 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
 * '1'-bits in the binary expansion of n.
 */

/* factorial_partial_product: Compute product(range(start, stop, 2)) using
 * divide and conquer.  Assumes start and stop are odd and stop > start.
 * max_bits must be >= bit_length(stop - 2). */

static PyObject *
factorial_partial_product(unsigned long start, unsigned long stop,
                          unsigned long max_bits)
{
    unsigned long midpoint, num_operands;
    PyObject *left = NULL, *right = NULL, *result = NULL;

    /* If the return value will fit an unsigned long, then we can
     * multiply in a tight, fast loop where each multiply is O(1).
     * Compute an upper bound on the number of bits required to store
     * the answer.
     *
     * Storing some integer z requires floor(lg(z))+1 bits, which is
     * conveniently the value returned by bit_length(z).  The
     * product x*y will require at most
     * bit_length(x) + bit_length(y) bits to store, based
     * on the idea that lg product = lg x + lg y.
     *
     * We know that stop - 2 is the largest number to be multiplied.  From
     * there, we have: bit_length(answer) <= num_operands *
     * bit_length(stop - 2)
     */

    num_operands = (stop - start) / 2;
    /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
     * unlikely case of an overflow in num_operands * max_bits. */
    if (num_operands <= 8 * SIZEOF_LONG &&
        num_operands * max_bits <= 8 * SIZEOF_LONG) {
        unsigned long j, total;
        for (total = start, j = start + 2; j < stop; j += 2)
            total *= j;
        return PyLong_FromUnsignedLong(total);
    }

    /* find midpoint of range(start, stop), rounded up to next odd number. */
    midpoint = (start + num_operands) | 1;
    left = factorial_partial_product(start, midpoint,
                                     _Py_bit_length(midpoint - 2));
    if (left == NULL)
        goto error;
    right = factorial_partial_product(midpoint, stop, max_bits);
    if (right == NULL)
        goto error;
    result = PyNumber_Multiply(left, right);

  error:
    Py_XDECREF(left);
    Py_XDECREF(right);
    return result;
}

/* factorial_odd_part:  compute the odd part of factorial(n). */

static PyObject *
factorial_odd_part(unsigned long n)
{
    long i;
    unsigned long v, lower, upper;
    PyObject *partial, *tmp, *inner, *outer;

    inner = PyLong_FromLong(1);
    if (inner == NULL)
        return NULL;
    outer = Py_NewRef(inner);

    upper = 3;
    for (i = _Py_bit_length(n) - 2; i >= 0; i--) {
        v = n >> i;
        if (v <= 2)
            continue;
        lower = upper;
        /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
        upper = (v + 1) | 1;
        /* Here inner is the product of all odd integers j in the range (0,
           n/2**(i+1)].  The factorial_partial_product call below gives the
           product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
        partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2));
        /* inner *= partial */
        if (partial == NULL)
            goto error;
        tmp = PyNumber_Multiply(inner, partial);
        Py_DECREF(partial);
        if (tmp == NULL)
            goto error;
        Py_SETREF(inner, tmp);
        /* Now inner is the product of all odd integers j in the range (0,
           n/2**i], giving the inner product in the formula above. */

        /* outer *= inner; */
        tmp = PyNumber_Multiply(outer, inner);
        if (tmp == NULL)
            goto error;
        Py_SETREF(outer, tmp);
    }
    Py_DECREF(inner);
    return outer;

  error:
    Py_DECREF(outer);
    Py_DECREF(inner);
    return NULL;
}


/* Lookup table for small factorial values */

static const unsigned long SmallFactorials[] = {
    1, 1, 2, 6, 24, 120, 720, 5040, 40320,
    362880, 3628800, 39916800, 479001600,
#if SIZEOF_LONG >= 8
    6227020800, 87178291200, 1307674368000,
    20922789888000, 355687428096000, 6402373705728000,
    121645100408832000, 2432902008176640000
#endif
};

/*[clinic input]
math.integer.factorial

    n as arg: object
    /

Find n!.
[clinic start generated code]*/

static PyObject *
math_integer_factorial(PyObject *module, PyObject *arg)
/*[clinic end generated code: output=131c23fd48650414 input=742f4dfa490a1b07]*/
{
    long x, two_valuation;
    int overflow;
    PyObject *result, *odd_part;

    x = PyLong_AsLongAndOverflow(arg, &overflow);
    if (x == -1 && PyErr_Occurred()) {
        return NULL;
    }
    else if (overflow == 1) {
        PyErr_Format(PyExc_OverflowError,
                     "factorial() argument should not exceed %ld",
                     LONG_MAX);
        return NULL;
    }
    else if (overflow == -1 || x < 0) {
        PyErr_SetString(PyExc_ValueError,
                        "factorial() not defined for negative values");
        return NULL;
    }

    /* use lookup table if x is small */
    if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
        return PyLong_FromUnsignedLong(SmallFactorials[x]);

    /* else express in the form odd_part * 2**two_valuation, and compute as
       odd_part << two_valuation. */
    odd_part = factorial_odd_part(x);
    if (odd_part == NULL)
        return NULL;
    two_valuation = x - count_set_bits(x);
    result = _PyLong_Lshift(odd_part, two_valuation);
    Py_DECREF(odd_part);
    return result;
}


/* least significant 64 bits of the odd part of factorial(n), for n in range(128).

Python code to generate the values:

    import math.integer

    for n in range(128):
        fac = math.integer.factorial(n)
        fac_odd_part = fac // (fac & -fac)
        reduced_fac_odd_part = fac_odd_part % (2**64)
        print(f"{reduced_fac_odd_part:#018x}u")
*/
static const uint64_t reduced_factorial_odd_part[] = {
    0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u,
    0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu,
    0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u,
    0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu,
    0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u,
    0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du,
    0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u,
    0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu,
    0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u,
    0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u,
    0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu,
    0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu,
    0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du,
    0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u,
    0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u,
    0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu,
    0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u,
    0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u,
    0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu,
    0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u,
    0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u,
    0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u,
    0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u,
    0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu,
    0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u,
    0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u,
    0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu,
    0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u,
    0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u,
    0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u,
    0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u,
    0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu,
};

/* inverses of reduced_factorial_odd_part values modulo 2**64.

Python code to generate the values:

    import math.integer

    for n in range(128):
        fac = math.integer.factorial(n)
        fac_odd_part = fac // (fac & -fac)
        inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64)
        print(f"{inverted_fac_odd_part:#018x}u")
*/
static const uint64_t inverted_factorial_odd_part[] = {
    0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu,
    0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u,
    0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du,
    0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u,
    0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u,
    0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u,
    0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u,
    0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u,
    0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u,
    0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u,
    0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u,
    0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u,
    0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u,
    0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u,
    0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u,
    0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u,
    0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u,
    0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u,
    0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu,
    0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u,
    0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u,
    0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu,
    0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u,
    0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u,
    0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du,
    0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu,
    0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu,
    0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u,
    0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du,
    0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u,
    0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u,
    0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u,
};

/* exponent of the largest power of 2 dividing factorial(n), for n in range(68)

Python code to generate the values:

import math.integer

for n in range(128):
    fac = math.integer.factorial(n)
    fac_trailing_zeros = (fac & -fac).bit_length() - 1
    print(fac_trailing_zeros)
*/

static const uint8_t factorial_trailing_zeros[] = {
     0,  0,  1,  1,  3,  3,  4,  4,  7,  7,  8,  8, 10, 10, 11, 11,  //  0-15
    15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26,  // 16-31
    31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42,  // 32-47
    46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57,  // 48-63
    63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74,  // 64-79
    78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89,  // 80-95
    94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105,  // 96-111
    109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120,  // 112-127
};

/* Number of permutations and combinations.
 * P(n, k) = n! / (n-k)!
 * C(n, k) = P(n, k) / k!
 */

/* Calculate C(n, k) for n in the 63-bit range. */
static PyObject *
perm_comb_small(unsigned long long n, unsigned long long k, int iscomb)
{
    assert(k != 0);

    /* For small enough n and k the result fits in the 64-bit range and can
     * be calculated without allocating intermediate PyLong objects. */
    if (iscomb) {
        /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)
         * fits into a uint64_t.  Exclude k = 1, because the second fast
         * path is faster for this case.*/
        static const unsigned char fast_comb_limits1[] = {
            0, 0, 127, 127, 127, 127, 127, 127,  // 0-7
            127, 127, 127, 127, 127, 127, 127, 127,  // 8-15
            116, 105, 97, 91, 86, 82, 78, 76,  // 16-23
            74, 72, 71, 70, 69, 68, 68, 67,  // 24-31
            67, 67, 67,  // 32-34
        };
        if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) {
            /*
                comb(n, k) fits into a uint64_t. We compute it as

                    comb_odd_part << shift

                where 2**shift is the largest power of two dividing comb(n, k)
                and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be
                calculated efficiently via arithmetic modulo 2**64, using three
                lookups and two uint64_t multiplications.
            */
            uint64_t comb_odd_part = reduced_factorial_odd_part[n]
                                   * inverted_factorial_odd_part[k]
                                   * inverted_factorial_odd_part[n - k];
            int shift = factorial_trailing_zeros[n]
                      - factorial_trailing_zeros[k]
                      - factorial_trailing_zeros[n - k];
            return PyLong_FromUnsignedLongLong(comb_odd_part << shift);
        }

        /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k
         * fits into a long long (which is at least 64 bit).  Only contains
         * items larger than in fast_comb_limits1. */
        static const unsigned long long fast_comb_limits2[] = {
            0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449,  // 0-7
            746, 453, 308, 227, 178, 147,  // 8-13
        };
        if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) {
            /* C(n, k) = C(n, k-1) * (n-k+1) / k */
            unsigned long long result = n;
            for (unsigned long long i = 1; i < k;) {
                result *= --n;
                result /= ++i;
            }
            return PyLong_FromUnsignedLongLong(result);
        }
    }
    else {
        /* Maps k to the maximal n so that k <= n and P(n, k)
         * fits into a long long (which is at least 64 bit). */
        static const unsigned long long fast_perm_limits[] = {
            0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568,  // 0-7
            259, 142, 88, 61, 45, 36, 30, 26,  // 8-15
            24, 22, 21, 20, 20,  // 16-20
        };
        if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) {
            if (n <= 127) {
                /* P(n, k) fits into a uint64_t. */
                uint64_t perm_odd_part = reduced_factorial_odd_part[n]
                                       * inverted_factorial_odd_part[n - k];
                int shift = factorial_trailing_zeros[n]
                          - factorial_trailing_zeros[n - k];
                return PyLong_FromUnsignedLongLong(perm_odd_part << shift);
            }

            /* P(n, k) = P(n, k-1) * (n-k+1) */
            unsigned long long result = n;
            for (unsigned long long i = 1; i < k;) {
                result *= --n;
                ++i;
            }
            return PyLong_FromUnsignedLongLong(result);
        }
    }

    /* For larger n use recursive formulas:
     *
     *   P(n, k) = P(n, j) * P(n-j, k-j)
     *   C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j)
     */
    unsigned long long j = k / 2;
    PyObject *a, *b;
    a = perm_comb_small(n, j, iscomb);
    if (a == NULL) {
        return NULL;
    }
    b = perm_comb_small(n - j, k - j, iscomb);
    if (b == NULL) {
        goto error;
    }
    Py_SETREF(a, PyNumber_Multiply(a, b));
    Py_DECREF(b);
    if (iscomb && a != NULL) {
        b = perm_comb_small(k, j, 1);
        if (b == NULL) {
            goto error;
        }
        Py_SETREF(a, PyNumber_FloorDivide(a, b));
        Py_DECREF(b);
    }
    return a;

error:
    Py_DECREF(a);
    return NULL;
}

/* Calculate P(n, k) or C(n, k) using recursive formulas.
 * It is more efficient than sequential multiplication thanks to
 * Karatsuba multiplication.
 */
static PyObject *
perm_comb(PyObject *n, unsigned long long k, int iscomb)
{
    if (k == 0) {
        return PyLong_FromLong(1);
    }
    if (k == 1) {
        return Py_NewRef(n);
    }

    /* P(n, k) = P(n, j) * P(n-j, k-j) */
    /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */
    unsigned long long j = k / 2;
    PyObject *a, *b;
    a = perm_comb(n, j, iscomb);
    if (a == NULL) {
        return NULL;
    }
    PyObject *t = PyLong_FromUnsignedLongLong(j);
    if (t == NULL) {
        goto error;
    }
    n = PyNumber_Subtract(n, t);
    Py_DECREF(t);
    if (n == NULL) {
        goto error;
    }
    b = perm_comb(n, k - j, iscomb);
    Py_DECREF(n);
    if (b == NULL) {
        goto error;
    }
    Py_SETREF(a, PyNumber_Multiply(a, b));
    Py_DECREF(b);
    if (iscomb && a != NULL) {
        b = perm_comb_small(k, j, 1);
        if (b == NULL) {
            goto error;
        }
        Py_SETREF(a, PyNumber_FloorDivide(a, b));
        Py_DECREF(b);
    }
    return a;

error:
    Py_DECREF(a);
    return NULL;
}

/*[clinic input]
@permit_long_summary
math.integer.perm

    n: object
    k: object = None
    /

Number of ways to choose k items from n items without repetition and with order.

Evaluates to n! / (n - k)! when k <= n and evaluates
to zero when k > n.

If k is not specified or is None, then k defaults to n
and the function returns n!.

Raises ValueError if either of the arguments are negative.
[clinic start generated code]*/

static PyObject *
math_integer_perm_impl(PyObject *module, PyObject *n, PyObject *k)
/*[clinic end generated code: output=9f9b96cd73a94de4 input=fd627e5a09dd5116]*/
{
    PyObject *result = NULL;
    int overflow, cmp;
    long long ki, ni;

    if (k == Py_None) {
        return math_integer_factorial(module, n);
    }
    n = PyNumber_Index(n);
    if (n == NULL) {
        return NULL;
    }
    k = PyNumber_Index(k);
    if (k == NULL) {
        Py_DECREF(n);
        return NULL;
    }
    assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));

    if (_PyLong_IsNegative((PyLongObject *)n)) {
        PyErr_SetString(PyExc_ValueError,
                        "n must be a non-negative integer");
        goto error;
    }
    if (_PyLong_IsNegative((PyLongObject *)k)) {
        PyErr_SetString(PyExc_ValueError,
                        "k must be a non-negative integer");
        goto error;
    }

    cmp = PyObject_RichCompareBool(n, k, Py_LT);
    if (cmp != 0) {
        if (cmp > 0) {
            result = PyLong_FromLong(0);
            goto done;
        }
        goto error;
    }

    ki = PyLong_AsLongLongAndOverflow(k, &overflow);
    assert(overflow >= 0 && !PyErr_Occurred());
    if (overflow > 0) {
        PyErr_Format(PyExc_OverflowError,
                     "k must not exceed %lld",
                     LLONG_MAX);
        goto error;
    }
    assert(ki >= 0);

    ni = PyLong_AsLongLongAndOverflow(n, &overflow);
    assert(overflow >= 0 && !PyErr_Occurred());
    if (!overflow && ki > 1) {
        assert(ni >= 0);
        result = perm_comb_small((unsigned long long)ni,
                                 (unsigned long long)ki, 0);
    }
    else {
        result = perm_comb(n, (unsigned long long)ki, 0);
    }

done:
    Py_DECREF(n);
    Py_DECREF(k);
    return result;

error:
    Py_DECREF(n);
    Py_DECREF(k);
    return NULL;
}

/*[clinic input]
@permit_long_summary
math.integer.comb

    n: object
    k: object
    /

Number of ways to choose k items from n items without repetition and without order.

Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
to zero when k > n.

Also called the binomial coefficient because it is equivalent
to the coefficient of k-th term in polynomial expansion of the
expression (1 + x)**n.

Raises ValueError if either of the arguments are negative.
[clinic start generated code]*/

static PyObject *
math_integer_comb_impl(PyObject *module, PyObject *n, PyObject *k)
/*[clinic end generated code: output=c2c9cdfe0d5dd43f input=8cc12726b682c4a5]*/
{
    PyObject *result = NULL, *temp;
    int overflow, cmp;
    long long ki, ni;

    n = PyNumber_Index(n);
    if (n == NULL) {
        return NULL;
    }
    k = PyNumber_Index(k);
    if (k == NULL) {
        Py_DECREF(n);
        return NULL;
    }
    assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));

    if (_PyLong_IsNegative((PyLongObject *)n)) {
        PyErr_SetString(PyExc_ValueError,
                        "n must be a non-negative integer");
        goto error;
    }
    if (_PyLong_IsNegative((PyLongObject *)k)) {
        PyErr_SetString(PyExc_ValueError,
                        "k must be a non-negative integer");
        goto error;
    }

    ni = PyLong_AsLongLongAndOverflow(n, &overflow);
    assert(overflow >= 0 && !PyErr_Occurred());
    if (!overflow) {
        assert(ni >= 0);
        ki = PyLong_AsLongLongAndOverflow(k, &overflow);
        assert(overflow >= 0 && !PyErr_Occurred());
        if (overflow || ki > ni) {
            result = PyLong_FromLong(0);
            goto done;
        }
        assert(ki >= 0);

        ki = Py_MIN(ki, ni - ki);
        if (ki > 1) {
            result = perm_comb_small((unsigned long long)ni,
                                     (unsigned long long)ki, 1);
            goto done;
        }
        /* For k == 1 just return the original n in perm_comb(). */
    }
    else {
        /* k = min(k, n - k) */
        temp = PyNumber_Subtract(n, k);
        if (temp == NULL) {
            goto error;
        }
        assert(PyLong_Check(temp));
        if (_PyLong_IsNegative((PyLongObject *)temp)) {
            Py_DECREF(temp);
            result = PyLong_FromLong(0);
            goto done;
        }
        cmp = PyObject_RichCompareBool(temp, k, Py_LT);
        if (cmp > 0) {
            Py_SETREF(k, temp);
        }
        else {
            Py_DECREF(temp);
            if (cmp < 0) {
                goto error;
            }
        }

        ki = PyLong_AsLongLongAndOverflow(k, &overflow);
        assert(overflow >= 0 && !PyErr_Occurred());
        if (overflow) {
            PyErr_Format(PyExc_OverflowError,
                         "min(n - k, k) must not exceed %lld",
                         LLONG_MAX);
            goto error;
        }
        assert(ki >= 0);
    }

    result = perm_comb(n, (unsigned long long)ki, 1);

done:
    Py_DECREF(n);
    Py_DECREF(k);
    return result;

error:
    Py_DECREF(n);
    Py_DECREF(k);
    return NULL;
}


static PyMethodDef math_integer_methods[] = {
    MATH_INTEGER_COMB_METHODDEF
    MATH_INTEGER_FACTORIAL_METHODDEF
    MATH_INTEGER_GCD_METHODDEF
    MATH_INTEGER_ISQRT_METHODDEF
    MATH_INTEGER_LCM_METHODDEF
    MATH_INTEGER_PERM_METHODDEF
    {NULL,              NULL}           /* sentinel */
};

static int
math_integer_exec(PyObject *module)
{
    /* Fix the __name__ attribute of the module and the __module__ attribute
     * of its functions.
     */
    PyObject *name = PyUnicode_FromString("math.integer");
    if (name == NULL) {
        return -1;
    }
    if (PyObject_SetAttrString(module, "__name__", name) < 0) {
        Py_DECREF(name);
        return -1;
    }
    for (const PyMethodDef *m = math_integer_methods; m->ml_name; m++) {
        PyObject *obj = PyObject_GetAttrString(module, m->ml_name);
        if (obj == NULL) {
            Py_DECREF(name);
            return -1;
        }
        if (PyObject_SetAttrString(obj, "__module__", name) < 0) {
            Py_DECREF(name);
            Py_DECREF(obj);
            return -1;
        }
        Py_DECREF(obj);
    }
    Py_DECREF(name);
    return 0;
}

static PyModuleDef_Slot math_integer_slots[] = {
    {Py_mod_exec, math_integer_exec},
    {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
    {Py_mod_gil, Py_MOD_GIL_NOT_USED},
    {0, NULL}
};

PyDoc_STRVAR(module_doc,
"This module provides access to integer related mathematical functions.");

static struct PyModuleDef math_integer_module = {
    PyModuleDef_HEAD_INIT,
    .m_name = "math.integer",
    .m_doc = module_doc,
    .m_size = 0,
    .m_methods = math_integer_methods,
    .m_slots = math_integer_slots,
};

PyMODINIT_FUNC
PyInit__math_integer(void)
{
    return PyModuleDef_Init(&math_integer_module);
}