1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
|
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// This file is included in `src/prim/prim.c`
#ifndef _DEFAULT_SOURCE
#define _DEFAULT_SOURCE // ensure mmap flags and syscall are defined
#endif
#if defined(__sun)
// illumos provides new mman.h api when any of these are defined
// otherwise the old api based on caddr_t which predates the void pointers one.
// stock solaris provides only the former, chose to atomically to discard those
// flags only here rather than project wide tough.
#undef _XOPEN_SOURCE
#undef _POSIX_C_SOURCE
#endif
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
#include <sys/mman.h> // mmap
#include <unistd.h> // sysconf
#if defined(__linux__)
#include <features.h>
#include <fcntl.h>
#if defined(__GLIBC__)
#include <linux/mman.h> // linux mmap flags
#else
#include <sys/mman.h>
#endif
#elif defined(__APPLE__)
#include <TargetConditionals.h>
#if !TARGET_IOS_IPHONE && !TARGET_IOS_SIMULATOR
#include <mach/vm_statistics.h>
#endif
#elif defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/param.h>
#if __FreeBSD_version >= 1200000
#include <sys/cpuset.h>
#include <sys/domainset.h>
#endif
#include <sys/sysctl.h>
#endif
#if !defined(__HAIKU__) && !defined(__APPLE__) && !defined(__CYGWIN__) && !defined(_AIX) && !defined(__FreeBSD__)
#define MI_HAS_SYSCALL_H
#include <sys/syscall.h>
#endif
//------------------------------------------------------------------------------------
// Use syscalls for some primitives to allow for libraries that override open/read/close etc.
// and do allocation themselves; using syscalls prevents recursion when mimalloc is
// still initializing (issue #713)
//------------------------------------------------------------------------------------
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_open) && defined(SYS_close) && defined(SYS_read) && defined(SYS_access)
static int mi_prim_open(const char* fpath, int open_flags) {
return syscall(SYS_open,fpath,open_flags,0);
}
static ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) {
return syscall(SYS_read,fd,buf,bufsize);
}
static int mi_prim_close(int fd) {
return syscall(SYS_close,fd);
}
static int mi_prim_access(const char *fpath, int mode) {
return syscall(SYS_access,fpath,mode);
}
#elif !defined(__APPLE__) && !defined(_AIX) && !defined(__FreeBSD__) // avoid unused warnings
static int mi_prim_open(const char* fpath, int open_flags) {
return open(fpath,open_flags);
}
static ssize_t mi_prim_read(int fd, void* buf, size_t bufsize) {
return read(fd,buf,bufsize);
}
static int mi_prim_close(int fd) {
return close(fd);
}
static int mi_prim_access(const char *fpath, int mode) {
return access(fpath,mode);
}
#endif
//---------------------------------------------
// init
//---------------------------------------------
static bool unix_detect_overcommit(void) {
bool os_overcommit = true;
#if defined(__linux__)
int fd = mi_prim_open("/proc/sys/vm/overcommit_memory", O_RDONLY);
if (fd >= 0) {
char buf[32] = {0};
ssize_t nread = mi_prim_read(fd, &buf, sizeof(buf));
mi_prim_close(fd);
// <https://www.kernel.org/doc/Documentation/vm/overcommit-accounting>
// 0: heuristic overcommit, 1: always overcommit, 2: never overcommit (ignore NORESERVE)
if (nread >= 1) {
os_overcommit = (buf[0] == '0' || buf[0] == '1');
}
}
#elif defined(__FreeBSD__)
int val = 0;
size_t olen = sizeof(val);
if (sysctlbyname("vm.overcommit", &val, &olen, NULL, 0) == 0) {
os_overcommit = (val != 0);
}
#else
// default: overcommit is true
#endif
return os_overcommit;
}
void _mi_prim_mem_init( mi_os_mem_config_t* config ) {
long psize = sysconf(_SC_PAGESIZE);
if (psize > 0) {
config->page_size = (size_t)psize;
config->alloc_granularity = (size_t)psize;
}
config->large_page_size = 2*MI_MiB; // TODO: can we query the OS for this?
config->has_overcommit = unix_detect_overcommit();
config->must_free_whole = false; // mmap can free in parts
config->has_virtual_reserve = true; // todo: check if this true for NetBSD? (for anonymous mmap with PROT_NONE)
}
//---------------------------------------------
// free
//---------------------------------------------
int _mi_prim_free(void* addr, size_t size ) {
bool err = (munmap(addr, size) == -1);
return (err ? errno : 0);
}
//---------------------------------------------
// mmap
//---------------------------------------------
static int unix_madvise(void* addr, size_t size, int advice) {
#if defined(__sun)
return madvise((caddr_t)addr, size, advice); // Solaris needs cast (issue #520)
#else
return madvise(addr, size, advice);
#endif
}
static void* unix_mmap_prim(void* addr, size_t size, size_t try_alignment, int protect_flags, int flags, int fd) {
MI_UNUSED(try_alignment);
void* p = NULL;
#if defined(MAP_ALIGNED) // BSD
if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) {
size_t n = mi_bsr(try_alignment);
if (((size_t)1 << n) == try_alignment && n >= 12 && n <= 30) { // alignment is a power of 2 and 4096 <= alignment <= 1GiB
p = mmap(addr, size, protect_flags, flags | MAP_ALIGNED(n), fd, 0);
if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) {
int err = errno;
_mi_verbose_message("unable to directly request aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, addr);
}
if (p!=MAP_FAILED) return p;
// fall back to regular mmap
}
}
#elif defined(MAP_ALIGN) // Solaris
if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0) {
p = mmap((void*)try_alignment, size, protect_flags, flags | MAP_ALIGN, fd, 0); // addr parameter is the required alignment
if (p!=MAP_FAILED) return p;
// fall back to regular mmap
}
#endif
#if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED)
// on 64-bit systems, use the virtual address area after 2TiB for 4MiB aligned allocations
if (addr == NULL) {
void* hint = _mi_os_get_aligned_hint(try_alignment, size);
if (hint != NULL) {
p = mmap(hint, size, protect_flags, flags, fd, 0);
if (p==MAP_FAILED || !_mi_is_aligned(p,try_alignment)) {
#if MI_TRACK_ENABLED // asan sometimes does not instrument errno correctly?
int err = 0;
#else
int err = errno;
#endif
_mi_verbose_message("unable to directly request hinted aligned OS memory (error: %d (0x%x), size: 0x%zx bytes, alignment: 0x%zx, hint address: %p)\n", err, err, size, try_alignment, hint);
}
if (p!=MAP_FAILED) return p;
// fall back to regular mmap
}
}
#endif
// regular mmap
p = mmap(addr, size, protect_flags, flags, fd, 0);
if (p!=MAP_FAILED) return p;
// failed to allocate
return NULL;
}
static int unix_mmap_fd(void) {
#if defined(VM_MAKE_TAG)
// macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99)
int os_tag = (int)mi_option_get(mi_option_os_tag);
if (os_tag < 100 || os_tag > 255) { os_tag = 100; }
return VM_MAKE_TAG(os_tag);
#else
return -1;
#endif
}
static void* unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) {
#if !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#if !defined(MAP_NORESERVE)
#define MAP_NORESERVE 0
#endif
void* p = NULL;
const int fd = unix_mmap_fd();
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
if (_mi_os_has_overcommit()) {
flags |= MAP_NORESERVE;
}
#if defined(PROT_MAX)
protect_flags |= PROT_MAX(PROT_READ | PROT_WRITE); // BSD
#endif
// huge page allocation
if ((large_only || _mi_os_use_large_page(size, try_alignment)) && allow_large) {
static _Atomic(size_t) large_page_try_ok; // = 0;
size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
if (!large_only && try_ok > 0) {
// If the OS is not configured for large OS pages, or the user does not have
// enough permission, the `mmap` will always fail (but it might also fail for other reasons).
// Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times
// to avoid too many failing calls to mmap.
mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
}
else {
int lflags = flags & ~MAP_NORESERVE; // using NORESERVE on huge pages seems to fail on Linux
int lfd = fd;
#ifdef MAP_ALIGNED_SUPER
lflags |= MAP_ALIGNED_SUPER;
#endif
#ifdef MAP_HUGETLB
lflags |= MAP_HUGETLB;
#endif
#ifdef MAP_HUGE_1GB
static bool mi_huge_pages_available = true;
if ((size % MI_GiB) == 0 && mi_huge_pages_available) {
lflags |= MAP_HUGE_1GB;
}
else
#endif
{
#ifdef MAP_HUGE_2MB
lflags |= MAP_HUGE_2MB;
#endif
}
#ifdef VM_FLAGS_SUPERPAGE_SIZE_2MB
lfd |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
#endif
if (large_only || lflags != flags) {
// try large OS page allocation
*is_large = true;
p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd);
#ifdef MAP_HUGE_1GB
if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) {
mi_huge_pages_available = false; // don't try huge 1GiB pages again
_mi_warning_message("unable to allocate huge (1GiB) page, trying large (2MiB) pages instead (errno: %i)\n", errno);
lflags = ((lflags & ~MAP_HUGE_1GB) | MAP_HUGE_2MB);
p = unix_mmap_prim(addr, size, try_alignment, protect_flags, lflags, lfd);
}
#endif
if (large_only) return p;
if (p == NULL) {
mi_atomic_store_release(&large_page_try_ok, (size_t)8); // on error, don't try again for the next N allocations
}
}
}
}
// regular allocation
if (p == NULL) {
*is_large = false;
p = unix_mmap_prim(addr, size, try_alignment, protect_flags, flags, fd);
if (p != NULL) {
#if defined(MADV_HUGEPAGE)
// Many Linux systems don't allow MAP_HUGETLB but they support instead
// transparent huge pages (THP). Generally, it is not required to call `madvise` with MADV_HUGE
// though since properly aligned allocations will already use large pages if available
// in that case -- in particular for our large regions (in `memory.c`).
// However, some systems only allow THP if called with explicit `madvise`, so
// when large OS pages are enabled for mimalloc, we call `madvise` anyways.
if (allow_large && _mi_os_use_large_page(size, try_alignment)) {
if (unix_madvise(p, size, MADV_HUGEPAGE) == 0) {
*is_large = true; // possibly
};
}
#elif defined(__sun)
if (allow_large && _mi_os_use_large_page(size, try_alignment)) {
struct memcntl_mha cmd = {0};
cmd.mha_pagesize = large_os_page_size;
cmd.mha_cmd = MHA_MAPSIZE_VA;
if (memcntl((caddr_t)p, size, MC_HAT_ADVISE, (caddr_t)&cmd, 0, 0) == 0) {
*is_large = true;
}
}
#endif
}
}
return p;
}
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0);
*is_zero = true;
int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE);
*addr = unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : errno);
}
//---------------------------------------------
// Commit/Reset
//---------------------------------------------
static void unix_mprotect_hint(int err) {
#if defined(__linux__) && (MI_SECURE>=2) // guard page around every mimalloc page
if (err == ENOMEM) {
_mi_warning_message("The next warning may be caused by a low memory map limit.\n"
" On Linux this is controlled by the vm.max_map_count -- maybe increase it?\n"
" For example: sudo sysctl -w vm.max_map_count=262144\n");
}
#else
MI_UNUSED(err);
#endif
}
int _mi_prim_commit(void* start, size_t size, bool* is_zero) {
// commit: ensure we can access the area
// note: we may think that *is_zero can be true since the memory
// was either from mmap PROT_NONE, or from decommit MADV_DONTNEED, but
// we sometimes call commit on a range with still partially committed
// memory and `mprotect` does not zero the range.
*is_zero = false;
int err = mprotect(start, size, (PROT_READ | PROT_WRITE));
if (err != 0) {
err = errno;
unix_mprotect_hint(err);
}
return err;
}
int _mi_prim_decommit(void* start, size_t size, bool* needs_recommit) {
int err = 0;
// decommit: use MADV_DONTNEED as it decreases rss immediately (unlike MADV_FREE)
err = unix_madvise(start, size, MADV_DONTNEED);
#if !MI_DEBUG && !MI_SECURE
*needs_recommit = false;
#else
*needs_recommit = true;
mprotect(start, size, PROT_NONE);
#endif
/*
// decommit: use mmap with MAP_FIXED and PROT_NONE to discard the existing memory (and reduce rss)
*needs_recommit = true;
const int fd = unix_mmap_fd();
void* p = mmap(start, size, PROT_NONE, (MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE), fd, 0);
if (p != start) { err = errno; }
*/
return err;
}
int _mi_prim_reset(void* start, size_t size) {
// We try to use `MADV_FREE` as that is the fastest. A drawback though is that it
// will not reduce the `rss` stats in tools like `top` even though the memory is available
// to other processes. With the default `MIMALLOC_PURGE_DECOMMITS=1` we ensure that by
// default `MADV_DONTNEED` is used though.
#if defined(MADV_FREE)
static _Atomic(size_t) advice = MI_ATOMIC_VAR_INIT(MADV_FREE);
int oadvice = (int)mi_atomic_load_relaxed(&advice);
int err;
while ((err = unix_madvise(start, size, oadvice)) != 0 && errno == EAGAIN) { errno = 0; };
if (err != 0 && errno == EINVAL && oadvice == MADV_FREE) {
// if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on
mi_atomic_store_release(&advice, (size_t)MADV_DONTNEED);
err = unix_madvise(start, size, MADV_DONTNEED);
}
#else
int err = unix_madvise(start, size, MADV_DONTNEED);
#endif
return err;
}
int _mi_prim_protect(void* start, size_t size, bool protect) {
int err = mprotect(start, size, protect ? PROT_NONE : (PROT_READ | PROT_WRITE));
if (err != 0) { err = errno; }
unix_mprotect_hint(err);
return err;
}
//---------------------------------------------
// Huge page allocation
//---------------------------------------------
#if (MI_INTPTR_SIZE >= 8) && !defined(__HAIKU__) && !defined(__CYGWIN__)
#ifndef MPOL_PREFERRED
#define MPOL_PREFERRED 1
#endif
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_mbind)
static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
return syscall(SYS_mbind, start, len, mode, nmask, maxnode, flags);
}
#else
static long mi_prim_mbind(void* start, unsigned long len, unsigned long mode, const unsigned long* nmask, unsigned long maxnode, unsigned flags) {
MI_UNUSED(start); MI_UNUSED(len); MI_UNUSED(mode); MI_UNUSED(nmask); MI_UNUSED(maxnode); MI_UNUSED(flags);
return 0;
}
#endif
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
bool is_large = true;
*is_zero = true;
*addr = unix_mmap(hint_addr, size, MI_SEGMENT_SIZE, PROT_READ | PROT_WRITE, true, true, &is_large);
if (*addr != NULL && numa_node >= 0 && numa_node < 8*MI_INTPTR_SIZE) { // at most 64 nodes
unsigned long numa_mask = (1UL << numa_node);
// TODO: does `mbind` work correctly for huge OS pages? should we
// use `set_mempolicy` before calling mmap instead?
// see: <https://lkml.org/lkml/2017/2/9/875>
long err = mi_prim_mbind(*addr, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0);
if (err != 0) {
err = errno;
_mi_warning_message("failed to bind huge (1GiB) pages to numa node %d (error: %d (0x%x))\n", numa_node, err, err);
}
}
return (*addr != NULL ? 0 : errno);
}
#else
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
MI_UNUSED(hint_addr); MI_UNUSED(size); MI_UNUSED(numa_node);
*is_zero = false;
*addr = NULL;
return ENOMEM;
}
#endif
//---------------------------------------------
// NUMA nodes
//---------------------------------------------
#if defined(__linux__)
#include <stdio.h> // snprintf
size_t _mi_prim_numa_node(void) {
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_getcpu)
unsigned long node = 0;
unsigned long ncpu = 0;
long err = syscall(SYS_getcpu, &ncpu, &node, NULL);
if (err != 0) return 0;
return node;
#else
return 0;
#endif
}
size_t _mi_prim_numa_node_count(void) {
char buf[128];
unsigned node = 0;
for(node = 0; node < 256; node++) {
// enumerate node entries -- todo: it there a more efficient way to do this? (but ensure there is no allocation)
snprintf(buf, 127, "/sys/devices/system/node/node%u", node + 1);
if (mi_prim_access(buf,R_OK) != 0) break;
}
return (node+1);
}
#elif defined(__FreeBSD__) && __FreeBSD_version >= 1200000
size_t _mi_prim_numa_node(void) {
domainset_t dom;
size_t node;
int policy;
if (cpuset_getdomain(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(dom), &dom, &policy) == -1) return 0ul;
for (node = 0; node < MAXMEMDOM; node++) {
if (DOMAINSET_ISSET(node, &dom)) return node;
}
return 0ul;
}
size_t _mi_prim_numa_node_count(void) {
size_t ndomains = 0;
size_t len = sizeof(ndomains);
if (sysctlbyname("vm.ndomains", &ndomains, &len, NULL, 0) == -1) return 0ul;
return ndomains;
}
#elif defined(__DragonFly__)
size_t _mi_prim_numa_node(void) {
// TODO: DragonFly does not seem to provide any userland means to get this information.
return 0ul;
}
size_t _mi_prim_numa_node_count(void) {
size_t ncpus = 0, nvirtcoresperphys = 0;
size_t len = sizeof(size_t);
if (sysctlbyname("hw.ncpu", &ncpus, &len, NULL, 0) == -1) return 0ul;
if (sysctlbyname("hw.cpu_topology_ht_ids", &nvirtcoresperphys, &len, NULL, 0) == -1) return 0ul;
return nvirtcoresperphys * ncpus;
}
#else
size_t _mi_prim_numa_node(void) {
return 0;
}
size_t _mi_prim_numa_node_count(void) {
return 1;
}
#endif
// ----------------------------------------------------------------
// Clock
// ----------------------------------------------------------------
#include <time.h>
#if defined(CLOCK_REALTIME) || defined(CLOCK_MONOTONIC)
mi_msecs_t _mi_prim_clock_now(void) {
struct timespec t;
#ifdef CLOCK_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &t);
#else
clock_gettime(CLOCK_REALTIME, &t);
#endif
return ((mi_msecs_t)t.tv_sec * 1000) + ((mi_msecs_t)t.tv_nsec / 1000000);
}
#else
// low resolution timer
mi_msecs_t _mi_prim_clock_now(void) {
#if !defined(CLOCKS_PER_SEC) || (CLOCKS_PER_SEC == 1000) || (CLOCKS_PER_SEC == 0)
return (mi_msecs_t)clock();
#elif (CLOCKS_PER_SEC < 1000)
return (mi_msecs_t)clock() * (1000 / (mi_msecs_t)CLOCKS_PER_SEC);
#else
return (mi_msecs_t)clock() / ((mi_msecs_t)CLOCKS_PER_SEC / 1000);
#endif
}
#endif
//----------------------------------------------------------------
// Process info
//----------------------------------------------------------------
#if defined(__unix__) || defined(__unix) || defined(unix) || defined(__APPLE__) || defined(__HAIKU__)
#include <stdio.h>
#include <unistd.h>
#include <sys/resource.h>
#if defined(__APPLE__)
#include <mach/mach.h>
#endif
#if defined(__HAIKU__)
#include <kernel/OS.h>
#endif
static mi_msecs_t timeval_secs(const struct timeval* tv) {
return ((mi_msecs_t)tv->tv_sec * 1000L) + ((mi_msecs_t)tv->tv_usec / 1000L);
}
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
pinfo->utime = timeval_secs(&rusage.ru_utime);
pinfo->stime = timeval_secs(&rusage.ru_stime);
#if !defined(__HAIKU__)
pinfo->page_faults = rusage.ru_majflt;
#endif
#if defined(__HAIKU__)
// Haiku does not have (yet?) a way to
// get these stats per process
thread_info tid;
area_info mem;
ssize_t c;
get_thread_info(find_thread(0), &tid);
while (get_next_area_info(tid.team, &c, &mem) == B_OK) {
pinfo->peak_rss += mem.ram_size;
}
pinfo->page_faults = 0;
#elif defined(__APPLE__)
pinfo->peak_rss = rusage.ru_maxrss; // macos reports in bytes
#ifdef MACH_TASK_BASIC_INFO
struct mach_task_basic_info info;
mach_msg_type_number_t infoCount = MACH_TASK_BASIC_INFO_COUNT;
if (task_info(mach_task_self(), MACH_TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) {
pinfo->current_rss = (size_t)info.resident_size;
}
#else
struct task_basic_info info;
mach_msg_type_number_t infoCount = TASK_BASIC_INFO_COUNT;
if (task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&info, &infoCount) == KERN_SUCCESS) {
pinfo->current_rss = (size_t)info.resident_size;
}
#endif
#else
pinfo->peak_rss = rusage.ru_maxrss * 1024; // Linux/BSD report in KiB
#endif
// use defaults for commit
}
#else
#ifndef __wasi__
// WebAssembly instances are not processes
#pragma message("define a way to get process info")
#endif
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
// use defaults
MI_UNUSED(pinfo);
}
#endif
//----------------------------------------------------------------
// Output
//----------------------------------------------------------------
void _mi_prim_out_stderr( const char* msg ) {
fputs(msg,stderr);
}
//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------
#if !defined(MI_USE_ENVIRON) || (MI_USE_ENVIRON!=0)
// On Posix systemsr use `environ` to access environment variables
// even before the C runtime is initialized.
#if defined(__APPLE__) && defined(__has_include) && __has_include(<crt_externs.h>)
#include <crt_externs.h>
static char** mi_get_environ(void) {
return (*_NSGetEnviron());
}
#else
extern char** environ;
static char** mi_get_environ(void) {
return environ;
}
#endif
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
if (name==NULL) return false;
const size_t len = _mi_strlen(name);
if (len == 0) return false;
char** env = mi_get_environ();
if (env == NULL) return false;
// compare up to 10000 entries
for (int i = 0; i < 10000 && env[i] != NULL; i++) {
const char* s = env[i];
if (_mi_strnicmp(name, s, len) == 0 && s[len] == '=') { // case insensitive
// found it
_mi_strlcpy(result, s + len + 1, result_size);
return true;
}
}
return false;
}
#else
// fallback: use standard C `getenv` but this cannot be used while initializing the C runtime
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
// cannot call getenv() when still initializing the C runtime.
if (_mi_preloading()) return false;
const char* s = getenv(name);
if (s == NULL) {
// we check the upper case name too.
char buf[64+1];
size_t len = _mi_strnlen(name,sizeof(buf)-1);
for (size_t i = 0; i < len; i++) {
buf[i] = _mi_toupper(name[i]);
}
buf[len] = 0;
s = getenv(buf);
}
if (s == NULL || _mi_strnlen(s,result_size) >= result_size) return false;
_mi_strlcpy(result, s, result_size);
return true;
}
#endif // !MI_USE_ENVIRON
//----------------------------------------------------------------
// Random
//----------------------------------------------------------------
#if defined(__APPLE__)
#include <AvailabilityMacros.h>
#if defined(MAC_OS_X_VERSION_10_10) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_10
#include <CommonCrypto/CommonCryptoError.h>
#include <CommonCrypto/CommonRandom.h>
#endif
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
#if defined(MAC_OS_X_VERSION_10_15) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_15
// We prefere CCRandomGenerateBytes as it returns an error code while arc4random_buf
// may fail silently on macOS. See PR #390, and <https://opensource.apple.com/source/Libc/Libc-1439.40.11/gen/FreeBSD/arc4random.c.auto.html>
return (CCRandomGenerateBytes(buf, buf_len) == kCCSuccess);
#else
// fall back on older macOS
arc4random_buf(buf, buf_len);
return true;
#endif
}
#elif defined(__ANDROID__) || defined(__DragonFly__) || \
defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \
defined(__sun)
#include <stdlib.h>
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
arc4random_buf(buf, buf_len);
return true;
}
#elif defined(__linux__) || defined(__HAIKU__)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
// Modern Linux provides `getrandom` but different distributions either use `sys/random.h` or `linux/random.h`
// and for the latter the actual `getrandom` call is not always defined.
// (see <https://stackoverflow.com/questions/45237324/why-doesnt-getrandom-compile>)
// We therefore use a syscall directly and fall back dynamically to /dev/urandom when needed.
#if defined(MI_HAS_SYSCALL_H) && defined(SYS_getrandom)
#ifndef GRND_NONBLOCK
#define GRND_NONBLOCK (1)
#endif
static _Atomic(uintptr_t) no_getrandom; // = 0
if (mi_atomic_load_acquire(&no_getrandom)==0) {
ssize_t ret = syscall(SYS_getrandom, buf, buf_len, GRND_NONBLOCK);
if (ret >= 0) return (buf_len == (size_t)ret);
if (errno != ENOSYS) return false;
mi_atomic_store_release(&no_getrandom, (uintptr_t)1); // don't call again, and fall back to /dev/urandom
}
#endif
int flags = O_RDONLY;
#if defined(O_CLOEXEC)
flags |= O_CLOEXEC;
#endif
int fd = mi_prim_open("/dev/urandom", flags);
if (fd < 0) return false;
size_t count = 0;
while(count < buf_len) {
ssize_t ret = mi_prim_read(fd, (char*)buf + count, buf_len - count);
if (ret<=0) {
if (errno!=EAGAIN && errno!=EINTR) break;
}
else {
count += ret;
}
}
mi_prim_close(fd);
return (count==buf_len);
}
#else
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
return false;
}
#endif
//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------
#if defined(MI_USE_PTHREADS)
// use pthread local storage keys to detect thread ending
// (and used with MI_TLS_PTHREADS for the default heap)
pthread_key_t _mi_heap_default_key = (pthread_key_t)(-1);
static void mi_pthread_done(void* value) {
if (value!=NULL) {
_mi_thread_done((mi_heap_t*)value);
}
}
void _mi_prim_thread_init_auto_done(void) {
mi_assert_internal(_mi_heap_default_key == (pthread_key_t)(-1));
pthread_key_create(&_mi_heap_default_key, &mi_pthread_done);
}
void _mi_prim_thread_done_auto_done(void) {
// nothing to do
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
if (_mi_heap_default_key != (pthread_key_t)(-1)) { // can happen during recursive invocation on freeBSD
pthread_setspecific(_mi_heap_default_key, heap);
}
}
#else
void _mi_prim_thread_init_auto_done(void) {
// nothing
}
void _mi_prim_thread_done_auto_done(void) {
// nothing
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#endif
|