summaryrefslogtreecommitdiffstats
path: root/Python/ast_unparse.c
blob: 126e9047d58d6419cdbe25361fc611cdb4a21275 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
#include "Python.h"
#include "pycore_ast.h"           // expr_ty
#include <float.h>                // DBL_MAX_10_EXP
#include <stdbool.h>

/* This limited unparser is used to convert annotations back to strings
 * during compilation rather than being a full AST unparser.
 * See ast.unparse for a full unparser (written in Python)
 */

static PyObject *_str_open_br;
static PyObject *_str_dbl_open_br;
static PyObject *_str_close_br;
static PyObject *_str_dbl_close_br;
static PyObject *_str_inf;
static PyObject *_str_replace_inf;

/* Forward declarations for recursion via helper functions. */
static PyObject *
expr_as_unicode(expr_ty e, int level);
static int
append_ast_expr(_PyUnicodeWriter *writer, expr_ty e, int level);
static int
append_joinedstr(_PyUnicodeWriter *writer, expr_ty e, bool is_format_spec);
static int
append_formattedvalue(_PyUnicodeWriter *writer, expr_ty e);
static int
append_ast_slice(_PyUnicodeWriter *writer, expr_ty e);

static int
append_charp(_PyUnicodeWriter *writer, const char *charp)
{
    return _PyUnicodeWriter_WriteASCIIString(writer, charp, -1);
}

#define APPEND_STR_FINISH(str)  do { \
        return append_charp(writer, (str)); \
    } while (0)

#define APPEND_STR(str)  do { \
        if (-1 == append_charp(writer, (str))) { \
            return -1; \
        } \
    } while (0)

#define APPEND_STR_IF(cond, str)  do { \
        if ((cond) && -1 == append_charp(writer, (str))) { \
            return -1; \
        } \
    } while (0)

#define APPEND_STR_IF_NOT_FIRST(str)  do { \
        APPEND_STR_IF(!first, (str)); \
        first = false; \
    } while (0)

#define APPEND_EXPR(expr, pr)  do { \
        if (-1 == append_ast_expr(writer, (expr), (pr))) { \
            return -1; \
        } \
    } while (0)

#define APPEND(type, value)  do { \
        if (-1 == append_ast_ ## type(writer, (value))) { \
            return -1; \
        } \
    } while (0)

static int
append_repr(_PyUnicodeWriter *writer, PyObject *obj)
{
    PyObject *repr = PyObject_Repr(obj);

    if (!repr) {
        return -1;
    }

    if ((PyFloat_CheckExact(obj) && Py_IS_INFINITY(PyFloat_AS_DOUBLE(obj))) ||
       PyComplex_CheckExact(obj))
    {
        PyObject *new_repr = PyUnicode_Replace(
            repr,
            _str_inf,
            _str_replace_inf,
            -1
        );
        Py_DECREF(repr);
        if (!new_repr) {
            return -1;
        }
        repr = new_repr;
    }
    int ret = _PyUnicodeWriter_WriteStr(writer, repr);
    Py_DECREF(repr);
    return ret;
}

/* Priority levels */

enum {
    PR_TUPLE,
    PR_TEST,            /* 'if'-'else', 'lambda' */
    PR_OR,              /* 'or' */
    PR_AND,             /* 'and' */
    PR_NOT,             /* 'not' */
    PR_CMP,             /* '<', '>', '==', '>=', '<=', '!=',
                           'in', 'not in', 'is', 'is not' */
    PR_EXPR,
    PR_BOR = PR_EXPR,   /* '|' */
    PR_BXOR,            /* '^' */
    PR_BAND,            /* '&' */
    PR_SHIFT,           /* '<<', '>>' */
    PR_ARITH,           /* '+', '-' */
    PR_TERM,            /* '*', '@', '/', '%', '//' */
    PR_FACTOR,          /* unary '+', '-', '~' */
    PR_POWER,           /* '**' */
    PR_AWAIT,           /* 'await' */
    PR_ATOM,
};

static int
append_ast_boolop(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    Py_ssize_t i, value_count;
    asdl_expr_seq *values;
    const char *op = (e->v.BoolOp.op == And) ? " and " : " or ";
    int pr = (e->v.BoolOp.op == And) ? PR_AND : PR_OR;

    APPEND_STR_IF(level > pr, "(");

    values = e->v.BoolOp.values;
    value_count = asdl_seq_LEN(values);

    for (i = 0; i < value_count; ++i) {
        APPEND_STR_IF(i > 0, op);
        APPEND_EXPR((expr_ty)asdl_seq_GET(values, i), pr + 1);
    }

    APPEND_STR_IF(level > pr, ")");
    return 0;
}

static int
append_ast_binop(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    const char *op;
    int pr;
    bool rassoc = false;  /* is right-associative? */

    switch (e->v.BinOp.op) {
    case Add: op = " + "; pr = PR_ARITH; break;
    case Sub: op = " - "; pr = PR_ARITH; break;
    case Mult: op = " * "; pr = PR_TERM; break;
    case MatMult: op = " @ "; pr = PR_TERM; break;
    case Div: op = " / "; pr = PR_TERM; break;
    case Mod: op = " % "; pr = PR_TERM; break;
    case LShift: op = " << "; pr = PR_SHIFT; break;
    case RShift: op = " >> "; pr = PR_SHIFT; break;
    case BitOr: op = " | "; pr = PR_BOR; break;
    case BitXor: op = " ^ "; pr = PR_BXOR; break;
    case BitAnd: op = " & "; pr = PR_BAND; break;
    case FloorDiv: op = " // "; pr = PR_TERM; break;
    case Pow: op = " ** "; pr = PR_POWER; rassoc = true; break;
    default:
        PyErr_SetString(PyExc_SystemError,
                        "unknown binary operator");
        return -1;
    }

    APPEND_STR_IF(level > pr, "(");
    APPEND_EXPR(e->v.BinOp.left, pr + rassoc);
    APPEND_STR(op);
    APPEND_EXPR(e->v.BinOp.right, pr + !rassoc);
    APPEND_STR_IF(level > pr, ")");
    return 0;
}

static int
append_ast_unaryop(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    const char *op;
    int pr;

    switch (e->v.UnaryOp.op) {
    case Invert: op = "~"; pr = PR_FACTOR; break;
    case Not: op = "not "; pr = PR_NOT; break;
    case UAdd: op = "+"; pr = PR_FACTOR; break;
    case USub: op = "-"; pr = PR_FACTOR; break;
    default:
        PyErr_SetString(PyExc_SystemError,
                        "unknown unary operator");
        return -1;
    }

    APPEND_STR_IF(level > pr, "(");
    APPEND_STR(op);
    APPEND_EXPR(e->v.UnaryOp.operand, pr);
    APPEND_STR_IF(level > pr, ")");
    return 0;
}

static int
append_ast_arg(_PyUnicodeWriter *writer, arg_ty arg)
{
    if (-1 == _PyUnicodeWriter_WriteStr(writer, arg->arg)) {
        return -1;
    }
    if (arg->annotation) {
        APPEND_STR(": ");
        APPEND_EXPR(arg->annotation, PR_TEST);
    }
    return 0;
}

static int
append_ast_args(_PyUnicodeWriter *writer, arguments_ty args)
{
    bool first;
    Py_ssize_t i, di, arg_count, posonlyarg_count, default_count;

    first = true;

    /* positional-only and positional arguments with defaults */
    posonlyarg_count = asdl_seq_LEN(args->posonlyargs);
    arg_count = asdl_seq_LEN(args->args);
    default_count = asdl_seq_LEN(args->defaults);
    for (i = 0; i < posonlyarg_count + arg_count; i++) {
        APPEND_STR_IF_NOT_FIRST(", ");
        if (i < posonlyarg_count){
            APPEND(arg, (arg_ty)asdl_seq_GET(args->posonlyargs, i));
        } else {
            APPEND(arg, (arg_ty)asdl_seq_GET(args->args, i-posonlyarg_count));
        }

        di = i - posonlyarg_count - arg_count + default_count;
        if (di >= 0) {
            APPEND_STR("=");
            APPEND_EXPR((expr_ty)asdl_seq_GET(args->defaults, di), PR_TEST);
        }
        if (posonlyarg_count && i + 1 == posonlyarg_count) {
            APPEND_STR(", /");
        }
    }

    /* vararg, or bare '*' if no varargs but keyword-only arguments present */
    if (args->vararg || asdl_seq_LEN(args->kwonlyargs)) {
        APPEND_STR_IF_NOT_FIRST(", ");
        APPEND_STR("*");
        if (args->vararg) {
            APPEND(arg, args->vararg);
        }
    }

    /* keyword-only arguments */
    arg_count = asdl_seq_LEN(args->kwonlyargs);
    default_count = asdl_seq_LEN(args->kw_defaults);
    for (i = 0; i < arg_count; i++) {
        APPEND_STR_IF_NOT_FIRST(", ");
        APPEND(arg, (arg_ty)asdl_seq_GET(args->kwonlyargs, i));

        di = i - arg_count + default_count;
        if (di >= 0) {
            expr_ty default_ = (expr_ty)asdl_seq_GET(args->kw_defaults, di);
            if (default_) {
                APPEND_STR("=");
                APPEND_EXPR(default_, PR_TEST);
            }
        }
    }

    /* **kwargs */
    if (args->kwarg) {
        APPEND_STR_IF_NOT_FIRST(", ");
        APPEND_STR("**");
        APPEND(arg, args->kwarg);
    }

    return 0;
}

static int
append_ast_lambda(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    APPEND_STR_IF(level > PR_TEST, "(");
    Py_ssize_t n_positional = (asdl_seq_LEN(e->v.Lambda.args->args) +
                               asdl_seq_LEN(e->v.Lambda.args->posonlyargs));
    APPEND_STR(n_positional ? "lambda " : "lambda");
    APPEND(args, e->v.Lambda.args);
    APPEND_STR(": ");
    APPEND_EXPR(e->v.Lambda.body, PR_TEST);
    APPEND_STR_IF(level > PR_TEST, ")");
    return 0;
}

static int
append_ast_ifexp(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    APPEND_STR_IF(level > PR_TEST, "(");
    APPEND_EXPR(e->v.IfExp.body, PR_TEST + 1);
    APPEND_STR(" if ");
    APPEND_EXPR(e->v.IfExp.test, PR_TEST + 1);
    APPEND_STR(" else ");
    APPEND_EXPR(e->v.IfExp.orelse, PR_TEST);
    APPEND_STR_IF(level > PR_TEST, ")");
    return 0;
}

static int
append_ast_dict(_PyUnicodeWriter *writer, expr_ty e)
{
    Py_ssize_t i, value_count;
    expr_ty key_node;

    APPEND_STR("{");
    value_count = asdl_seq_LEN(e->v.Dict.values);

    for (i = 0; i < value_count; i++) {
        APPEND_STR_IF(i > 0, ", ");
        key_node = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i);
        if (key_node != NULL) {
            APPEND_EXPR(key_node, PR_TEST);
            APPEND_STR(": ");
            APPEND_EXPR((expr_ty)asdl_seq_GET(e->v.Dict.values, i), PR_TEST);
        }
        else {
            APPEND_STR("**");
            APPEND_EXPR((expr_ty)asdl_seq_GET(e->v.Dict.values, i), PR_EXPR);
        }
    }

    APPEND_STR_FINISH("}");
}

static int
append_ast_set(_PyUnicodeWriter *writer, expr_ty e)
{
    Py_ssize_t i, elem_count;

    APPEND_STR("{");
    elem_count = asdl_seq_LEN(e->v.Set.elts);
    for (i = 0; i < elem_count; i++) {
        APPEND_STR_IF(i > 0, ", ");
        APPEND_EXPR((expr_ty)asdl_seq_GET(e->v.Set.elts, i), PR_TEST);
    }

    APPEND_STR_FINISH("}");
}

static int
append_ast_list(_PyUnicodeWriter *writer, expr_ty e)
{
    Py_ssize_t i, elem_count;

    APPEND_STR("[");
    elem_count = asdl_seq_LEN(e->v.List.elts);
    for (i = 0; i < elem_count; i++) {
        APPEND_STR_IF(i > 0, ", ");
        APPEND_EXPR((expr_ty)asdl_seq_GET(e->v.List.elts, i), PR_TEST);
    }

    APPEND_STR_FINISH("]");
}

static int
append_ast_tuple(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    Py_ssize_t i, elem_count;

    elem_count = asdl_seq_LEN(e->v.Tuple.elts);

    if (elem_count == 0) {
        APPEND_STR_FINISH("()");
    }

    APPEND_STR_IF(level > PR_TUPLE, "(");

    for (i = 0; i < elem_count; i++) {
        APPEND_STR_IF(i > 0, ", ");
        APPEND_EXPR((expr_ty)asdl_seq_GET(e->v.Tuple.elts, i), PR_TEST);
    }

    APPEND_STR_IF(elem_count == 1, ",");
    APPEND_STR_IF(level > PR_TUPLE, ")");
    return 0;
}

static int
append_ast_comprehension(_PyUnicodeWriter *writer, comprehension_ty gen)
{
    Py_ssize_t i, if_count;

    APPEND_STR(gen->is_async ? " async for " : " for ");
    APPEND_EXPR(gen->target, PR_TUPLE);
    APPEND_STR(" in ");
    APPEND_EXPR(gen->iter, PR_TEST + 1);

    if_count = asdl_seq_LEN(gen->ifs);
    for (i = 0; i < if_count; i++) {
        APPEND_STR(" if ");
        APPEND_EXPR((expr_ty)asdl_seq_GET(gen->ifs, i), PR_TEST + 1);
    }
    return 0;
}

static int
append_ast_comprehensions(_PyUnicodeWriter *writer, asdl_comprehension_seq *comprehensions)
{
    Py_ssize_t i, gen_count;
    gen_count = asdl_seq_LEN(comprehensions);

    for (i = 0; i < gen_count; i++) {
        APPEND(comprehension, (comprehension_ty)asdl_seq_GET(comprehensions, i));
    }

    return 0;
}

static int
append_ast_genexp(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_STR("(");
    APPEND_EXPR(e->v.GeneratorExp.elt, PR_TEST);
    APPEND(comprehensions, e->v.GeneratorExp.generators);
    APPEND_STR_FINISH(")");
}

static int
append_ast_listcomp(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_STR("[");
    APPEND_EXPR(e->v.ListComp.elt, PR_TEST);
    APPEND(comprehensions, e->v.ListComp.generators);
    APPEND_STR_FINISH("]");
}

static int
append_ast_setcomp(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_STR("{");
    APPEND_EXPR(e->v.SetComp.elt, PR_TEST);
    APPEND(comprehensions, e->v.SetComp.generators);
    APPEND_STR_FINISH("}");
}

static int
append_ast_dictcomp(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_STR("{");
    APPEND_EXPR(e->v.DictComp.key, PR_TEST);
    APPEND_STR(": ");
    APPEND_EXPR(e->v.DictComp.value, PR_TEST);
    APPEND(comprehensions, e->v.DictComp.generators);
    APPEND_STR_FINISH("}");
}

static int
append_ast_compare(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    const char *op;
    Py_ssize_t i, comparator_count;
    asdl_expr_seq *comparators;
    asdl_int_seq *ops;

    APPEND_STR_IF(level > PR_CMP, "(");

    comparators = e->v.Compare.comparators;
    ops = e->v.Compare.ops;
    comparator_count = asdl_seq_LEN(comparators);
    assert(comparator_count > 0);
    assert(comparator_count == asdl_seq_LEN(ops));

    APPEND_EXPR(e->v.Compare.left, PR_CMP + 1);

    for (i = 0; i < comparator_count; i++) {
        switch ((cmpop_ty)asdl_seq_GET(ops, i)) {
        case Eq:
            op = " == ";
            break;
        case NotEq:
            op = " != ";
            break;
        case Lt:
            op = " < ";
            break;
        case LtE:
            op = " <= ";
            break;
        case Gt:
            op = " > ";
            break;
        case GtE:
            op = " >= ";
            break;
        case Is:
            op = " is ";
            break;
        case IsNot:
            op = " is not ";
            break;
        case In:
            op = " in ";
            break;
        case NotIn:
            op = " not in ";
            break;
        default:
            PyErr_SetString(PyExc_SystemError,
                            "unexpected comparison kind");
            return -1;
        }

        APPEND_STR(op);
        APPEND_EXPR((expr_ty)asdl_seq_GET(comparators, i), PR_CMP + 1);
    }

    APPEND_STR_IF(level > PR_CMP, ")");
    return 0;
}

static int
append_ast_keyword(_PyUnicodeWriter *writer, keyword_ty kw)
{
    if (kw->arg == NULL) {
        APPEND_STR("**");
    }
    else {
        if (-1 == _PyUnicodeWriter_WriteStr(writer, kw->arg)) {
            return -1;
        }

        APPEND_STR("=");
    }

    APPEND_EXPR(kw->value, PR_TEST);
    return 0;
}

static int
append_ast_call(_PyUnicodeWriter *writer, expr_ty e)
{
    bool first;
    Py_ssize_t i, arg_count, kw_count;
    expr_ty expr;

    APPEND_EXPR(e->v.Call.func, PR_ATOM);

    arg_count = asdl_seq_LEN(e->v.Call.args);
    kw_count = asdl_seq_LEN(e->v.Call.keywords);
    if (arg_count == 1 && kw_count == 0) {
        expr = (expr_ty)asdl_seq_GET(e->v.Call.args, 0);
        if (expr->kind == GeneratorExp_kind) {
            /* Special case: a single generator expression. */
            return append_ast_genexp(writer, expr);
        }
    }

    APPEND_STR("(");

    first = true;
    for (i = 0; i < arg_count; i++) {
        APPEND_STR_IF_NOT_FIRST(", ");
        APPEND_EXPR((expr_ty)asdl_seq_GET(e->v.Call.args, i), PR_TEST);
    }

    for (i = 0; i < kw_count; i++) {
        APPEND_STR_IF_NOT_FIRST(", ");
        APPEND(keyword, (keyword_ty)asdl_seq_GET(e->v.Call.keywords, i));
    }

    APPEND_STR_FINISH(")");
}

static PyObject *
escape_braces(PyObject *orig)
{
    PyObject *temp;
    PyObject *result;
    temp = PyUnicode_Replace(orig, _str_open_br, _str_dbl_open_br, -1);
    if (!temp) {
        return NULL;
    }
    result = PyUnicode_Replace(temp, _str_close_br, _str_dbl_close_br, -1);
    Py_DECREF(temp);
    return result;
}

static int
append_fstring_unicode(_PyUnicodeWriter *writer, PyObject *unicode)
{
    PyObject *escaped;
    int result = -1;
    escaped = escape_braces(unicode);
    if (escaped) {
        result = _PyUnicodeWriter_WriteStr(writer, escaped);
        Py_DECREF(escaped);
    }
    return result;
}

static int
append_fstring_element(_PyUnicodeWriter *writer, expr_ty e, bool is_format_spec)
{
    switch (e->kind) {
    case Constant_kind:
        return append_fstring_unicode(writer, e->v.Constant.value);
    case JoinedStr_kind:
        return append_joinedstr(writer, e, is_format_spec);
    case FormattedValue_kind:
        return append_formattedvalue(writer, e);
    default:
        PyErr_SetString(PyExc_SystemError,
                        "unknown expression kind inside f-string");
        return -1;
    }
}

/* Build body separately to enable wrapping the entire stream of Strs,
   Constants and FormattedValues in one opening and one closing quote. */
static PyObject *
build_fstring_body(asdl_expr_seq *values, bool is_format_spec)
{
    Py_ssize_t i, value_count;
    _PyUnicodeWriter body_writer;
    _PyUnicodeWriter_Init(&body_writer);
    body_writer.min_length = 256;
    body_writer.overallocate = 1;

    value_count = asdl_seq_LEN(values);
    for (i = 0; i < value_count; ++i) {
        if (-1 == append_fstring_element(&body_writer,
                                         (expr_ty)asdl_seq_GET(values, i),
                                         is_format_spec
                                         )) {
            _PyUnicodeWriter_Dealloc(&body_writer);
            return NULL;
        }
    }

    return _PyUnicodeWriter_Finish(&body_writer);
}

static int
append_joinedstr(_PyUnicodeWriter *writer, expr_ty e, bool is_format_spec)
{
    int result = -1;
    PyObject *body = build_fstring_body(e->v.JoinedStr.values, is_format_spec);
    if (!body) {
        return -1;
    }

    if (!is_format_spec) {
        if (-1 != append_charp(writer, "f") &&
            -1 != append_repr(writer, body))
        {
            result = 0;
        }
    }
    else {
        result = _PyUnicodeWriter_WriteStr(writer, body);
    }
    Py_DECREF(body);
    return result;
}

static int
append_formattedvalue(_PyUnicodeWriter *writer, expr_ty e)
{
    const char *conversion;
    const char *outer_brace = "{";
    /* Grammar allows PR_TUPLE, but use >PR_TEST for adding parenthesis
       around a lambda with ':' */
    PyObject *temp_fv_str = expr_as_unicode(e->v.FormattedValue.value, PR_TEST + 1);
    if (!temp_fv_str) {
        return -1;
    }
    if (PyUnicode_Find(temp_fv_str, _str_open_br, 0, 1, 1) == 0) {
        /* Expression starts with a brace, split it with a space from the outer
           one. */
        outer_brace = "{ ";
    }
    if (-1 == append_charp(writer, outer_brace)) {
        Py_DECREF(temp_fv_str);
        return -1;
    }
    if (-1 == _PyUnicodeWriter_WriteStr(writer, temp_fv_str)) {
        Py_DECREF(temp_fv_str);
        return -1;
    }
    Py_DECREF(temp_fv_str);

    if (e->v.FormattedValue.conversion > 0) {
        switch (e->v.FormattedValue.conversion) {
        case 'a':
            conversion = "!a";
            break;
        case 'r':
            conversion = "!r";
            break;
        case 's':
            conversion = "!s";
            break;
        default:
            PyErr_SetString(PyExc_SystemError,
                            "unknown f-value conversion kind");
            return -1;
        }
        APPEND_STR(conversion);
    }
    if (e->v.FormattedValue.format_spec) {
        if (-1 == _PyUnicodeWriter_WriteASCIIString(writer, ":", 1) ||
            -1 == append_fstring_element(writer,
                                         e->v.FormattedValue.format_spec,
                                         true
                                        ))
        {
            return -1;
        }
    }

    APPEND_STR_FINISH("}");
}

static int
append_ast_constant(_PyUnicodeWriter *writer, PyObject *constant)
{
    if (PyTuple_CheckExact(constant)) {
        Py_ssize_t i, elem_count;

        elem_count = PyTuple_GET_SIZE(constant);
        APPEND_STR("(");
        for (i = 0; i < elem_count; i++) {
            APPEND_STR_IF(i > 0, ", ");
            if (append_ast_constant(writer, PyTuple_GET_ITEM(constant, i)) < 0) {
                return -1;
            }
        }

        APPEND_STR_IF(elem_count == 1, ",");
        APPEND_STR(")");
        return 0;
    }
    return append_repr(writer, constant);
}

static int
append_ast_attribute(_PyUnicodeWriter *writer, expr_ty e)
{
    const char *period;
    expr_ty v = e->v.Attribute.value;
    APPEND_EXPR(v, PR_ATOM);

    /* Special case: integers require a space for attribute access to be
       unambiguous. */
    if (v->kind == Constant_kind && PyLong_CheckExact(v->v.Constant.value)) {
        period = " .";
    }
    else {
        period = ".";
    }
    APPEND_STR(period);

    return _PyUnicodeWriter_WriteStr(writer, e->v.Attribute.attr);
}

static int
append_ast_slice(_PyUnicodeWriter *writer, expr_ty e)
{
    if (e->v.Slice.lower) {
        APPEND_EXPR(e->v.Slice.lower, PR_TEST);
    }

    APPEND_STR(":");

    if (e->v.Slice.upper) {
        APPEND_EXPR(e->v.Slice.upper, PR_TEST);
    }

    if (e->v.Slice.step) {
        APPEND_STR(":");
        APPEND_EXPR(e->v.Slice.step, PR_TEST);
    }
    return 0;
}

static int
append_ast_subscript(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_EXPR(e->v.Subscript.value, PR_ATOM);
    int level = PR_TUPLE;
    expr_ty slice = e->v.Subscript.slice;
    if (slice->kind == Tuple_kind) {
        for (Py_ssize_t i = 0; i < asdl_seq_LEN(slice->v.Tuple.elts); i++) {
            expr_ty element = asdl_seq_GET(slice->v.Tuple.elts, i);
            if (element->kind == Starred_kind) {
                ++level;
                break;
            }
        }
    }
    APPEND_STR("[");
    APPEND_EXPR(e->v.Subscript.slice, level);
    APPEND_STR_FINISH("]");
}

static int
append_ast_starred(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_STR("*");
    APPEND_EXPR(e->v.Starred.value, PR_EXPR);
    return 0;
}

static int
append_ast_yield(_PyUnicodeWriter *writer, expr_ty e)
{
    if (!e->v.Yield.value) {
        APPEND_STR_FINISH("(yield)");
    }

    APPEND_STR("(yield ");
    APPEND_EXPR(e->v.Yield.value, PR_TEST);
    APPEND_STR_FINISH(")");
}

static int
append_ast_yield_from(_PyUnicodeWriter *writer, expr_ty e)
{
    APPEND_STR("(yield from ");
    APPEND_EXPR(e->v.YieldFrom.value, PR_TEST);
    APPEND_STR_FINISH(")");
}

static int
append_ast_await(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    APPEND_STR_IF(level > PR_AWAIT, "(");
    APPEND_STR("await ");
    APPEND_EXPR(e->v.Await.value, PR_ATOM);
    APPEND_STR_IF(level > PR_AWAIT, ")");
    return 0;
}

static int
append_named_expr(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    APPEND_STR_IF(level > PR_TUPLE, "(");
    APPEND_EXPR(e->v.NamedExpr.target, PR_ATOM);
    APPEND_STR(" := ");
    APPEND_EXPR(e->v.NamedExpr.value, PR_ATOM);
    APPEND_STR_IF(level > PR_TUPLE, ")");
    return 0;
}

static int
append_ast_expr(_PyUnicodeWriter *writer, expr_ty e, int level)
{
    switch (e->kind) {
    case BoolOp_kind:
        return append_ast_boolop(writer, e, level);
    case BinOp_kind:
        return append_ast_binop(writer, e, level);
    case UnaryOp_kind:
        return append_ast_unaryop(writer, e, level);
    case Lambda_kind:
        return append_ast_lambda(writer, e, level);
    case IfExp_kind:
        return append_ast_ifexp(writer, e, level);
    case Dict_kind:
        return append_ast_dict(writer, e);
    case Set_kind:
        return append_ast_set(writer, e);
    case GeneratorExp_kind:
        return append_ast_genexp(writer, e);
    case ListComp_kind:
        return append_ast_listcomp(writer, e);
    case SetComp_kind:
        return append_ast_setcomp(writer, e);
    case DictComp_kind:
        return append_ast_dictcomp(writer, e);
    case Yield_kind:
        return append_ast_yield(writer, e);
    case YieldFrom_kind:
        return append_ast_yield_from(writer, e);
    case Await_kind:
        return append_ast_await(writer, e, level);
    case Compare_kind:
        return append_ast_compare(writer, e, level);
    case Call_kind:
        return append_ast_call(writer, e);
    case Constant_kind:
        if (e->v.Constant.value == Py_Ellipsis) {
            APPEND_STR_FINISH("...");
        }
        if (e->v.Constant.kind != NULL
            && -1 == _PyUnicodeWriter_WriteStr(writer, e->v.Constant.kind)) {
            return -1;
        }
        return append_ast_constant(writer, e->v.Constant.value);
    case JoinedStr_kind:
        return append_joinedstr(writer, e, false);
    case FormattedValue_kind:
        return append_formattedvalue(writer, e);
    /* The following exprs can be assignment targets. */
    case Attribute_kind:
        return append_ast_attribute(writer, e);
    case Subscript_kind:
        return append_ast_subscript(writer, e);
    case Starred_kind:
        return append_ast_starred(writer, e);
    case Slice_kind:
        return append_ast_slice(writer, e);
    case Name_kind:
        return _PyUnicodeWriter_WriteStr(writer, e->v.Name.id);
    case List_kind:
        return append_ast_list(writer, e);
    case Tuple_kind:
        return append_ast_tuple(writer, e, level);
    case NamedExpr_kind:
        return append_named_expr(writer, e, level);
    // No default so compiler emits a warning for unhandled cases
    }
    PyErr_SetString(PyExc_SystemError,
                    "unknown expression kind");
    return -1;
}

static int
maybe_init_static_strings(void)
{
    if (!_str_open_br &&
        !(_str_open_br = PyUnicode_InternFromString("{"))) {
        return -1;
    }
    if (!_str_dbl_open_br &&
        !(_str_dbl_open_br = PyUnicode_InternFromString("{{"))) {
        return -1;
    }
    if (!_str_close_br &&
        !(_str_close_br = PyUnicode_InternFromString("}"))) {
        return -1;
    }
    if (!_str_dbl_close_br &&
        !(_str_dbl_close_br = PyUnicode_InternFromString("}}"))) {
        return -1;
    }
    if (!_str_inf &&
        !(_str_inf = PyUnicode_FromString("inf"))) {
        return -1;
    }
    if (!_str_replace_inf &&
        !(_str_replace_inf = PyUnicode_FromFormat("1e%d", 1 + DBL_MAX_10_EXP))) {
        return -1;
    }
    return 0;
}

static PyObject *
expr_as_unicode(expr_ty e, int level)
{
    _PyUnicodeWriter writer;
    _PyUnicodeWriter_Init(&writer);
    writer.min_length = 256;
    writer.overallocate = 1;
    if (-1 == maybe_init_static_strings() ||
        -1 == append_ast_expr(&writer, e, level))
    {
        _PyUnicodeWriter_Dealloc(&writer);
        return NULL;
    }
    return _PyUnicodeWriter_Finish(&writer);
}

PyObject *
_PyAST_ExprAsUnicode(expr_ty e)
{
    return expr_as_unicode(e, PR_TEST);
}
#n4118'>4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
/*
 * This file compiles an abstract syntax tree (AST) into Python bytecode.
 *
 * The primary entry point is PyAST_Compile(), which returns a
 * PyCodeObject.  The compiler makes several passes to build the code
 * object:
 *   1. Checks for future statements.  See future.c
 *   2. Builds a symbol table.  See symtable.c.
 *   3. Generate code for basic blocks.  See compiler_mod() in this file.
 *   4. Assemble the basic blocks into final code.  See assemble() in
 *      this file.
 *   5. Optimize the byte code (peephole optimizations).  See peephole.c
 *
 * Note that compiler_mod() suggests module, but the module ast type
 * (mod_ty) has cases for expressions and interactive statements.
 *
 * CAUTION: The VISIT_* macros abort the current function when they
 * encounter a problem. So don't invoke them when there is memory
 * which needs to be released. Code blocks are OK, as the compiler
 * structure takes care of releasing those.  Use the arena to manage
 * objects.
 */

#include "Python.h"

#include "Python-ast.h"
#include "node.h"
#include "ast.h"
#include "code.h"
#include "symtable.h"
#include "opcode.h"

#define DEFAULT_BLOCK_SIZE 16
#define DEFAULT_BLOCKS 8
#define DEFAULT_CODE_SIZE 128
#define DEFAULT_LNOTAB_SIZE 16

#define COMP_GENEXP   0
#define COMP_LISTCOMP 1
#define COMP_SETCOMP  2
#define COMP_DICTCOMP 3

struct instr {
    unsigned i_jabs : 1;
    unsigned i_jrel : 1;
    unsigned i_hasarg : 1;
    unsigned char i_opcode;
    int i_oparg;
    struct basicblock_ *i_target; /* target block (if jump instruction) */
    int i_lineno;
};

typedef struct basicblock_ {
    /* Each basicblock in a compilation unit is linked via b_list in the
       reverse order that the block are allocated.  b_list points to the next
       block, not to be confused with b_next, which is next by control flow. */
    struct basicblock_ *b_list;
    /* number of instructions used */
    int b_iused;
    /* length of instruction array (b_instr) */
    int b_ialloc;
    /* pointer to an array of instructions, initially NULL */
    struct instr *b_instr;
    /* If b_next is non-NULL, it is a pointer to the next
       block reached by normal control flow. */
    struct basicblock_ *b_next;
    /* b_seen is used to perform a DFS of basicblocks. */
    unsigned b_seen : 1;
    /* b_return is true if a RETURN_VALUE opcode is inserted. */
    unsigned b_return : 1;
    /* depth of stack upon entry of block, computed by stackdepth() */
    int b_startdepth;
    /* instruction offset for block, computed by assemble_jump_offsets() */
    int b_offset;
} basicblock;

/* fblockinfo tracks the current frame block.

A frame block is used to handle loops, try/except, and try/finally.
It's called a frame block to distinguish it from a basic block in the
compiler IR.
*/

enum fblocktype { LOOP, EXCEPT, FINALLY_TRY, FINALLY_END };

struct fblockinfo {
    enum fblocktype fb_type;
    basicblock *fb_block;
};

enum {
    COMPILER_SCOPE_MODULE,
    COMPILER_SCOPE_CLASS,
    COMPILER_SCOPE_FUNCTION,
    COMPILER_SCOPE_ASYNC_FUNCTION,
    COMPILER_SCOPE_LAMBDA,
    COMPILER_SCOPE_COMPREHENSION,
};

/* The following items change on entry and exit of code blocks.
   They must be saved and restored when returning to a block.
*/
struct compiler_unit {
    PySTEntryObject *u_ste;

    PyObject *u_name;
    PyObject *u_qualname;  /* dot-separated qualified name (lazy) */
    int u_scope_type;

    /* The following fields are dicts that map objects to
       the index of them in co_XXX.      The index is used as
       the argument for opcodes that refer to those collections.
    */
    PyObject *u_consts;    /* all constants */
    PyObject *u_names;     /* all names */
    PyObject *u_varnames;  /* local variables */
    PyObject *u_cellvars;  /* cell variables */
    PyObject *u_freevars;  /* free variables */

    PyObject *u_private;        /* for private name mangling */

    Py_ssize_t u_argcount;        /* number of arguments for block */
    Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
    /* Pointer to the most recently allocated block.  By following b_list
       members, you can reach all early allocated blocks. */
    basicblock *u_blocks;
    basicblock *u_curblock; /* pointer to current block */

    int u_nfblocks;
    struct fblockinfo u_fblock[CO_MAXBLOCKS];

    int u_firstlineno; /* the first lineno of the block */
    int u_lineno;          /* the lineno for the current stmt */
    int u_col_offset;      /* the offset of the current stmt */
    int u_lineno_set;  /* boolean to indicate whether instr
                          has been generated with current lineno */
};

/* This struct captures the global state of a compilation.

The u pointer points to the current compilation unit, while units
for enclosing blocks are stored in c_stack.     The u and c_stack are
managed by compiler_enter_scope() and compiler_exit_scope().

Note that we don't track recursion levels during compilation - the
task of detecting and rejecting excessive levels of nesting is
handled by the symbol analysis pass.

*/

struct compiler {
    PyObject *c_filename;
    struct symtable *c_st;
    PyFutureFeatures *c_future; /* pointer to module's __future__ */
    PyCompilerFlags *c_flags;

    int c_optimize;              /* optimization level */
    int c_interactive;           /* true if in interactive mode */
    int c_nestlevel;

    struct compiler_unit *u; /* compiler state for current block */
    PyObject *c_stack;           /* Python list holding compiler_unit ptrs */
    PyArena *c_arena;            /* pointer to memory allocation arena */
};

static int compiler_enter_scope(struct compiler *, identifier, int, void *, int);
static void compiler_free(struct compiler *);
static basicblock *compiler_new_block(struct compiler *);
static int compiler_next_instr(struct compiler *, basicblock *);
static int compiler_addop(struct compiler *, int);
static int compiler_addop_o(struct compiler *, int, PyObject *, PyObject *);
static int compiler_addop_i(struct compiler *, int, Py_ssize_t);
static int compiler_addop_j(struct compiler *, int, basicblock *, int);
static basicblock *compiler_use_new_block(struct compiler *);
static int compiler_error(struct compiler *, const char *);
static int compiler_nameop(struct compiler *, identifier, expr_context_ty);

static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
static int compiler_visit_stmt(struct compiler *, stmt_ty);
static int compiler_visit_keyword(struct compiler *, keyword_ty);
static int compiler_visit_expr(struct compiler *, expr_ty);
static int compiler_augassign(struct compiler *, stmt_ty);
static int compiler_visit_slice(struct compiler *, slice_ty,
                                expr_context_ty);

static int compiler_push_fblock(struct compiler *, enum fblocktype,
                                basicblock *);
static void compiler_pop_fblock(struct compiler *, enum fblocktype,
                                basicblock *);
/* Returns true if there is a loop on the fblock stack. */
static int compiler_in_loop(struct compiler *);

static int inplace_binop(struct compiler *, operator_ty);
static int expr_constant(struct compiler *, expr_ty);

static int compiler_with(struct compiler *, stmt_ty, int);
static int compiler_async_with(struct compiler *, stmt_ty, int);
static int compiler_async_for(struct compiler *, stmt_ty);
static int compiler_call_helper(struct compiler *c, Py_ssize_t n,
                                asdl_seq *args,
                                asdl_seq *keywords);
static int compiler_try_except(struct compiler *, stmt_ty);
static int compiler_set_qualname(struct compiler *);

static PyCodeObject *assemble(struct compiler *, int addNone);
static PyObject *__doc__;

#define CAPSULE_NAME "compile.c compiler unit"

PyObject *
_Py_Mangle(PyObject *privateobj, PyObject *ident)
{
    /* Name mangling: __private becomes _classname__private.
       This is independent from how the name is used. */
    PyObject *result;
    size_t nlen, plen, ipriv;
    Py_UCS4 maxchar;
    if (privateobj == NULL || !PyUnicode_Check(privateobj) ||
        PyUnicode_READ_CHAR(ident, 0) != '_' ||
        PyUnicode_READ_CHAR(ident, 1) != '_') {
        Py_INCREF(ident);
        return ident;
    }
    nlen = PyUnicode_GET_LENGTH(ident);
    plen = PyUnicode_GET_LENGTH(privateobj);
    /* Don't mangle __id__ or names with dots.

       The only time a name with a dot can occur is when
       we are compiling an import statement that has a
       package name.

       TODO(jhylton): Decide whether we want to support
       mangling of the module name, e.g. __M.X.
    */
    if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' &&
         PyUnicode_READ_CHAR(ident, nlen-2) == '_') ||
        PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) {
        Py_INCREF(ident);
        return ident; /* Don't mangle __whatever__ */
    }
    /* Strip leading underscores from class name */
    ipriv = 0;
    while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_')
        ipriv++;
    if (ipriv == plen) {
        Py_INCREF(ident);
        return ident; /* Don't mangle if class is just underscores */
    }
    plen -= ipriv;

    if (plen + nlen >= PY_SSIZE_T_MAX - 1) {
        PyErr_SetString(PyExc_OverflowError,
                        "private identifier too large to be mangled");
        return NULL;
    }

    maxchar = PyUnicode_MAX_CHAR_VALUE(ident);
    if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar)
        maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj);

    result = PyUnicode_New(1 + nlen + plen, maxchar);
    if (!result)
        return 0;
    /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */
    PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_');
    if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) {
        Py_DECREF(result);
        return NULL;
    }
    if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) {
        Py_DECREF(result);
        return NULL;
    }
    assert(_PyUnicode_CheckConsistency(result, 1));
    return result;
}

static int
compiler_init(struct compiler *c)
{
    memset(c, 0, sizeof(struct compiler));

    c->c_stack = PyList_New(0);
    if (!c->c_stack)
        return 0;

    return 1;
}

PyCodeObject *
PyAST_CompileObject(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
                   int optimize, PyArena *arena)
{
    struct compiler c;
    PyCodeObject *co = NULL;
    PyCompilerFlags local_flags;
    int merged;

    if (!__doc__) {
        __doc__ = PyUnicode_InternFromString("__doc__");
        if (!__doc__)
            return NULL;
    }

    if (!compiler_init(&c))
        return NULL;
    Py_INCREF(filename);
    c.c_filename = filename;
    c.c_arena = arena;
    c.c_future = PyFuture_FromASTObject(mod, filename);
    if (c.c_future == NULL)
        goto finally;
    if (!flags) {
        local_flags.cf_flags = 0;
        flags = &local_flags;
    }
    merged = c.c_future->ff_features | flags->cf_flags;
    c.c_future->ff_features = merged;
    flags->cf_flags = merged;
    c.c_flags = flags;
    c.c_optimize = (optimize == -1) ? Py_OptimizeFlag : optimize;
    c.c_nestlevel = 0;

    c.c_st = PySymtable_BuildObject(mod, filename, c.c_future);
    if (c.c_st == NULL) {
        if (!PyErr_Occurred())
            PyErr_SetString(PyExc_SystemError, "no symtable");
        goto finally;
    }

    co = compiler_mod(&c, mod);

 finally:
    compiler_free(&c);
    assert(co || PyErr_Occurred());
    return co;
}

PyCodeObject *
PyAST_CompileEx(mod_ty mod, const char *filename_str, PyCompilerFlags *flags,
                int optimize, PyArena *arena)
{
    PyObject *filename;
    PyCodeObject *co;
    filename = PyUnicode_DecodeFSDefault(filename_str);
    if (filename == NULL)
        return NULL;
    co = PyAST_CompileObject(mod, filename, flags, optimize, arena);
    Py_DECREF(filename);
    return co;

}

PyCodeObject *
PyNode_Compile(struct _node *n, const char *filename)
{
    PyCodeObject *co = NULL;
    mod_ty mod;
    PyArena *arena = PyArena_New();
    if (!arena)
        return NULL;
    mod = PyAST_FromNode(n, NULL, filename, arena);
    if (mod)
        co = PyAST_Compile(mod, filename, NULL, arena);
    PyArena_Free(arena);
    return co;
}

static void
compiler_free(struct compiler *c)
{
    if (c->c_st)
        PySymtable_Free(c->c_st);
    if (c->c_future)
        PyObject_Free(c->c_future);
    Py_XDECREF(c->c_filename);
    Py_DECREF(c->c_stack);
}

static PyObject *
list2dict(PyObject *list)
{
    Py_ssize_t i, n;
    PyObject *v, *k;
    PyObject *dict = PyDict_New();
    if (!dict) return NULL;

    n = PyList_Size(list);
    for (i = 0; i < n; i++) {
        v = PyLong_FromSsize_t(i);
        if (!v) {
            Py_DECREF(dict);
            return NULL;
        }
        k = PyList_GET_ITEM(list, i);
        k = PyTuple_Pack(2, k, k->ob_type);
        if (k == NULL || PyDict_SetItem(dict, k, v) < 0) {
            Py_XDECREF(k);
            Py_DECREF(v);
            Py_DECREF(dict);
            return NULL;
        }
        Py_DECREF(k);
        Py_DECREF(v);
    }
    return dict;
}

/* Return new dict containing names from src that match scope(s).

src is a symbol table dictionary.  If the scope of a name matches
either scope_type or flag is set, insert it into the new dict.  The
values are integers, starting at offset and increasing by one for
each key.
*/

static PyObject *
dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
{
    Py_ssize_t i = offset, scope, num_keys, key_i;
    PyObject *k, *v, *dest = PyDict_New();
    PyObject *sorted_keys;

    assert(offset >= 0);
    if (dest == NULL)
        return NULL;

    /* Sort the keys so that we have a deterministic order on the indexes
       saved in the returned dictionary.  These indexes are used as indexes
       into the free and cell var storage.  Therefore if they aren't
       deterministic, then the generated bytecode is not deterministic.
    */
    sorted_keys = PyDict_Keys(src);
    if (sorted_keys == NULL)
        return NULL;
    if (PyList_Sort(sorted_keys) != 0) {
        Py_DECREF(sorted_keys);
        return NULL;
    }
    num_keys = PyList_GET_SIZE(sorted_keys);

    for (key_i = 0; key_i < num_keys; key_i++) {
        /* XXX this should probably be a macro in symtable.h */
        long vi;
        k = PyList_GET_ITEM(sorted_keys, key_i);
        v = PyDict_GetItem(src, k);
        assert(PyLong_Check(v));
        vi = PyLong_AS_LONG(v);
        scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;

        if (scope == scope_type || vi & flag) {
            PyObject *tuple, *item = PyLong_FromSsize_t(i);
            if (item == NULL) {
                Py_DECREF(sorted_keys);
                Py_DECREF(dest);
                return NULL;
            }
            i++;
            tuple = PyTuple_Pack(2, k, k->ob_type);
            if (!tuple || PyDict_SetItem(dest, tuple, item) < 0) {
                Py_DECREF(sorted_keys);
                Py_DECREF(item);
                Py_DECREF(dest);
                Py_XDECREF(tuple);
                return NULL;
            }
            Py_DECREF(item);
            Py_DECREF(tuple);
        }
    }
    Py_DECREF(sorted_keys);
    return dest;
}

static void
compiler_unit_check(struct compiler_unit *u)
{
    basicblock *block;
    for (block = u->u_blocks; block != NULL; block = block->b_list) {
        assert((void *)block != (void *)0xcbcbcbcb);
        assert((void *)block != (void *)0xfbfbfbfb);
        assert((void *)block != (void *)0xdbdbdbdb);
        if (block->b_instr != NULL) {
            assert(block->b_ialloc > 0);
            assert(block->b_iused > 0);
            assert(block->b_ialloc >= block->b_iused);
        }
        else {
            assert (block->b_iused == 0);
            assert (block->b_ialloc == 0);
        }
    }
}

static void
compiler_unit_free(struct compiler_unit *u)
{
    basicblock *b, *next;

    compiler_unit_check(u);
    b = u->u_blocks;
    while (b != NULL) {
        if (b->b_instr)
            PyObject_Free((void *)b->b_instr);
        next = b->b_list;
        PyObject_Free((void *)b);
        b = next;
    }
    Py_CLEAR(u->u_ste);
    Py_CLEAR(u->u_name);
    Py_CLEAR(u->u_qualname);
    Py_CLEAR(u->u_consts);
    Py_CLEAR(u->u_names);
    Py_CLEAR(u->u_varnames);
    Py_CLEAR(u->u_freevars);
    Py_CLEAR(u->u_cellvars);
    Py_CLEAR(u->u_private);
    PyObject_Free(u);
}

static int
compiler_enter_scope(struct compiler *c, identifier name,
                     int scope_type, void *key, int lineno)
{
    struct compiler_unit *u;

    u = (struct compiler_unit *)PyObject_Malloc(sizeof(
                                            struct compiler_unit));
    if (!u) {
        PyErr_NoMemory();
        return 0;
    }
    memset(u, 0, sizeof(struct compiler_unit));
    u->u_scope_type = scope_type;
    u->u_argcount = 0;
    u->u_kwonlyargcount = 0;
    u->u_ste = PySymtable_Lookup(c->c_st, key);
    if (!u->u_ste) {
        compiler_unit_free(u);
        return 0;
    }
    Py_INCREF(name);
    u->u_name = name;
    u->u_varnames = list2dict(u->u_ste->ste_varnames);
    u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
    if (!u->u_varnames || !u->u_cellvars) {
        compiler_unit_free(u);
        return 0;
    }
    if (u->u_ste->ste_needs_class_closure) {
        /* Cook up a implicit __class__ cell. */
        _Py_IDENTIFIER(__class__);
        PyObject *tuple, *name, *zero;
        int res;
        assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
        assert(PyDict_Size(u->u_cellvars) == 0);
        name = _PyUnicode_FromId(&PyId___class__);
        if (!name) {
            compiler_unit_free(u);
            return 0;
        }
        tuple = PyTuple_Pack(2, name, Py_TYPE(name));
        if (!tuple) {
            compiler_unit_free(u);
            return 0;
        }
        zero = PyLong_FromLong(0);
        if (!zero) {
            Py_DECREF(tuple);
            compiler_unit_free(u);
            return 0;
        }
        res = PyDict_SetItem(u->u_cellvars, tuple, zero);
        Py_DECREF(tuple);
        Py_DECREF(zero);
        if (res < 0) {
            compiler_unit_free(u);
            return 0;
        }
    }

    u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
                               PyDict_Size(u->u_cellvars));
    if (!u->u_freevars) {
        compiler_unit_free(u);
        return 0;
    }

    u->u_blocks = NULL;
    u->u_nfblocks = 0;
    u->u_firstlineno = lineno;
    u->u_lineno = 0;
    u->u_col_offset = 0;
    u->u_lineno_set = 0;
    u->u_consts = PyDict_New();
    if (!u->u_consts) {
        compiler_unit_free(u);
        return 0;
    }
    u->u_names = PyDict_New();
    if (!u->u_names) {
        compiler_unit_free(u);
        return 0;
    }

    u->u_private = NULL;

    /* Push the old compiler_unit on the stack. */
    if (c->u) {
        PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
        if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
            Py_XDECREF(capsule);
            compiler_unit_free(u);
            return 0;
        }
        Py_DECREF(capsule);
        u->u_private = c->u->u_private;
        Py_XINCREF(u->u_private);
    }
    c->u = u;

    c->c_nestlevel++;
    if (compiler_use_new_block(c) == NULL)
        return 0;

    if (u->u_scope_type != COMPILER_SCOPE_MODULE) {
        if (!compiler_set_qualname(c))
            return 0;
    }

    return 1;
}

static void
compiler_exit_scope(struct compiler *c)
{
    Py_ssize_t n;
    PyObject *capsule;

    c->c_nestlevel--;
    compiler_unit_free(c->u);
    /* Restore c->u to the parent unit. */
    n = PyList_GET_SIZE(c->c_stack) - 1;
    if (n >= 0) {
        capsule = PyList_GET_ITEM(c->c_stack, n);
        c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(c->u);
        /* we are deleting from a list so this really shouldn't fail */
        if (PySequence_DelItem(c->c_stack, n) < 0)
            Py_FatalError("compiler_exit_scope()");
        compiler_unit_check(c->u);
    }
    else
        c->u = NULL;

}

static int
compiler_set_qualname(struct compiler *c)
{
    _Py_static_string(dot, ".");
    _Py_static_string(dot_locals, ".<locals>");
    Py_ssize_t stack_size;
    struct compiler_unit *u = c->u;
    PyObject *name, *base, *dot_str, *dot_locals_str;

    base = NULL;
    stack_size = PyList_GET_SIZE(c->c_stack);
    assert(stack_size >= 1);
    if (stack_size > 1) {
        int scope, force_global = 0;
        struct compiler_unit *parent;
        PyObject *mangled, *capsule;

        capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
        parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(parent);

        if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_CLASS) {
            assert(u->u_name);
            mangled = _Py_Mangle(parent->u_private, u->u_name);
            if (!mangled)
                return 0;
            scope = PyST_GetScope(parent->u_ste, mangled);
            Py_DECREF(mangled);
            assert(scope != GLOBAL_IMPLICIT);
            if (scope == GLOBAL_EXPLICIT)
                force_global = 1;
        }

        if (!force_global) {
            if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) {
                dot_locals_str = _PyUnicode_FromId(&dot_locals);
                if (dot_locals_str == NULL)
                    return 0;
                base = PyUnicode_Concat(parent->u_qualname, dot_locals_str);
                if (base == NULL)
                    return 0;
            }
            else {
                Py_INCREF(parent->u_qualname);
                base = parent->u_qualname;
            }
        }
    }

    if (base != NULL) {
        dot_str = _PyUnicode_FromId(&dot);
        if (dot_str == NULL) {
            Py_DECREF(base);
            return 0;
        }
        name = PyUnicode_Concat(base, dot_str);
        Py_DECREF(base);
        if (name == NULL)
            return 0;
        PyUnicode_Append(&name, u->u_name);
        if (name == NULL)
            return 0;
    }
    else {
        Py_INCREF(u->u_name);
        name = u->u_name;
    }
    u->u_qualname = name;

    return 1;
}


/* Allocate a new block and return a pointer to it.
   Returns NULL on error.
*/

static basicblock *
compiler_new_block(struct compiler *c)
{
    basicblock *b;
    struct compiler_unit *u;

    u = c->u;
    b = (basicblock *)PyObject_Malloc(sizeof(basicblock));
    if (b == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    memset((void *)b, 0, sizeof(basicblock));
    /* Extend the singly linked list of blocks with new block. */
    b->b_list = u->u_blocks;
    u->u_blocks = b;
    return b;
}

static basicblock *
compiler_use_new_block(struct compiler *c)
{
    basicblock *block = compiler_new_block(c);
    if (block == NULL)
        return NULL;
    c->u->u_curblock = block;
    return block;
}

static basicblock *
compiler_next_block(struct compiler *c)
{
    basicblock *block = compiler_new_block(c);
    if (block == NULL)
        return NULL;
    c->u->u_curblock->b_next = block;
    c->u->u_curblock = block;
    return block;
}

static basicblock *
compiler_use_next_block(struct compiler *c, basicblock *block)
{
    assert(block != NULL);
    c->u->u_curblock->b_next = block;
    c->u->u_curblock = block;
    return block;
}

/* Returns the offset of the next instruction in the current block's
   b_instr array.  Resizes the b_instr as necessary.
   Returns -1 on failure.
*/

static int
compiler_next_instr(struct compiler *c, basicblock *b)
{
    assert(b != NULL);
    if (b->b_instr == NULL) {
        b->b_instr = (struct instr *)PyObject_Malloc(
                         sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
        if (b->b_instr == NULL) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_ialloc = DEFAULT_BLOCK_SIZE;
        memset((char *)b->b_instr, 0,
               sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
    }
    else if (b->b_iused == b->b_ialloc) {
        struct instr *tmp;
        size_t oldsize, newsize;
        oldsize = b->b_ialloc * sizeof(struct instr);
        newsize = oldsize << 1;

        if (oldsize > (PY_SIZE_MAX >> 1)) {
            PyErr_NoMemory();
            return -1;
        }

        if (newsize == 0) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_ialloc <<= 1;
        tmp = (struct instr *)PyObject_Realloc(
                                        (void *)b->b_instr, newsize);
        if (tmp == NULL) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_instr = tmp;
        memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
    }
    return b->b_iused++;
}

/* Set the i_lineno member of the instruction at offset off if the
   line number for the current expression/statement has not
   already been set.  If it has been set, the call has no effect.

   The line number is reset in the following cases:
   - when entering a new scope
   - on each statement
   - on each expression that start a new line
   - before the "except" clause
   - before the "for" and "while" expressions
*/

static void
compiler_set_lineno(struct compiler *c, int off)
{
    basicblock *b;
    if (c->u->u_lineno_set)
        return;
    c->u->u_lineno_set = 1;
    b = c->u->u_curblock;
    b->b_instr[off].i_lineno = c->u->u_lineno;
}

int
PyCompile_OpcodeStackEffect(int opcode, int oparg)
{
    switch (opcode) {
        case POP_TOP:
            return -1;
        case ROT_TWO:
        case ROT_THREE:
            return 0;
        case DUP_TOP:
            return 1;
        case DUP_TOP_TWO:
            return 2;

        case UNARY_POSITIVE:
        case UNARY_NEGATIVE:
        case UNARY_NOT:
        case UNARY_INVERT:
            return 0;

        case SET_ADD:
        case LIST_APPEND:
            return -1;
        case MAP_ADD:
            return -2;

        case BINARY_POWER:
        case BINARY_MULTIPLY:
        case BINARY_MATRIX_MULTIPLY:
        case BINARY_MODULO:
        case BINARY_ADD:
        case BINARY_SUBTRACT:
        case BINARY_SUBSCR:
        case BINARY_FLOOR_DIVIDE:
        case BINARY_TRUE_DIVIDE:
            return -1;
        case INPLACE_FLOOR_DIVIDE:
        case INPLACE_TRUE_DIVIDE:
            return -1;

        case INPLACE_ADD:
        case INPLACE_SUBTRACT:
        case INPLACE_MULTIPLY:
        case INPLACE_MATRIX_MULTIPLY:
        case INPLACE_MODULO:
            return -1;
        case STORE_SUBSCR:
            return -3;
        case DELETE_SUBSCR:
            return -2;

        case BINARY_LSHIFT:
        case BINARY_RSHIFT:
        case BINARY_AND:
        case BINARY_XOR:
        case BINARY_OR:
            return -1;
        case INPLACE_POWER:
            return -1;
        case GET_ITER:
            return 0;

        case PRINT_EXPR:
            return -1;
        case LOAD_BUILD_CLASS:
            return 1;
        case INPLACE_LSHIFT:
        case INPLACE_RSHIFT:
        case INPLACE_AND:
        case INPLACE_XOR:
        case INPLACE_OR:
            return -1;
        case BREAK_LOOP:
            return 0;
        case SETUP_WITH:
            return 7;
        case WITH_CLEANUP_START:
            return 1;
        case WITH_CLEANUP_FINISH:
            return -1; /* XXX Sometimes more */
        case RETURN_VALUE:
            return -1;
        case IMPORT_STAR:
            return -1;
        case YIELD_VALUE:
            return 0;
        case YIELD_FROM:
            return -1;
        case POP_BLOCK:
            return 0;
        case POP_EXCEPT:
            return 0;  /* -3 except if bad bytecode */
        case END_FINALLY:
            return -1; /* or -2 or -3 if exception occurred */

        case STORE_NAME:
            return -1;
        case DELETE_NAME:
            return 0;
        case UNPACK_SEQUENCE:
            return oparg-1;
        case UNPACK_EX:
            return (oparg&0xFF) + (oparg>>8);
        case FOR_ITER:
            return 1; /* or -1, at end of iterator */

        case STORE_ATTR:
            return -2;
        case DELETE_ATTR:
            return -1;
        case STORE_GLOBAL:
            return -1;
        case DELETE_GLOBAL:
            return 0;
        case LOAD_CONST:
            return 1;
        case LOAD_NAME:
            return 1;
        case BUILD_TUPLE:
        case BUILD_LIST:
        case BUILD_SET:
            return 1-oparg;
        case BUILD_LIST_UNPACK:
        case BUILD_TUPLE_UNPACK:
        case BUILD_SET_UNPACK:
        case BUILD_MAP_UNPACK:
            return 1 - oparg;
        case BUILD_MAP_UNPACK_WITH_CALL:
            return 1 - (oparg & 0xFF);
        case BUILD_MAP:
            return 1 - 2*oparg;
        case LOAD_ATTR:
            return 0;
        case COMPARE_OP:
            return -1;
        case IMPORT_NAME:
            return -1;
        case IMPORT_FROM:
            return 1;

        case JUMP_FORWARD:
        case JUMP_IF_TRUE_OR_POP:  /* -1 if jump not taken */
        case JUMP_IF_FALSE_OR_POP:  /*  "" */
        case JUMP_ABSOLUTE:
            return 0;

        case POP_JUMP_IF_FALSE:
        case POP_JUMP_IF_TRUE:
            return -1;

        case LOAD_GLOBAL:
            return 1;

        case CONTINUE_LOOP:
            return 0;
        case SETUP_LOOP:
            return 0;
        case SETUP_EXCEPT:
        case SETUP_FINALLY:
            return 6; /* can push 3 values for the new exception
                + 3 others for the previous exception state */

        case LOAD_FAST:
            return 1;
        case STORE_FAST:
            return -1;
        case DELETE_FAST:
            return 0;

        case RAISE_VARARGS:
            return -oparg;
#define NARGS(o) (((o) % 256) + 2*(((o) / 256) % 256))
        case CALL_FUNCTION:
            return -NARGS(oparg);
        case CALL_FUNCTION_VAR:
        case CALL_FUNCTION_KW:
            return -NARGS(oparg)-1;
        case CALL_FUNCTION_VAR_KW:
            return -NARGS(oparg)-2;
        case MAKE_FUNCTION:
            return -1 -NARGS(oparg) - ((oparg >> 16) & 0xffff);
        case MAKE_CLOSURE:
            return -2 - NARGS(oparg) - ((oparg >> 16) & 0xffff);
#undef NARGS
        case BUILD_SLICE:
            if (oparg == 3)
                return -2;
            else
                return -1;

        case LOAD_CLOSURE:
            return 1;
        case LOAD_DEREF:
        case LOAD_CLASSDEREF:
            return 1;
        case STORE_DEREF:
            return -1;
        case DELETE_DEREF:
            return 0;
        case GET_AWAITABLE:
            return 0;
        case SETUP_ASYNC_WITH:
            return 6;
        case BEFORE_ASYNC_WITH:
            return 1;
        case GET_AITER:
            return 0;
        case GET_ANEXT:
            return 1;
        case GET_YIELD_FROM_ITER:
            return 0;
        default:
            return PY_INVALID_STACK_EFFECT;
    }
    return PY_INVALID_STACK_EFFECT; /* not reachable */
}

/* Add an opcode with no argument.
   Returns 0 on failure, 1 on success.
*/

static int
compiler_addop(struct compiler *c, int opcode)
{
    basicblock *b;
    struct instr *i;
    int off;
    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    b = c->u->u_curblock;
    i = &b->b_instr[off];
    i->i_opcode = opcode;
    i->i_hasarg = 0;
    if (opcode == RETURN_VALUE)
        b->b_return = 1;
    compiler_set_lineno(c, off);
    return 1;
}

static Py_ssize_t
compiler_add_o(struct compiler *c, PyObject *dict, PyObject *o)
{
    PyObject *t, *v;
    Py_ssize_t arg;
    double d;

    /* necessary to make sure types aren't coerced (e.g., float and complex) */
    /* _and_ to distinguish 0.0 from -0.0 e.g. on IEEE platforms */
    if (PyFloat_Check(o)) {
        d = PyFloat_AS_DOUBLE(o);
        /* all we need is to make the tuple different in either the 0.0
         * or -0.0 case from all others, just to avoid the "coercion".
         */
        if (d == 0.0 && copysign(1.0, d) < 0.0)
            t = PyTuple_Pack(3, o, o->ob_type, Py_None);
        else
            t = PyTuple_Pack(2, o, o->ob_type);
    }
    else if (PyComplex_Check(o)) {
        Py_complex z;
        int real_negzero, imag_negzero;
        /* For the complex case we must make complex(x, 0.)
           different from complex(x, -0.) and complex(0., y)
           different from complex(-0., y), for any x and y.
           All four complex zeros must be distinguished.*/
        z = PyComplex_AsCComplex(o);
        real_negzero = z.real == 0.0 && copysign(1.0, z.real) < 0.0;
        imag_negzero = z.imag == 0.0 && copysign(1.0, z.imag) < 0.0;
        if (real_negzero && imag_negzero) {
            t = PyTuple_Pack(5, o, o->ob_type,
                             Py_None, Py_None, Py_None);
        }
        else if (imag_negzero) {
            t = PyTuple_Pack(4, o, o->ob_type, Py_None, Py_None);
        }
        else if (real_negzero) {
            t = PyTuple_Pack(3, o, o->ob_type, Py_None);
        }
        else {
            t = PyTuple_Pack(2, o, o->ob_type);
        }
    }
    else {
        t = PyTuple_Pack(2, o, o->ob_type);
    }
    if (t == NULL)
        return -1;

    v = PyDict_GetItem(dict, t);
    if (!v) {
        if (PyErr_Occurred()) {
            Py_DECREF(t);
            return -1;
        }
        arg = PyDict_Size(dict);
        v = PyLong_FromSsize_t(arg);
        if (!v) {
            Py_DECREF(t);
            return -1;
        }
        if (PyDict_SetItem(dict, t, v) < 0) {
            Py_DECREF(t);
            Py_DECREF(v);
            return -1;
        }
        Py_DECREF(v);
    }
    else
        arg = PyLong_AsLong(v);
    Py_DECREF(t);
    return arg;
}

static int
compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
                     PyObject *o)
{
    Py_ssize_t arg = compiler_add_o(c, dict, o);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, opcode, arg);
}

static int
compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
                    PyObject *o)
{
    Py_ssize_t arg;
    PyObject *mangled = _Py_Mangle(c->u->u_private, o);
    if (!mangled)
        return 0;
    arg = compiler_add_o(c, dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, opcode, arg);
}

/* Add an opcode with an integer argument.
   Returns 0 on failure, 1 on success.
*/

static int
compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg)
{
    struct instr *i;
    int off;

    /* Integer arguments are limit to 16-bit. There is an extension for 32-bit
       integer arguments. */
    assert((-2147483647-1) <= oparg);
    assert(oparg <= 2147483647);

    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    i = &c->u->u_curblock->b_instr[off];
    i->i_opcode = opcode;
    i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
    i->i_hasarg = 1;
    compiler_set_lineno(c, off);
    return 1;
}

static int
compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute)
{
    struct instr *i;
    int off;

    assert(b != NULL);
    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    i = &c->u->u_curblock->b_instr[off];
    i->i_opcode = opcode;
    i->i_target = b;
    i->i_hasarg = 1;
    if (absolute)
        i->i_jabs = 1;
    else
        i->i_jrel = 1;
    compiler_set_lineno(c, off);
    return 1;
}

/* The distinction between NEW_BLOCK and NEXT_BLOCK is subtle.  (I'd
   like to find better names.)  NEW_BLOCK() creates a new block and sets
   it as the current block.  NEXT_BLOCK() also creates an implicit jump
   from the current block to the new block.
*/

/* The returns inside these macros make it impossible to decref objects
   created in the local function.  Local objects should use the arena.
*/


#define NEW_BLOCK(C) { \
    if (compiler_use_new_block((C)) == NULL) \
        return 0; \
}

#define NEXT_BLOCK(C) { \
    if (compiler_next_block((C)) == NULL) \
        return 0; \
}

#define ADDOP(C, OP) { \
    if (!compiler_addop((C), (OP))) \
        return 0; \
}

#define ADDOP_IN_SCOPE(C, OP) { \
    if (!compiler_addop((C), (OP))) { \
        compiler_exit_scope(c); \
        return 0; \
    } \
}

#define ADDOP_O(C, OP, O, TYPE) { \
    if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \
        return 0; \
}

#define ADDOP_NAME(C, OP, O, TYPE) { \
    if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
        return 0; \
}

#define ADDOP_I(C, OP, O) { \
    if (!compiler_addop_i((C), (OP), (O))) \
        return 0; \
}

#define ADDOP_JABS(C, OP, O) { \
    if (!compiler_addop_j((C), (OP), (O), 1)) \
        return 0; \
}

#define ADDOP_JREL(C, OP, O) { \
    if (!compiler_addop_j((C), (OP), (O), 0)) \
        return 0; \
}

/* VISIT and VISIT_SEQ takes an ASDL type as their second argument.  They use
   the ASDL name to synthesize the name of the C type and the visit function.
*/

#define VISIT(C, TYPE, V) {\
    if (!compiler_visit_ ## TYPE((C), (V))) \
        return 0; \
}

#define VISIT_IN_SCOPE(C, TYPE, V) {\
    if (!compiler_visit_ ## TYPE((C), (V))) { \
        compiler_exit_scope(c); \
        return 0; \
    } \
}

#define VISIT_SLICE(C, V, CTX) {\
    if (!compiler_visit_slice((C), (V), (CTX))) \
        return 0; \
}

#define VISIT_SEQ(C, TYPE, SEQ) { \
    int _i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (!compiler_visit_ ## TYPE((C), elt)) \
            return 0; \
    } \
}

#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
    int _i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (!compiler_visit_ ## TYPE((C), elt)) { \
            compiler_exit_scope(c); \
            return 0; \
        } \
    } \
}

static int
compiler_isdocstring(stmt_ty s)
{
    if (s->kind != Expr_kind)
        return 0;
    return s->v.Expr.value->kind == Str_kind;
}

/* Compile a sequence of statements, checking for a docstring. */

static int
compiler_body(struct compiler *c, asdl_seq *stmts)
{
    int i = 0;
    stmt_ty st;

    if (!asdl_seq_LEN(stmts))
        return 1;
    st = (stmt_ty)asdl_seq_GET(stmts, 0);
    if (compiler_isdocstring(st) && c->c_optimize < 2) {
        /* don't generate docstrings if -OO */
        i = 1;
        VISIT(c, expr, st->v.Expr.value);
        if (!compiler_nameop(c, __doc__, Store))
            return 0;
    }
    for (; i < asdl_seq_LEN(stmts); i++)
        VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
    return 1;
}

static PyCodeObject *
compiler_mod(struct compiler *c, mod_ty mod)
{
    PyCodeObject *co;
    int addNone = 1;
    static PyObject *module;
    if (!module) {
        module = PyUnicode_InternFromString("<module>");
        if (!module)
            return NULL;
    }
    /* Use 0 for firstlineno initially, will fixup in assemble(). */
    if (!compiler_enter_scope(c, module, COMPILER_SCOPE_MODULE, mod, 0))
        return NULL;
    switch (mod->kind) {
    case Module_kind:
        if (!compiler_body(c, mod->v.Module.body)) {
            compiler_exit_scope(c);
            return 0;
        }
        break;
    case Interactive_kind:
        c->c_interactive = 1;
        VISIT_SEQ_IN_SCOPE(c, stmt,
                                mod->v.Interactive.body);
        break;
    case Expression_kind:
        VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
        addNone = 0;
        break;
    case Suite_kind:
        PyErr_SetString(PyExc_SystemError,
                        "suite should not be possible");
        return 0;
    default:
        PyErr_Format(PyExc_SystemError,
                     "module kind %d should not be possible",
                     mod->kind);
        return 0;
    }
    co = assemble(c, addNone);
    compiler_exit_scope(c);
    return co;
}

/* The test for LOCAL must come before the test for FREE in order to
   handle classes where name is both local and free.  The local var is
   a method and the free var is a free var referenced within a method.
*/

static int
get_ref_type(struct compiler *c, PyObject *name)
{
    int scope;
    if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
        !PyUnicode_CompareWithASCIIString(name, "__class__"))
        return CELL;
    scope = PyST_GetScope(c->u->u_ste, name);
    if (scope == 0) {
        char buf[350];
        PyOS_snprintf(buf, sizeof(buf),
                      "unknown scope for %.100s in %.100s(%s)\n"
                      "symbols: %s\nlocals: %s\nglobals: %s",
                      PyUnicode_AsUTF8(name),
                      PyUnicode_AsUTF8(c->u->u_name),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_id)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_symbols)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_varnames)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_names))
        );
        Py_FatalError(buf);
    }

    return scope;
}

static int
compiler_lookup_arg(PyObject *dict, PyObject *name)
{
    PyObject *k, *v;
    k = PyTuple_Pack(2, name, name->ob_type);
    if (k == NULL)
        return -1;
    v = PyDict_GetItem(dict, k);
    Py_DECREF(k);
    if (v == NULL)
        return -1;
    return PyLong_AS_LONG(v);
}

static int
compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t args, PyObject *qualname)
{
    Py_ssize_t i, free = PyCode_GetNumFree(co);
    if (qualname == NULL)
        qualname = co->co_name;

    if (free == 0) {
        ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts);
        ADDOP_O(c, LOAD_CONST, qualname, consts);
        ADDOP_I(c, MAKE_FUNCTION, args);
        return 1;
    }
    for (i = 0; i < free; ++i) {
        /* Bypass com_addop_varname because it will generate
           LOAD_DEREF but LOAD_CLOSURE is needed.
        */
        PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
        int arg, reftype;

        /* Special case: If a class contains a method with a
           free variable that has the same name as a method,
           the name will be considered free *and* local in the
           class.  It should be handled by the closure, as
           well as by the normal name loookup logic.
        */
        reftype = get_ref_type(c, name);
        if (reftype == CELL)
            arg = compiler_lookup_arg(c->u->u_cellvars, name);
        else /* (reftype == FREE) */
            arg = compiler_lookup_arg(c->u->u_freevars, name);
        if (arg == -1) {
            fprintf(stderr,
                "lookup %s in %s %d %d\n"
                "freevars of %s: %s\n",
                PyUnicode_AsUTF8(PyObject_Repr(name)),
                PyUnicode_AsUTF8(c->u->u_name),
                reftype, arg,
                PyUnicode_AsUTF8(co->co_name),
                PyUnicode_AsUTF8(PyObject_Repr(co->co_freevars)));
            Py_FatalError("compiler_make_closure()");
        }
        ADDOP_I(c, LOAD_CLOSURE, arg);
    }
    ADDOP_I(c, BUILD_TUPLE, free);
    ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts);
    ADDOP_O(c, LOAD_CONST, qualname, consts);
    ADDOP_I(c, MAKE_CLOSURE, args);
    return 1;
}

static int
compiler_decorators(struct compiler *c, asdl_seq* decos)
{
    int i;

    if (!decos)
        return 1;

    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
    }
    return 1;
}

static int
compiler_visit_kwonlydefaults(struct compiler *c, asdl_seq *kwonlyargs,
                              asdl_seq *kw_defaults)
{
    int i, default_count = 0;
    for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
        arg_ty arg = asdl_seq_GET(kwonlyargs, i);
        expr_ty default_ = asdl_seq_GET(kw_defaults, i);
        if (default_) {
            PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
            if (!mangled)
                return -1;
            ADDOP_O(c, LOAD_CONST, mangled, consts);
            Py_DECREF(mangled);
            if (!compiler_visit_expr(c, default_)) {
                return -1;
            }
            default_count++;
        }
    }
    return default_count;
}

static int
compiler_visit_argannotation(struct compiler *c, identifier id,
    expr_ty annotation, PyObject *names)
{
    if (annotation) {
        PyObject *mangled;
        VISIT(c, expr, annotation);
        mangled = _Py_Mangle(c->u->u_private, id);
        if (!mangled)
            return 0;
        if (PyList_Append(names, mangled) < 0) {
            Py_DECREF(mangled);
            return 0;
        }
        Py_DECREF(mangled);
    }
    return 1;
}

static int
compiler_visit_argannotations(struct compiler *c, asdl_seq* args,
                              PyObject *names)
{
    int i;
    for (i = 0; i < asdl_seq_LEN(args); i++) {
        arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
        if (!compiler_visit_argannotation(
                        c,
                        arg->arg,
                        arg->annotation,
                        names))
            return 0;
    }
    return 1;
}

static int
compiler_visit_annotations(struct compiler *c, arguments_ty args,
                           expr_ty returns)
{
    /* Push arg annotations and a list of the argument names. Return the #
       of items pushed. The expressions are evaluated out-of-order wrt the
       source code.

       More than 2^16-1 annotations is a SyntaxError. Returns -1 on error.
       */
    static identifier return_str;
    PyObject *names;
    Py_ssize_t len;
    names = PyList_New(0);
    if (!names)
        return -1;

    if (!compiler_visit_argannotations(c, args->args, names))
        goto error;
    if (args->vararg && args->vararg->annotation &&
        !compiler_visit_argannotation(c, args->vararg->arg,
                                     args->vararg->annotation, names))
        goto error;
    if (!compiler_visit_argannotations(c, args->kwonlyargs, names))
        goto error;
    if (args->kwarg && args->kwarg->annotation &&
        !compiler_visit_argannotation(c, args->kwarg->arg,
                                     args->kwarg->annotation, names))
        goto error;

    if (!return_str) {
        return_str = PyUnicode_InternFromString("return");
        if (!return_str)
            goto error;
    }
    if (!compiler_visit_argannotation(c, return_str, returns, names)) {
        goto error;
    }

    len = PyList_GET_SIZE(names);
    if (len > 65534) {
        /* len must fit in 16 bits, and len is incremented below */
        PyErr_SetString(PyExc_SyntaxError,
                        "too many annotations");
        goto error;
    }
    if (len) {
        /* convert names to a tuple and place on stack */
        PyObject *elt;
        Py_ssize_t i;
        PyObject *s = PyTuple_New(len);
        if (!s)
            goto error;
        for (i = 0; i < len; i++) {
            elt = PyList_GET_ITEM(names, i);
            Py_INCREF(elt);
            PyTuple_SET_ITEM(s, i, elt);
        }
        ADDOP_O(c, LOAD_CONST, s, consts);
        Py_DECREF(s);
        len++; /* include the just-pushed tuple */
    }
    Py_DECREF(names);

    /* We just checked that len <= 65535, see above */
    return Py_SAFE_DOWNCAST(len, Py_ssize_t, int);

error:
    Py_DECREF(names);
    return -1;
}

static int
compiler_function(struct compiler *c, stmt_ty s, int is_async)
{
    PyCodeObject *co;
    PyObject *qualname, *first_const = Py_None;
    arguments_ty args;
    expr_ty returns;
    identifier name;
    asdl_seq* decos;
    asdl_seq *body;
    stmt_ty st;
    Py_ssize_t i, n, arglength;
    int docstring, kw_default_count = 0;
    int num_annotations;
    int scope_type;


    if (is_async) {
        assert(s->kind == AsyncFunctionDef_kind);

        args = s->v.AsyncFunctionDef.args;
        returns = s->v.AsyncFunctionDef.returns;
        decos = s->v.AsyncFunctionDef.decorator_list;
        name = s->v.AsyncFunctionDef.name;
        body = s->v.AsyncFunctionDef.body;

        scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
    } else {
        assert(s->kind == FunctionDef_kind);

        args = s->v.FunctionDef.args;
        returns = s->v.FunctionDef.returns;
        decos = s->v.FunctionDef.decorator_list;
        name = s->v.FunctionDef.name;
        body = s->v.FunctionDef.body;

        scope_type = COMPILER_SCOPE_FUNCTION;
    }

    if (!compiler_decorators(c, decos))
        return 0;
    if (args->defaults)
        VISIT_SEQ(c, expr, args->defaults);
    if (args->kwonlyargs) {
        int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
                                                args->kw_defaults);
        if (res < 0)
            return 0;
        kw_default_count = res;
    }
    num_annotations = compiler_visit_annotations(c, args, returns);
    if (num_annotations < 0)
        return 0;
    assert((num_annotations & 0xFFFF) == num_annotations);

    if (!compiler_enter_scope(c, name,
                              scope_type, (void *)s,
                              s->lineno))
        return 0;

    st = (stmt_ty)asdl_seq_GET(body, 0);
    docstring = compiler_isdocstring(st);
    if (docstring && c->c_optimize < 2)
        first_const = st->v.Expr.value->v.Str.s;
    if (compiler_add_o(c, c->u->u_consts, first_const) < 0)      {
        compiler_exit_scope(c);
        return 0;
    }

    c->u->u_argcount = asdl_seq_LEN(args->args);
    c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    n = asdl_seq_LEN(body);
    /* if there was a docstring, we need to skip the first statement */
    for (i = docstring; i < n; i++) {
        st = (stmt_ty)asdl_seq_GET(body, i);
        VISIT_IN_SCOPE(c, stmt, st);
    }
    co = assemble(c, 1);
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL) {
        Py_XDECREF(qualname);
        Py_XDECREF(co);
        return 0;
    }

    arglength = asdl_seq_LEN(args->defaults);
    arglength |= kw_default_count << 8;
    arglength |= num_annotations << 16;
    if (is_async)
        co->co_flags |= CO_COROUTINE;
    compiler_make_closure(c, co, arglength, qualname);
    Py_DECREF(qualname);
    Py_DECREF(co);

    /* decorators */
    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    return compiler_nameop(c, name, Store);
}

static int
compiler_class(struct compiler *c, stmt_ty s)
{
    PyCodeObject *co;
    PyObject *str;
    int i;
    asdl_seq* decos = s->v.ClassDef.decorator_list;

    if (!compiler_decorators(c, decos))
        return 0;

    /* ultimately generate code for:
         <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
       where:
         <func> is a function/closure created from the class body;
            it has a single argument (__locals__) where the dict
            (or MutableSequence) representing the locals is passed
         <name> is the class name
         <bases> is the positional arguments and *varargs argument
         <keywords> is the keyword arguments and **kwds argument
       This borrows from compiler_call.
    */

    /* 1. compile the class body into a code object */
    if (!compiler_enter_scope(c, s->v.ClassDef.name,
                              COMPILER_SCOPE_CLASS, (void *)s, s->lineno))
        return 0;
    /* this block represents what we do in the new scope */
    {
        /* use the class name for name mangling */
        Py_INCREF(s->v.ClassDef.name);
        Py_XDECREF(c->u->u_private);
        c->u->u_private = s->v.ClassDef.name;
        /* load (global) __name__ ... */
        str = PyUnicode_InternFromString("__name__");
        if (!str || !compiler_nameop(c, str, Load)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        /* ... and store it as __module__ */
        str = PyUnicode_InternFromString("__module__");
        if (!str || !compiler_nameop(c, str, Store)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        assert(c->u->u_qualname);
        ADDOP_O(c, LOAD_CONST, c->u->u_qualname, consts);
        str = PyUnicode_InternFromString("__qualname__");
        if (!str || !compiler_nameop(c, str, Store)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        /* compile the body proper */
        if (!compiler_body(c, s->v.ClassDef.body)) {
            compiler_exit_scope(c);
            return 0;
        }
        if (c->u->u_ste->ste_needs_class_closure) {
            /* return the (empty) __class__ cell */
            str = PyUnicode_InternFromString("__class__");
            if (str == NULL) {
                compiler_exit_scope(c);
                return 0;
            }
            i = compiler_lookup_arg(c->u->u_cellvars, str);
            Py_DECREF(str);
            if (i < 0) {
                compiler_exit_scope(c);
                return 0;
            }
            assert(i == 0);
            /* Return the cell where to store __class__ */
            ADDOP_I(c, LOAD_CLOSURE, i);
        }
        else {
            assert(PyDict_Size(c->u->u_cellvars) == 0);
            /* This happens when nobody references the cell. Return None. */
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        }
        ADDOP_IN_SCOPE(c, RETURN_VALUE);
        /* create the code object */
        co = assemble(c, 1);
    }
    /* leave the new scope */
    compiler_exit_scope(c);
    if (co == NULL)
        return 0;

    /* 2. load the 'build_class' function */
    ADDOP(c, LOAD_BUILD_CLASS);

    /* 3. load a function (or closure) made from the code object */
    compiler_make_closure(c, co, 0, NULL);
    Py_DECREF(co);

    /* 4. load class name */
    ADDOP_O(c, LOAD_CONST, s->v.ClassDef.name, consts);

    /* 5. generate the rest of the code for the call */
    if (!compiler_call_helper(c, 2,
                              s->v.ClassDef.bases,
                              s->v.ClassDef.keywords))
        return 0;

    /* 6. apply decorators */
    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    /* 7. store into <name> */
    if (!compiler_nameop(c, s->v.ClassDef.name, Store))
        return 0;
    return 1;
}

static int
compiler_ifexp(struct compiler *c, expr_ty e)
{
    basicblock *end, *next;

    assert(e->kind == IfExp_kind);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    next = compiler_new_block(c);
    if (next == NULL)
        return 0;
    VISIT(c, expr, e->v.IfExp.test);
    ADDOP_JABS(c, POP_JUMP_IF_FALSE, next);
    VISIT(c, expr, e->v.IfExp.body);
    ADDOP_JREL(c, JUMP_FORWARD, end);
    compiler_use_next_block(c, next);
    VISIT(c, expr, e->v.IfExp.orelse);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_lambda(struct compiler *c, expr_ty e)
{
    PyCodeObject *co;
    PyObject *qualname;
    static identifier name;
    int kw_default_count = 0;
    Py_ssize_t arglength;
    arguments_ty args = e->v.Lambda.args;
    assert(e->kind == Lambda_kind);

    if (!name) {
        name = PyUnicode_InternFromString("<lambda>");
        if (!name)
            return 0;
    }

    if (args->defaults)
        VISIT_SEQ(c, expr, args->defaults);
    if (args->kwonlyargs) {
        int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
                                                args->kw_defaults);
        if (res < 0) return 0;
        kw_default_count = res;
    }
    if (!compiler_enter_scope(c, name, COMPILER_SCOPE_LAMBDA,
                              (void *)e, e->lineno))
        return 0;

    /* Make None the first constant, so the lambda can't have a
       docstring. */
    if (compiler_add_o(c, c->u->u_consts, Py_None) < 0)
        return 0;

    c->u->u_argcount = asdl_seq_LEN(args->args);
    c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
    if (c->u->u_ste->ste_generator) {
        co = assemble(c, 0);
    }
    else {
        ADDOP_IN_SCOPE(c, RETURN_VALUE);
        co = assemble(c, 1);
    }
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL)
        return 0;

    arglength = asdl_seq_LEN(args->defaults);
    arglength |= kw_default_count << 8;
    compiler_make_closure(c, co, arglength, qualname);
    Py_DECREF(qualname);
    Py_DECREF(co);

    return 1;
}

static int
compiler_if(struct compiler *c, stmt_ty s)
{
    basicblock *end, *next;
    int constant;
    assert(s->kind == If_kind);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;

    constant = expr_constant(c, s->v.If.test);
    /* constant = 0: "if 0"
     * constant = 1: "if 1", "if 2", ...
     * constant = -1: rest */
    if (constant == 0) {
        if (s->v.If.orelse)
            VISIT_SEQ(c, stmt, s->v.If.orelse);
    } else if (constant == 1) {
        VISIT_SEQ(c, stmt, s->v.If.body);
    } else {
        if (asdl_seq_LEN(s->v.If.orelse)) {
            next = compiler_new_block(c);
            if (next == NULL)
                return 0;
        }
        else
            next = end;
        VISIT(c, expr, s->v.If.test);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, next);
        VISIT_SEQ(c, stmt, s->v.If.body);
        if (asdl_seq_LEN(s->v.If.orelse)) {
            ADDOP_JREL(c, JUMP_FORWARD, end);
            compiler_use_next_block(c, next);
            VISIT_SEQ(c, stmt, s->v.If.orelse);
        }
    }
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_for(struct compiler *c, stmt_ty s)
{
    basicblock *start, *cleanup, *end;

    start = compiler_new_block(c);
    cleanup = compiler_new_block(c);
    end = compiler_new_block(c);
    if (start == NULL || end == NULL || cleanup == NULL)
        return 0;
    ADDOP_JREL(c, SETUP_LOOP, end);
    if (!compiler_push_fblock(c, LOOP, start))
        return 0;
    VISIT(c, expr, s->v.For.iter);
    ADDOP(c, GET_ITER);
    compiler_use_next_block(c, start);
    ADDOP_JREL(c, FOR_ITER, cleanup);
    VISIT(c, expr, s->v.For.target);
    VISIT_SEQ(c, stmt, s->v.For.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);
    compiler_use_next_block(c, cleanup);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, LOOP, start);
    VISIT_SEQ(c, stmt, s->v.For.orelse);
    compiler_use_next_block(c, end);
    return 1;
}


static int
compiler_async_for(struct compiler *c, stmt_ty s)
{
    static PyObject *stopiter_error = NULL;
    basicblock *try, *except, *end, *after_try, *try_cleanup,
               *after_loop, *after_loop_else;

    if (stopiter_error == NULL) {
        stopiter_error = PyUnicode_InternFromString("StopAsyncIteration");
        if (stopiter_error == NULL)
            return 0;
    }

    try = compiler_new_block(c);
    except = compiler_new_block(c);
    end = compiler_new_block(c);
    after_try = compiler_new_block(c);
    try_cleanup = compiler_new_block(c);
    after_loop = compiler_new_block(c);
    after_loop_else = compiler_new_block(c);

    if (try == NULL || except == NULL || end == NULL
            || after_try == NULL || try_cleanup == NULL)
        return 0;

    ADDOP_JREL(c, SETUP_LOOP, after_loop);
    if (!compiler_push_fblock(c, LOOP, try))
        return 0;

    VISIT(c, expr, s->v.AsyncFor.iter);
    ADDOP(c, GET_AITER);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    compiler_use_next_block(c, try);


    ADDOP_JREL(c, SETUP_EXCEPT, except);
    if (!compiler_push_fblock(c, EXCEPT, try))
        return 0;

    ADDOP(c, GET_ANEXT);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);
    VISIT(c, expr, s->v.AsyncFor.target);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, EXCEPT, try);
    ADDOP_JREL(c, JUMP_FORWARD, after_try);


    compiler_use_next_block(c, except);
    ADDOP(c, DUP_TOP);
    ADDOP_O(c, LOAD_GLOBAL, stopiter_error, names);
    ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
    ADDOP_JABS(c, POP_JUMP_IF_FALSE, try_cleanup);

    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_EXCEPT); /* for SETUP_EXCEPT */
    ADDOP(c, POP_BLOCK); /* for SETUP_LOOP */
    ADDOP_JABS(c, JUMP_ABSOLUTE, after_loop_else);


    compiler_use_next_block(c, try_cleanup);
    ADDOP(c, END_FINALLY);

    compiler_use_next_block(c, after_try);
    VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, try);

    ADDOP(c, POP_BLOCK); /* for SETUP_LOOP */
    compiler_pop_fblock(c, LOOP, try);

    compiler_use_next_block(c, after_loop);
    ADDOP_JABS(c, JUMP_ABSOLUTE, end);

    compiler_use_next_block(c, after_loop_else);
    VISIT_SEQ(c, stmt, s->v.For.orelse);

    compiler_use_next_block(c, end);

    return 1;
}

static int
compiler_while(struct compiler *c, stmt_ty s)
{
    basicblock *loop, *orelse, *end, *anchor = NULL;
    int constant = expr_constant(c, s->v.While.test);

    if (constant == 0) {
        if (s->v.While.orelse)
            VISIT_SEQ(c, stmt, s->v.While.orelse);
        return 1;
    }
    loop = compiler_new_block(c);
    end = compiler_new_block(c);
    if (constant == -1) {
        anchor = compiler_new_block(c);
        if (anchor == NULL)
            return 0;
    }
    if (loop == NULL || end == NULL)
        return 0;
    if (s->v.While.orelse) {
        orelse = compiler_new_block(c);
        if (orelse == NULL)
            return 0;
    }
    else
        orelse = NULL;

    ADDOP_JREL(c, SETUP_LOOP, end);
    compiler_use_next_block(c, loop);
    if (!compiler_push_fblock(c, LOOP, loop))
        return 0;
    if (constant == -1) {
        VISIT(c, expr, s->v.While.test);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, anchor);
    }
    VISIT_SEQ(c, stmt, s->v.While.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, loop);

    /* XXX should the two POP instructions be in a separate block
       if there is no else clause ?
    */

    if (constant == -1)
        compiler_use_next_block(c, anchor);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, LOOP, loop);
    if (orelse != NULL) /* what if orelse is just pass? */
        VISIT_SEQ(c, stmt, s->v.While.orelse);
    compiler_use_next_block(c, end);

    return 1;
}

static int
compiler_continue(struct compiler *c)
{
    static const char LOOP_ERROR_MSG[] = "'continue' not properly in loop";
    static const char IN_FINALLY_ERROR_MSG[] =
                    "'continue' not supported inside 'finally' clause";
    int i;

    if (!c->u->u_nfblocks)
        return compiler_error(c, LOOP_ERROR_MSG);
    i = c->u->u_nfblocks - 1;
    switch (c->u->u_fblock[i].fb_type) {
    case LOOP:
        ADDOP_JABS(c, JUMP_ABSOLUTE, c->u->u_fblock[i].fb_block);
        break;
    case EXCEPT:
    case FINALLY_TRY:
        while (--i >= 0 && c->u->u_fblock[i].fb_type != LOOP) {
            /* Prevent continue anywhere under a finally
                  even if hidden in a sub-try or except. */
            if (c->u->u_fblock[i].fb_type == FINALLY_END)
                return compiler_error(c, IN_FINALLY_ERROR_MSG);
        }
        if (i == -1)
            return compiler_error(c, LOOP_ERROR_MSG);
        ADDOP_JABS(c, CONTINUE_LOOP, c->u->u_fblock[i].fb_block);
        break;
    case FINALLY_END:
        return compiler_error(c, IN_FINALLY_ERROR_MSG);
    }

    return 1;
}

/* Code generated for "try: <body> finally: <finalbody>" is as follows:

        SETUP_FINALLY           L
        <code for body>
        POP_BLOCK
        LOAD_CONST              <None>
    L:          <code for finalbody>
        END_FINALLY

   The special instructions use the block stack.  Each block
   stack entry contains the instruction that created it (here
   SETUP_FINALLY), the level of the value stack at the time the
   block stack entry was created, and a label (here L).

   SETUP_FINALLY:
    Pushes the current value stack level and the label
    onto the block stack.
   POP_BLOCK:
    Pops en entry from the block stack, and pops the value
    stack until its level is the same as indicated on the
    block stack.  (The label is ignored.)
   END_FINALLY:
    Pops a variable number of entries from the *value* stack
    and re-raises the exception they specify.  The number of
    entries popped depends on the (pseudo) exception type.

   The block stack is unwound when an exception is raised:
   when a SETUP_FINALLY entry is found, the exception is pushed
   onto the value stack (and the exception condition is cleared),
   and the interpreter jumps to the label gotten from the block
   stack.
*/

static int
compiler_try_finally(struct compiler *c, stmt_ty s)
{
    basicblock *body, *end;
    body = compiler_new_block(c);
    end = compiler_new_block(c);
    if (body == NULL || end == NULL)
        return 0;

    ADDOP_JREL(c, SETUP_FINALLY, end);
    compiler_use_next_block(c, body);
    if (!compiler_push_fblock(c, FINALLY_TRY, body))
        return 0;
    if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
        if (!compiler_try_except(c, s))
            return 0;
    }
    else {
        VISIT_SEQ(c, stmt, s->v.Try.body);
    }
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, body);

    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    compiler_use_next_block(c, end);
    if (!compiler_push_fblock(c, FINALLY_END, end))
        return 0;
    VISIT_SEQ(c, stmt, s->v.Try.finalbody);
    ADDOP(c, END_FINALLY);
    compiler_pop_fblock(c, FINALLY_END, end);

    return 1;
}

/*
   Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
   (The contents of the value stack is shown in [], with the top
   at the right; 'tb' is trace-back info, 'val' the exception's
   associated value, and 'exc' the exception.)

   Value stack          Label   Instruction     Argument
   []                           SETUP_EXCEPT    L1
   []                           <code for S>
   []                           POP_BLOCK
   []                           JUMP_FORWARD    L0

   [tb, val, exc]       L1:     DUP                             )
   [tb, val, exc, exc]          <evaluate E1>                   )
   [tb, val, exc, exc, E1]      COMPARE_OP      EXC_MATCH       ) only if E1
   [tb, val, exc, 1-or-0]       POP_JUMP_IF_FALSE       L2      )
   [tb, val, exc]               POP
   [tb, val]                    <assign to V1>  (or POP if no V1)
   [tb]                         POP
   []                           <code for S1>
                                JUMP_FORWARD    L0

   [tb, val, exc]       L2:     DUP
   .............................etc.......................

   [tb, val, exc]       Ln+1:   END_FINALLY     # re-raise exception

   []                   L0:     <next statement>

   Of course, parts are not generated if Vi or Ei is not present.
*/
static int
compiler_try_except(struct compiler *c, stmt_ty s)
{
    basicblock *body, *orelse, *except, *end;
    Py_ssize_t i, n;

    body = compiler_new_block(c);
    except = compiler_new_block(c);
    orelse = compiler_new_block(c);
    end = compiler_new_block(c);
    if (body == NULL || except == NULL || orelse == NULL || end == NULL)
        return 0;
    ADDOP_JREL(c, SETUP_EXCEPT, except);
    compiler_use_next_block(c, body);
    if (!compiler_push_fblock(c, EXCEPT, body))
        return 0;
    VISIT_SEQ(c, stmt, s->v.Try.body);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, EXCEPT, body);
    ADDOP_JREL(c, JUMP_FORWARD, orelse);
    n = asdl_seq_LEN(s->v.Try.handlers);
    compiler_use_next_block(c, except);
    for (i = 0; i < n; i++) {
        excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
            s->v.Try.handlers, i);
        if (!handler->v.ExceptHandler.type && i < n-1)
            return compiler_error(c, "default 'except:' must be last");
        c->u->u_lineno_set = 0;
        c->u->u_lineno = handler->lineno;
        c->u->u_col_offset = handler->col_offset;
        except = compiler_new_block(c);
        if (except == NULL)
            return 0;
        if (handler->v.ExceptHandler.type) {
            ADDOP(c, DUP_TOP);
            VISIT(c, expr, handler->v.ExceptHandler.type);
            ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
            ADDOP_JABS(c, POP_JUMP_IF_FALSE, except);
        }
        ADDOP(c, POP_TOP);
        if (handler->v.ExceptHandler.name) {
            basicblock *cleanup_end, *cleanup_body;

            cleanup_end = compiler_new_block(c);
            cleanup_body = compiler_new_block(c);
            if (!(cleanup_end || cleanup_body))
                return 0;

            compiler_nameop(c, handler->v.ExceptHandler.name, Store);
            ADDOP(c, POP_TOP);

            /*
              try:
                  # body
              except type as name:
                  try:
                      # body
                  finally:
                      name = None
                      del name
            */

            /* second try: */
            ADDOP_JREL(c, SETUP_FINALLY, cleanup_end);
            compiler_use_next_block(c, cleanup_body);
            if (!compiler_push_fblock(c, FINALLY_TRY, cleanup_body))
                return 0;

            /* second # body */
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            ADDOP(c, POP_BLOCK);
            ADDOP(c, POP_EXCEPT);
            compiler_pop_fblock(c, FINALLY_TRY, cleanup_body);

            /* finally: */
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
            compiler_use_next_block(c, cleanup_end);
            if (!compiler_push_fblock(c, FINALLY_END, cleanup_end))
                return 0;

            /* name = None */
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
            compiler_nameop(c, handler->v.ExceptHandler.name, Store);

            /* del name */
            compiler_nameop(c, handler->v.ExceptHandler.name, Del);

            ADDOP(c, END_FINALLY);
            compiler_pop_fblock(c, FINALLY_END, cleanup_end);
        }
        else {
            basicblock *cleanup_body;

            cleanup_body = compiler_new_block(c);
            if (!cleanup_body)
                return 0;

            ADDOP(c, POP_TOP);
            ADDOP(c, POP_TOP);
            compiler_use_next_block(c, cleanup_body);
            if (!compiler_push_fblock(c, FINALLY_TRY, cleanup_body))
                return 0;
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            ADDOP(c, POP_EXCEPT);
            compiler_pop_fblock(c, FINALLY_TRY, cleanup_body);
        }
        ADDOP_JREL(c, JUMP_FORWARD, end);
        compiler_use_next_block(c, except);
    }
    ADDOP(c, END_FINALLY);
    compiler_use_next_block(c, orelse);
    VISIT_SEQ(c, stmt, s->v.Try.orelse);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_try(struct compiler *c, stmt_ty s) {
    if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
        return compiler_try_finally(c, s);
    else
        return compiler_try_except(c, s);
}


static int
compiler_import_as(struct compiler *c, identifier name, identifier asname)
{
    /* The IMPORT_NAME opcode was already generated.  This function
       merely needs to bind the result to a name.

       If there is a dot in name, we need to split it and emit a
       LOAD_ATTR for each name.
    */
    Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0,
                                        PyUnicode_GET_LENGTH(name), 1);
    if (dot == -2)
        return -1;
    if (dot != -1) {
        /* Consume the base module name to get the first attribute */
        Py_ssize_t pos = dot + 1;
        while (dot != -1) {
            PyObject *attr;
            dot = PyUnicode_FindChar(name, '.', pos,
                                     PyUnicode_GET_LENGTH(name), 1);
            if (dot == -2)
                return -1;
            attr = PyUnicode_Substring(name, pos,
                                       (dot != -1) ? dot :
                                       PyUnicode_GET_LENGTH(name));
            if (!attr)
                return -1;
            ADDOP_O(c, LOAD_ATTR, attr, names);
            Py_DECREF(attr);
            pos = dot + 1;
        }
    }
    return compiler_nameop(c, asname, Store);
}

static int
compiler_import(struct compiler *c, stmt_ty s)
{
    /* The Import node stores a module name like a.b.c as a single
       string.  This is convenient for all cases except
         import a.b.c as d
       where we need to parse that string to extract the individual
       module names.
       XXX Perhaps change the representation to make this case simpler?
     */
    Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);

    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
        int r;
        PyObject *level;

        level = PyLong_FromLong(0);
        if (level == NULL)
            return 0;

        ADDOP_O(c, LOAD_CONST, level, consts);
        Py_DECREF(level);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP_NAME(c, IMPORT_NAME, alias->name, names);

        if (alias->asname) {
            r = compiler_import_as(c, alias->name, alias->asname);
            if (!r)
                return r;
        }
        else {
            identifier tmp = alias->name;
            Py_ssize_t dot = PyUnicode_FindChar(
                alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
            if (dot != -1) {
                tmp = PyUnicode_Substring(alias->name, 0, dot);
                if (tmp == NULL)
                    return 0;
            }
            r = compiler_nameop(c, tmp, Store);
            if (dot != -1) {
                Py_DECREF(tmp);
            }
            if (!r)
                return r;
        }
    }
    return 1;
}

static int
compiler_from_import(struct compiler *c, stmt_ty s)
{
    Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names);

    PyObject *names = PyTuple_New(n);
    PyObject *level;
    static PyObject *empty_string;

    if (!empty_string) {
        empty_string = PyUnicode_FromString("");
        if (!empty_string)
            return 0;
    }

    if (!names)
        return 0;

    level = PyLong_FromLong(s->v.ImportFrom.level);
    if (!level) {
        Py_DECREF(names);
        return 0;
    }

    /* build up the names */
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        Py_INCREF(alias->name);
        PyTuple_SET_ITEM(names, i, alias->name);
    }

    if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
        !PyUnicode_CompareWithASCIIString(s->v.ImportFrom.module, "__future__")) {
        Py_DECREF(level);
        Py_DECREF(names);
        return compiler_error(c, "from __future__ imports must occur "
                              "at the beginning of the file");
    }

    ADDOP_O(c, LOAD_CONST, level, consts);
    Py_DECREF(level);
    ADDOP_O(c, LOAD_CONST, names, consts);
    Py_DECREF(names);
    if (s->v.ImportFrom.module) {
        ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
    }
    else {
        ADDOP_NAME(c, IMPORT_NAME, empty_string, names);
    }
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        identifier store_name;

        if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
            assert(n == 1);
            ADDOP(c, IMPORT_STAR);
            return 1;
        }

        ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
        store_name = alias->name;
        if (alias->asname)
            store_name = alias->asname;

        if (!compiler_nameop(c, store_name, Store)) {
            Py_DECREF(names);
            return 0;
        }
    }
    /* remove imported module */
    ADDOP(c, POP_TOP);
    return 1;
}

static int
compiler_assert(struct compiler *c, stmt_ty s)
{
    static PyObject *assertion_error = NULL;
    basicblock *end;
    PyObject* msg;

    if (c->c_optimize)
        return 1;
    if (assertion_error == NULL) {
        assertion_error = PyUnicode_InternFromString("AssertionError");
        if (assertion_error == NULL)
            return 0;
    }
    if (s->v.Assert.test->kind == Tuple_kind &&
        asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) {
        msg = PyUnicode_FromString("assertion is always true, "
                                   "perhaps remove parentheses?");
        if (msg == NULL)
            return 0;
        if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg,
                                     c->c_filename, c->u->u_lineno,
                                     NULL, NULL) == -1) {
            Py_DECREF(msg);
            return 0;
        }
        Py_DECREF(msg);
    }
    VISIT(c, expr, s->v.Assert.test);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    ADDOP_JABS(c, POP_JUMP_IF_TRUE, end);
    ADDOP_O(c, LOAD_GLOBAL, assertion_error, names);
    if (s->v.Assert.msg) {
        VISIT(c, expr, s->v.Assert.msg);
        ADDOP_I(c, CALL_FUNCTION, 1);
    }
    ADDOP_I(c, RAISE_VARARGS, 1);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_visit_stmt(struct compiler *c, stmt_ty s)
{
    Py_ssize_t i, n;

    /* Always assign a lineno to the next instruction for a stmt. */
    c->u->u_lineno = s->lineno;
    c->u->u_col_offset = s->col_offset;
    c->u->u_lineno_set = 0;

    switch (s->kind) {
    case FunctionDef_kind:
        return compiler_function(c, s, 0);
    case ClassDef_kind:
        return compiler_class(c, s);
    case Return_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'return' outside function");
        if (s->v.Return.value) {
            VISIT(c, expr, s->v.Return.value);
        }
        else
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, RETURN_VALUE);
        break;
    case Delete_kind:
        VISIT_SEQ(c, expr, s->v.Delete.targets)
        break;
    case Assign_kind:
        n = asdl_seq_LEN(s->v.Assign.targets);
        VISIT(c, expr, s->v.Assign.value);
        for (i = 0; i < n; i++) {
            if (i < n - 1)
                ADDOP(c, DUP_TOP);
            VISIT(c, expr,
                  (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
        }
        break;
    case AugAssign_kind:
        return compiler_augassign(c, s);
    case For_kind:
        return compiler_for(c, s);
    case While_kind:
        return compiler_while(c, s);
    case If_kind:
        return compiler_if(c, s);
    case Raise_kind:
        n = 0;
        if (s->v.Raise.exc) {
            VISIT(c, expr, s->v.Raise.exc);
            n++;
            if (s->v.Raise.cause) {
                VISIT(c, expr, s->v.Raise.cause);
                n++;
            }
        }
        ADDOP_I(c, RAISE_VARARGS, (int)n);
        break;
    case Try_kind:
        return compiler_try(c, s);
    case Assert_kind:
        return compiler_assert(c, s);
    case Import_kind:
        return compiler_import(c, s);
    case ImportFrom_kind:
        return compiler_from_import(c, s);
    case Global_kind:
    case Nonlocal_kind:
        break;
    case Expr_kind:
        if (c->c_interactive && c->c_nestlevel <= 1) {
            VISIT(c, expr, s->v.Expr.value);
            ADDOP(c, PRINT_EXPR);
        }
        else if (s->v.Expr.value->kind != Str_kind &&
                 s->v.Expr.value->kind != Num_kind) {
            VISIT(c, expr, s->v.Expr.value);
            ADDOP(c, POP_TOP);
        }
        break;
    case Pass_kind:
        break;
    case Break_kind:
        if (!compiler_in_loop(c))
            return compiler_error(c, "'break' outside loop");
        ADDOP(c, BREAK_LOOP);
        break;
    case Continue_kind:
        return compiler_continue(c);
    case With_kind:
        return compiler_with(c, s, 0);
    case AsyncFunctionDef_kind:
        return compiler_function(c, s, 1);
    case AsyncWith_kind:
        return compiler_async_with(c, s, 0);
    case AsyncFor_kind:
        return compiler_async_for(c, s);
    }

    return 1;
}

static int
unaryop(unaryop_ty op)
{
    switch (op) {
    case Invert:
        return UNARY_INVERT;
    case Not:
        return UNARY_NOT;
    case UAdd:
        return UNARY_POSITIVE;
    case USub:
        return UNARY_NEGATIVE;
    default:
        PyErr_Format(PyExc_SystemError,
            "unary op %d should not be possible", op);
        return 0;
    }
}

static int
binop(struct compiler *c, operator_ty op)
{
    switch (op) {
    case Add:
        return BINARY_ADD;
    case Sub:
        return BINARY_SUBTRACT;
    case Mult:
        return BINARY_MULTIPLY;
    case MatMult:
        return BINARY_MATRIX_MULTIPLY;
    case Div:
        return BINARY_TRUE_DIVIDE;
    case Mod:
        return BINARY_MODULO;
    case Pow:
        return BINARY_POWER;
    case LShift:
        return BINARY_LSHIFT;
    case RShift:
        return BINARY_RSHIFT;
    case BitOr:
        return BINARY_OR;
    case BitXor:
        return BINARY_XOR;
    case BitAnd:
        return BINARY_AND;
    case FloorDiv:
        return BINARY_FLOOR_DIVIDE;
    default:
        PyErr_Format(PyExc_SystemError,
            "binary op %d should not be possible", op);
        return 0;
    }
}

static int
cmpop(cmpop_ty op)
{
    switch (op) {
    case Eq:
        return PyCmp_EQ;
    case NotEq:
        return PyCmp_NE;
    case Lt:
        return PyCmp_LT;
    case LtE:
        return PyCmp_LE;
    case Gt:
        return PyCmp_GT;
    case GtE:
        return PyCmp_GE;
    case Is:
        return PyCmp_IS;
    case IsNot:
        return PyCmp_IS_NOT;
    case In:
        return PyCmp_IN;
    case NotIn:
        return PyCmp_NOT_IN;
    default:
        return PyCmp_BAD;
    }
}

static int
inplace_binop(struct compiler *c, operator_ty op)
{
    switch (op) {
    case Add:
        return INPLACE_ADD;
    case Sub:
        return INPLACE_SUBTRACT;
    case Mult:
        return INPLACE_MULTIPLY;
    case MatMult:
        return INPLACE_MATRIX_MULTIPLY;
    case Div:
        return INPLACE_TRUE_DIVIDE;
    case Mod:
        return INPLACE_MODULO;
    case Pow:
        return INPLACE_POWER;
    case LShift:
        return INPLACE_LSHIFT;
    case RShift:
        return INPLACE_RSHIFT;
    case BitOr:
        return INPLACE_OR;
    case BitXor:
        return INPLACE_XOR;
    case BitAnd:
        return INPLACE_AND;
    case FloorDiv:
        return INPLACE_FLOOR_DIVIDE;
    default:
        PyErr_Format(PyExc_SystemError,
            "inplace binary op %d should not be possible", op);
        return 0;
    }
}

static int
compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
{
    int op, scope;
    Py_ssize_t arg;
    enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;

    PyObject *dict = c->u->u_names;
    PyObject *mangled;
    /* XXX AugStore isn't used anywhere! */

    mangled = _Py_Mangle(c->u->u_private, name);
    if (!mangled)
        return 0;

    assert(PyUnicode_CompareWithASCIIString(name, "None") &&
           PyUnicode_CompareWithASCIIString(name, "True") &&
           PyUnicode_CompareWithASCIIString(name, "False"));

    op = 0;
    optype = OP_NAME;
    scope = PyST_GetScope(c->u->u_ste, mangled);
    switch (scope) {
    case FREE:
        dict = c->u->u_freevars;
        optype = OP_DEREF;
        break;
    case CELL:
        dict = c->u->u_cellvars;
        optype = OP_DEREF;
        break;
    case LOCAL:
        if (c->u->u_ste->ste_type == FunctionBlock)
            optype = OP_FAST;
        break;
    case GLOBAL_IMPLICIT:
        if (c->u->u_ste->ste_type == FunctionBlock)
            optype = OP_GLOBAL;
        break;
    case GLOBAL_EXPLICIT:
        optype = OP_GLOBAL;
        break;
    default:
        /* scope can be 0 */
        break;
    }

    /* XXX Leave assert here, but handle __doc__ and the like better */
    assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');

    switch (optype) {
    case OP_DEREF:
        switch (ctx) {
        case Load:
            op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
            break;
        case Store: op = STORE_DEREF; break;
        case AugLoad:
        case AugStore:
            break;
        case Del: op = DELETE_DEREF; break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for deref variable");
            return 0;
        }
        break;
    case OP_FAST:
        switch (ctx) {
        case Load: op = LOAD_FAST; break;
        case Store: op = STORE_FAST; break;
        case Del: op = DELETE_FAST; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for local variable");
            return 0;
        }
        ADDOP_O(c, op, mangled, varnames);
        Py_DECREF(mangled);
        return 1;
    case OP_GLOBAL:
        switch (ctx) {
        case Load: op = LOAD_GLOBAL; break;
        case Store: op = STORE_GLOBAL; break;
        case Del: op = DELETE_GLOBAL; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for global variable");
            return 0;
        }
        break;
    case OP_NAME:
        switch (ctx) {
        case Load: op = LOAD_NAME; break;
        case Store: op = STORE_NAME; break;
        case Del: op = DELETE_NAME; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for name variable");
            return 0;
        }
        break;
    }

    assert(op);
    arg = compiler_add_o(c, dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, op, arg);
}

static int
compiler_boolop(struct compiler *c, expr_ty e)
{
    basicblock *end;
    int jumpi;
    Py_ssize_t i, n;
    asdl_seq *s;

    assert(e->kind == BoolOp_kind);
    if (e->v.BoolOp.op == And)
        jumpi = JUMP_IF_FALSE_OR_POP;
    else
        jumpi = JUMP_IF_TRUE_OR_POP;
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    s = e->v.BoolOp.values;
    n = asdl_seq_LEN(s) - 1;
    assert(n >= 0);
    for (i = 0; i < n; ++i) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
        ADDOP_JABS(c, jumpi, end);
    }
    VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
    compiler_use_next_block(c, end);
    return 1;
}

static int
starunpack_helper(struct compiler *c, asdl_seq *elts,
                  int single_op, int inner_op, int outer_op)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    Py_ssize_t i, nsubitems = 0, nseen = 0;
    for (i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind) {
            if (nseen) {
                ADDOP_I(c, inner_op, nseen);
                nseen = 0;
                nsubitems++;
            }
            VISIT(c, expr, elt->v.Starred.value);
            nsubitems++;
        }
        else {
            VISIT(c, expr, elt);
            nseen++;
        }
    }
    if (nsubitems) {
        if (nseen) {
            ADDOP_I(c, inner_op, nseen);
            nsubitems++;
        }
        ADDOP_I(c, outer_op, nsubitems);
    }
    else
        ADDOP_I(c, single_op, nseen);
    return 1;
}

static int
assignment_helper(struct compiler *c, asdl_seq *elts)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    Py_ssize_t i;
    int seen_star = 0;
    for (i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind && !seen_star) {
            if ((i >= (1 << 8)) ||
                (n-i-1 >= (INT_MAX >> 8)))
                return compiler_error(c,
                    "too many expressions in "
                    "star-unpacking assignment");
            ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
            seen_star = 1;
            asdl_seq_SET(elts, i, elt->v.Starred.value);
        }
        else if (elt->kind == Starred_kind) {
            return compiler_error(c,
                "two starred expressions in assignment");
        }
    }
    if (!seen_star) {
        ADDOP_I(c, UNPACK_SEQUENCE, n);
    }
    VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_list(struct compiler *c, expr_ty e)
{
    asdl_seq *elts = e->v.List.elts;
    if (e->v.List.ctx == Store) {
        return assignment_helper(c, elts);
    }
    else if (e->v.List.ctx == Load) {
        return starunpack_helper(c, elts,
                                 BUILD_LIST, BUILD_TUPLE, BUILD_LIST_UNPACK);
    }
    else
        VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_tuple(struct compiler *c, expr_ty e)
{
    asdl_seq *elts = e->v.Tuple.elts;
    if (e->v.Tuple.ctx == Store) {
        return assignment_helper(c, elts);
    }
    else if (e->v.Tuple.ctx == Load) {
        return starunpack_helper(c, elts,
                                 BUILD_TUPLE, BUILD_TUPLE, BUILD_TUPLE_UNPACK);
    }
    else
        VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_set(struct compiler *c, expr_ty e)
{
    return starunpack_helper(c, e->v.Set.elts, BUILD_SET,
                             BUILD_SET, BUILD_SET_UNPACK);
}

static int
compiler_dict(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n, containers, elements;
    int is_unpacking = 0;
    n = asdl_seq_LEN(e->v.Dict.values);
    containers = 0;
    elements = 0;
    for (i = 0; i < n; i++) {
        is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
        if (elements == 0xFFFF || (elements && is_unpacking)) {
            ADDOP_I(c, BUILD_MAP, elements);
            containers++;
            elements = 0;
        }
        if (is_unpacking) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
            containers++;
        }
        else {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
            elements++;
        }
    }
    if (elements || containers == 0) {
        ADDOP_I(c, BUILD_MAP, elements);
        containers++;
    }
    /* If there is more than one dict, they need to be merged into a new
     * dict.  If there is one dict and it's an unpacking, then it needs
     * to be copied into a new dict." */
    while (containers > 1 || is_unpacking) {
        int oparg = containers < 255 ? containers : 255;
        ADDOP_I(c, BUILD_MAP_UNPACK, oparg);
        containers -= (oparg - 1);
        is_unpacking = 0;
    }
    return 1;
}

static int
compiler_compare(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n;
    basicblock *cleanup = NULL;

    /* XXX the logic can be cleaned up for 1 or multiple comparisons */
    VISIT(c, expr, e->v.Compare.left);
    n = asdl_seq_LEN(e->v.Compare.ops);
    assert(n > 0);
    if (n > 1) {
        cleanup = compiler_new_block(c);
        if (cleanup == NULL)
            return 0;
        VISIT(c, expr,
            (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
    }
    for (i = 1; i < n; i++) {
        ADDOP(c, DUP_TOP);
        ADDOP(c, ROT_THREE);
        ADDOP_I(c, COMPARE_OP,
            cmpop((cmpop_ty)(asdl_seq_GET(
                                      e->v.Compare.ops, i - 1))));
        ADDOP_JABS(c, JUMP_IF_FALSE_OR_POP, cleanup);
        NEXT_BLOCK(c);
        if (i < (n - 1))
            VISIT(c, expr,
                (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
    }
    VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n - 1));
    ADDOP_I(c, COMPARE_OP,
           cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, n - 1))));
    if (n > 1) {
        basicblock *end = compiler_new_block(c);
        if (end == NULL)
            return 0;
        ADDOP_JREL(c, JUMP_FORWARD, end);
        compiler_use_next_block(c, cleanup);
        ADDOP(c, ROT_TWO);
        ADDOP(c, POP_TOP);
        compiler_use_next_block(c, end);
    }
    return 1;
}

static int
compiler_call(struct compiler *c, expr_ty e)
{
    VISIT(c, expr, e->v.Call.func);
    return compiler_call_helper(c, 0,
                                e->v.Call.args,
                                e->v.Call.keywords);
}

static int
compiler_joined_str(struct compiler *c, expr_ty e)
{
    /* Concatenate parts of a string using ''.join(parts). There are
       probably better ways of doing this.

       This is used for constructs like "'x=' f'{42}'", which have to
       be evaluated at compile time. */

    static PyObject *empty_string;
    static PyObject *join_string;

    if (!empty_string) {
        empty_string = PyUnicode_FromString("");
        if (!empty_string)
            return 0;
    }
    if (!join_string) {
        join_string = PyUnicode_FromString("join");
        if (!join_string)
            return 0;
    }

    ADDOP_O(c, LOAD_CONST, empty_string, consts);
    ADDOP_NAME(c, LOAD_ATTR, join_string, names);
    VISIT_SEQ(c, expr, e->v.JoinedStr.values);
    ADDOP_I(c, BUILD_LIST, asdl_seq_LEN(e->v.JoinedStr.values));
    ADDOP_I(c, CALL_FUNCTION, 1);
    return 1;
}

/* Note that this code uses the builtin functions format(), str(),
   repr(), and ascii(). You can break this code, or make it do odd
   things, by redefining those functions. */
static int
compiler_formatted_value(struct compiler *c, expr_ty e)
{
    PyObject *conversion_name = NULL;

    static PyObject *format_string;
    static PyObject *str_string;
    static PyObject *repr_string;
    static PyObject *ascii_string;

    if (!format_string) {
        format_string = PyUnicode_InternFromString("format");
        if (!format_string)
            return 0;
    }

    if (!str_string) {
        str_string = PyUnicode_InternFromString("str");
        if (!str_string)
            return 0;
    }

    if (!repr_string) {
        repr_string = PyUnicode_InternFromString("repr");
        if (!repr_string)
            return 0;
    }
    if (!ascii_string) {
        ascii_string = PyUnicode_InternFromString("ascii");
        if (!ascii_string)
            return 0;
    }

    ADDOP_NAME(c, LOAD_GLOBAL, format_string, names);

    /* If needed, convert via str, repr, or ascii. */
    if (e->v.FormattedValue.conversion != -1) {
        switch (e->v.FormattedValue.conversion) {
        case 's':
            conversion_name = str_string;
            break;
        case 'r':
            conversion_name = repr_string;
            break;
        case 'a':
            conversion_name = ascii_string;
            break;
        default:
            PyErr_SetString(PyExc_SystemError,
                            "Unrecognized conversion character");
            return 0;
        }
        ADDOP_NAME(c, LOAD_GLOBAL, conversion_name, names);
    }

    /* Evaluate the value. */
    VISIT(c, expr, e->v.FormattedValue.value);

    /* If needed, convert via str, repr, or ascii. */
    if (conversion_name) {
        /* Call the function we previously pushed. */
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    /* If we have a format spec, use format(value, format_spec). Otherwise,
       use the single argument form. */
    if (e->v.FormattedValue.format_spec) {
        VISIT(c, expr, e->v.FormattedValue.format_spec);
        ADDOP_I(c, CALL_FUNCTION, 2);
    } else {
        /* No format spec specified, call format(value). */
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    return 1;
}

/* shared code between compiler_call and compiler_class */
static int
compiler_call_helper(struct compiler *c,
                     Py_ssize_t n, /* Args already pushed */
                     asdl_seq *args,
                     asdl_seq *keywords)
{
    int code = 0;
    Py_ssize_t nelts, i, nseen, nkw;

    /* the number of tuples and dictionaries on the stack */
    Py_ssize_t nsubargs = 0, nsubkwargs = 0;

    nkw = 0;
    nseen = 0;  /* the number of positional arguments on the stack */
    nelts = asdl_seq_LEN(args);
    for (i = 0; i < nelts; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        if (elt->kind == Starred_kind) {
            /* A star-arg. If we've seen positional arguments,
               pack the positional arguments into a
               tuple. */
            if (nseen) {
                ADDOP_I(c, BUILD_TUPLE, nseen);
                nseen = 0;
                nsubargs++;
            }
            VISIT(c, expr, elt->v.Starred.value);
            nsubargs++;
        }
        else if (nsubargs) {
            /* We've seen star-args already, so we
               count towards items-to-pack-into-tuple. */
            VISIT(c, expr, elt);
            nseen++;
        }
        else {
            /* Positional arguments before star-arguments
               are left on the stack. */
            VISIT(c, expr, elt);
            n++;
        }
    }
    if (nseen) {
        /* Pack up any trailing positional arguments. */
        ADDOP_I(c, BUILD_TUPLE, nseen);
        nsubargs++;
    }
    if (nsubargs) {
        code |= 1;
        if (nsubargs > 1) {
            /* If we ended up with more than one stararg, we need
               to concatenate them into a single sequence. */
            ADDOP_I(c, BUILD_LIST_UNPACK, nsubargs);
        }
    }

    /* Same dance again for keyword arguments */
    nseen = 0;  /* the number of keyword arguments on the stack following */
    nelts = asdl_seq_LEN(keywords);
    for (i = 0; i < nelts; i++) {
        keyword_ty kw = asdl_seq_GET(keywords, i);
        if (kw->arg == NULL) {
            /* A keyword argument unpacking. */
            if (nseen) {
                ADDOP_I(c, BUILD_MAP, nseen);
                nseen = 0;
                nsubkwargs++;
            }
            VISIT(c, expr, kw->value);
            nsubkwargs++;
        }
        else if (nsubkwargs) {
            /* A keyword argument and we already have a dict. */
            ADDOP_O(c, LOAD_CONST, kw->arg, consts);
            VISIT(c, expr, kw->value);
            nseen++;
        }
        else {
            /* keyword argument */
            VISIT(c, keyword, kw)
            nkw++;
        }
    }
    if (nseen) {
        /* Pack up any trailing keyword arguments. */
        ADDOP_I(c, BUILD_MAP, nseen);
        nsubkwargs++;
    }
    if (nsubkwargs) {
        code |= 2;
        if (nsubkwargs > 1) {
            /* Pack it all up */
            int function_pos = n + (code & 1) + nkw + 1;
            ADDOP_I(c, BUILD_MAP_UNPACK_WITH_CALL, nsubkwargs | (function_pos << 8));
        }
    }
    assert(n < 1<<8);
    assert(nkw < 1<<24);
    n |= nkw << 8;

    switch (code) {
    case 0:
        ADDOP_I(c, CALL_FUNCTION, n);
        break;
    case 1:
        ADDOP_I(c, CALL_FUNCTION_VAR, n);
        break;
    case 2:
        ADDOP_I(c, CALL_FUNCTION_KW, n);
        break;
    case 3:
        ADDOP_I(c, CALL_FUNCTION_VAR_KW, n);
        break;
    }
    return 1;
}


/* List and set comprehensions and generator expressions work by creating a
  nested function to perform the actual iteration. This means that the
  iteration variables don't leak into the current scope.
  The defined function is called immediately following its definition, with the
  result of that call being the result of the expression.
  The LC/SC version returns the populated container, while the GE version is
  flagged in symtable.c as a generator, so it returns the generator object
  when the function is called.
  This code *knows* that the loop cannot contain break, continue, or return,
  so it cheats and skips the SETUP_LOOP/POP_BLOCK steps used in normal loops.

  Possible cleanups:
    - iterate over the generator sequence instead of using recursion
*/

static int
compiler_comprehension_generator(struct compiler *c,
                                 asdl_seq *generators, int gen_index,
                                 expr_ty elt, expr_ty val, int type)
{
    /* generate code for the iterator, then each of the ifs,
       and then write to the element */

    comprehension_ty gen;
    basicblock *start, *anchor, *skip, *if_cleanup;
    Py_ssize_t i, n;

    start = compiler_new_block(c);
    skip = compiler_new_block(c);
    if_cleanup = compiler_new_block(c);
    anchor = compiler_new_block(c);

    if (start == NULL || skip == NULL || if_cleanup == NULL ||
        anchor == NULL)
        return 0;

    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);

    if (gen_index == 0) {
        /* Receive outermost iter as an implicit argument */
        c->u->u_argcount = 1;
        ADDOP_I(c, LOAD_FAST, 0);
    }
    else {
        /* Sub-iter - calculate on the fly */
        VISIT(c, expr, gen->iter);
        ADDOP(c, GET_ITER);
    }
    compiler_use_next_block(c, start);
    ADDOP_JREL(c, FOR_ITER, anchor);
    NEXT_BLOCK(c);
    VISIT(c, expr, gen->target);

    /* XXX this needs to be cleaned up...a lot! */
    n = asdl_seq_LEN(gen->ifs);
    for (i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        VISIT(c, expr, e);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, if_cleanup);
        NEXT_BLOCK(c);
    }

    if (++gen_index < asdl_seq_LEN(generators))
        if (!compiler_comprehension_generator(c,
                                              generators, gen_index,
                                              elt, val, type))
        return 0;

    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP(c, YIELD_VALUE);
            ADDOP(c, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, LIST_APPEND, gen_index + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, SET_ADD, gen_index + 1);
            break;
        case COMP_DICTCOMP:
            /* With 'd[k] = v', v is evaluated before k, so we do
               the same. */
            VISIT(c, expr, val);
            VISIT(c, expr, elt);
            ADDOP_I(c, MAP_ADD, gen_index + 1);
            break;
        default:
            return 0;
        }

        compiler_use_next_block(c, skip);
    }
    compiler_use_next_block(c, if_cleanup);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);
    compiler_use_next_block(c, anchor);

    return 1;
}

static int
compiler_comprehension(struct compiler *c, expr_ty e, int type,
                       identifier name, asdl_seq *generators, expr_ty elt,
                       expr_ty val)
{
    PyCodeObject *co = NULL;
    expr_ty outermost_iter;
    PyObject *qualname = NULL;

    outermost_iter = ((comprehension_ty)
                      asdl_seq_GET(generators, 0))->iter;

    if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
                              (void *)e, e->lineno))
        goto error;

    if (type != COMP_GENEXP) {
        int op;
        switch (type) {
        case COMP_LISTCOMP:
            op = BUILD_LIST;
            break;
        case COMP_SETCOMP:
            op = BUILD_SET;
            break;
        case COMP_DICTCOMP:
            op = BUILD_MAP;
            break;
        default:
            PyErr_Format(PyExc_SystemError,
                         "unknown comprehension type %d", type);
            goto error_in_scope;
        }

        ADDOP_I(c, op, 0);
    }

    if (!compiler_comprehension_generator(c, generators, 0, elt,
                                          val, type))
        goto error_in_scope;

    if (type != COMP_GENEXP) {
        ADDOP(c, RETURN_VALUE);
    }

    co = assemble(c, 1);
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL)
        goto error;

    if (!compiler_make_closure(c, co, 0, qualname))
        goto error;
    Py_DECREF(qualname);
    Py_DECREF(co);

    VISIT(c, expr, outermost_iter);
    ADDOP(c, GET_ITER);
    ADDOP_I(c, CALL_FUNCTION, 1);
    return 1;
error_in_scope:
    compiler_exit_scope(c);
error:
    Py_XDECREF(qualname);
    Py_XDECREF(co);
    return 0;
}

static int
compiler_genexp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<genexpr>");
        if (!name)
            return 0;
    }
    assert(e->kind == GeneratorExp_kind);
    return compiler_comprehension(c, e, COMP_GENEXP, name,
                                  e->v.GeneratorExp.generators,
                                  e->v.GeneratorExp.elt, NULL);
}

static int
compiler_listcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<listcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == ListComp_kind);
    return compiler_comprehension(c, e, COMP_LISTCOMP, name,
                                  e->v.ListComp.generators,
                                  e->v.ListComp.elt, NULL);
}

static int
compiler_setcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<setcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == SetComp_kind);
    return compiler_comprehension(c, e, COMP_SETCOMP, name,
                                  e->v.SetComp.generators,
                                  e->v.SetComp.elt, NULL);
}


static int
compiler_dictcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<dictcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == DictComp_kind);
    return compiler_comprehension(c, e, COMP_DICTCOMP, name,
                                  e->v.DictComp.generators,
                                  e->v.DictComp.key, e->v.DictComp.value);
}


static int
compiler_visit_keyword(struct compiler *c, keyword_ty k)
{
    ADDOP_O(c, LOAD_CONST, k->arg, consts);
    VISIT(c, expr, k->value);
    return 1;
}

/* Test whether expression is constant.  For constants, report
   whether they are true or false.

   Return values: 1 for true, 0 for false, -1 for non-constant.
 */

static int
expr_constant(struct compiler *c, expr_ty e)
{
    char *id;
    switch (e->kind) {
    case Ellipsis_kind:
        return 1;
    case Num_kind:
        return PyObject_IsTrue(e->v.Num.n);
    case Str_kind:
        return PyObject_IsTrue(e->v.Str.s);
    case Name_kind:
        /* optimize away names that can't be reassigned */
        id = PyUnicode_AsUTF8(e->v.Name.id);
        if (id && strcmp(id, "__debug__") == 0)
            return !c->c_optimize;
        return -1;
    case NameConstant_kind: {
        PyObject *o = e->v.NameConstant.value;
        if (o == Py_None)
            return 0;
        else if (o == Py_True)
            return 1;
        else if (o == Py_False)
            return 0;
    }
    default:
        return -1;
    }
}


/*
   Implements the async with statement.

   The semantics outlined in that PEP are as follows:

   async with EXPR as VAR:
       BLOCK

   It is implemented roughly as:

   context = EXPR
   exit = context.__aexit__  # not calling it
   value = await context.__aenter__()
   try:
       VAR = value  # if VAR present in the syntax
       BLOCK
   finally:
       if an exception was raised:
           exc = copy of (exception, instance, traceback)
       else:
           exc = (None, None, None)
       if not (await exit(*exc)):
           raise
 */
static int
compiler_async_with(struct compiler *c, stmt_ty s, int pos)
{
    basicblock *block, *finally;
    withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);

    assert(s->kind == AsyncWith_kind);

    block = compiler_new_block(c);
    finally = compiler_new_block(c);
    if (!block || !finally)
        return 0;

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);

    ADDOP(c, BEFORE_ASYNC_WITH);
    ADDOP(c, GET_AWAITABLE);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    ADDOP_JREL(c, SETUP_ASYNC_WITH, finally);

    /* SETUP_ASYNC_WITH pushes a finally block. */
    compiler_use_next_block(c, block);
    if (!compiler_push_fblock(c, FINALLY_TRY, block)) {
        return 0;
    }

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__aenter__() */
        ADDOP(c, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.AsyncWith.items))
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
    else if (!compiler_async_with(c, s, pos))
            return 0;

    /* End of try block; start the finally block */
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, block);

    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    compiler_use_next_block(c, finally);
    if (!compiler_push_fblock(c, FINALLY_END, finally))
        return 0;

    /* Finally block starts; context.__exit__ is on the stack under
       the exception or return information. Just issue our magic
       opcode. */
    ADDOP(c, WITH_CLEANUP_START);

    ADDOP(c, GET_AWAITABLE);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    ADDOP(c, WITH_CLEANUP_FINISH);

    /* Finally block ends. */
    ADDOP(c, END_FINALLY);
    compiler_pop_fblock(c, FINALLY_END, finally);
    return 1;
}


/*
   Implements the with statement from PEP 343.

   The semantics outlined in that PEP are as follows:

   with EXPR as VAR:
       BLOCK

   It is implemented roughly as:

   context = EXPR
   exit = context.__exit__  # not calling it
   value = context.__enter__()
   try:
       VAR = value  # if VAR present in the syntax
       BLOCK
   finally:
       if an exception was raised:
           exc = copy of (exception, instance, traceback)
       else:
           exc = (None, None, None)
       exit(*exc)
 */
static int
compiler_with(struct compiler *c, stmt_ty s, int pos)
{
    basicblock *block, *finally;
    withitem_ty item = asdl_seq_GET(s->v.With.items, pos);

    assert(s->kind == With_kind);

    block = compiler_new_block(c);
    finally = compiler_new_block(c);
    if (!block || !finally)
        return 0;

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);
    ADDOP_JREL(c, SETUP_WITH, finally);

    /* SETUP_WITH pushes a finally block. */
    compiler_use_next_block(c, block);
    if (!compiler_push_fblock(c, FINALLY_TRY, block)) {
        return 0;
    }

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__enter__() */
        ADDOP(c, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.With.items))
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.With.body)
    else if (!compiler_with(c, s, pos))
            return 0;

    /* End of try block; start the finally block */
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, block);

    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    compiler_use_next_block(c, finally);
    if (!compiler_push_fblock(c, FINALLY_END, finally))
        return 0;

    /* Finally block starts; context.__exit__ is on the stack under
       the exception or return information. Just issue our magic
       opcode. */
    ADDOP(c, WITH_CLEANUP_START);
    ADDOP(c, WITH_CLEANUP_FINISH);

    /* Finally block ends. */
    ADDOP(c, END_FINALLY);
    compiler_pop_fblock(c, FINALLY_END, finally);
    return 1;
}

static int
compiler_visit_expr(struct compiler *c, expr_ty e)
{
    /* If expr e has a different line number than the last expr/stmt,
       set a new line number for the next instruction.
    */
    if (e->lineno > c->u->u_lineno) {
        c->u->u_lineno = e->lineno;
        c->u->u_lineno_set = 0;
    }
    /* Updating the column offset is always harmless. */
    c->u->u_col_offset = e->col_offset;
    switch (e->kind) {
    case BoolOp_kind:
        return compiler_boolop(c, e);
    case BinOp_kind:
        VISIT(c, expr, e->v.BinOp.left);
        VISIT(c, expr, e->v.BinOp.right);
        ADDOP(c, binop(c, e->v.BinOp.op));
        break;
    case UnaryOp_kind:
        VISIT(c, expr, e->v.UnaryOp.operand);
        ADDOP(c, unaryop(e->v.UnaryOp.op));
        break;
    case Lambda_kind:
        return compiler_lambda(c, e);
    case IfExp_kind:
        return compiler_ifexp(c, e);
    case Dict_kind:
        return compiler_dict(c, e);
    case Set_kind:
        return compiler_set(c, e);
    case GeneratorExp_kind:
        return compiler_genexp(c, e);
    case ListComp_kind:
        return compiler_listcomp(c, e);
    case SetComp_kind:
        return compiler_setcomp(c, e);
    case DictComp_kind:
        return compiler_dictcomp(c, e);
    case Yield_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'yield' outside function");
        if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
            return compiler_error(c, "'yield' inside async function");
        if (e->v.Yield.value) {
            VISIT(c, expr, e->v.Yield.value);
        }
        else {
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        }
        ADDOP(c, YIELD_VALUE);
        break;
    case YieldFrom_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'yield' outside function");

        if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
            return compiler_error(c, "'yield from' inside async function");

        VISIT(c, expr, e->v.YieldFrom.value);
        ADDOP(c, GET_YIELD_FROM_ITER);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
        break;
    case Await_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'await' outside function");

        if (c->u->u_scope_type == COMPILER_SCOPE_COMPREHENSION)
            return compiler_error(
                c, "'await' expressions in comprehensions are not supported");

        if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION)
            return compiler_error(c, "'await' outside async function");

        VISIT(c, expr, e->v.Await.value);
        ADDOP(c, GET_AWAITABLE);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
        break;
    case Compare_kind:
        return compiler_compare(c, e);
    case Call_kind:
        return compiler_call(c, e);
    case Num_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Num.n, consts);
        break;
    case Str_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Str.s, consts);
        break;
    case JoinedStr_kind:
        return compiler_joined_str(c, e);
    case FormattedValue_kind:
        return compiler_formatted_value(c, e);
    case Bytes_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Bytes.s, consts);
        break;
    case Ellipsis_kind:
        ADDOP_O(c, LOAD_CONST, Py_Ellipsis, consts);
        break;
    case NameConstant_kind:
        ADDOP_O(c, LOAD_CONST, e->v.NameConstant.value, consts);
        break;
    /* The following exprs can be assignment targets. */
    case Attribute_kind:
        if (e->v.Attribute.ctx != AugStore)
            VISIT(c, expr, e->v.Attribute.value);
        switch (e->v.Attribute.ctx) {
        case AugLoad:
            ADDOP(c, DUP_TOP);
            /* Fall through to load */
        case Load:
            ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
            break;
        case AugStore:
            ADDOP(c, ROT_TWO);
            /* Fall through to save */
        case Store:
            ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
            break;
        case Del:
            ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid in attribute expression");
            return 0;
        }
        break;
    case Subscript_kind:
        switch (e->v.Subscript.ctx) {
        case AugLoad:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, AugLoad);
            break;
        case Load:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Load);
            break;
        case AugStore:
            VISIT_SLICE(c, e->v.Subscript.slice, AugStore);
            break;
        case Store:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Store);
            break;
        case Del:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Del);
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                "param invalid in subscript expression");
            return 0;
        }
        break;
    case Starred_kind:
        switch (e->v.Starred.ctx) {
        case Store:
            /* In all legitimate cases, the Starred node was already replaced
             * by compiler_list/compiler_tuple. XXX: is that okay? */
            return compiler_error(c,
                "starred assignment target must be in a list or tuple");
        default:
            return compiler_error(c,
                "can't use starred expression here");
        }
        break;
    case Name_kind:
        return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
    /* child nodes of List and Tuple will have expr_context set */
    case List_kind:
        return compiler_list(c, e);
    case Tuple_kind:
        return compiler_tuple(c, e);
    }
    return 1;
}

static int
compiler_augassign(struct compiler *c, stmt_ty s)
{
    expr_ty e = s->v.AugAssign.target;
    expr_ty auge;

    assert(s->kind == AugAssign_kind);

    switch (e->kind) {
    case Attribute_kind:
        auge = Attribute(e->v.Attribute.value, e->v.Attribute.attr,
                         AugLoad, e->lineno, e->col_offset, c->c_arena);
        if (auge == NULL)
            return 0;
        VISIT(c, expr, auge);
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        auge->v.Attribute.ctx = AugStore;
        VISIT(c, expr, auge);
        break;
    case Subscript_kind:
        auge = Subscript(e->v.Subscript.value, e->v.Subscript.slice,
                         AugLoad, e->lineno, e->col_offset, c->c_arena);
        if (auge == NULL)
            return 0;
        VISIT(c, expr, auge);
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        auge->v.Subscript.ctx = AugStore;
        VISIT(c, expr, auge);
        break;
    case Name_kind:
        if (!compiler_nameop(c, e->v.Name.id, Load))
            return 0;
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        return compiler_nameop(c, e->v.Name.id, Store);
    default:
        PyErr_Format(PyExc_SystemError,
            "invalid node type (%d) for augmented assignment",
            e->kind);
        return 0;
    }
    return 1;
}

static int
compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
{
    struct fblockinfo *f;
    if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
        PyErr_SetString(PyExc_SystemError,
                        "too many statically nested blocks");
        return 0;
    }
    f = &c->u->u_fblock[c->u->u_nfblocks++];
    f->fb_type = t;
    f->fb_block = b;
    return 1;
}

static void
compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
{
    struct compiler_unit *u = c->u;
    assert(u->u_nfblocks > 0);
    u->u_nfblocks--;
    assert(u->u_fblock[u->u_nfblocks].fb_type == t);
    assert(u->u_fblock[u->u_nfblocks].fb_block == b);
}

static int
compiler_in_loop(struct compiler *c) {
    int i;
    struct compiler_unit *u = c->u;
    for (i = 0; i < u->u_nfblocks; ++i) {
        if (u->u_fblock[i].fb_type == LOOP)
            return 1;
    }
    return 0;
}
/* Raises a SyntaxError and returns 0.
   If something goes wrong, a different exception may be raised.
*/

static int
compiler_error(struct compiler *c, const char *errstr)
{
    PyObject *loc;
    PyObject *u = NULL, *v = NULL;

    loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno);
    if (!loc) {
        Py_INCREF(Py_None);
        loc = Py_None;
    }
    u = Py_BuildValue("(OiiO)", c->c_filename, c->u->u_lineno,
                      c->u->u_col_offset, loc);
    if (!u)
        goto exit;
    v = Py_BuildValue("(zO)", errstr, u);
    if (!v)
        goto exit;
    PyErr_SetObject(PyExc_SyntaxError, v);
 exit:
    Py_DECREF(loc);
    Py_XDECREF(u);
    Py_XDECREF(v);
    return 0;
}

static int
compiler_handle_subscr(struct compiler *c, const char *kind,
                       expr_context_ty ctx)
{
    int op = 0;

    /* XXX this code is duplicated */
    switch (ctx) {
        case AugLoad: /* fall through to Load */
        case Load:    op = BINARY_SUBSCR; break;
        case AugStore:/* fall through to Store */
        case Store:   op = STORE_SUBSCR; break;
        case Del:     op = DELETE_SUBSCR; break;
        case Param:
            PyErr_Format(PyExc_SystemError,
                         "invalid %s kind %d in subscript\n",
                         kind, ctx);
            return 0;
    }
    if (ctx == AugLoad) {
        ADDOP(c, DUP_TOP_TWO);
    }
    else if (ctx == AugStore) {
        ADDOP(c, ROT_THREE);
    }
    ADDOP(c, op);
    return 1;
}

static int
compiler_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
{
    int n = 2;
    assert(s->kind == Slice_kind);

    /* only handles the cases where BUILD_SLICE is emitted */
    if (s->v.Slice.lower) {
        VISIT(c, expr, s->v.Slice.lower);
    }
    else {
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
    }

    if (s->v.Slice.upper) {
        VISIT(c, expr, s->v.Slice.upper);
    }
    else {
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
    }

    if (s->v.Slice.step) {
        n++;
        VISIT(c, expr, s->v.Slice.step);
    }
    ADDOP_I(c, BUILD_SLICE, n);
    return 1;
}

static int
compiler_visit_nested_slice(struct compiler *c, slice_ty s,
                            expr_context_ty ctx)
{
    switch (s->kind) {
    case Slice_kind:
        return compiler_slice(c, s, ctx);
    case Index_kind:
        VISIT(c, expr, s->v.Index.value);
        break;
    case ExtSlice_kind:
    default:
        PyErr_SetString(PyExc_SystemError,
                        "extended slice invalid in nested slice");
        return 0;
    }
    return 1;
}

static int
compiler_visit_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
{
    char * kindname = NULL;
    switch (s->kind) {
    case Index_kind:
        kindname = "index";
        if (ctx != AugStore) {
            VISIT(c, expr, s->v.Index.value);
        }
        break;
    case Slice_kind:
        kindname = "slice";
        if (ctx != AugStore) {
            if (!compiler_slice(c, s, ctx))
                return 0;
        }
        break;
    case ExtSlice_kind:
        kindname = "extended slice";
        if (ctx != AugStore) {
            Py_ssize_t i, n = asdl_seq_LEN(s->v.ExtSlice.dims);
            for (i = 0; i < n; i++) {
                slice_ty sub = (slice_ty)asdl_seq_GET(
                    s->v.ExtSlice.dims, i);
                if (!compiler_visit_nested_slice(c, sub, ctx))
                    return 0;
            }
            ADDOP_I(c, BUILD_TUPLE, n);
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid subscript kind %d", s->kind);
        return 0;
    }
    return compiler_handle_subscr(c, kindname, ctx);
}

/* End of the compiler section, beginning of the assembler section */

/* do depth-first search of basic block graph, starting with block.
   post records the block indices in post-order.

   XXX must handle implicit jumps from one block to next
*/

struct assembler {
    PyObject *a_bytecode;  /* string containing bytecode */
    int a_offset;              /* offset into bytecode */
    int a_nblocks;             /* number of reachable blocks */
    basicblock **a_postorder; /* list of blocks in dfs postorder */
    PyObject *a_lnotab;    /* string containing lnotab */
    int a_lnotab_off;      /* offset into lnotab */
    int a_lineno;              /* last lineno of emitted instruction */
    int a_lineno_off;      /* bytecode offset of last lineno */
};

static void
dfs(struct compiler *c, basicblock *b, struct assembler *a)
{
    int i;
    struct instr *instr = NULL;

    if (b->b_seen)
        return;
    b->b_seen = 1;
    if (b->b_next != NULL)
        dfs(c, b->b_next, a);
    for (i = 0; i < b->b_iused; i++) {
        instr = &b->b_instr[i];
        if (instr->i_jrel || instr->i_jabs)
            dfs(c, instr->i_target, a);
    }
    a->a_postorder[a->a_nblocks++] = b;
}

static int
stackdepth_walk(struct compiler *c, basicblock *b, int depth, int maxdepth)
{
    int i, target_depth, effect;
    struct instr *instr;
    if (b->b_seen || b->b_startdepth >= depth)
        return maxdepth;
    b->b_seen = 1;
    b->b_startdepth = depth;
    for (i = 0; i < b->b_iused; i++) {
        instr = &b->b_instr[i];
        effect = PyCompile_OpcodeStackEffect(instr->i_opcode, instr->i_oparg);
        if (effect == PY_INVALID_STACK_EFFECT) {
            fprintf(stderr, "opcode = %d\n", instr->i_opcode);
            Py_FatalError("PyCompile_OpcodeStackEffect()");
        }
        depth += effect;

        if (depth > maxdepth)
            maxdepth = depth;
        assert(depth >= 0); /* invalid code or bug in stackdepth() */
        if (instr->i_jrel || instr->i_jabs) {
            target_depth = depth;
            if (instr->i_opcode == FOR_ITER) {
                target_depth = depth-2;
            }
            else if (instr->i_opcode == SETUP_FINALLY ||
                     instr->i_opcode == SETUP_EXCEPT) {
                target_depth = depth+3;
                if (target_depth > maxdepth)
                    maxdepth = target_depth;
            }
            else if (instr->i_opcode == JUMP_IF_TRUE_OR_POP ||
                     instr->i_opcode == JUMP_IF_FALSE_OR_POP)
                depth = depth - 1;
            maxdepth = stackdepth_walk(c, instr->i_target,
                                       target_depth, maxdepth);
            if (instr->i_opcode == JUMP_ABSOLUTE ||
                instr->i_opcode == JUMP_FORWARD) {
                goto out; /* remaining code is dead */
            }
        }
    }
    if (b->b_next)
        maxdepth = stackdepth_walk(c, b->b_next, depth, maxdepth);
out:
    b->b_seen = 0;
    return maxdepth;
}

/* Find the flow path that needs the largest stack.  We assume that
 * cycles in the flow graph have no net effect on the stack depth.
 */
static int
stackdepth(struct compiler *c)
{
    basicblock *b, *entryblock;
    entryblock = NULL;
    for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
        b->b_seen = 0;
        b->b_startdepth = INT_MIN;
        entryblock = b;
    }
    if (!entryblock)
        return 0;
    return stackdepth_walk(c, entryblock, 0, 0);
}

static int
assemble_init(struct assembler *a, int nblocks, int firstlineno)
{
    memset(a, 0, sizeof(struct assembler));
    a->a_lineno = firstlineno;
    a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
    if (!a->a_bytecode)
        return 0;
    a->a_lnotab = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
    if (!a->a_lnotab)
        return 0;
    if ((size_t)nblocks > PY_SIZE_MAX / sizeof(basicblock *)) {
        PyErr_NoMemory();
        return 0;
    }
    a->a_postorder = (basicblock **)PyObject_Malloc(
                                        sizeof(basicblock *) * nblocks);
    if (!a->a_postorder) {
        PyErr_NoMemory();
        return 0;
    }
    return 1;
}

static void
assemble_free(struct assembler *a)
{
    Py_XDECREF(a->a_bytecode);
    Py_XDECREF(a->a_lnotab);
    if (a->a_postorder)
        PyObject_Free(a->a_postorder);
}

/* Return the size of a basic block in bytes. */

static int
instrsize(struct instr *instr)
{
    if (!instr->i_hasarg)
        return 1;               /* 1 byte for the opcode*/
    if (instr->i_oparg > 0xffff)
        return 6;               /* 1 (opcode) + 1 (EXTENDED_ARG opcode) + 2 (oparg) + 2(oparg extended) */
    return 3;                   /* 1 (opcode) + 2 (oparg) */
}

static int
blocksize(basicblock *b)
{
    int i;
    int size = 0;

    for (i = 0; i < b->b_iused; i++)
        size += instrsize(&b->b_instr[i]);
    return size;
}

/* Appends a pair to the end of the line number table, a_lnotab, representing
   the instruction's bytecode offset and line number.  See
   Objects/lnotab_notes.txt for the description of the line number table. */

static int
assemble_lnotab(struct assembler *a, struct instr *i)
{
    int d_bytecode, d_lineno;
    Py_ssize_t len;
    unsigned char *lnotab;

    d_bytecode = a->a_offset - a->a_lineno_off;
    d_lineno = i->i_lineno - a->a_lineno;

    assert(d_bytecode >= 0);
    assert(d_lineno >= 0);

    if(d_bytecode == 0 && d_lineno == 0)
        return 1;

    if (d_bytecode > 255) {
        int j, nbytes, ncodes = d_bytecode / 255;
        nbytes = a->a_lnotab_off + 2 * ncodes;
        len = PyBytes_GET_SIZE(a->a_lnotab);
        if (nbytes >= len) {
            if ((len <= INT_MAX / 2) && (len * 2 < nbytes))
                len = nbytes;
            else if (len <= INT_MAX / 2)
                len *= 2;
            else {
                PyErr_NoMemory();
                return 0;
            }
            if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
                return 0;
        }
        lnotab = (unsigned char *)
                   PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
        for (j = 0; j < ncodes; j++) {
            *lnotab++ = 255;
            *lnotab++ = 0;
        }
        d_bytecode -= ncodes * 255;
        a->a_lnotab_off += ncodes * 2;
    }
    assert(d_bytecode <= 255);
    if (d_lineno > 255) {
        int j, nbytes, ncodes = d_lineno / 255;
        nbytes = a->a_lnotab_off + 2 * ncodes;
        len = PyBytes_GET_SIZE(a->a_lnotab);
        if (nbytes >= len) {
            if ((len <= INT_MAX / 2) && len * 2 < nbytes)
                len = nbytes;
            else if (len <= INT_MAX / 2)
                len *= 2;
            else {
                PyErr_NoMemory();
                return 0;
            }
            if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
                return 0;
        }
        lnotab = (unsigned char *)
                   PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
        *lnotab++ = d_bytecode;
        *lnotab++ = 255;
        d_bytecode = 0;
        for (j = 1; j < ncodes; j++) {
            *lnotab++ = 0;
            *lnotab++ = 255;
        }
        d_lineno -= ncodes * 255;
        a->a_lnotab_off += ncodes * 2;
    }

    len = PyBytes_GET_SIZE(a->a_lnotab);
    if (a->a_lnotab_off + 2 >= len) {
        if (_PyBytes_Resize(&a->a_lnotab, len * 2) < 0)
            return 0;
    }
    lnotab = (unsigned char *)
                    PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;

    a->a_lnotab_off += 2;
    if (d_bytecode) {
        *lnotab++ = d_bytecode;
        *lnotab++ = d_lineno;
    }
    else {      /* First line of a block; def stmt, etc. */
        *lnotab++ = 0;
        *lnotab++ = d_lineno;
    }
    a->a_lineno = i->i_lineno;
    a->a_lineno_off = a->a_offset;
    return 1;
}

/* assemble_emit()
   Extend the bytecode with a new instruction.
   Update lnotab if necessary.
*/

static int
assemble_emit(struct assembler *a, struct instr *i)
{
    int size, arg = 0, ext = 0;
    Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
    char *code;

    size = instrsize(i);
    if (i->i_hasarg) {
        arg = i->i_oparg;
        ext = arg >> 16;
    }
    if (i->i_lineno && !assemble_lnotab(a, i))
        return 0;
    if (a->a_offset + size >= len) {
        if (len > PY_SSIZE_T_MAX / 2)
            return 0;
        if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0)
            return 0;
    }
    code = PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
    a->a_offset += size;
    if (size == 6) {
        assert(i->i_hasarg);
        *code++ = (char)EXTENDED_ARG;
        *code++ = ext & 0xff;
        *code++ = ext >> 8;
        arg &= 0xffff;
    }
    *code++ = i->i_opcode;
    if (i->i_hasarg) {
        assert(size == 3 || size == 6);
        *code++ = arg & 0xff;
        *code++ = arg >> 8;
    }
    return 1;
}

static void
assemble_jump_offsets(struct assembler *a, struct compiler *c)
{
    basicblock *b;
    int bsize, totsize, extended_arg_count = 0, last_extended_arg_count;
    int i;

    /* Compute the size of each block and fixup jump args.
       Replace block pointer with position in bytecode. */
    do {
        totsize = 0;
        for (i = a->a_nblocks - 1; i >= 0; i--) {
            b = a->a_postorder[i];
            bsize = blocksize(b);
            b->b_offset = totsize;
            totsize += bsize;
        }
        last_extended_arg_count = extended_arg_count;
        extended_arg_count = 0;
        for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
            bsize = b->b_offset;
            for (i = 0; i < b->b_iused; i++) {
                struct instr *instr = &b->b_instr[i];
                /* Relative jumps are computed relative to
                   the instruction pointer after fetching
                   the jump instruction.
                */
                bsize += instrsize(instr);
                if (instr->i_jabs)
                    instr->i_oparg = instr->i_target->b_offset;
                else if (instr->i_jrel) {
                    int delta = instr->i_target->b_offset - bsize;
                    instr->i_oparg = delta;
                }
                else
                    continue;
                if (instr->i_oparg > 0xffff)
                    extended_arg_count++;
            }
        }

    /* XXX: This is an awful hack that could hurt performance, but
        on the bright side it should work until we come up
        with a better solution.

        The issue is that in the first loop blocksize() is called
        which calls instrsize() which requires i_oparg be set
        appropriately.          There is a bootstrap problem because
        i_oparg is calculated in the second loop above.

        So we loop until we stop seeing new EXTENDED_ARGs.
        The only EXTENDED_ARGs that could be popping up are
        ones in jump instructions.  So this should converge
        fairly quickly.
    */
    } while (last_extended_arg_count != extended_arg_count);
}

static PyObject *
dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
{
    PyObject *tuple, *k, *v;
    Py_ssize_t i, pos = 0, size = PyDict_Size(dict);

    tuple = PyTuple_New(size);
    if (tuple == NULL)
        return NULL;
    while (PyDict_Next(dict, &pos, &k, &v)) {
        i = PyLong_AS_LONG(v);
        /* The keys of the dictionary are tuples. (see compiler_add_o)
           The object we want is always first, though. */
        k = PyTuple_GET_ITEM(k, 0);
        Py_INCREF(k);
        assert((i - offset) < size);
        assert((i - offset) >= 0);
        PyTuple_SET_ITEM(tuple, i - offset, k);
    }
    return tuple;
}

static int
compute_code_flags(struct compiler *c)
{
    PySTEntryObject *ste = c->u->u_ste;
    int flags = 0;
    Py_ssize_t n;
    if (ste->ste_type == FunctionBlock) {
        flags |= CO_NEWLOCALS | CO_OPTIMIZED;
        if (ste->ste_nested)
            flags |= CO_NESTED;
        if (ste->ste_generator)
            flags |= CO_GENERATOR;
        if (ste->ste_varargs)
            flags |= CO_VARARGS;
        if (ste->ste_varkeywords)
            flags |= CO_VARKEYWORDS;
    }

    /* (Only) inherit compilerflags in PyCF_MASK */
    flags |= (c->c_flags->cf_flags & PyCF_MASK);

    n = PyDict_Size(c->u->u_freevars);
    if (n < 0)
        return -1;
    if (n == 0) {
        n = PyDict_Size(c->u->u_cellvars);
        if (n < 0)
            return -1;
        if (n == 0) {
            flags |= CO_NOFREE;
        }
    }

    return flags;
}

static PyCodeObject *
makecode(struct compiler *c, struct assembler *a)
{
    PyObject *tmp;
    PyCodeObject *co = NULL;
    PyObject *consts = NULL;
    PyObject *names = NULL;
    PyObject *varnames = NULL;
    PyObject *name = NULL;
    PyObject *freevars = NULL;
    PyObject *cellvars = NULL;
    PyObject *bytecode = NULL;
    Py_ssize_t nlocals;
    int nlocals_int;
    int flags;
    int argcount, kwonlyargcount;

    tmp = dict_keys_inorder(c->u->u_consts, 0);
    if (!tmp)
        goto error;
    consts = PySequence_List(tmp); /* optimize_code requires a list */
    Py_DECREF(tmp);

    names = dict_keys_inorder(c->u->u_names, 0);
    varnames = dict_keys_inorder(c->u->u_varnames, 0);
    if (!consts || !names || !varnames)
        goto error;

    cellvars = dict_keys_inorder(c->u->u_cellvars, 0);
    if (!cellvars)
        goto error;
    freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_Size(cellvars));
    if (!freevars)
        goto error;

    nlocals = PyDict_Size(c->u->u_varnames);
    assert(nlocals < INT_MAX);
    nlocals_int = Py_SAFE_DOWNCAST(nlocals, Py_ssize_t, int);

    flags = compute_code_flags(c);
    if (flags < 0)
        goto error;

    bytecode = PyCode_Optimize(a->a_bytecode, consts, names, a->a_lnotab);
    if (!bytecode)
        goto error;

    tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */
    if (!tmp)
        goto error;
    Py_DECREF(consts);
    consts = tmp;

    argcount = Py_SAFE_DOWNCAST(c->u->u_argcount, Py_ssize_t, int);
    kwonlyargcount = Py_SAFE_DOWNCAST(c->u->u_kwonlyargcount, Py_ssize_t, int);
    co = PyCode_New(argcount, kwonlyargcount,
                    nlocals_int, stackdepth(c), flags,
                    bytecode, consts, names, varnames,
                    freevars, cellvars,
                    c->c_filename, c->u->u_name,
                    c->u->u_firstlineno,
                    a->a_lnotab);
 error:
    Py_XDECREF(consts);
    Py_XDECREF(names);
    Py_XDECREF(varnames);
    Py_XDECREF(name);
    Py_XDECREF(freevars);
    Py_XDECREF(cellvars);
    Py_XDECREF(bytecode);
    return co;
}


/* For debugging purposes only */
#if 0
static void
dump_instr(const struct instr *i)
{
    const char *jrel = i->i_jrel ? "jrel " : "";
    const char *jabs = i->i_jabs ? "jabs " : "";
    char arg[128];

    *arg = '\0';
    if (i->i_hasarg)
        sprintf(arg, "arg: %d ", i->i_oparg);

    fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
                    i->i_lineno, i->i_opcode, arg, jabs, jrel);
}

static void
dump_basicblock(const basicblock *b)
{
    const char *seen = b->b_seen ? "seen " : "";
    const char *b_return = b->b_return ? "return " : "";
    fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n",
        b->b_iused, b->b_startdepth, b->b_offset, seen, b_return);
    if (b->b_instr) {
        int i;
        for (i = 0; i < b->b_iused; i++) {
            fprintf(stderr, "  [%02d] ", i);
            dump_instr(b->b_instr + i);
        }
    }
}
#endif

static PyCodeObject *
assemble(struct compiler *c, int addNone)
{
    basicblock *b, *entryblock;
    struct assembler a;
    int i, j, nblocks;
    PyCodeObject *co = NULL;

    /* Make sure every block that falls off the end returns None.
       XXX NEXT_BLOCK() isn't quite right, because if the last
       block ends with a jump or return b_next shouldn't set.
     */
    if (!c->u->u_curblock->b_return) {
        NEXT_BLOCK(c);
        if (addNone)
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, RETURN_VALUE);
    }

    nblocks = 0;
    entryblock = NULL;
    for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
        nblocks++;
        entryblock = b;
    }

    /* Set firstlineno if it wasn't explicitly set. */
    if (!c->u->u_firstlineno) {
        if (entryblock && entryblock->b_instr)
            c->u->u_firstlineno = entryblock->b_instr->i_lineno;
        else
            c->u->u_firstlineno = 1;
    }
    if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
        goto error;
    dfs(c, entryblock, &a);

    /* Can't modify the bytecode after computing jump offsets. */
    assemble_jump_offsets(&a, c);

    /* Emit code in reverse postorder from dfs. */
    for (i = a.a_nblocks - 1; i >= 0; i--) {
        b = a.a_postorder[i];
        for (j = 0; j < b->b_iused; j++)
            if (!assemble_emit(&a, &b->b_instr[j]))
                goto error;
    }

    if (_PyBytes_Resize(&a.a_lnotab, a.a_lnotab_off) < 0)
        goto error;
    if (_PyBytes_Resize(&a.a_bytecode, a.a_offset) < 0)
        goto error;

    co = makecode(c, &a);
 error:
    assemble_free(&a);
    return co;
}

#undef PyAST_Compile
PyAPI_FUNC(PyCodeObject *)
PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags,
              PyArena *arena)
{
    return PyAST_CompileEx(mod, filename, flags, -1, arena);
}