summaryrefslogtreecommitdiffstats
path: root/Python/compile.c
blob: 4d525a02c817744e4d1332df94ba73e33aadde94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
/*
 * This file compiles an abstract syntax tree (AST) into Python bytecode.
 *
 * The primary entry point is PyAST_Compile(), which returns a
 * PyCodeObject.  The compiler makes several passes to build the code
 * object:
 *   1. Checks for future statements.  See future.c
 *   2. Builds a symbol table.  See symtable.c.
 *   3. Generate code for basic blocks.  See compiler_mod() in this file.
 *   4. Assemble the basic blocks into final code.  See assemble() in
 *      this file.
 *   5. Optimize the byte code (peephole optimizations).  See peephole.c
 *
 * Note that compiler_mod() suggests module, but the module ast type
 * (mod_ty) has cases for expressions and interactive statements.
 *
 * CAUTION: The VISIT_* macros abort the current function when they
 * encounter a problem. So don't invoke them when there is memory
 * which needs to be released. Code blocks are OK, as the compiler
 * structure takes care of releasing those.  Use the arena to manage
 * objects.
 */

#include "Python.h"

#include "Python-ast.h"
#include "node.h"
#include "ast.h"
#include "code.h"
#include "symtable.h"
#include "opcode.h"
#include "wordcode_helpers.h"

#define DEFAULT_BLOCK_SIZE 16
#define DEFAULT_BLOCKS 8
#define DEFAULT_CODE_SIZE 128
#define DEFAULT_LNOTAB_SIZE 16

#define COMP_GENEXP   0
#define COMP_LISTCOMP 1
#define COMP_SETCOMP  2
#define COMP_DICTCOMP 3

struct instr {
    unsigned i_jabs : 1;
    unsigned i_jrel : 1;
    unsigned char i_opcode;
    int i_oparg;
    struct basicblock_ *i_target; /* target block (if jump instruction) */
    int i_lineno;
};

typedef struct basicblock_ {
    /* Each basicblock in a compilation unit is linked via b_list in the
       reverse order that the block are allocated.  b_list points to the next
       block, not to be confused with b_next, which is next by control flow. */
    struct basicblock_ *b_list;
    /* number of instructions used */
    int b_iused;
    /* length of instruction array (b_instr) */
    int b_ialloc;
    /* pointer to an array of instructions, initially NULL */
    struct instr *b_instr;
    /* If b_next is non-NULL, it is a pointer to the next
       block reached by normal control flow. */
    struct basicblock_ *b_next;
    /* b_seen is used to perform a DFS of basicblocks. */
    unsigned b_seen : 1;
    /* b_return is true if a RETURN_VALUE opcode is inserted. */
    unsigned b_return : 1;
    /* depth of stack upon entry of block, computed by stackdepth() */
    int b_startdepth;
    /* instruction offset for block, computed by assemble_jump_offsets() */
    int b_offset;
} basicblock;

/* fblockinfo tracks the current frame block.

A frame block is used to handle loops, try/except, and try/finally.
It's called a frame block to distinguish it from a basic block in the
compiler IR.
*/

enum fblocktype { LOOP, EXCEPT, FINALLY_TRY, FINALLY_END };

struct fblockinfo {
    enum fblocktype fb_type;
    basicblock *fb_block;
};

enum {
    COMPILER_SCOPE_MODULE,
    COMPILER_SCOPE_CLASS,
    COMPILER_SCOPE_FUNCTION,
    COMPILER_SCOPE_ASYNC_FUNCTION,
    COMPILER_SCOPE_LAMBDA,
    COMPILER_SCOPE_COMPREHENSION,
};

/* The following items change on entry and exit of code blocks.
   They must be saved and restored when returning to a block.
*/
struct compiler_unit {
    PySTEntryObject *u_ste;

    PyObject *u_name;
    PyObject *u_qualname;  /* dot-separated qualified name (lazy) */
    int u_scope_type;

    /* The following fields are dicts that map objects to
       the index of them in co_XXX.      The index is used as
       the argument for opcodes that refer to those collections.
    */
    PyObject *u_consts;    /* all constants */
    PyObject *u_names;     /* all names */
    PyObject *u_varnames;  /* local variables */
    PyObject *u_cellvars;  /* cell variables */
    PyObject *u_freevars;  /* free variables */

    PyObject *u_private;        /* for private name mangling */

    Py_ssize_t u_argcount;        /* number of arguments for block */
    Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
    /* Pointer to the most recently allocated block.  By following b_list
       members, you can reach all early allocated blocks. */
    basicblock *u_blocks;
    basicblock *u_curblock; /* pointer to current block */

    int u_nfblocks;
    struct fblockinfo u_fblock[CO_MAXBLOCKS];

    int u_firstlineno; /* the first lineno of the block */
    int u_lineno;          /* the lineno for the current stmt */
    int u_col_offset;      /* the offset of the current stmt */
    int u_lineno_set;  /* boolean to indicate whether instr
                          has been generated with current lineno */
};

/* This struct captures the global state of a compilation.

The u pointer points to the current compilation unit, while units
for enclosing blocks are stored in c_stack.     The u and c_stack are
managed by compiler_enter_scope() and compiler_exit_scope().

Note that we don't track recursion levels during compilation - the
task of detecting and rejecting excessive levels of nesting is
handled by the symbol analysis pass.

*/

struct compiler {
    PyObject *c_filename;
    struct symtable *c_st;
    PyFutureFeatures *c_future; /* pointer to module's __future__ */
    PyCompilerFlags *c_flags;

    int c_optimize;              /* optimization level */
    int c_interactive;           /* true if in interactive mode */
    int c_nestlevel;

    struct compiler_unit *u; /* compiler state for current block */
    PyObject *c_stack;           /* Python list holding compiler_unit ptrs */
    PyArena *c_arena;            /* pointer to memory allocation arena */
};

static int compiler_enter_scope(struct compiler *, identifier, int, void *, int);
static void compiler_free(struct compiler *);
static basicblock *compiler_new_block(struct compiler *);
static int compiler_next_instr(struct compiler *, basicblock *);
static int compiler_addop(struct compiler *, int);
static int compiler_addop_o(struct compiler *, int, PyObject *, PyObject *);
static int compiler_addop_i(struct compiler *, int, Py_ssize_t);
static int compiler_addop_j(struct compiler *, int, basicblock *, int);
static int compiler_error(struct compiler *, const char *);
static int compiler_nameop(struct compiler *, identifier, expr_context_ty);

static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
static int compiler_visit_stmt(struct compiler *, stmt_ty);
static int compiler_visit_keyword(struct compiler *, keyword_ty);
static int compiler_visit_expr(struct compiler *, expr_ty);
static int compiler_augassign(struct compiler *, stmt_ty);
static int compiler_annassign(struct compiler *, stmt_ty);
static int compiler_visit_slice(struct compiler *, slice_ty,
                                expr_context_ty);

static int compiler_push_fblock(struct compiler *, enum fblocktype,
                                basicblock *);
static void compiler_pop_fblock(struct compiler *, enum fblocktype,
                                basicblock *);
/* Returns true if there is a loop on the fblock stack. */
static int compiler_in_loop(struct compiler *);

static int inplace_binop(struct compiler *, operator_ty);
static int expr_constant(struct compiler *, expr_ty);

static int compiler_with(struct compiler *, stmt_ty, int);
static int compiler_async_with(struct compiler *, stmt_ty, int);
static int compiler_async_for(struct compiler *, stmt_ty);
static int compiler_call_helper(struct compiler *c, int n,
                                asdl_seq *args,
                                asdl_seq *keywords);
static int compiler_try_except(struct compiler *, stmt_ty);
static int compiler_set_qualname(struct compiler *);

static int compiler_sync_comprehension_generator(
                                      struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type);

static int compiler_async_comprehension_generator(
                                      struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type);

static PyCodeObject *assemble(struct compiler *, int addNone);
static PyObject *__doc__;

#define CAPSULE_NAME "compile.c compiler unit"

PyObject *
_Py_Mangle(PyObject *privateobj, PyObject *ident)
{
    /* Name mangling: __private becomes _classname__private.
       This is independent from how the name is used. */
    PyObject *result;
    size_t nlen, plen, ipriv;
    Py_UCS4 maxchar;
    if (privateobj == NULL || !PyUnicode_Check(privateobj) ||
        PyUnicode_READ_CHAR(ident, 0) != '_' ||
        PyUnicode_READ_CHAR(ident, 1) != '_') {
        Py_INCREF(ident);
        return ident;
    }
    nlen = PyUnicode_GET_LENGTH(ident);
    plen = PyUnicode_GET_LENGTH(privateobj);
    /* Don't mangle __id__ or names with dots.

       The only time a name with a dot can occur is when
       we are compiling an import statement that has a
       package name.

       TODO(jhylton): Decide whether we want to support
       mangling of the module name, e.g. __M.X.
    */
    if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' &&
         PyUnicode_READ_CHAR(ident, nlen-2) == '_') ||
        PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) {
        Py_INCREF(ident);
        return ident; /* Don't mangle __whatever__ */
    }
    /* Strip leading underscores from class name */
    ipriv = 0;
    while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_')
        ipriv++;
    if (ipriv == plen) {
        Py_INCREF(ident);
        return ident; /* Don't mangle if class is just underscores */
    }
    plen -= ipriv;

    if (plen + nlen >= PY_SSIZE_T_MAX - 1) {
        PyErr_SetString(PyExc_OverflowError,
                        "private identifier too large to be mangled");
        return NULL;
    }

    maxchar = PyUnicode_MAX_CHAR_VALUE(ident);
    if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar)
        maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj);

    result = PyUnicode_New(1 + nlen + plen, maxchar);
    if (!result)
        return 0;
    /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */
    PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_');
    if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) {
        Py_DECREF(result);
        return NULL;
    }
    if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) {
        Py_DECREF(result);
        return NULL;
    }
    assert(_PyUnicode_CheckConsistency(result, 1));
    return result;
}

static int
compiler_init(struct compiler *c)
{
    memset(c, 0, sizeof(struct compiler));

    c->c_stack = PyList_New(0);
    if (!c->c_stack)
        return 0;

    return 1;
}

PyCodeObject *
PyAST_CompileObject(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
                   int optimize, PyArena *arena)
{
    struct compiler c;
    PyCodeObject *co = NULL;
    PyCompilerFlags local_flags;
    int merged;

    if (!__doc__) {
        __doc__ = PyUnicode_InternFromString("__doc__");
        if (!__doc__)
            return NULL;
    }

    if (!compiler_init(&c))
        return NULL;
    Py_INCREF(filename);
    c.c_filename = filename;
    c.c_arena = arena;
    c.c_future = PyFuture_FromASTObject(mod, filename);
    if (c.c_future == NULL)
        goto finally;
    if (!flags) {
        local_flags.cf_flags = 0;
        flags = &local_flags;
    }
    merged = c.c_future->ff_features | flags->cf_flags;
    c.c_future->ff_features = merged;
    flags->cf_flags = merged;
    c.c_flags = flags;
    c.c_optimize = (optimize == -1) ? Py_OptimizeFlag : optimize;
    c.c_nestlevel = 0;

    c.c_st = PySymtable_BuildObject(mod, filename, c.c_future);
    if (c.c_st == NULL) {
        if (!PyErr_Occurred())
            PyErr_SetString(PyExc_SystemError, "no symtable");
        goto finally;
    }

    co = compiler_mod(&c, mod);

 finally:
    compiler_free(&c);
    assert(co || PyErr_Occurred());
    return co;
}

PyCodeObject *
PyAST_CompileEx(mod_ty mod, const char *filename_str, PyCompilerFlags *flags,
                int optimize, PyArena *arena)
{
    PyObject *filename;
    PyCodeObject *co;
    filename = PyUnicode_DecodeFSDefault(filename_str);
    if (filename == NULL)
        return NULL;
    co = PyAST_CompileObject(mod, filename, flags, optimize, arena);
    Py_DECREF(filename);
    return co;

}

PyCodeObject *
PyNode_Compile(struct _node *n, const char *filename)
{
    PyCodeObject *co = NULL;
    mod_ty mod;
    PyArena *arena = PyArena_New();
    if (!arena)
        return NULL;
    mod = PyAST_FromNode(n, NULL, filename, arena);
    if (mod)
        co = PyAST_Compile(mod, filename, NULL, arena);
    PyArena_Free(arena);
    return co;
}

static void
compiler_free(struct compiler *c)
{
    if (c->c_st)
        PySymtable_Free(c->c_st);
    if (c->c_future)
        PyObject_Free(c->c_future);
    Py_XDECREF(c->c_filename);
    Py_DECREF(c->c_stack);
}

static PyObject *
list2dict(PyObject *list)
{
    Py_ssize_t i, n;
    PyObject *v, *k;
    PyObject *dict = PyDict_New();
    if (!dict) return NULL;

    n = PyList_Size(list);
    for (i = 0; i < n; i++) {
        v = PyLong_FromSsize_t(i);
        if (!v) {
            Py_DECREF(dict);
            return NULL;
        }
        k = PyList_GET_ITEM(list, i);
        k = _PyCode_ConstantKey(k);
        if (k == NULL || PyDict_SetItem(dict, k, v) < 0) {
            Py_XDECREF(k);
            Py_DECREF(v);
            Py_DECREF(dict);
            return NULL;
        }
        Py_DECREF(k);
        Py_DECREF(v);
    }
    return dict;
}

/* Return new dict containing names from src that match scope(s).

src is a symbol table dictionary.  If the scope of a name matches
either scope_type or flag is set, insert it into the new dict.  The
values are integers, starting at offset and increasing by one for
each key.
*/

static PyObject *
dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
{
    Py_ssize_t i = offset, scope, num_keys, key_i;
    PyObject *k, *v, *dest = PyDict_New();
    PyObject *sorted_keys;

    assert(offset >= 0);
    if (dest == NULL)
        return NULL;

    /* Sort the keys so that we have a deterministic order on the indexes
       saved in the returned dictionary.  These indexes are used as indexes
       into the free and cell var storage.  Therefore if they aren't
       deterministic, then the generated bytecode is not deterministic.
    */
    sorted_keys = PyDict_Keys(src);
    if (sorted_keys == NULL)
        return NULL;
    if (PyList_Sort(sorted_keys) != 0) {
        Py_DECREF(sorted_keys);
        return NULL;
    }
    num_keys = PyList_GET_SIZE(sorted_keys);

    for (key_i = 0; key_i < num_keys; key_i++) {
        /* XXX this should probably be a macro in symtable.h */
        long vi;
        k = PyList_GET_ITEM(sorted_keys, key_i);
        v = PyDict_GetItem(src, k);
        assert(PyLong_Check(v));
        vi = PyLong_AS_LONG(v);
        scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;

        if (scope == scope_type || vi & flag) {
            PyObject *tuple, *item = PyLong_FromSsize_t(i);
            if (item == NULL) {
                Py_DECREF(sorted_keys);
                Py_DECREF(dest);
                return NULL;
            }
            i++;
            tuple = _PyCode_ConstantKey(k);
            if (!tuple || PyDict_SetItem(dest, tuple, item) < 0) {
                Py_DECREF(sorted_keys);
                Py_DECREF(item);
                Py_DECREF(dest);
                Py_XDECREF(tuple);
                return NULL;
            }
            Py_DECREF(item);
            Py_DECREF(tuple);
        }
    }
    Py_DECREF(sorted_keys);
    return dest;
}

static void
compiler_unit_check(struct compiler_unit *u)
{
    basicblock *block;
    for (block = u->u_blocks; block != NULL; block = block->b_list) {
        assert((uintptr_t)block != 0xcbcbcbcbU);
        assert((uintptr_t)block != 0xfbfbfbfbU);
        assert((uintptr_t)block != 0xdbdbdbdbU);
        if (block->b_instr != NULL) {
            assert(block->b_ialloc > 0);
            assert(block->b_iused > 0);
            assert(block->b_ialloc >= block->b_iused);
        }
        else {
            assert (block->b_iused == 0);
            assert (block->b_ialloc == 0);
        }
    }
}

static void
compiler_unit_free(struct compiler_unit *u)
{
    basicblock *b, *next;

    compiler_unit_check(u);
    b = u->u_blocks;
    while (b != NULL) {
        if (b->b_instr)
            PyObject_Free((void *)b->b_instr);
        next = b->b_list;
        PyObject_Free((void *)b);
        b = next;
    }
    Py_CLEAR(u->u_ste);
    Py_CLEAR(u->u_name);
    Py_CLEAR(u->u_qualname);
    Py_CLEAR(u->u_consts);
    Py_CLEAR(u->u_names);
    Py_CLEAR(u->u_varnames);
    Py_CLEAR(u->u_freevars);
    Py_CLEAR(u->u_cellvars);
    Py_CLEAR(u->u_private);
    PyObject_Free(u);
}

static int
compiler_enter_scope(struct compiler *c, identifier name,
                     int scope_type, void *key, int lineno)
{
    struct compiler_unit *u;
    basicblock *block;

    u = (struct compiler_unit *)PyObject_Malloc(sizeof(
                                            struct compiler_unit));
    if (!u) {
        PyErr_NoMemory();
        return 0;
    }
    memset(u, 0, sizeof(struct compiler_unit));
    u->u_scope_type = scope_type;
    u->u_argcount = 0;
    u->u_kwonlyargcount = 0;
    u->u_ste = PySymtable_Lookup(c->c_st, key);
    if (!u->u_ste) {
        compiler_unit_free(u);
        return 0;
    }
    Py_INCREF(name);
    u->u_name = name;
    u->u_varnames = list2dict(u->u_ste->ste_varnames);
    u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
    if (!u->u_varnames || !u->u_cellvars) {
        compiler_unit_free(u);
        return 0;
    }
    if (u->u_ste->ste_needs_class_closure) {
        /* Cook up an implicit __class__ cell. */
        _Py_IDENTIFIER(__class__);
        PyObject *tuple, *name, *zero;
        int res;
        assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
        assert(PyDict_Size(u->u_cellvars) == 0);
        name = _PyUnicode_FromId(&PyId___class__);
        if (!name) {
            compiler_unit_free(u);
            return 0;
        }
        tuple = _PyCode_ConstantKey(name);
        if (!tuple) {
            compiler_unit_free(u);
            return 0;
        }
        zero = PyLong_FromLong(0);
        if (!zero) {
            Py_DECREF(tuple);
            compiler_unit_free(u);
            return 0;
        }
        res = PyDict_SetItem(u->u_cellvars, tuple, zero);
        Py_DECREF(tuple);
        Py_DECREF(zero);
        if (res < 0) {
            compiler_unit_free(u);
            return 0;
        }
    }

    u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
                               PyDict_Size(u->u_cellvars));
    if (!u->u_freevars) {
        compiler_unit_free(u);
        return 0;
    }

    u->u_blocks = NULL;
    u->u_nfblocks = 0;
    u->u_firstlineno = lineno;
    u->u_lineno = 0;
    u->u_col_offset = 0;
    u->u_lineno_set = 0;
    u->u_consts = PyDict_New();
    if (!u->u_consts) {
        compiler_unit_free(u);
        return 0;
    }
    u->u_names = PyDict_New();
    if (!u->u_names) {
        compiler_unit_free(u);
        return 0;
    }

    u->u_private = NULL;

    /* Push the old compiler_unit on the stack. */
    if (c->u) {
        PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
        if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
            Py_XDECREF(capsule);
            compiler_unit_free(u);
            return 0;
        }
        Py_DECREF(capsule);
        u->u_private = c->u->u_private;
        Py_XINCREF(u->u_private);
    }
    c->u = u;

    c->c_nestlevel++;

    block = compiler_new_block(c);
    if (block == NULL)
        return 0;
    c->u->u_curblock = block;

    if (u->u_scope_type != COMPILER_SCOPE_MODULE) {
        if (!compiler_set_qualname(c))
            return 0;
    }

    return 1;
}

static void
compiler_exit_scope(struct compiler *c)
{
    Py_ssize_t n;
    PyObject *capsule;

    c->c_nestlevel--;
    compiler_unit_free(c->u);
    /* Restore c->u to the parent unit. */
    n = PyList_GET_SIZE(c->c_stack) - 1;
    if (n >= 0) {
        capsule = PyList_GET_ITEM(c->c_stack, n);
        c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(c->u);
        /* we are deleting from a list so this really shouldn't fail */
        if (PySequence_DelItem(c->c_stack, n) < 0)
            Py_FatalError("compiler_exit_scope()");
        compiler_unit_check(c->u);
    }
    else
        c->u = NULL;

}

static int
compiler_set_qualname(struct compiler *c)
{
    _Py_static_string(dot, ".");
    _Py_static_string(dot_locals, ".<locals>");
    Py_ssize_t stack_size;
    struct compiler_unit *u = c->u;
    PyObject *name, *base, *dot_str, *dot_locals_str;

    base = NULL;
    stack_size = PyList_GET_SIZE(c->c_stack);
    assert(stack_size >= 1);
    if (stack_size > 1) {
        int scope, force_global = 0;
        struct compiler_unit *parent;
        PyObject *mangled, *capsule;

        capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
        parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(parent);

        if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_CLASS) {
            assert(u->u_name);
            mangled = _Py_Mangle(parent->u_private, u->u_name);
            if (!mangled)
                return 0;
            scope = PyST_GetScope(parent->u_ste, mangled);
            Py_DECREF(mangled);
            assert(scope != GLOBAL_IMPLICIT);
            if (scope == GLOBAL_EXPLICIT)
                force_global = 1;
        }

        if (!force_global) {
            if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) {
                dot_locals_str = _PyUnicode_FromId(&dot_locals);
                if (dot_locals_str == NULL)
                    return 0;
                base = PyUnicode_Concat(parent->u_qualname, dot_locals_str);
                if (base == NULL)
                    return 0;
            }
            else {
                Py_INCREF(parent->u_qualname);
                base = parent->u_qualname;
            }
        }
    }

    if (base != NULL) {
        dot_str = _PyUnicode_FromId(&dot);
        if (dot_str == NULL) {
            Py_DECREF(base);
            return 0;
        }
        name = PyUnicode_Concat(base, dot_str);
        Py_DECREF(base);
        if (name == NULL)
            return 0;
        PyUnicode_Append(&name, u->u_name);
        if (name == NULL)
            return 0;
    }
    else {
        Py_INCREF(u->u_name);
        name = u->u_name;
    }
    u->u_qualname = name;

    return 1;
}


/* Allocate a new block and return a pointer to it.
   Returns NULL on error.
*/

static basicblock *
compiler_new_block(struct compiler *c)
{
    basicblock *b;
    struct compiler_unit *u;

    u = c->u;
    b = (basicblock *)PyObject_Malloc(sizeof(basicblock));
    if (b == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    memset((void *)b, 0, sizeof(basicblock));
    /* Extend the singly linked list of blocks with new block. */
    b->b_list = u->u_blocks;
    u->u_blocks = b;
    return b;
}

static basicblock *
compiler_next_block(struct compiler *c)
{
    basicblock *block = compiler_new_block(c);
    if (block == NULL)
        return NULL;
    c->u->u_curblock->b_next = block;
    c->u->u_curblock = block;
    return block;
}

static basicblock *
compiler_use_next_block(struct compiler *c, basicblock *block)
{
    assert(block != NULL);
    c->u->u_curblock->b_next = block;
    c->u->u_curblock = block;
    return block;
}

/* Returns the offset of the next instruction in the current block's
   b_instr array.  Resizes the b_instr as necessary.
   Returns -1 on failure.
*/

static int
compiler_next_instr(struct compiler *c, basicblock *b)
{
    assert(b != NULL);
    if (b->b_instr == NULL) {
        b->b_instr = (struct instr *)PyObject_Malloc(
                         sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
        if (b->b_instr == NULL) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_ialloc = DEFAULT_BLOCK_SIZE;
        memset((char *)b->b_instr, 0,
               sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
    }
    else if (b->b_iused == b->b_ialloc) {
        struct instr *tmp;
        size_t oldsize, newsize;
        oldsize = b->b_ialloc * sizeof(struct instr);
        newsize = oldsize << 1;

        if (oldsize > (SIZE_MAX >> 1)) {
            PyErr_NoMemory();
            return -1;
        }

        if (newsize == 0) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_ialloc <<= 1;
        tmp = (struct instr *)PyObject_Realloc(
                                        (void *)b->b_instr, newsize);
        if (tmp == NULL) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_instr = tmp;
        memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
    }
    return b->b_iused++;
}

/* Set the i_lineno member of the instruction at offset off if the
   line number for the current expression/statement has not
   already been set.  If it has been set, the call has no effect.

   The line number is reset in the following cases:
   - when entering a new scope
   - on each statement
   - on each expression that start a new line
   - before the "except" clause
   - before the "for" and "while" expressions
*/

static void
compiler_set_lineno(struct compiler *c, int off)
{
    basicblock *b;
    if (c->u->u_lineno_set)
        return;
    c->u->u_lineno_set = 1;
    b = c->u->u_curblock;
    b->b_instr[off].i_lineno = c->u->u_lineno;
}

int
PyCompile_OpcodeStackEffect(int opcode, int oparg)
{
    switch (opcode) {
        case POP_TOP:
            return -1;
        case ROT_TWO:
        case ROT_THREE:
            return 0;
        case DUP_TOP:
            return 1;
        case DUP_TOP_TWO:
            return 2;

        case UNARY_POSITIVE:
        case UNARY_NEGATIVE:
        case UNARY_NOT:
        case UNARY_INVERT:
            return 0;

        case SET_ADD:
        case LIST_APPEND:
            return -1;
        case MAP_ADD:
            return -2;

        case BINARY_POWER:
        case BINARY_MULTIPLY:
        case BINARY_MATRIX_MULTIPLY:
        case BINARY_MODULO:
        case BINARY_ADD:
        case BINARY_SUBTRACT:
        case BINARY_SUBSCR:
        case BINARY_FLOOR_DIVIDE:
        case BINARY_TRUE_DIVIDE:
            return -1;
        case INPLACE_FLOOR_DIVIDE:
        case INPLACE_TRUE_DIVIDE:
            return -1;

        case INPLACE_ADD:
        case INPLACE_SUBTRACT:
        case INPLACE_MULTIPLY:
        case INPLACE_MATRIX_MULTIPLY:
        case INPLACE_MODULO:
            return -1;
        case STORE_SUBSCR:
            return -3;
        case DELETE_SUBSCR:
            return -2;

        case BINARY_LSHIFT:
        case BINARY_RSHIFT:
        case BINARY_AND:
        case BINARY_XOR:
        case BINARY_OR:
            return -1;
        case INPLACE_POWER:
            return -1;
        case GET_ITER:
            return 0;

        case PRINT_EXPR:
            return -1;
        case LOAD_BUILD_CLASS:
            return 1;
        case INPLACE_LSHIFT:
        case INPLACE_RSHIFT:
        case INPLACE_AND:
        case INPLACE_XOR:
        case INPLACE_OR:
            return -1;
        case BREAK_LOOP:
            return 0;
        case SETUP_WITH:
            return 7;
        case WITH_CLEANUP_START:
            return 1;
        case WITH_CLEANUP_FINISH:
            return -1; /* XXX Sometimes more */
        case RETURN_VALUE:
            return -1;
        case IMPORT_STAR:
            return -1;
        case SETUP_ANNOTATIONS:
            return 0;
        case YIELD_VALUE:
            return 0;
        case YIELD_FROM:
            return -1;
        case POP_BLOCK:
            return 0;
        case POP_EXCEPT:
            return 0;  /* -3 except if bad bytecode */
        case END_FINALLY:
            return -1; /* or -2 or -3 if exception occurred */

        case STORE_NAME:
            return -1;
        case DELETE_NAME:
            return 0;
        case UNPACK_SEQUENCE:
            return oparg-1;
        case UNPACK_EX:
            return (oparg&0xFF) + (oparg>>8);
        case FOR_ITER:
            return 1; /* or -1, at end of iterator */

        case STORE_ATTR:
            return -2;
        case DELETE_ATTR:
            return -1;
        case STORE_GLOBAL:
            return -1;
        case DELETE_GLOBAL:
            return 0;
        case LOAD_CONST:
            return 1;
        case LOAD_NAME:
            return 1;
        case BUILD_TUPLE:
        case BUILD_LIST:
        case BUILD_SET:
        case BUILD_STRING:
            return 1-oparg;
        case BUILD_LIST_UNPACK:
        case BUILD_TUPLE_UNPACK:
        case BUILD_TUPLE_UNPACK_WITH_CALL:
        case BUILD_SET_UNPACK:
        case BUILD_MAP_UNPACK:
        case BUILD_MAP_UNPACK_WITH_CALL:
            return 1 - oparg;
        case BUILD_MAP:
            return 1 - 2*oparg;
        case BUILD_CONST_KEY_MAP:
            return -oparg;
        case LOAD_ATTR:
            return 0;
        case COMPARE_OP:
            return -1;
        case IMPORT_NAME:
            return -1;
        case IMPORT_FROM:
            return 1;

        case JUMP_FORWARD:
        case JUMP_IF_TRUE_OR_POP:  /* -1 if jump not taken */
        case JUMP_IF_FALSE_OR_POP:  /*  "" */
        case JUMP_ABSOLUTE:
            return 0;

        case POP_JUMP_IF_FALSE:
        case POP_JUMP_IF_TRUE:
            return -1;

        case LOAD_GLOBAL:
            return 1;

        case CONTINUE_LOOP:
            return 0;
        case SETUP_LOOP:
            return 0;
        case SETUP_EXCEPT:
        case SETUP_FINALLY:
            return 6; /* can push 3 values for the new exception
                + 3 others for the previous exception state */

        case LOAD_FAST:
            return 1;
        case STORE_FAST:
            return -1;
        case DELETE_FAST:
            return 0;
        case STORE_ANNOTATION:
            return -1;

        case RAISE_VARARGS:
            return -oparg;
        case CALL_FUNCTION:
            return -oparg;
        case CALL_FUNCTION_KW:
            return -oparg-1;
        case CALL_FUNCTION_EX:
            return -1 - ((oparg & 0x01) != 0);
        case MAKE_FUNCTION:
            return -1 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) -
                ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0);
        case BUILD_SLICE:
            if (oparg == 3)
                return -2;
            else
                return -1;

        case LOAD_CLOSURE:
            return 1;
        case LOAD_DEREF:
        case LOAD_CLASSDEREF:
            return 1;
        case STORE_DEREF:
            return -1;
        case DELETE_DEREF:
            return 0;
        case GET_AWAITABLE:
            return 0;
        case SETUP_ASYNC_WITH:
            return 6;
        case BEFORE_ASYNC_WITH:
            return 1;
        case GET_AITER:
            return 0;
        case GET_ANEXT:
            return 1;
        case GET_YIELD_FROM_ITER:
            return 0;
        case FORMAT_VALUE:
            /* If there's a fmt_spec on the stack, we go from 2->1,
               else 1->1. */
            return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0;
        default:
            return PY_INVALID_STACK_EFFECT;
    }
    return PY_INVALID_STACK_EFFECT; /* not reachable */
}

/* Add an opcode with no argument.
   Returns 0 on failure, 1 on success.
*/

static int
compiler_addop(struct compiler *c, int opcode)
{
    basicblock *b;
    struct instr *i;
    int off;
    assert(!HAS_ARG(opcode));
    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    b = c->u->u_curblock;
    i = &b->b_instr[off];
    i->i_opcode = opcode;
    i->i_oparg = 0;
    if (opcode == RETURN_VALUE)
        b->b_return = 1;
    compiler_set_lineno(c, off);
    return 1;
}

static Py_ssize_t
compiler_add_o(struct compiler *c, PyObject *dict, PyObject *o)
{
    PyObject *t, *v;
    Py_ssize_t arg;

    t = _PyCode_ConstantKey(o);
    if (t == NULL)
        return -1;

    v = PyDict_GetItem(dict, t);
    if (!v) {
        if (PyErr_Occurred()) {
            Py_DECREF(t);
            return -1;
        }
        arg = PyDict_Size(dict);
        v = PyLong_FromSsize_t(arg);
        if (!v) {
            Py_DECREF(t);
            return -1;
        }
        if (PyDict_SetItem(dict, t, v) < 0) {
            Py_DECREF(t);
            Py_DECREF(v);
            return -1;
        }
        Py_DECREF(v);
    }
    else
        arg = PyLong_AsLong(v);
    Py_DECREF(t);
    return arg;
}

static int
compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
                     PyObject *o)
{
    Py_ssize_t arg = compiler_add_o(c, dict, o);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, opcode, arg);
}

static int
compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
                    PyObject *o)
{
    Py_ssize_t arg;
    PyObject *mangled = _Py_Mangle(c->u->u_private, o);
    if (!mangled)
        return 0;
    arg = compiler_add_o(c, dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, opcode, arg);
}

/* Add an opcode with an integer argument.
   Returns 0 on failure, 1 on success.
*/

static int
compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg)
{
    struct instr *i;
    int off;

    /* oparg value is unsigned, but a signed C int is usually used to store
       it in the C code (like Python/ceval.c).

       Limit to 32-bit signed C int (rather than INT_MAX) for portability.

       The argument of a concrete bytecode instruction is limited to 8-bit.
       EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
    assert(HAS_ARG(opcode));
    assert(0 <= oparg && oparg <= 2147483647);

    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    i = &c->u->u_curblock->b_instr[off];
    i->i_opcode = opcode;
    i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
    compiler_set_lineno(c, off);
    return 1;
}

static int
compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute)
{
    struct instr *i;
    int off;

    assert(HAS_ARG(opcode));
    assert(b != NULL);
    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    i = &c->u->u_curblock->b_instr[off];
    i->i_opcode = opcode;
    i->i_target = b;
    if (absolute)
        i->i_jabs = 1;
    else
        i->i_jrel = 1;
    compiler_set_lineno(c, off);
    return 1;
}

/* NEXT_BLOCK() creates an implicit jump from the current block
   to the new block.

   The returns inside this macro make it impossible to decref objects
   created in the local function. Local objects should use the arena.
*/
#define NEXT_BLOCK(C) { \
    if (compiler_next_block((C)) == NULL) \
        return 0; \
}

#define ADDOP(C, OP) { \
    if (!compiler_addop((C), (OP))) \
        return 0; \
}

#define ADDOP_IN_SCOPE(C, OP) { \
    if (!compiler_addop((C), (OP))) { \
        compiler_exit_scope(c); \
        return 0; \
    } \
}

#define ADDOP_O(C, OP, O, TYPE) { \
    if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \
        return 0; \
}

/* Same as ADDOP_O, but steals a reference. */
#define ADDOP_N(C, OP, O, TYPE) { \
    if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \
        Py_DECREF((O)); \
        return 0; \
    } \
    Py_DECREF((O)); \
}

#define ADDOP_NAME(C, OP, O, TYPE) { \
    if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
        return 0; \
}

#define ADDOP_I(C, OP, O) { \
    if (!compiler_addop_i((C), (OP), (O))) \
        return 0; \
}

#define ADDOP_JABS(C, OP, O) { \
    if (!compiler_addop_j((C), (OP), (O), 1)) \
        return 0; \
}

#define ADDOP_JREL(C, OP, O) { \
    if (!compiler_addop_j((C), (OP), (O), 0)) \
        return 0; \
}

/* VISIT and VISIT_SEQ takes an ASDL type as their second argument.  They use
   the ASDL name to synthesize the name of the C type and the visit function.
*/

#define VISIT(C, TYPE, V) {\
    if (!compiler_visit_ ## TYPE((C), (V))) \
        return 0; \
}

#define VISIT_IN_SCOPE(C, TYPE, V) {\
    if (!compiler_visit_ ## TYPE((C), (V))) { \
        compiler_exit_scope(c); \
        return 0; \
    } \
}

#define VISIT_SLICE(C, V, CTX) {\
    if (!compiler_visit_slice((C), (V), (CTX))) \
        return 0; \
}

#define VISIT_SEQ(C, TYPE, SEQ) { \
    int _i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (!compiler_visit_ ## TYPE((C), elt)) \
            return 0; \
    } \
}

#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
    int _i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (!compiler_visit_ ## TYPE((C), elt)) { \
            compiler_exit_scope(c); \
            return 0; \
        } \
    } \
}

static int
compiler_isdocstring(stmt_ty s)
{
    if (s->kind != Expr_kind)
        return 0;
    if (s->v.Expr.value->kind == Str_kind)
        return 1;
    if (s->v.Expr.value->kind == Constant_kind)
        return PyUnicode_CheckExact(s->v.Expr.value->v.Constant.value);
    return 0;
}

static int
is_const(expr_ty e)
{
    switch (e->kind) {
    case Constant_kind:
    case Num_kind:
    case Str_kind:
    case Bytes_kind:
    case Ellipsis_kind:
    case NameConstant_kind:
        return 1;
    default:
        return 0;
    }
}

static PyObject *
get_const_value(expr_ty e)
{
    switch (e->kind) {
    case Constant_kind:
        return e->v.Constant.value;
    case Num_kind:
        return e->v.Num.n;
    case Str_kind:
        return e->v.Str.s;
    case Bytes_kind:
        return e->v.Bytes.s;
    case Ellipsis_kind:
        return Py_Ellipsis;
    case NameConstant_kind:
        return e->v.NameConstant.value;
    default:
        assert(!is_const(e));
        return NULL;
    }
}

/* Search if variable annotations are present statically in a block. */

static int
find_ann(asdl_seq *stmts)
{
    int i, j, res = 0;
    stmt_ty st;

    for (i = 0; i < asdl_seq_LEN(stmts); i++) {
        st = (stmt_ty)asdl_seq_GET(stmts, i);
        switch (st->kind) {
        case AnnAssign_kind:
            return 1;
        case For_kind:
            res = find_ann(st->v.For.body) ||
                  find_ann(st->v.For.orelse);
            break;
        case AsyncFor_kind:
            res = find_ann(st->v.AsyncFor.body) ||
                  find_ann(st->v.AsyncFor.orelse);
            break;
        case While_kind:
            res = find_ann(st->v.While.body) ||
                  find_ann(st->v.While.orelse);
            break;
        case If_kind:
            res = find_ann(st->v.If.body) ||
                  find_ann(st->v.If.orelse);
            break;
        case With_kind:
            res = find_ann(st->v.With.body);
            break;
        case AsyncWith_kind:
            res = find_ann(st->v.AsyncWith.body);
            break;
        case Try_kind:
            for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
                excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
                    st->v.Try.handlers, j);
                if (find_ann(handler->v.ExceptHandler.body)) {
                    return 1;
                }
            }
            res = find_ann(st->v.Try.body) ||
                  find_ann(st->v.Try.finalbody) ||
                  find_ann(st->v.Try.orelse);
            break;
        default:
            res = 0;
        }
        if (res) {
            break;
        }
    }
    return res;
}

/* Compile a sequence of statements, checking for a docstring
   and for annotations. */

static int
compiler_body(struct compiler *c, asdl_seq *stmts)
{
    int i = 0;
    stmt_ty st;

    /* Set current line number to the line number of first statement.
       This way line number for SETUP_ANNOTATIONS will always
       coincide with the line number of first "real" statement in module.
       If body is empy, then lineno will be set later in assemble. */
    if (c->u->u_scope_type == COMPILER_SCOPE_MODULE &&
        !c->u->u_lineno && asdl_seq_LEN(stmts)) {
        st = (stmt_ty)asdl_seq_GET(stmts, 0);
        c->u->u_lineno = st->lineno;
    }
    /* Every annotated class and module should have __annotations__. */
    if (find_ann(stmts)) {
        ADDOP(c, SETUP_ANNOTATIONS);
    }
    if (!asdl_seq_LEN(stmts))
        return 1;
    st = (stmt_ty)asdl_seq_GET(stmts, 0);
    if (compiler_isdocstring(st) && c->c_optimize < 2) {
        /* don't generate docstrings if -OO */
        i = 1;
        VISIT(c, expr, st->v.Expr.value);
        if (!compiler_nameop(c, __doc__, Store))
            return 0;
    }
    for (; i < asdl_seq_LEN(stmts); i++)
        VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
    return 1;
}

static PyCodeObject *
compiler_mod(struct compiler *c, mod_ty mod)
{
    PyCodeObject *co;
    int addNone = 1;
    static PyObject *module;
    if (!module) {
        module = PyUnicode_InternFromString("<module>");
        if (!module)
            return NULL;
    }
    /* Use 0 for firstlineno initially, will fixup in assemble(). */
    if (!compiler_enter_scope(c, module, COMPILER_SCOPE_MODULE, mod, 0))
        return NULL;
    switch (mod->kind) {
    case Module_kind:
        if (!compiler_body(c, mod->v.Module.body)) {
            compiler_exit_scope(c);
            return 0;
        }
        break;
    case Interactive_kind:
        if (find_ann(mod->v.Interactive.body)) {
            ADDOP(c, SETUP_ANNOTATIONS);
        }
        c->c_interactive = 1;
        VISIT_SEQ_IN_SCOPE(c, stmt,
                                mod->v.Interactive.body);
        break;
    case Expression_kind:
        VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
        addNone = 0;
        break;
    case Suite_kind:
        PyErr_SetString(PyExc_SystemError,
                        "suite should not be possible");
        return 0;
    default:
        PyErr_Format(PyExc_SystemError,
                     "module kind %d should not be possible",
                     mod->kind);
        return 0;
    }
    co = assemble(c, addNone);
    compiler_exit_scope(c);
    return co;
}

/* The test for LOCAL must come before the test for FREE in order to
   handle classes where name is both local and free.  The local var is
   a method and the free var is a free var referenced within a method.
*/

static int
get_ref_type(struct compiler *c, PyObject *name)
{
    int scope;
    if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
        _PyUnicode_EqualToASCIIString(name, "__class__"))
        return CELL;
    scope = PyST_GetScope(c->u->u_ste, name);
    if (scope == 0) {
        char buf[350];
        PyOS_snprintf(buf, sizeof(buf),
                      "unknown scope for %.100s in %.100s(%s)\n"
                      "symbols: %s\nlocals: %s\nglobals: %s",
                      PyUnicode_AsUTF8(name),
                      PyUnicode_AsUTF8(c->u->u_name),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_id)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_symbols)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_varnames)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_names))
        );
        Py_FatalError(buf);
    }

    return scope;
}

static int
compiler_lookup_arg(PyObject *dict, PyObject *name)
{
    PyObject *k, *v;
    k = _PyCode_ConstantKey(name);
    if (k == NULL)
        return -1;
    v = PyDict_GetItem(dict, k);
    Py_DECREF(k);
    if (v == NULL)
        return -1;
    return PyLong_AS_LONG(v);
}

static int
compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags, PyObject *qualname)
{
    Py_ssize_t i, free = PyCode_GetNumFree(co);
    if (qualname == NULL)
        qualname = co->co_name;

    if (free) {
        for (i = 0; i < free; ++i) {
            /* Bypass com_addop_varname because it will generate
               LOAD_DEREF but LOAD_CLOSURE is needed.
            */
            PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
            int arg, reftype;

            /* Special case: If a class contains a method with a
               free variable that has the same name as a method,
               the name will be considered free *and* local in the
               class.  It should be handled by the closure, as
               well as by the normal name loookup logic.
            */
            reftype = get_ref_type(c, name);
            if (reftype == CELL)
                arg = compiler_lookup_arg(c->u->u_cellvars, name);
            else /* (reftype == FREE) */
                arg = compiler_lookup_arg(c->u->u_freevars, name);
            if (arg == -1) {
                fprintf(stderr,
                    "lookup %s in %s %d %d\n"
                    "freevars of %s: %s\n",
                    PyUnicode_AsUTF8(PyObject_Repr(name)),
                    PyUnicode_AsUTF8(c->u->u_name),
                    reftype, arg,
                    PyUnicode_AsUTF8(co->co_name),
                    PyUnicode_AsUTF8(PyObject_Repr(co->co_freevars)));
                Py_FatalError("compiler_make_closure()");
            }
            ADDOP_I(c, LOAD_CLOSURE, arg);
        }
        flags |= 0x08;
        ADDOP_I(c, BUILD_TUPLE, free);
    }
    ADDOP_O(c, LOAD_CONST, (PyObject*)co, consts);
    ADDOP_O(c, LOAD_CONST, qualname, consts);
    ADDOP_I(c, MAKE_FUNCTION, flags);
    return 1;
}

static int
compiler_decorators(struct compiler *c, asdl_seq* decos)
{
    int i;

    if (!decos)
        return 1;

    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
    }
    return 1;
}

static int
compiler_visit_kwonlydefaults(struct compiler *c, asdl_seq *kwonlyargs,
                              asdl_seq *kw_defaults)
{
    /* Push a dict of keyword-only default values.

       Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
       */
    int i;
    PyObject *keys = NULL;

    for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
        arg_ty arg = asdl_seq_GET(kwonlyargs, i);
        expr_ty default_ = asdl_seq_GET(kw_defaults, i);
        if (default_) {
            PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
            if (!mangled) {
                goto error;
            }
            if (keys == NULL) {
                keys = PyList_New(1);
                if (keys == NULL) {
                    Py_DECREF(mangled);
                    return 0;
                }
                PyList_SET_ITEM(keys, 0, mangled);
            }
            else {
                int res = PyList_Append(keys, mangled);
                Py_DECREF(mangled);
                if (res == -1) {
                    goto error;
                }
            }
            if (!compiler_visit_expr(c, default_)) {
                goto error;
            }
        }
    }
    if (keys != NULL) {
        Py_ssize_t default_count = PyList_GET_SIZE(keys);
        PyObject *keys_tuple = PyList_AsTuple(keys);
        Py_DECREF(keys);
        if (keys_tuple == NULL) {
            return 0;
        }
        ADDOP_N(c, LOAD_CONST, keys_tuple, consts);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count);
        assert(default_count > 0);
        return 1;
    }
    else {
        return -1;
    }

error:
    Py_XDECREF(keys);
    return 0;
}

static int
compiler_visit_argannotation(struct compiler *c, identifier id,
    expr_ty annotation, PyObject *names)
{
    if (annotation) {
        PyObject *mangled;
        VISIT(c, expr, annotation);
        mangled = _Py_Mangle(c->u->u_private, id);
        if (!mangled)
            return 0;
        if (PyList_Append(names, mangled) < 0) {
            Py_DECREF(mangled);
            return 0;
        }
        Py_DECREF(mangled);
    }
    return 1;
}

static int
compiler_visit_argannotations(struct compiler *c, asdl_seq* args,
                              PyObject *names)
{
    int i;
    for (i = 0; i < asdl_seq_LEN(args); i++) {
        arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
        if (!compiler_visit_argannotation(
                        c,
                        arg->arg,
                        arg->annotation,
                        names))
            return 0;
    }
    return 1;
}

static int
compiler_visit_annotations(struct compiler *c, arguments_ty args,
                           expr_ty returns)
{
    /* Push arg annotation dict.
       The expressions are evaluated out-of-order wrt the source code.

       Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
       */
    static identifier return_str;
    PyObject *names;
    Py_ssize_t len;
    names = PyList_New(0);
    if (!names)
        return 0;

    if (!compiler_visit_argannotations(c, args->args, names))
        goto error;
    if (args->vararg && args->vararg->annotation &&
        !compiler_visit_argannotation(c, args->vararg->arg,
                                     args->vararg->annotation, names))
        goto error;
    if (!compiler_visit_argannotations(c, args->kwonlyargs, names))
        goto error;
    if (args->kwarg && args->kwarg->annotation &&
        !compiler_visit_argannotation(c, args->kwarg->arg,
                                     args->kwarg->annotation, names))
        goto error;

    if (!return_str) {
        return_str = PyUnicode_InternFromString("return");
        if (!return_str)
            goto error;
    }
    if (!compiler_visit_argannotation(c, return_str, returns, names)) {
        goto error;
    }

    len = PyList_GET_SIZE(names);
    if (len) {
        PyObject *keytuple = PyList_AsTuple(names);
        Py_DECREF(names);
        if (keytuple == NULL) {
            return 0;
        }
        ADDOP_N(c, LOAD_CONST, keytuple, consts);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, len);
        return 1;
    }
    else {
        Py_DECREF(names);
        return -1;
    }

error:
    Py_DECREF(names);
    return 0;
}

static int
compiler_visit_defaults(struct compiler *c, arguments_ty args)
{
    VISIT_SEQ(c, expr, args->defaults);
    ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
    return 1;
}

static Py_ssize_t
compiler_default_arguments(struct compiler *c, arguments_ty args)
{
    Py_ssize_t funcflags = 0;
    if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
        if (!compiler_visit_defaults(c, args))
            return -1;
        funcflags |= 0x01;
    }
    if (args->kwonlyargs) {
        int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
                                                args->kw_defaults);
        if (res == 0) {
            return -1;
        }
        else if (res > 0) {
            funcflags |= 0x02;
        }
    }
    return funcflags;
}

static int
compiler_function(struct compiler *c, stmt_ty s, int is_async)
{
    PyCodeObject *co;
    PyObject *qualname, *first_const = Py_None;
    arguments_ty args;
    expr_ty returns;
    identifier name;
    asdl_seq* decos;
    asdl_seq *body;
    stmt_ty st;
    Py_ssize_t i, n, funcflags;
    int docstring;
    int annotations;
    int scope_type;

    if (is_async) {
        assert(s->kind == AsyncFunctionDef_kind);

        args = s->v.AsyncFunctionDef.args;
        returns = s->v.AsyncFunctionDef.returns;
        decos = s->v.AsyncFunctionDef.decorator_list;
        name = s->v.AsyncFunctionDef.name;
        body = s->v.AsyncFunctionDef.body;

        scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
    } else {
        assert(s->kind == FunctionDef_kind);

        args = s->v.FunctionDef.args;
        returns = s->v.FunctionDef.returns;
        decos = s->v.FunctionDef.decorator_list;
        name = s->v.FunctionDef.name;
        body = s->v.FunctionDef.body;

        scope_type = COMPILER_SCOPE_FUNCTION;
    }

    if (!compiler_decorators(c, decos))
        return 0;

    funcflags = compiler_default_arguments(c, args);
    if (funcflags == -1) {
        return 0;
    }

    annotations = compiler_visit_annotations(c, args, returns);
    if (annotations == 0) {
        return 0;
    }
    else if (annotations > 0) {
        funcflags |= 0x04;
    }

    if (!compiler_enter_scope(c, name, scope_type, (void *)s, s->lineno)) {
        return 0;
    }

    st = (stmt_ty)asdl_seq_GET(body, 0);
    docstring = compiler_isdocstring(st);
    if (docstring && c->c_optimize < 2) {
        if (st->v.Expr.value->kind == Constant_kind)
            first_const = st->v.Expr.value->v.Constant.value;
        else
            first_const = st->v.Expr.value->v.Str.s;
    }
    if (compiler_add_o(c, c->u->u_consts, first_const) < 0)      {
        compiler_exit_scope(c);
        return 0;
    }

    c->u->u_argcount = asdl_seq_LEN(args->args);
    c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    n = asdl_seq_LEN(body);
    /* if there was a docstring, we need to skip the first statement */
    for (i = docstring; i < n; i++) {
        st = (stmt_ty)asdl_seq_GET(body, i);
        VISIT_IN_SCOPE(c, stmt, st);
    }
    co = assemble(c, 1);
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL) {
        Py_XDECREF(qualname);
        Py_XDECREF(co);
        return 0;
    }

    compiler_make_closure(c, co, funcflags, qualname);
    Py_DECREF(qualname);
    Py_DECREF(co);

    /* decorators */
    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    return compiler_nameop(c, name, Store);
}

static int
compiler_class(struct compiler *c, stmt_ty s)
{
    PyCodeObject *co;
    PyObject *str;
    int i;
    asdl_seq* decos = s->v.ClassDef.decorator_list;

    if (!compiler_decorators(c, decos))
        return 0;

    /* ultimately generate code for:
         <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
       where:
         <func> is a function/closure created from the class body;
            it has a single argument (__locals__) where the dict
            (or MutableSequence) representing the locals is passed
         <name> is the class name
         <bases> is the positional arguments and *varargs argument
         <keywords> is the keyword arguments and **kwds argument
       This borrows from compiler_call.
    */

    /* 1. compile the class body into a code object */
    if (!compiler_enter_scope(c, s->v.ClassDef.name,
                              COMPILER_SCOPE_CLASS, (void *)s, s->lineno))
        return 0;
    /* this block represents what we do in the new scope */
    {
        /* use the class name for name mangling */
        Py_INCREF(s->v.ClassDef.name);
        Py_XSETREF(c->u->u_private, s->v.ClassDef.name);
        /* load (global) __name__ ... */
        str = PyUnicode_InternFromString("__name__");
        if (!str || !compiler_nameop(c, str, Load)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        /* ... and store it as __module__ */
        str = PyUnicode_InternFromString("__module__");
        if (!str || !compiler_nameop(c, str, Store)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        assert(c->u->u_qualname);
        ADDOP_O(c, LOAD_CONST, c->u->u_qualname, consts);
        str = PyUnicode_InternFromString("__qualname__");
        if (!str || !compiler_nameop(c, str, Store)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        /* compile the body proper */
        if (!compiler_body(c, s->v.ClassDef.body)) {
            compiler_exit_scope(c);
            return 0;
        }
        /* Return __classcell__ if it is referenced, otherwise return None */
        if (c->u->u_ste->ste_needs_class_closure) {
            /* Store __classcell__ into class namespace & return it */
            str = PyUnicode_InternFromString("__class__");
            if (str == NULL) {
                compiler_exit_scope(c);
                return 0;
            }
            i = compiler_lookup_arg(c->u->u_cellvars, str);
            Py_DECREF(str);
            if (i < 0) {
                compiler_exit_scope(c);
                return 0;
            }
            assert(i == 0);

            ADDOP_I(c, LOAD_CLOSURE, i);
            ADDOP(c, DUP_TOP);
            str = PyUnicode_InternFromString("__classcell__");
            if (!str || !compiler_nameop(c, str, Store)) {
                Py_XDECREF(str);
                compiler_exit_scope(c);
                return 0;
            }
            Py_DECREF(str);
        }
        else {
            /* No methods referenced __class__, so just return None */
            assert(PyDict_Size(c->u->u_cellvars) == 0);
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        }
        ADDOP_IN_SCOPE(c, RETURN_VALUE);
        /* create the code object */
        co = assemble(c, 1);
    }
    /* leave the new scope */
    compiler_exit_scope(c);
    if (co == NULL)
        return 0;

    /* 2. load the 'build_class' function */
    ADDOP(c, LOAD_BUILD_CLASS);

    /* 3. load a function (or closure) made from the code object */
    compiler_make_closure(c, co, 0, NULL);
    Py_DECREF(co);

    /* 4. load class name */
    ADDOP_O(c, LOAD_CONST, s->v.ClassDef.name, consts);

    /* 5. generate the rest of the code for the call */
    if (!compiler_call_helper(c, 2,
                              s->v.ClassDef.bases,
                              s->v.ClassDef.keywords))
        return 0;

    /* 6. apply decorators */
    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    /* 7. store into <name> */
    if (!compiler_nameop(c, s->v.ClassDef.name, Store))
        return 0;
    return 1;
}

static int
compiler_ifexp(struct compiler *c, expr_ty e)
{
    basicblock *end, *next;

    assert(e->kind == IfExp_kind);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    next = compiler_new_block(c);
    if (next == NULL)
        return 0;
    VISIT(c, expr, e->v.IfExp.test);
    ADDOP_JABS(c, POP_JUMP_IF_FALSE, next);
    VISIT(c, expr, e->v.IfExp.body);
    ADDOP_JREL(c, JUMP_FORWARD, end);
    compiler_use_next_block(c, next);
    VISIT(c, expr, e->v.IfExp.orelse);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_lambda(struct compiler *c, expr_ty e)
{
    PyCodeObject *co;
    PyObject *qualname;
    static identifier name;
    Py_ssize_t funcflags;
    arguments_ty args = e->v.Lambda.args;
    assert(e->kind == Lambda_kind);

    if (!name) {
        name = PyUnicode_InternFromString("<lambda>");
        if (!name)
            return 0;
    }

    funcflags = compiler_default_arguments(c, args);
    if (funcflags == -1) {
        return 0;
    }

    if (!compiler_enter_scope(c, name, COMPILER_SCOPE_LAMBDA,
                              (void *)e, e->lineno))
        return 0;

    /* Make None the first constant, so the lambda can't have a
       docstring. */
    if (compiler_add_o(c, c->u->u_consts, Py_None) < 0)
        return 0;

    c->u->u_argcount = asdl_seq_LEN(args->args);
    c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
    if (c->u->u_ste->ste_generator) {
        co = assemble(c, 0);
    }
    else {
        ADDOP_IN_SCOPE(c, RETURN_VALUE);
        co = assemble(c, 1);
    }
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL)
        return 0;

    compiler_make_closure(c, co, funcflags, qualname);
    Py_DECREF(qualname);
    Py_DECREF(co);

    return 1;
}

static int
compiler_if(struct compiler *c, stmt_ty s)
{
    basicblock *end, *next;
    int constant;
    assert(s->kind == If_kind);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;

    constant = expr_constant(c, s->v.If.test);
    /* constant = 0: "if 0"
     * constant = 1: "if 1", "if 2", ...
     * constant = -1: rest */
    if (constant == 0) {
        if (s->v.If.orelse)
            VISIT_SEQ(c, stmt, s->v.If.orelse);
    } else if (constant == 1) {
        VISIT_SEQ(c, stmt, s->v.If.body);
    } else {
        if (asdl_seq_LEN(s->v.If.orelse)) {
            next = compiler_new_block(c);
            if (next == NULL)
                return 0;
        }
        else
            next = end;
        VISIT(c, expr, s->v.If.test);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, next);
        VISIT_SEQ(c, stmt, s->v.If.body);
        if (asdl_seq_LEN(s->v.If.orelse)) {
            ADDOP_JREL(c, JUMP_FORWARD, end);
            compiler_use_next_block(c, next);
            VISIT_SEQ(c, stmt, s->v.If.orelse);
        }
    }
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_for(struct compiler *c, stmt_ty s)
{
    basicblock *start, *cleanup, *end;

    start = compiler_new_block(c);
    cleanup = compiler_new_block(c);
    end = compiler_new_block(c);
    if (start == NULL || end == NULL || cleanup == NULL)
        return 0;
    ADDOP_JREL(c, SETUP_LOOP, end);
    if (!compiler_push_fblock(c, LOOP, start))
        return 0;
    VISIT(c, expr, s->v.For.iter);
    ADDOP(c, GET_ITER);
    compiler_use_next_block(c, start);
    ADDOP_JREL(c, FOR_ITER, cleanup);
    VISIT(c, expr, s->v.For.target);
    VISIT_SEQ(c, stmt, s->v.For.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);
    compiler_use_next_block(c, cleanup);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, LOOP, start);
    VISIT_SEQ(c, stmt, s->v.For.orelse);
    compiler_use_next_block(c, end);
    return 1;
}


static int
compiler_async_for(struct compiler *c, stmt_ty s)
{
    _Py_IDENTIFIER(StopAsyncIteration);

    basicblock *try, *except, *end, *after_try, *try_cleanup,
               *after_loop, *after_loop_else;

    PyObject *stop_aiter_error = _PyUnicode_FromId(&PyId_StopAsyncIteration);
    if (stop_aiter_error == NULL) {
        return 0;
    }

    try = compiler_new_block(c);
    except = compiler_new_block(c);
    end = compiler_new_block(c);
    after_try = compiler_new_block(c);
    try_cleanup = compiler_new_block(c);
    after_loop = compiler_new_block(c);
    after_loop_else = compiler_new_block(c);

    if (try == NULL || except == NULL || end == NULL
            || after_try == NULL || try_cleanup == NULL)
        return 0;

    ADDOP_JREL(c, SETUP_LOOP, after_loop);
    if (!compiler_push_fblock(c, LOOP, try))
        return 0;

    VISIT(c, expr, s->v.AsyncFor.iter);
    ADDOP(c, GET_AITER);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    compiler_use_next_block(c, try);


    ADDOP_JREL(c, SETUP_EXCEPT, except);
    if (!compiler_push_fblock(c, EXCEPT, try))
        return 0;

    ADDOP(c, GET_ANEXT);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);
    VISIT(c, expr, s->v.AsyncFor.target);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, EXCEPT, try);
    ADDOP_JREL(c, JUMP_FORWARD, after_try);


    compiler_use_next_block(c, except);
    ADDOP(c, DUP_TOP);
    ADDOP_O(c, LOAD_GLOBAL, stop_aiter_error, names);
    ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
    ADDOP_JABS(c, POP_JUMP_IF_FALSE, try_cleanup);

    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_EXCEPT); /* for SETUP_EXCEPT */
    ADDOP(c, POP_BLOCK); /* for SETUP_LOOP */
    ADDOP_JABS(c, JUMP_ABSOLUTE, after_loop_else);


    compiler_use_next_block(c, try_cleanup);
    ADDOP(c, END_FINALLY);

    compiler_use_next_block(c, after_try);
    VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, try);

    ADDOP(c, POP_BLOCK); /* for SETUP_LOOP */
    compiler_pop_fblock(c, LOOP, try);

    compiler_use_next_block(c, after_loop);
    ADDOP_JABS(c, JUMP_ABSOLUTE, end);

    compiler_use_next_block(c, after_loop_else);
    VISIT_SEQ(c, stmt, s->v.For.orelse);

    compiler_use_next_block(c, end);

    return 1;
}

static int
compiler_while(struct compiler *c, stmt_ty s)
{
    basicblock *loop, *orelse, *end, *anchor = NULL;
    int constant = expr_constant(c, s->v.While.test);

    if (constant == 0) {
        if (s->v.While.orelse)
            VISIT_SEQ(c, stmt, s->v.While.orelse);
        return 1;
    }
    loop = compiler_new_block(c);
    end = compiler_new_block(c);
    if (constant == -1) {
        anchor = compiler_new_block(c);
        if (anchor == NULL)
            return 0;
    }
    if (loop == NULL || end == NULL)
        return 0;
    if (s->v.While.orelse) {
        orelse = compiler_new_block(c);
        if (orelse == NULL)
            return 0;
    }
    else
        orelse = NULL;

    ADDOP_JREL(c, SETUP_LOOP, end);
    compiler_use_next_block(c, loop);
    if (!compiler_push_fblock(c, LOOP, loop))
        return 0;
    if (constant == -1) {
        VISIT(c, expr, s->v.While.test);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, anchor);
    }
    VISIT_SEQ(c, stmt, s->v.While.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, loop);

    /* XXX should the two POP instructions be in a separate block
       if there is no else clause ?
    */

    if (constant == -1)
        compiler_use_next_block(c, anchor);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, LOOP, loop);
    if (orelse != NULL) /* what if orelse is just pass? */
        VISIT_SEQ(c, stmt, s->v.While.orelse);
    compiler_use_next_block(c, end);

    return 1;
}

static int
compiler_continue(struct compiler *c)
{
    static const char LOOP_ERROR_MSG[] = "'continue' not properly in loop";
    static const char IN_FINALLY_ERROR_MSG[] =
                    "'continue' not supported inside 'finally' clause";
    int i;

    if (!c->u->u_nfblocks)
        return compiler_error(c, LOOP_ERROR_MSG);
    i = c->u->u_nfblocks - 1;
    switch (c->u->u_fblock[i].fb_type) {
    case LOOP:
        ADDOP_JABS(c, JUMP_ABSOLUTE, c->u->u_fblock[i].fb_block);
        break;
    case EXCEPT:
    case FINALLY_TRY:
        while (--i >= 0 && c->u->u_fblock[i].fb_type != LOOP) {
            /* Prevent continue anywhere under a finally
                  even if hidden in a sub-try or except. */
            if (c->u->u_fblock[i].fb_type == FINALLY_END)
                return compiler_error(c, IN_FINALLY_ERROR_MSG);
        }
        if (i == -1)
            return compiler_error(c, LOOP_ERROR_MSG);
        ADDOP_JABS(c, CONTINUE_LOOP, c->u->u_fblock[i].fb_block);
        break;
    case FINALLY_END:
        return compiler_error(c, IN_FINALLY_ERROR_MSG);
    }

    return 1;
}

/* Code generated for "try: <body> finally: <finalbody>" is as follows:

        SETUP_FINALLY           L
        <code for body>
        POP_BLOCK
        LOAD_CONST              <None>
    L:          <code for finalbody>
        END_FINALLY

   The special instructions use the block stack.  Each block
   stack entry contains the instruction that created it (here
   SETUP_FINALLY), the level of the value stack at the time the
   block stack entry was created, and a label (here L).

   SETUP_FINALLY:
    Pushes the current value stack level and the label
    onto the block stack.
   POP_BLOCK:
    Pops en entry from the block stack, and pops the value
    stack until its level is the same as indicated on the
    block stack.  (The label is ignored.)
   END_FINALLY:
    Pops a variable number of entries from the *value* stack
    and re-raises the exception they specify.  The number of
    entries popped depends on the (pseudo) exception type.

   The block stack is unwound when an exception is raised:
   when a SETUP_FINALLY entry is found, the exception is pushed
   onto the value stack (and the exception condition is cleared),
   and the interpreter jumps to the label gotten from the block
   stack.
*/

static int
compiler_try_finally(struct compiler *c, stmt_ty s)
{
    basicblock *body, *end;
    body = compiler_new_block(c);
    end = compiler_new_block(c);
    if (body == NULL || end == NULL)
        return 0;

    ADDOP_JREL(c, SETUP_FINALLY, end);
    compiler_use_next_block(c, body);
    if (!compiler_push_fblock(c, FINALLY_TRY, body))
        return 0;
    if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
        if (!compiler_try_except(c, s))
            return 0;
    }
    else {
        VISIT_SEQ(c, stmt, s->v.Try.body);
    }
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, body);

    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    compiler_use_next_block(c, end);
    if (!compiler_push_fblock(c, FINALLY_END, end))
        return 0;
    VISIT_SEQ(c, stmt, s->v.Try.finalbody);
    ADDOP(c, END_FINALLY);
    compiler_pop_fblock(c, FINALLY_END, end);

    return 1;
}

/*
   Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
   (The contents of the value stack is shown in [], with the top
   at the right; 'tb' is trace-back info, 'val' the exception's
   associated value, and 'exc' the exception.)

   Value stack          Label   Instruction     Argument
   []                           SETUP_EXCEPT    L1
   []                           <code for S>
   []                           POP_BLOCK
   []                           JUMP_FORWARD    L0

   [tb, val, exc]       L1:     DUP                             )
   [tb, val, exc, exc]          <evaluate E1>                   )
   [tb, val, exc, exc, E1]      COMPARE_OP      EXC_MATCH       ) only if E1
   [tb, val, exc, 1-or-0]       POP_JUMP_IF_FALSE       L2      )
   [tb, val, exc]               POP
   [tb, val]                    <assign to V1>  (or POP if no V1)
   [tb]                         POP
   []                           <code for S1>
                                JUMP_FORWARD    L0

   [tb, val, exc]       L2:     DUP
   .............................etc.......................

   [tb, val, exc]       Ln+1:   END_FINALLY     # re-raise exception

   []                   L0:     <next statement>

   Of course, parts are not generated if Vi or Ei is not present.
*/
static int
compiler_try_except(struct compiler *c, stmt_ty s)
{
    basicblock *body, *orelse, *except, *end;
    Py_ssize_t i, n;

    body = compiler_new_block(c);
    except = compiler_new_block(c);
    orelse = compiler_new_block(c);
    end = compiler_new_block(c);
    if (body == NULL || except == NULL || orelse == NULL || end == NULL)
        return 0;
    ADDOP_JREL(c, SETUP_EXCEPT, except);
    compiler_use_next_block(c, body);
    if (!compiler_push_fblock(c, EXCEPT, body))
        return 0;
    VISIT_SEQ(c, stmt, s->v.Try.body);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, EXCEPT, body);
    ADDOP_JREL(c, JUMP_FORWARD, orelse);
    n = asdl_seq_LEN(s->v.Try.handlers);
    compiler_use_next_block(c, except);
    for (i = 0; i < n; i++) {
        excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
            s->v.Try.handlers, i);
        if (!handler->v.ExceptHandler.type && i < n-1)
            return compiler_error(c, "default 'except:' must be last");
        c->u->u_lineno_set = 0;
        c->u->u_lineno = handler->lineno;
        c->u->u_col_offset = handler->col_offset;
        except = compiler_new_block(c);
        if (except == NULL)
            return 0;
        if (handler->v.ExceptHandler.type) {
            ADDOP(c, DUP_TOP);
            VISIT(c, expr, handler->v.ExceptHandler.type);
            ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
            ADDOP_JABS(c, POP_JUMP_IF_FALSE, except);
        }
        ADDOP(c, POP_TOP);
        if (handler->v.ExceptHandler.name) {
            basicblock *cleanup_end, *cleanup_body;

            cleanup_end = compiler_new_block(c);
            cleanup_body = compiler_new_block(c);
            if (!(cleanup_end || cleanup_body))
                return 0;

            compiler_nameop(c, handler->v.ExceptHandler.name, Store);
            ADDOP(c, POP_TOP);

            /*
              try:
                  # body
              except type as name:
                  try:
                      # body
                  finally:
                      name = None
                      del name
            */

            /* second try: */
            ADDOP_JREL(c, SETUP_FINALLY, cleanup_end);
            compiler_use_next_block(c, cleanup_body);
            if (!compiler_push_fblock(c, FINALLY_TRY, cleanup_body))
                return 0;

            /* second # body */
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            ADDOP(c, POP_BLOCK);
            ADDOP(c, POP_EXCEPT);
            compiler_pop_fblock(c, FINALLY_TRY, cleanup_body);

            /* finally: */
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
            compiler_use_next_block(c, cleanup_end);
            if (!compiler_push_fblock(c, FINALLY_END, cleanup_end))
                return 0;

            /* name = None */
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
            compiler_nameop(c, handler->v.ExceptHandler.name, Store);

            /* del name */
            compiler_nameop(c, handler->v.ExceptHandler.name, Del);

            ADDOP(c, END_FINALLY);
            compiler_pop_fblock(c, FINALLY_END, cleanup_end);
        }
        else {
            basicblock *cleanup_body;

            cleanup_body = compiler_new_block(c);
            if (!cleanup_body)
                return 0;

            ADDOP(c, POP_TOP);
            ADDOP(c, POP_TOP);
            compiler_use_next_block(c, cleanup_body);
            if (!compiler_push_fblock(c, FINALLY_TRY, cleanup_body))
                return 0;
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            ADDOP(c, POP_EXCEPT);
            compiler_pop_fblock(c, FINALLY_TRY, cleanup_body);
        }
        ADDOP_JREL(c, JUMP_FORWARD, end);
        compiler_use_next_block(c, except);
    }
    ADDOP(c, END_FINALLY);
    compiler_use_next_block(c, orelse);
    VISIT_SEQ(c, stmt, s->v.Try.orelse);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_try(struct compiler *c, stmt_ty s) {
    if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
        return compiler_try_finally(c, s);
    else
        return compiler_try_except(c, s);
}


static int
compiler_import_as(struct compiler *c, identifier name, identifier asname)
{
    /* The IMPORT_NAME opcode was already generated.  This function
       merely needs to bind the result to a name.

       If there is a dot in name, we need to split it and emit a
       LOAD_ATTR for each name.
    */
    Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0,
                                        PyUnicode_GET_LENGTH(name), 1);
    if (dot == -2)
        return 0;
    if (dot != -1) {
        /* Consume the base module name to get the first attribute */
        Py_ssize_t pos = dot + 1;
        while (dot != -1) {
            PyObject *attr;
            dot = PyUnicode_FindChar(name, '.', pos,
                                     PyUnicode_GET_LENGTH(name), 1);
            if (dot == -2)
                return 0;
            attr = PyUnicode_Substring(name, pos,
                                       (dot != -1) ? dot :
                                       PyUnicode_GET_LENGTH(name));
            if (!attr)
                return 0;
            ADDOP_O(c, LOAD_ATTR, attr, names);
            Py_DECREF(attr);
            pos = dot + 1;
        }
    }
    return compiler_nameop(c, asname, Store);
}

static int
compiler_import(struct compiler *c, stmt_ty s)
{
    /* The Import node stores a module name like a.b.c as a single
       string.  This is convenient for all cases except
         import a.b.c as d
       where we need to parse that string to extract the individual
       module names.
       XXX Perhaps change the representation to make this case simpler?
     */
    Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);

    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
        int r;
        PyObject *level;

        level = PyLong_FromLong(0);
        if (level == NULL)
            return 0;

        ADDOP_O(c, LOAD_CONST, level, consts);
        Py_DECREF(level);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP_NAME(c, IMPORT_NAME, alias->name, names);

        if (alias->asname) {
            r = compiler_import_as(c, alias->name, alias->asname);
            if (!r)
                return r;
        }
        else {
            identifier tmp = alias->name;
            Py_ssize_t dot = PyUnicode_FindChar(
                alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
            if (dot != -1) {
                tmp = PyUnicode_Substring(alias->name, 0, dot);
                if (tmp == NULL)
                    return 0;
            }
            r = compiler_nameop(c, tmp, Store);
            if (dot != -1) {
                Py_DECREF(tmp);
            }
            if (!r)
                return r;
        }
    }
    return 1;
}

static int
compiler_from_import(struct compiler *c, stmt_ty s)
{
    Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names);

    PyObject *names = PyTuple_New(n);
    PyObject *level;
    static PyObject *empty_string;

    if (!empty_string) {
        empty_string = PyUnicode_FromString("");
        if (!empty_string)
            return 0;
    }

    if (!names)
        return 0;

    level = PyLong_FromLong(s->v.ImportFrom.level);
    if (!level) {
        Py_DECREF(names);
        return 0;
    }

    /* build up the names */
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        Py_INCREF(alias->name);
        PyTuple_SET_ITEM(names, i, alias->name);
    }

    if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
        _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) {
        Py_DECREF(level);
        Py_DECREF(names);
        return compiler_error(c, "from __future__ imports must occur "
                              "at the beginning of the file");
    }

    ADDOP_O(c, LOAD_CONST, level, consts);
    Py_DECREF(level);
    ADDOP_O(c, LOAD_CONST, names, consts);
    Py_DECREF(names);
    if (s->v.ImportFrom.module) {
        ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
    }
    else {
        ADDOP_NAME(c, IMPORT_NAME, empty_string, names);
    }
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        identifier store_name;

        if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
            assert(n == 1);
            ADDOP(c, IMPORT_STAR);
            return 1;
        }

        ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
        store_name = alias->name;
        if (alias->asname)
            store_name = alias->asname;

        if (!compiler_nameop(c, store_name, Store)) {
            Py_DECREF(names);
            return 0;
        }
    }
    /* remove imported module */
    ADDOP(c, POP_TOP);
    return 1;
}

static int
compiler_assert(struct compiler *c, stmt_ty s)
{
    static PyObject *assertion_error = NULL;
    basicblock *end;
    PyObject* msg;

    if (c->c_optimize)
        return 1;
    if (assertion_error == NULL) {
        assertion_error = PyUnicode_InternFromString("AssertionError");
        if (assertion_error == NULL)
            return 0;
    }
    if (s->v.Assert.test->kind == Tuple_kind &&
        asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) {
        msg = PyUnicode_FromString("assertion is always true, "
                                   "perhaps remove parentheses?");
        if (msg == NULL)
            return 0;
        if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg,
                                     c->c_filename, c->u->u_lineno,
                                     NULL, NULL) == -1) {
            Py_DECREF(msg);
            return 0;
        }
        Py_DECREF(msg);
    }
    VISIT(c, expr, s->v.Assert.test);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    ADDOP_JABS(c, POP_JUMP_IF_TRUE, end);
    ADDOP_O(c, LOAD_GLOBAL, assertion_error, names);
    if (s->v.Assert.msg) {
        VISIT(c, expr, s->v.Assert.msg);
        ADDOP_I(c, CALL_FUNCTION, 1);
    }
    ADDOP_I(c, RAISE_VARARGS, 1);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_visit_stmt_expr(struct compiler *c, expr_ty value)
{
    if (c->c_interactive && c->c_nestlevel <= 1) {
        VISIT(c, expr, value);
        ADDOP(c, PRINT_EXPR);
        return 1;
    }

    if (is_const(value)) {
        /* ignore constant statement */
        return 1;
    }

    VISIT(c, expr, value);
    ADDOP(c, POP_TOP);
    return 1;
}

static int
compiler_visit_stmt(struct compiler *c, stmt_ty s)
{
    Py_ssize_t i, n;

    /* Always assign a lineno to the next instruction for a stmt. */
    c->u->u_lineno = s->lineno;
    c->u->u_col_offset = s->col_offset;
    c->u->u_lineno_set = 0;

    switch (s->kind) {
    case FunctionDef_kind:
        return compiler_function(c, s, 0);
    case ClassDef_kind:
        return compiler_class(c, s);
    case Return_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'return' outside function");
        if (s->v.Return.value) {
            if (c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
                return compiler_error(
                    c, "'return' with value in async generator");
            VISIT(c, expr, s->v.Return.value);
        }
        else
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, RETURN_VALUE);
        break;
    case Delete_kind:
        VISIT_SEQ(c, expr, s->v.Delete.targets)
        break;
    case Assign_kind:
        n = asdl_seq_LEN(s->v.Assign.targets);
        VISIT(c, expr, s->v.Assign.value);
        for (i = 0; i < n; i++) {
            if (i < n - 1)
                ADDOP(c, DUP_TOP);
            VISIT(c, expr,
                  (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
        }
        break;
    case AugAssign_kind:
        return compiler_augassign(c, s);
    case AnnAssign_kind:
        return compiler_annassign(c, s);
    case For_kind:
        return compiler_for(c, s);
    case While_kind:
        return compiler_while(c, s);
    case If_kind:
        return compiler_if(c, s);
    case Raise_kind:
        n = 0;
        if (s->v.Raise.exc) {
            VISIT(c, expr, s->v.Raise.exc);
            n++;
            if (s->v.Raise.cause) {
                VISIT(c, expr, s->v.Raise.cause);
                n++;
            }
        }
        ADDOP_I(c, RAISE_VARARGS, (int)n);
        break;
    case Try_kind:
        return compiler_try(c, s);
    case Assert_kind:
        return compiler_assert(c, s);
    case Import_kind:
        return compiler_import(c, s);
    case ImportFrom_kind:
        return compiler_from_import(c, s);
    case Global_kind:
    case Nonlocal_kind:
        break;
    case Expr_kind:
        return compiler_visit_stmt_expr(c, s->v.Expr.value);
    case Pass_kind:
        break;
    case Break_kind:
        if (!compiler_in_loop(c))
            return compiler_error(c, "'break' outside loop");
        ADDOP(c, BREAK_LOOP);
        break;
    case Continue_kind:
        return compiler_continue(c);
    case With_kind:
        return compiler_with(c, s, 0);
    case AsyncFunctionDef_kind:
        return compiler_function(c, s, 1);
    case AsyncWith_kind:
        return compiler_async_with(c, s, 0);
    case AsyncFor_kind:
        return compiler_async_for(c, s);
    }

    return 1;
}

static int
unaryop(unaryop_ty op)
{
    switch (op) {
    case Invert:
        return UNARY_INVERT;
    case Not:
        return UNARY_NOT;
    case UAdd:
        return UNARY_POSITIVE;
    case USub:
        return UNARY_NEGATIVE;
    default:
        PyErr_Format(PyExc_SystemError,
            "unary op %d should not be possible", op);
        return 0;
    }
}

static int
binop(struct compiler *c, operator_ty op)
{
    switch (op) {
    case Add:
        return BINARY_ADD;
    case Sub:
        return BINARY_SUBTRACT;
    case Mult:
        return BINARY_MULTIPLY;
    case MatMult:
        return BINARY_MATRIX_MULTIPLY;
    case Div:
        return BINARY_TRUE_DIVIDE;
    case Mod:
        return BINARY_MODULO;
    case Pow:
        return BINARY_POWER;
    case LShift:
        return BINARY_LSHIFT;
    case RShift:
        return BINARY_RSHIFT;
    case BitOr:
        return BINARY_OR;
    case BitXor:
        return BINARY_XOR;
    case BitAnd:
        return BINARY_AND;
    case FloorDiv:
        return BINARY_FLOOR_DIVIDE;
    default:
        PyErr_Format(PyExc_SystemError,
            "binary op %d should not be possible", op);
        return 0;
    }
}

static int
cmpop(cmpop_ty op)
{
    switch (op) {
    case Eq:
        return PyCmp_EQ;
    case NotEq:
        return PyCmp_NE;
    case Lt:
        return PyCmp_LT;
    case LtE:
        return PyCmp_LE;
    case Gt:
        return PyCmp_GT;
    case GtE:
        return PyCmp_GE;
    case Is:
        return PyCmp_IS;
    case IsNot:
        return PyCmp_IS_NOT;
    case In:
        return PyCmp_IN;
    case NotIn:
        return PyCmp_NOT_IN;
    default:
        return PyCmp_BAD;
    }
}

static int
inplace_binop(struct compiler *c, operator_ty op)
{
    switch (op) {
    case Add:
        return INPLACE_ADD;
    case Sub:
        return INPLACE_SUBTRACT;
    case Mult:
        return INPLACE_MULTIPLY;
    case MatMult:
        return INPLACE_MATRIX_MULTIPLY;
    case Div:
        return INPLACE_TRUE_DIVIDE;
    case Mod:
        return INPLACE_MODULO;
    case Pow:
        return INPLACE_POWER;
    case LShift:
        return INPLACE_LSHIFT;
    case RShift:
        return INPLACE_RSHIFT;
    case BitOr:
        return INPLACE_OR;
    case BitXor:
        return INPLACE_XOR;
    case BitAnd:
        return INPLACE_AND;
    case FloorDiv:
        return INPLACE_FLOOR_DIVIDE;
    default:
        PyErr_Format(PyExc_SystemError,
            "inplace binary op %d should not be possible", op);
        return 0;
    }
}

static int
compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
{
    int op, scope;
    Py_ssize_t arg;
    enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;

    PyObject *dict = c->u->u_names;
    PyObject *mangled;
    /* XXX AugStore isn't used anywhere! */

    mangled = _Py_Mangle(c->u->u_private, name);
    if (!mangled)
        return 0;

    assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
           !_PyUnicode_EqualToASCIIString(name, "True") &&
           !_PyUnicode_EqualToASCIIString(name, "False"));

    op = 0;
    optype = OP_NAME;
    scope = PyST_GetScope(c->u->u_ste, mangled);
    switch (scope) {
    case FREE:
        dict = c->u->u_freevars;
        optype = OP_DEREF;
        break;
    case CELL:
        dict = c->u->u_cellvars;
        optype = OP_DEREF;
        break;
    case LOCAL:
        if (c->u->u_ste->ste_type == FunctionBlock)
            optype = OP_FAST;
        break;
    case GLOBAL_IMPLICIT:
        if (c->u->u_ste->ste_type == FunctionBlock)
            optype = OP_GLOBAL;
        break;
    case GLOBAL_EXPLICIT:
        optype = OP_GLOBAL;
        break;
    default:
        /* scope can be 0 */
        break;
    }

    /* XXX Leave assert here, but handle __doc__ and the like better */
    assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');

    switch (optype) {
    case OP_DEREF:
        switch (ctx) {
        case Load:
            op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
            break;
        case Store: op = STORE_DEREF; break;
        case AugLoad:
        case AugStore:
            break;
        case Del: op = DELETE_DEREF; break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for deref variable");
            return 0;
        }
        break;
    case OP_FAST:
        switch (ctx) {
        case Load: op = LOAD_FAST; break;
        case Store: op = STORE_FAST; break;
        case Del: op = DELETE_FAST; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for local variable");
            return 0;
        }
        ADDOP_O(c, op, mangled, varnames);
        Py_DECREF(mangled);
        return 1;
    case OP_GLOBAL:
        switch (ctx) {
        case Load: op = LOAD_GLOBAL; break;
        case Store: op = STORE_GLOBAL; break;
        case Del: op = DELETE_GLOBAL; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for global variable");
            return 0;
        }
        break;
    case OP_NAME:
        switch (ctx) {
        case Load: op = LOAD_NAME; break;
        case Store: op = STORE_NAME; break;
        case Del: op = DELETE_NAME; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for name variable");
            return 0;
        }
        break;
    }

    assert(op);
    arg = compiler_add_o(c, dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, op, arg);
}

static int
compiler_boolop(struct compiler *c, expr_ty e)
{
    basicblock *end;
    int jumpi;
    Py_ssize_t i, n;
    asdl_seq *s;

    assert(e->kind == BoolOp_kind);
    if (e->v.BoolOp.op == And)
        jumpi = JUMP_IF_FALSE_OR_POP;
    else
        jumpi = JUMP_IF_TRUE_OR_POP;
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    s = e->v.BoolOp.values;
    n = asdl_seq_LEN(s) - 1;
    assert(n >= 0);
    for (i = 0; i < n; ++i) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
        ADDOP_JABS(c, jumpi, end);
    }
    VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
    compiler_use_next_block(c, end);
    return 1;
}

static int
starunpack_helper(struct compiler *c, asdl_seq *elts,
                  int single_op, int inner_op, int outer_op)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    Py_ssize_t i, nsubitems = 0, nseen = 0;
    for (i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind) {
            if (nseen) {
                ADDOP_I(c, inner_op, nseen);
                nseen = 0;
                nsubitems++;
            }
            VISIT(c, expr, elt->v.Starred.value);
            nsubitems++;
        }
        else {
            VISIT(c, expr, elt);
            nseen++;
        }
    }
    if (nsubitems) {
        if (nseen) {
            ADDOP_I(c, inner_op, nseen);
            nsubitems++;
        }
        ADDOP_I(c, outer_op, nsubitems);
    }
    else
        ADDOP_I(c, single_op, nseen);
    return 1;
}

static int
assignment_helper(struct compiler *c, asdl_seq *elts)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    Py_ssize_t i;
    int seen_star = 0;
    for (i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind && !seen_star) {
            if ((i >= (1 << 8)) ||
                (n-i-1 >= (INT_MAX >> 8)))
                return compiler_error(c,
                    "too many expressions in "
                    "star-unpacking assignment");
            ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
            seen_star = 1;
            asdl_seq_SET(elts, i, elt->v.Starred.value);
        }
        else if (elt->kind == Starred_kind) {
            return compiler_error(c,
                "two starred expressions in assignment");
        }
    }
    if (!seen_star) {
        ADDOP_I(c, UNPACK_SEQUENCE, n);
    }
    VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_list(struct compiler *c, expr_ty e)
{
    asdl_seq *elts = e->v.List.elts;
    if (e->v.List.ctx == Store) {
        return assignment_helper(c, elts);
    }
    else if (e->v.List.ctx == Load) {
        return starunpack_helper(c, elts,
                                 BUILD_LIST, BUILD_TUPLE, BUILD_LIST_UNPACK);
    }
    else
        VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_tuple(struct compiler *c, expr_ty e)
{
    asdl_seq *elts = e->v.Tuple.elts;
    if (e->v.Tuple.ctx == Store) {
        return assignment_helper(c, elts);
    }
    else if (e->v.Tuple.ctx == Load) {
        return starunpack_helper(c, elts,
                                 BUILD_TUPLE, BUILD_TUPLE, BUILD_TUPLE_UNPACK);
    }
    else
        VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_set(struct compiler *c, expr_ty e)
{
    return starunpack_helper(c, e->v.Set.elts, BUILD_SET,
                             BUILD_SET, BUILD_SET_UNPACK);
}

static int
are_all_items_const(asdl_seq *seq, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i;
    for (i = begin; i < end; i++) {
        expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
        if (key == NULL || !is_const(key))
            return 0;
    }
    return 1;
}

static int
compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i, n = end - begin;
    PyObject *keys, *key;
    if (n > 1 && are_all_items_const(e->v.Dict.keys, begin, end)) {
        for (i = begin; i < end; i++) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
        }
        keys = PyTuple_New(n);
        if (keys == NULL) {
            return 0;
        }
        for (i = begin; i < end; i++) {
            key = get_const_value((expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
            Py_INCREF(key);
            PyTuple_SET_ITEM(keys, i - begin, key);
        }
        ADDOP_N(c, LOAD_CONST, keys, consts);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
    }
    else {
        for (i = begin; i < end; i++) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
        }
        ADDOP_I(c, BUILD_MAP, n);
    }
    return 1;
}

static int
compiler_dict(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n, elements;
    int containers;
    int is_unpacking = 0;
    n = asdl_seq_LEN(e->v.Dict.values);
    containers = 0;
    elements = 0;
    for (i = 0; i < n; i++) {
        is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
        if (elements == 0xFFFF || (elements && is_unpacking)) {
            if (!compiler_subdict(c, e, i - elements, i))
                return 0;
            containers++;
            elements = 0;
        }
        if (is_unpacking) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
            containers++;
        }
        else {
            elements++;
        }
    }
    if (elements || containers == 0) {
        if (!compiler_subdict(c, e, n - elements, n))
            return 0;
        containers++;
    }
    /* If there is more than one dict, they need to be merged into a new
     * dict.  If there is one dict and it's an unpacking, then it needs
     * to be copied into a new dict." */
    while (containers > 1 || is_unpacking) {
        int oparg = containers < 255 ? containers : 255;
        ADDOP_I(c, BUILD_MAP_UNPACK, oparg);
        containers -= (oparg - 1);
        is_unpacking = 0;
    }
    return 1;
}

static int
compiler_compare(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n;
    basicblock *cleanup = NULL;

    /* XXX the logic can be cleaned up for 1 or multiple comparisons */
    VISIT(c, expr, e->v.Compare.left);
    n = asdl_seq_LEN(e->v.Compare.ops);
    assert(n > 0);
    if (n > 1) {
        cleanup = compiler_new_block(c);
        if (cleanup == NULL)
            return 0;
        VISIT(c, expr,
            (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
    }
    for (i = 1; i < n; i++) {
        ADDOP(c, DUP_TOP);
        ADDOP(c, ROT_THREE);
        ADDOP_I(c, COMPARE_OP,
            cmpop((cmpop_ty)(asdl_seq_GET(
                                      e->v.Compare.ops, i - 1))));
        ADDOP_JABS(c, JUMP_IF_FALSE_OR_POP, cleanup);
        NEXT_BLOCK(c);
        if (i < (n - 1))
            VISIT(c, expr,
                (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
    }
    VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n - 1));
    ADDOP_I(c, COMPARE_OP,
           cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, n - 1))));
    if (n > 1) {
        basicblock *end = compiler_new_block(c);
        if (end == NULL)
            return 0;
        ADDOP_JREL(c, JUMP_FORWARD, end);
        compiler_use_next_block(c, cleanup);
        ADDOP(c, ROT_TWO);
        ADDOP(c, POP_TOP);
        compiler_use_next_block(c, end);
    }
    return 1;
}

static int
compiler_call(struct compiler *c, expr_ty e)
{
    VISIT(c, expr, e->v.Call.func);
    return compiler_call_helper(c, 0,
                                e->v.Call.args,
                                e->v.Call.keywords);
}

static int
compiler_joined_str(struct compiler *c, expr_ty e)
{
    VISIT_SEQ(c, expr, e->v.JoinedStr.values);
    if (asdl_seq_LEN(e->v.JoinedStr.values) != 1)
        ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
    return 1;
}

/* Used to implement f-strings. Format a single value. */
static int
compiler_formatted_value(struct compiler *c, expr_ty e)
{
    /* Our oparg encodes 2 pieces of information: the conversion
       character, and whether or not a format_spec was provided.

       Convert the conversion char to 2 bits:
       None: 000  0x0  FVC_NONE
       !s  : 001  0x1  FVC_STR
       !r  : 010  0x2  FVC_REPR
       !a  : 011  0x3  FVC_ASCII

       next bit is whether or not we have a format spec:
       yes : 100  0x4
       no  : 000  0x0
    */

    int oparg;

    /* Evaluate the expression to be formatted. */
    VISIT(c, expr, e->v.FormattedValue.value);

    switch (e->v.FormattedValue.conversion) {
    case 's': oparg = FVC_STR;   break;
    case 'r': oparg = FVC_REPR;  break;
    case 'a': oparg = FVC_ASCII; break;
    case -1:  oparg = FVC_NONE;  break;
    default:
        PyErr_SetString(PyExc_SystemError,
                        "Unrecognized conversion character");
        return 0;
    }
    if (e->v.FormattedValue.format_spec) {
        /* Evaluate the format spec, and update our opcode arg. */
        VISIT(c, expr, e->v.FormattedValue.format_spec);
        oparg |= FVS_HAVE_SPEC;
    }

    /* And push our opcode and oparg */
    ADDOP_I(c, FORMAT_VALUE, oparg);
    return 1;
}

static int
compiler_subkwargs(struct compiler *c, asdl_seq *keywords, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i, n = end - begin;
    keyword_ty kw;
    PyObject *keys, *key;
    assert(n > 0);
    if (n > 1) {
        for (i = begin; i < end; i++) {
            kw = asdl_seq_GET(keywords, i);
            VISIT(c, expr, kw->value);
        }
        keys = PyTuple_New(n);
        if (keys == NULL) {
            return 0;
        }
        for (i = begin; i < end; i++) {
            key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
            Py_INCREF(key);
            PyTuple_SET_ITEM(keys, i - begin, key);
        }
        ADDOP_N(c, LOAD_CONST, keys, consts);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
    }
    else {
        /* a for loop only executes once */
        for (i = begin; i < end; i++) {
            kw = asdl_seq_GET(keywords, i);
            ADDOP_O(c, LOAD_CONST, kw->arg, consts);
            VISIT(c, expr, kw->value);
        }
        ADDOP_I(c, BUILD_MAP, n);
    }
    return 1;
}

/* shared code between compiler_call and compiler_class */
static int
compiler_call_helper(struct compiler *c,
                     int n, /* Args already pushed */
                     asdl_seq *args,
                     asdl_seq *keywords)
{
    Py_ssize_t i, nseen, nelts, nkwelts;
    int mustdictunpack = 0;

    /* the number of tuples and dictionaries on the stack */
    Py_ssize_t nsubargs = 0, nsubkwargs = 0;

    nelts = asdl_seq_LEN(args);
    nkwelts = asdl_seq_LEN(keywords);

    for (i = 0; i < nkwelts; i++) {
        keyword_ty kw = asdl_seq_GET(keywords, i);
        if (kw->arg == NULL) {
            mustdictunpack = 1;
            break;
        }
    }

    nseen = n;  /* the number of positional arguments on the stack */
    for (i = 0; i < nelts; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        if (elt->kind == Starred_kind) {
            /* A star-arg. If we've seen positional arguments,
               pack the positional arguments into a tuple. */
            if (nseen) {
                ADDOP_I(c, BUILD_TUPLE, nseen);
                nseen = 0;
                nsubargs++;
            }
            VISIT(c, expr, elt->v.Starred.value);
            nsubargs++;
        }
        else {
            VISIT(c, expr, elt);
            nseen++;
        }
    }

    /* Same dance again for keyword arguments */
    if (nsubargs || mustdictunpack) {
        if (nseen) {
            /* Pack up any trailing positional arguments. */
            ADDOP_I(c, BUILD_TUPLE, nseen);
            nsubargs++;
        }
        if (nsubargs > 1) {
            /* If we ended up with more than one stararg, we need
               to concatenate them into a single sequence. */
            ADDOP_I(c, BUILD_TUPLE_UNPACK_WITH_CALL, nsubargs);
        }
        else if (nsubargs == 0) {
            ADDOP_I(c, BUILD_TUPLE, 0);
        }
        nseen = 0;  /* the number of keyword arguments on the stack following */
        for (i = 0; i < nkwelts; i++) {
            keyword_ty kw = asdl_seq_GET(keywords, i);
            if (kw->arg == NULL) {
                /* A keyword argument unpacking. */
                if (nseen) {
                    if (!compiler_subkwargs(c, keywords, i - nseen, i))
                        return 0;
                    nsubkwargs++;
                    nseen = 0;
                }
                VISIT(c, expr, kw->value);
                nsubkwargs++;
            }
            else {
                nseen++;
            }
        }
        if (nseen) {
            /* Pack up any trailing keyword arguments. */
            if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts))
                return 0;
            nsubkwargs++;
        }
        if (nsubkwargs > 1) {
            /* Pack it all up */
            ADDOP_I(c, BUILD_MAP_UNPACK_WITH_CALL, nsubkwargs);
        }
        ADDOP_I(c, CALL_FUNCTION_EX, nsubkwargs > 0);
        return 1;
    }
    else if (nkwelts) {
        PyObject *names;
        VISIT_SEQ(c, keyword, keywords);
        names = PyTuple_New(nkwelts);
        if (names == NULL) {
            return 0;
        }
        for (i = 0; i < nkwelts; i++) {
            keyword_ty kw = asdl_seq_GET(keywords, i);
            Py_INCREF(kw->arg);
            PyTuple_SET_ITEM(names, i, kw->arg);
        }
        ADDOP_N(c, LOAD_CONST, names, consts);
        ADDOP_I(c, CALL_FUNCTION_KW, n + nelts + nkwelts);
        return 1;
    }
    else {
        ADDOP_I(c, CALL_FUNCTION, n + nelts);
        return 1;
    }
}


/* List and set comprehensions and generator expressions work by creating a
  nested function to perform the actual iteration. This means that the
  iteration variables don't leak into the current scope.
  The defined function is called immediately following its definition, with the
  result of that call being the result of the expression.
  The LC/SC version returns the populated container, while the GE version is
  flagged in symtable.c as a generator, so it returns the generator object
  when the function is called.
  This code *knows* that the loop cannot contain break, continue, or return,
  so it cheats and skips the SETUP_LOOP/POP_BLOCK steps used in normal loops.

  Possible cleanups:
    - iterate over the generator sequence instead of using recursion
*/


static int
compiler_comprehension_generator(struct compiler *c,
                                 asdl_seq *generators, int gen_index,
                                 expr_ty elt, expr_ty val, int type)
{
    comprehension_ty gen;
    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
    if (gen->is_async) {
        return compiler_async_comprehension_generator(
            c, generators, gen_index, elt, val, type);
    } else {
        return compiler_sync_comprehension_generator(
            c, generators, gen_index, elt, val, type);
    }
}

static int
compiler_sync_comprehension_generator(struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type)
{
    /* generate code for the iterator, then each of the ifs,
       and then write to the element */

    comprehension_ty gen;
    basicblock *start, *anchor, *skip, *if_cleanup;
    Py_ssize_t i, n;

    start = compiler_new_block(c);
    skip = compiler_new_block(c);
    if_cleanup = compiler_new_block(c);
    anchor = compiler_new_block(c);

    if (start == NULL || skip == NULL || if_cleanup == NULL ||
        anchor == NULL)
        return 0;

    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);

    if (gen_index == 0) {
        /* Receive outermost iter as an implicit argument */
        c->u->u_argcount = 1;
        ADDOP_I(c, LOAD_FAST, 0);
    }
    else {
        /* Sub-iter - calculate on the fly */
        VISIT(c, expr, gen->iter);
        ADDOP(c, GET_ITER);
    }
    compiler_use_next_block(c, start);
    ADDOP_JREL(c, FOR_ITER, anchor);
    NEXT_BLOCK(c);
    VISIT(c, expr, gen->target);

    /* XXX this needs to be cleaned up...a lot! */
    n = asdl_seq_LEN(gen->ifs);
    for (i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        VISIT(c, expr, e);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, if_cleanup);
        NEXT_BLOCK(c);
    }

    if (++gen_index < asdl_seq_LEN(generators))
        if (!compiler_comprehension_generator(c,
                                              generators, gen_index,
                                              elt, val, type))
        return 0;

    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP(c, YIELD_VALUE);
            ADDOP(c, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, LIST_APPEND, gen_index + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, SET_ADD, gen_index + 1);
            break;
        case COMP_DICTCOMP:
            /* With 'd[k] = v', v is evaluated before k, so we do
               the same. */
            VISIT(c, expr, val);
            VISIT(c, expr, elt);
            ADDOP_I(c, MAP_ADD, gen_index + 1);
            break;
        default:
            return 0;
        }

        compiler_use_next_block(c, skip);
    }
    compiler_use_next_block(c, if_cleanup);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);
    compiler_use_next_block(c, anchor);

    return 1;
}

static int
compiler_async_comprehension_generator(struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type)
{
    _Py_IDENTIFIER(StopAsyncIteration);

    comprehension_ty gen;
    basicblock *anchor, *skip, *if_cleanup, *try,
               *after_try, *except, *try_cleanup;
    Py_ssize_t i, n;

    PyObject *stop_aiter_error = _PyUnicode_FromId(&PyId_StopAsyncIteration);
    if (stop_aiter_error == NULL) {
        return 0;
    }

    try = compiler_new_block(c);
    after_try = compiler_new_block(c);
    try_cleanup = compiler_new_block(c);
    except = compiler_new_block(c);
    skip = compiler_new_block(c);
    if_cleanup = compiler_new_block(c);
    anchor = compiler_new_block(c);

    if (skip == NULL || if_cleanup == NULL || anchor == NULL ||
            try == NULL || after_try == NULL ||
            except == NULL || after_try == NULL) {
        return 0;
    }

    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);

    if (gen_index == 0) {
        /* Receive outermost iter as an implicit argument */
        c->u->u_argcount = 1;
        ADDOP_I(c, LOAD_FAST, 0);
    }
    else {
        /* Sub-iter - calculate on the fly */
        VISIT(c, expr, gen->iter);
        ADDOP(c, GET_AITER);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
    }

    compiler_use_next_block(c, try);


    ADDOP_JREL(c, SETUP_EXCEPT, except);
    if (!compiler_push_fblock(c, EXCEPT, try))
        return 0;

    ADDOP(c, GET_ANEXT);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);
    VISIT(c, expr, gen->target);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, EXCEPT, try);
    ADDOP_JREL(c, JUMP_FORWARD, after_try);


    compiler_use_next_block(c, except);
    ADDOP(c, DUP_TOP);
    ADDOP_O(c, LOAD_GLOBAL, stop_aiter_error, names);
    ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
    ADDOP_JABS(c, POP_JUMP_IF_FALSE, try_cleanup);

    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_EXCEPT); /* for SETUP_EXCEPT */
    ADDOP_JABS(c, JUMP_ABSOLUTE, anchor);


    compiler_use_next_block(c, try_cleanup);
    ADDOP(c, END_FINALLY);

    compiler_use_next_block(c, after_try);

    n = asdl_seq_LEN(gen->ifs);
    for (i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        VISIT(c, expr, e);
        ADDOP_JABS(c, POP_JUMP_IF_FALSE, if_cleanup);
        NEXT_BLOCK(c);
    }

    if (++gen_index < asdl_seq_LEN(generators))
        if (!compiler_comprehension_generator(c,
                                              generators, gen_index,
                                              elt, val, type))
        return 0;

    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP(c, YIELD_VALUE);
            ADDOP(c, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, LIST_APPEND, gen_index + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, SET_ADD, gen_index + 1);
            break;
        case COMP_DICTCOMP:
            /* With 'd[k] = v', v is evaluated before k, so we do
               the same. */
            VISIT(c, expr, val);
            VISIT(c, expr, elt);
            ADDOP_I(c, MAP_ADD, gen_index + 1);
            break;
        default:
            return 0;
        }

        compiler_use_next_block(c, skip);
    }
    compiler_use_next_block(c, if_cleanup);
    ADDOP_JABS(c, JUMP_ABSOLUTE, try);
    compiler_use_next_block(c, anchor);
    ADDOP(c, POP_TOP);

    return 1;
}

static int
compiler_comprehension(struct compiler *c, expr_ty e, int type,
                       identifier name, asdl_seq *generators, expr_ty elt,
                       expr_ty val)
{
    PyCodeObject *co = NULL;
    comprehension_ty outermost;
    PyObject *qualname = NULL;
    int is_async_function = c->u->u_ste->ste_coroutine;
    int is_async_generator = 0;

    outermost = (comprehension_ty) asdl_seq_GET(generators, 0);

    if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
                              (void *)e, e->lineno))
    {
        goto error;
    }

    is_async_generator = c->u->u_ste->ste_coroutine;

    if (is_async_generator && !is_async_function) {
        if (e->lineno > c->u->u_lineno) {
            c->u->u_lineno = e->lineno;
            c->u->u_lineno_set = 0;
        }
        compiler_error(c, "asynchronous comprehension outside of "
                          "an asynchronous function");
        goto error_in_scope;
    }

    if (type != COMP_GENEXP) {
        int op;
        switch (type) {
        case COMP_LISTCOMP:
            op = BUILD_LIST;
            break;
        case COMP_SETCOMP:
            op = BUILD_SET;
            break;
        case COMP_DICTCOMP:
            op = BUILD_MAP;
            break;
        default:
            PyErr_Format(PyExc_SystemError,
                         "unknown comprehension type %d", type);
            goto error_in_scope;
        }

        ADDOP_I(c, op, 0);
    }

    if (!compiler_comprehension_generator(c, generators, 0, elt,
                                          val, type))
        goto error_in_scope;

    if (type != COMP_GENEXP) {
        ADDOP(c, RETURN_VALUE);
    }

    co = assemble(c, 1);
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL)
        goto error;

    if (!compiler_make_closure(c, co, 0, qualname))
        goto error;
    Py_DECREF(qualname);
    Py_DECREF(co);

    VISIT(c, expr, outermost->iter);

    if (outermost->is_async) {
        ADDOP(c, GET_AITER);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
    } else {
        ADDOP(c, GET_ITER);
    }

    ADDOP_I(c, CALL_FUNCTION, 1);

    if (is_async_generator && type != COMP_GENEXP) {
        ADDOP(c, GET_AWAITABLE);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
    }

    return 1;
error_in_scope:
    compiler_exit_scope(c);
error:
    Py_XDECREF(qualname);
    Py_XDECREF(co);
    return 0;
}

static int
compiler_genexp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<genexpr>");
        if (!name)
            return 0;
    }
    assert(e->kind == GeneratorExp_kind);
    return compiler_comprehension(c, e, COMP_GENEXP, name,
                                  e->v.GeneratorExp.generators,
                                  e->v.GeneratorExp.elt, NULL);
}

static int
compiler_listcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<listcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == ListComp_kind);
    return compiler_comprehension(c, e, COMP_LISTCOMP, name,
                                  e->v.ListComp.generators,
                                  e->v.ListComp.elt, NULL);
}

static int
compiler_setcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<setcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == SetComp_kind);
    return compiler_comprehension(c, e, COMP_SETCOMP, name,
                                  e->v.SetComp.generators,
                                  e->v.SetComp.elt, NULL);
}


static int
compiler_dictcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_FromString("<dictcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == DictComp_kind);
    return compiler_comprehension(c, e, COMP_DICTCOMP, name,
                                  e->v.DictComp.generators,
                                  e->v.DictComp.key, e->v.DictComp.value);
}


static int
compiler_visit_keyword(struct compiler *c, keyword_ty k)
{
    VISIT(c, expr, k->value);
    return 1;
}

/* Test whether expression is constant.  For constants, report
   whether they are true or false.

   Return values: 1 for true, 0 for false, -1 for non-constant.
 */

static int
expr_constant(struct compiler *c, expr_ty e)
{
    char *id;
    switch (e->kind) {
    case Ellipsis_kind:
        return 1;
    case Constant_kind:
        return PyObject_IsTrue(e->v.Constant.value);
    case Num_kind:
        return PyObject_IsTrue(e->v.Num.n);
    case Str_kind:
        return PyObject_IsTrue(e->v.Str.s);
    case Name_kind:
        /* optimize away names that can't be reassigned */
        id = PyUnicode_AsUTF8(e->v.Name.id);
        if (id && strcmp(id, "__debug__") == 0)
            return !c->c_optimize;
        return -1;
    case NameConstant_kind: {
        PyObject *o = e->v.NameConstant.value;
        if (o == Py_None)
            return 0;
        else if (o == Py_True)
            return 1;
        else if (o == Py_False)
            return 0;
    }
    /* fall through */
    default:
        return -1;
    }
}


/*
   Implements the async with statement.

   The semantics outlined in that PEP are as follows:

   async with EXPR as VAR:
       BLOCK

   It is implemented roughly as:

   context = EXPR
   exit = context.__aexit__  # not calling it
   value = await context.__aenter__()
   try:
       VAR = value  # if VAR present in the syntax
       BLOCK
   finally:
       if an exception was raised:
           exc = copy of (exception, instance, traceback)
       else:
           exc = (None, None, None)
       if not (await exit(*exc)):
           raise
 */
static int
compiler_async_with(struct compiler *c, stmt_ty s, int pos)
{
    basicblock *block, *finally;
    withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);

    assert(s->kind == AsyncWith_kind);

    block = compiler_new_block(c);
    finally = compiler_new_block(c);
    if (!block || !finally)
        return 0;

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);

    ADDOP(c, BEFORE_ASYNC_WITH);
    ADDOP(c, GET_AWAITABLE);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    ADDOP_JREL(c, SETUP_ASYNC_WITH, finally);

    /* SETUP_ASYNC_WITH pushes a finally block. */
    compiler_use_next_block(c, block);
    if (!compiler_push_fblock(c, FINALLY_TRY, block)) {
        return 0;
    }

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__aenter__() */
        ADDOP(c, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.AsyncWith.items))
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
    else if (!compiler_async_with(c, s, pos))
            return 0;

    /* End of try block; start the finally block */
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, block);

    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    compiler_use_next_block(c, finally);
    if (!compiler_push_fblock(c, FINALLY_END, finally))
        return 0;

    /* Finally block starts; context.__exit__ is on the stack under
       the exception or return information. Just issue our magic
       opcode. */
    ADDOP(c, WITH_CLEANUP_START);

    ADDOP(c, GET_AWAITABLE);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    ADDOP(c, WITH_CLEANUP_FINISH);

    /* Finally block ends. */
    ADDOP(c, END_FINALLY);
    compiler_pop_fblock(c, FINALLY_END, finally);
    return 1;
}


/*
   Implements the with statement from PEP 343.

   The semantics outlined in that PEP are as follows:

   with EXPR as VAR:
       BLOCK

   It is implemented roughly as:

   context = EXPR
   exit = context.__exit__  # not calling it
   value = context.__enter__()
   try:
       VAR = value  # if VAR present in the syntax
       BLOCK
   finally:
       if an exception was raised:
           exc = copy of (exception, instance, traceback)
       else:
           exc = (None, None, None)
       exit(*exc)
 */
static int
compiler_with(struct compiler *c, stmt_ty s, int pos)
{
    basicblock *block, *finally;
    withitem_ty item = asdl_seq_GET(s->v.With.items, pos);

    assert(s->kind == With_kind);

    block = compiler_new_block(c);
    finally = compiler_new_block(c);
    if (!block || !finally)
        return 0;

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);
    ADDOP_JREL(c, SETUP_WITH, finally);

    /* SETUP_WITH pushes a finally block. */
    compiler_use_next_block(c, block);
    if (!compiler_push_fblock(c, FINALLY_TRY, block)) {
        return 0;
    }

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__enter__() */
        ADDOP(c, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.With.items))
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.With.body)
    else if (!compiler_with(c, s, pos))
            return 0;

    /* End of try block; start the finally block */
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, block);

    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    compiler_use_next_block(c, finally);
    if (!compiler_push_fblock(c, FINALLY_END, finally))
        return 0;

    /* Finally block starts; context.__exit__ is on the stack under
       the exception or return information. Just issue our magic
       opcode. */
    ADDOP(c, WITH_CLEANUP_START);
    ADDOP(c, WITH_CLEANUP_FINISH);

    /* Finally block ends. */
    ADDOP(c, END_FINALLY);
    compiler_pop_fblock(c, FINALLY_END, finally);
    return 1;
}

static int
compiler_visit_expr(struct compiler *c, expr_ty e)
{
    /* If expr e has a different line number than the last expr/stmt,
       set a new line number for the next instruction.
    */
    if (e->lineno > c->u->u_lineno) {
        c->u->u_lineno = e->lineno;
        c->u->u_lineno_set = 0;
    }
    /* Updating the column offset is always harmless. */
    c->u->u_col_offset = e->col_offset;
    switch (e->kind) {
    case BoolOp_kind:
        return compiler_boolop(c, e);
    case BinOp_kind:
        VISIT(c, expr, e->v.BinOp.left);
        VISIT(c, expr, e->v.BinOp.right);
        ADDOP(c, binop(c, e->v.BinOp.op));
        break;
    case UnaryOp_kind:
        VISIT(c, expr, e->v.UnaryOp.operand);
        ADDOP(c, unaryop(e->v.UnaryOp.op));
        break;
    case Lambda_kind:
        return compiler_lambda(c, e);
    case IfExp_kind:
        return compiler_ifexp(c, e);
    case Dict_kind:
        return compiler_dict(c, e);
    case Set_kind:
        return compiler_set(c, e);
    case GeneratorExp_kind:
        return compiler_genexp(c, e);
    case ListComp_kind:
        return compiler_listcomp(c, e);
    case SetComp_kind:
        return compiler_setcomp(c, e);
    case DictComp_kind:
        return compiler_dictcomp(c, e);
    case Yield_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'yield' outside function");
        if (e->v.Yield.value) {
            VISIT(c, expr, e->v.Yield.value);
        }
        else {
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        }
        ADDOP(c, YIELD_VALUE);
        break;
    case YieldFrom_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'yield' outside function");

        if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
            return compiler_error(c, "'yield from' inside async function");

        VISIT(c, expr, e->v.YieldFrom.value);
        ADDOP(c, GET_YIELD_FROM_ITER);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
        break;
    case Await_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'await' outside function");

        if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
                c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION)
            return compiler_error(c, "'await' outside async function");

        VISIT(c, expr, e->v.Await.value);
        ADDOP(c, GET_AWAITABLE);
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, YIELD_FROM);
        break;
    case Compare_kind:
        return compiler_compare(c, e);
    case Call_kind:
        return compiler_call(c, e);
    case Constant_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Constant.value, consts);
        break;
    case Num_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Num.n, consts);
        break;
    case Str_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Str.s, consts);
        break;
    case JoinedStr_kind:
        return compiler_joined_str(c, e);
    case FormattedValue_kind:
        return compiler_formatted_value(c, e);
    case Bytes_kind:
        ADDOP_O(c, LOAD_CONST, e->v.Bytes.s, consts);
        break;
    case Ellipsis_kind:
        ADDOP_O(c, LOAD_CONST, Py_Ellipsis, consts);
        break;
    case NameConstant_kind:
        ADDOP_O(c, LOAD_CONST, e->v.NameConstant.value, consts);
        break;
    /* The following exprs can be assignment targets. */
    case Attribute_kind:
        if (e->v.Attribute.ctx != AugStore)
            VISIT(c, expr, e->v.Attribute.value);
        switch (e->v.Attribute.ctx) {
        case AugLoad:
            ADDOP(c, DUP_TOP);
            /* Fall through */
        case Load:
            ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
            break;
        case AugStore:
            ADDOP(c, ROT_TWO);
            /* Fall through */
        case Store:
            ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
            break;
        case Del:
            ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid in attribute expression");
            return 0;
        }
        break;
    case Subscript_kind:
        switch (e->v.Subscript.ctx) {
        case AugLoad:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, AugLoad);
            break;
        case Load:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Load);
            break;
        case AugStore:
            VISIT_SLICE(c, e->v.Subscript.slice, AugStore);
            break;
        case Store:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Store);
            break;
        case Del:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Del);
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                "param invalid in subscript expression");
            return 0;
        }
        break;
    case Starred_kind:
        switch (e->v.Starred.ctx) {
        case Store:
            /* In all legitimate cases, the Starred node was already replaced
             * by compiler_list/compiler_tuple. XXX: is that okay? */
            return compiler_error(c,
                "starred assignment target must be in a list or tuple");
        default:
            return compiler_error(c,
                "can't use starred expression here");
        }
        break;
    case Name_kind:
        return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
    /* child nodes of List and Tuple will have expr_context set */
    case List_kind:
        return compiler_list(c, e);
    case Tuple_kind:
        return compiler_tuple(c, e);
    }
    return 1;
}

static int
compiler_augassign(struct compiler *c, stmt_ty s)
{
    expr_ty e = s->v.AugAssign.target;
    expr_ty auge;

    assert(s->kind == AugAssign_kind);

    switch (e->kind) {
    case Attribute_kind:
        auge = Attribute(e->v.Attribute.value, e->v.Attribute.attr,
                         AugLoad, e->lineno, e->col_offset, c->c_arena);
        if (auge == NULL)
            return 0;
        VISIT(c, expr, auge);
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        auge->v.Attribute.ctx = AugStore;
        VISIT(c, expr, auge);
        break;
    case Subscript_kind:
        auge = Subscript(e->v.Subscript.value, e->v.Subscript.slice,
                         AugLoad, e->lineno, e->col_offset, c->c_arena);
        if (auge == NULL)
            return 0;
        VISIT(c, expr, auge);
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        auge->v.Subscript.ctx = AugStore;
        VISIT(c, expr, auge);
        break;
    case Name_kind:
        if (!compiler_nameop(c, e->v.Name.id, Load))
            return 0;
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        return compiler_nameop(c, e->v.Name.id, Store);
    default:
        PyErr_Format(PyExc_SystemError,
            "invalid node type (%d) for augmented assignment",
            e->kind);
        return 0;
    }
    return 1;
}

static int
check_ann_expr(struct compiler *c, expr_ty e)
{
    VISIT(c, expr, e);
    ADDOP(c, POP_TOP);
    return 1;
}

static int
check_annotation(struct compiler *c, stmt_ty s)
{
    /* Annotations are only evaluated in a module or class. */
    if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
        c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
        return check_ann_expr(c, s->v.AnnAssign.annotation);
    }
    return 1;
}

static int
check_ann_slice(struct compiler *c, slice_ty sl)
{
    switch(sl->kind) {
    case Index_kind:
        return check_ann_expr(c, sl->v.Index.value);
    case Slice_kind:
        if (sl->v.Slice.lower && !check_ann_expr(c, sl->v.Slice.lower)) {
            return 0;
        }
        if (sl->v.Slice.upper && !check_ann_expr(c, sl->v.Slice.upper)) {
            return 0;
        }
        if (sl->v.Slice.step && !check_ann_expr(c, sl->v.Slice.step)) {
            return 0;
        }
        break;
    default:
        PyErr_SetString(PyExc_SystemError,
                        "unexpected slice kind");
        return 0;
    }
    return 1;
}

static int
check_ann_subscr(struct compiler *c, slice_ty sl)
{
    /* We check that everything in a subscript is defined at runtime. */
    Py_ssize_t i, n;

    switch (sl->kind) {
    case Index_kind:
    case Slice_kind:
        if (!check_ann_slice(c, sl)) {
            return 0;
        }
        break;
    case ExtSlice_kind:
        n = asdl_seq_LEN(sl->v.ExtSlice.dims);
        for (i = 0; i < n; i++) {
            slice_ty subsl = (slice_ty)asdl_seq_GET(sl->v.ExtSlice.dims, i);
            switch (subsl->kind) {
            case Index_kind:
            case Slice_kind:
                if (!check_ann_slice(c, subsl)) {
                    return 0;
                }
                break;
            case ExtSlice_kind:
            default:
                PyErr_SetString(PyExc_SystemError,
                                "extended slice invalid in nested slice");
                return 0;
            }
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid subscript kind %d", sl->kind);
        return 0;
    }
    return 1;
}

static int
compiler_annassign(struct compiler *c, stmt_ty s)
{
    expr_ty targ = s->v.AnnAssign.target;
    PyObject* mangled;

    assert(s->kind == AnnAssign_kind);

    /* We perform the actual assignment first. */
    if (s->v.AnnAssign.value) {
        VISIT(c, expr, s->v.AnnAssign.value);
        VISIT(c, expr, targ);
    }
    switch (targ->kind) {
    case Name_kind:
        /* If we have a simple name in a module or class, store annotation. */
        if (s->v.AnnAssign.simple &&
            (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
             c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
            mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
            if (!mangled) {
                return 0;
            }
            VISIT(c, expr, s->v.AnnAssign.annotation);
            /* ADDOP_N decrefs its argument */
            ADDOP_N(c, STORE_ANNOTATION, mangled, names);
        }
        break;
    case Attribute_kind:
        if (!s->v.AnnAssign.value &&
            !check_ann_expr(c, targ->v.Attribute.value)) {
            return 0;
        }
        break;
    case Subscript_kind:
        if (!s->v.AnnAssign.value &&
            (!check_ann_expr(c, targ->v.Subscript.value) ||
             !check_ann_subscr(c, targ->v.Subscript.slice))) {
                return 0;
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid node type (%d) for annotated assignment",
                     targ->kind);
            return 0;
    }
    /* Annotation is evaluated last. */
    if (!s->v.AnnAssign.simple && !check_annotation(c, s)) {
        return 0;
    }
    return 1;
}

static int
compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
{
    struct fblockinfo *f;
    if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
        PyErr_SetString(PyExc_SyntaxError,
                        "too many statically nested blocks");
        return 0;
    }
    f = &c->u->u_fblock[c->u->u_nfblocks++];
    f->fb_type = t;
    f->fb_block = b;
    return 1;
}

static void
compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
{
    struct compiler_unit *u = c->u;
    assert(u->u_nfblocks > 0);
    u->u_nfblocks--;
    assert(u->u_fblock[u->u_nfblocks].fb_type == t);
    assert(u->u_fblock[u->u_nfblocks].fb_block == b);
}

static int
compiler_in_loop(struct compiler *c) {
    int i;
    struct compiler_unit *u = c->u;
    for (i = 0; i < u->u_nfblocks; ++i) {
        if (u->u_fblock[i].fb_type == LOOP)
            return 1;
    }
    return 0;
}
/* Raises a SyntaxError and returns 0.
   If something goes wrong, a different exception may be raised.
*/

static int
compiler_error(struct compiler *c, const char *errstr)
{
    PyObject *loc;
    PyObject *u = NULL, *v = NULL;

    loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno);
    if (!loc) {
        Py_INCREF(Py_None);
        loc = Py_None;
    }
    u = Py_BuildValue("(OiiO)", c->c_filename, c->u->u_lineno,
                      c->u->u_col_offset, loc);
    if (!u)
        goto exit;
    v = Py_BuildValue("(zO)", errstr, u);
    if (!v)
        goto exit;
    PyErr_SetObject(PyExc_SyntaxError, v);
 exit:
    Py_DECREF(loc);
    Py_XDECREF(u);
    Py_XDECREF(v);
    return 0;
}

static int
compiler_handle_subscr(struct compiler *c, const char *kind,
                       expr_context_ty ctx)
{
    int op = 0;

    /* XXX this code is duplicated */
    switch (ctx) {
        case AugLoad: /* fall through to Load */
        case Load:    op = BINARY_SUBSCR; break;
        case AugStore:/* fall through to Store */
        case Store:   op = STORE_SUBSCR; break;
        case Del:     op = DELETE_SUBSCR; break;
        case Param:
            PyErr_Format(PyExc_SystemError,
                         "invalid %s kind %d in subscript\n",
                         kind, ctx);
            return 0;
    }
    if (ctx == AugLoad) {
        ADDOP(c, DUP_TOP_TWO);
    }
    else if (ctx == AugStore) {
        ADDOP(c, ROT_THREE);
    }
    ADDOP(c, op);
    return 1;
}

static int
compiler_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
{
    int n = 2;
    assert(s->kind == Slice_kind);

    /* only handles the cases where BUILD_SLICE is emitted */
    if (s->v.Slice.lower) {
        VISIT(c, expr, s->v.Slice.lower);
    }
    else {
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
    }

    if (s->v.Slice.upper) {
        VISIT(c, expr, s->v.Slice.upper);
    }
    else {
        ADDOP_O(c, LOAD_CONST, Py_None, consts);
    }

    if (s->v.Slice.step) {
        n++;
        VISIT(c, expr, s->v.Slice.step);
    }
    ADDOP_I(c, BUILD_SLICE, n);
    return 1;
}

static int
compiler_visit_nested_slice(struct compiler *c, slice_ty s,
                            expr_context_ty ctx)
{
    switch (s->kind) {
    case Slice_kind:
        return compiler_slice(c, s, ctx);
    case Index_kind:
        VISIT(c, expr, s->v.Index.value);
        break;
    case ExtSlice_kind:
    default:
        PyErr_SetString(PyExc_SystemError,
                        "extended slice invalid in nested slice");
        return 0;
    }
    return 1;
}

static int
compiler_visit_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
{
    char * kindname = NULL;
    switch (s->kind) {
    case Index_kind:
        kindname = "index";
        if (ctx != AugStore) {
            VISIT(c, expr, s->v.Index.value);
        }
        break;
    case Slice_kind:
        kindname = "slice";
        if (ctx != AugStore) {
            if (!compiler_slice(c, s, ctx))
                return 0;
        }
        break;
    case ExtSlice_kind:
        kindname = "extended slice";
        if (ctx != AugStore) {
            Py_ssize_t i, n = asdl_seq_LEN(s->v.ExtSlice.dims);
            for (i = 0; i < n; i++) {
                slice_ty sub = (slice_ty)asdl_seq_GET(
                    s->v.ExtSlice.dims, i);
                if (!compiler_visit_nested_slice(c, sub, ctx))
                    return 0;
            }
            ADDOP_I(c, BUILD_TUPLE, n);
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid subscript kind %d", s->kind);
        return 0;
    }
    return compiler_handle_subscr(c, kindname, ctx);
}

/* End of the compiler section, beginning of the assembler section */

/* do depth-first search of basic block graph, starting with block.
   post records the block indices in post-order.

   XXX must handle implicit jumps from one block to next
*/

struct assembler {
    PyObject *a_bytecode;  /* string containing bytecode */
    int a_offset;              /* offset into bytecode */
    int a_nblocks;             /* number of reachable blocks */
    basicblock **a_postorder; /* list of blocks in dfs postorder */
    PyObject *a_lnotab;    /* string containing lnotab */
    int a_lnotab_off;      /* offset into lnotab */
    int a_lineno;              /* last lineno of emitted instruction */
    int a_lineno_off;      /* bytecode offset of last lineno */
};

static void
dfs(struct compiler *c, basicblock *b, struct assembler *a)
{
    int i;
    struct instr *instr = NULL;

    if (b->b_seen)
        return;
    b->b_seen = 1;
    if (b->b_next != NULL)
        dfs(c, b->b_next, a);
    for (i = 0; i < b->b_iused; i++) {
        instr = &b->b_instr[i];
        if (instr->i_jrel || instr->i_jabs)
            dfs(c, instr->i_target, a);
    }
    a->a_postorder[a->a_nblocks++] = b;
}

static int
stackdepth_walk(struct compiler *c, basicblock *b, int depth, int maxdepth)
{
    int i, target_depth, effect;
    struct instr *instr;
    if (b->b_seen || b->b_startdepth >= depth)
        return maxdepth;
    b->b_seen = 1;
    b->b_startdepth = depth;
    for (i = 0; i < b->b_iused; i++) {
        instr = &b->b_instr[i];
        effect = PyCompile_OpcodeStackEffect(instr->i_opcode, instr->i_oparg);
        if (effect == PY_INVALID_STACK_EFFECT) {
            fprintf(stderr, "opcode = %d\n", instr->i_opcode);
            Py_FatalError("PyCompile_OpcodeStackEffect()");
        }
        depth += effect;

        if (depth > maxdepth)
            maxdepth = depth;
        assert(depth >= 0); /* invalid code or bug in stackdepth() */
        if (instr->i_jrel || instr->i_jabs) {
            target_depth = depth;
            if (instr->i_opcode == FOR_ITER) {
                target_depth = depth-2;
            }
            else if (instr->i_opcode == SETUP_FINALLY ||
                     instr->i_opcode == SETUP_EXCEPT) {
                target_depth = depth+3;
                if (target_depth > maxdepth)
                    maxdepth = target_depth;
            }
            else if (instr->i_opcode == JUMP_IF_TRUE_OR_POP ||
                     instr->i_opcode == JUMP_IF_FALSE_OR_POP)
                depth = depth - 1;
            maxdepth = stackdepth_walk(c, instr->i_target,
                                       target_depth, maxdepth);
            if (instr->i_opcode == JUMP_ABSOLUTE ||
                instr->i_opcode == JUMP_FORWARD) {
                goto out; /* remaining code is dead */
            }
        }
    }
    if (b->b_next)
        maxdepth = stackdepth_walk(c, b->b_next, depth, maxdepth);
out:
    b->b_seen = 0;
    return maxdepth;
}

/* Find the flow path that needs the largest stack.  We assume that
 * cycles in the flow graph have no net effect on the stack depth.
 */
static int
stackdepth(struct compiler *c)
{
    basicblock *b, *entryblock;
    entryblock = NULL;
    for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
        b->b_seen = 0;
        b->b_startdepth = INT_MIN;
        entryblock = b;
    }
    if (!entryblock)
        return 0;
    return stackdepth_walk(c, entryblock, 0, 0);
}

static int
assemble_init(struct assembler *a, int nblocks, int firstlineno)
{
    memset(a, 0, sizeof(struct assembler));
    a->a_lineno = firstlineno;
    a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
    if (!a->a_bytecode)
        return 0;
    a->a_lnotab = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
    if (!a->a_lnotab)
        return 0;
    if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
        PyErr_NoMemory();
        return 0;
    }
    a->a_postorder = (basicblock **)PyObject_Malloc(
                                        sizeof(basicblock *) * nblocks);
    if (!a->a_postorder) {
        PyErr_NoMemory();
        return 0;
    }
    return 1;
}

static void
assemble_free(struct assembler *a)
{
    Py_XDECREF(a->a_bytecode);
    Py_XDECREF(a->a_lnotab);
    if (a->a_postorder)
        PyObject_Free(a->a_postorder);
}

static int
blocksize(basicblock *b)
{
    int i;
    int size = 0;

    for (i = 0; i < b->b_iused; i++)
        size += instrsize(b->b_instr[i].i_oparg);
    return size;
}

/* Appends a pair to the end of the line number table, a_lnotab, representing
   the instruction's bytecode offset and line number.  See
   Objects/lnotab_notes.txt for the description of the line number table. */

static int
assemble_lnotab(struct assembler *a, struct instr *i)
{
    int d_bytecode, d_lineno;
    Py_ssize_t len;
    unsigned char *lnotab;

    d_bytecode = (a->a_offset - a->a_lineno_off) * sizeof(_Py_CODEUNIT);
    d_lineno = i->i_lineno - a->a_lineno;

    assert(d_bytecode >= 0);

    if(d_bytecode == 0 && d_lineno == 0)
        return 1;

    if (d_bytecode > 255) {
        int j, nbytes, ncodes = d_bytecode / 255;
        nbytes = a->a_lnotab_off + 2 * ncodes;
        len = PyBytes_GET_SIZE(a->a_lnotab);
        if (nbytes >= len) {
            if ((len <= INT_MAX / 2) && (len * 2 < nbytes))
                len = nbytes;
            else if (len <= INT_MAX / 2)
                len *= 2;
            else {
                PyErr_NoMemory();
                return 0;
            }
            if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
                return 0;
        }
        lnotab = (unsigned char *)
                   PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
        for (j = 0; j < ncodes; j++) {
            *lnotab++ = 255;
            *lnotab++ = 0;
        }
        d_bytecode -= ncodes * 255;
        a->a_lnotab_off += ncodes * 2;
    }
    assert(0 <= d_bytecode && d_bytecode <= 255);

    if (d_lineno < -128 || 127 < d_lineno) {
        int j, nbytes, ncodes, k;
        if (d_lineno < 0) {
            k = -128;
            /* use division on positive numbers */
            ncodes = (-d_lineno) / 128;
        }
        else {
            k = 127;
            ncodes = d_lineno / 127;
        }
        d_lineno -= ncodes * k;
        assert(ncodes >= 1);
        nbytes = a->a_lnotab_off + 2 * ncodes;
        len = PyBytes_GET_SIZE(a->a_lnotab);
        if (nbytes >= len) {
            if ((len <= INT_MAX / 2) && len * 2 < nbytes)
                len = nbytes;
            else if (len <= INT_MAX / 2)
                len *= 2;
            else {
                PyErr_NoMemory();
                return 0;
            }
            if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
                return 0;
        }
        lnotab = (unsigned char *)
                   PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
        *lnotab++ = d_bytecode;
        *lnotab++ = k;
        d_bytecode = 0;
        for (j = 1; j < ncodes; j++) {
            *lnotab++ = 0;
            *lnotab++ = k;
        }
        a->a_lnotab_off += ncodes * 2;
    }
    assert(-128 <= d_lineno && d_lineno <= 127);

    len = PyBytes_GET_SIZE(a->a_lnotab);
    if (a->a_lnotab_off + 2 >= len) {
        if (_PyBytes_Resize(&a->a_lnotab, len * 2) < 0)
            return 0;
    }
    lnotab = (unsigned char *)
                    PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;

    a->a_lnotab_off += 2;
    if (d_bytecode) {
        *lnotab++ = d_bytecode;
        *lnotab++ = d_lineno;
    }
    else {      /* First line of a block; def stmt, etc. */
        *lnotab++ = 0;
        *lnotab++ = d_lineno;
    }
    a->a_lineno = i->i_lineno;
    a->a_lineno_off = a->a_offset;
    return 1;
}

/* assemble_emit()
   Extend the bytecode with a new instruction.
   Update lnotab if necessary.
*/

static int
assemble_emit(struct assembler *a, struct instr *i)
{
    int size, arg = 0;
    Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
    _Py_CODEUNIT *code;

    arg = i->i_oparg;
    size = instrsize(arg);
    if (i->i_lineno && !assemble_lnotab(a, i))
        return 0;
    if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) {
        if (len > PY_SSIZE_T_MAX / 2)
            return 0;
        if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0)
            return 0;
    }
    code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
    a->a_offset += size;
    write_op_arg(code, i->i_opcode, arg, size);
    return 1;
}

static void
assemble_jump_offsets(struct assembler *a, struct compiler *c)
{
    basicblock *b;
    int bsize, totsize, extended_arg_recompile;
    int i;

    /* Compute the size of each block and fixup jump args.
       Replace block pointer with position in bytecode. */
    do {
        totsize = 0;
        for (i = a->a_nblocks - 1; i >= 0; i--) {
            b = a->a_postorder[i];
            bsize = blocksize(b);
            b->b_offset = totsize;
            totsize += bsize;
        }
        extended_arg_recompile = 0;
        for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
            bsize = b->b_offset;
            for (i = 0; i < b->b_iused; i++) {
                struct instr *instr = &b->b_instr[i];
                int isize = instrsize(instr->i_oparg);
                /* Relative jumps are computed relative to
                   the instruction pointer after fetching
                   the jump instruction.
                */
                bsize += isize;
                if (instr->i_jabs || instr->i_jrel) {
                    instr->i_oparg = instr->i_target->b_offset;
                    if (instr->i_jrel) {
                        instr->i_oparg -= bsize;
                    }
                    instr->i_oparg *= sizeof(_Py_CODEUNIT);
                    if (instrsize(instr->i_oparg) != isize) {
                        extended_arg_recompile = 1;
                    }
                }
            }
        }

    /* XXX: This is an awful hack that could hurt performance, but
        on the bright side it should work until we come up
        with a better solution.

        The issue is that in the first loop blocksize() is called
        which calls instrsize() which requires i_oparg be set
        appropriately. There is a bootstrap problem because
        i_oparg is calculated in the second loop above.

        So we loop until we stop seeing new EXTENDED_ARGs.
        The only EXTENDED_ARGs that could be popping up are
        ones in jump instructions.  So this should converge
        fairly quickly.
    */
    } while (extended_arg_recompile);
}

static PyObject *
dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
{
    PyObject *tuple, *k, *v;
    Py_ssize_t i, pos = 0, size = PyDict_Size(dict);

    tuple = PyTuple_New(size);
    if (tuple == NULL)
        return NULL;
    while (PyDict_Next(dict, &pos, &k, &v)) {
        i = PyLong_AS_LONG(v);
        /* The keys of the dictionary are tuples. (see compiler_add_o
         * and _PyCode_ConstantKey). The object we want is always second,
         * though. */
        k = PyTuple_GET_ITEM(k, 1);
        Py_INCREF(k);
        assert((i - offset) < size);
        assert((i - offset) >= 0);
        PyTuple_SET_ITEM(tuple, i - offset, k);
    }
    return tuple;
}

static int
compute_code_flags(struct compiler *c)
{
    PySTEntryObject *ste = c->u->u_ste;
    int flags = 0;
    Py_ssize_t n;
    if (ste->ste_type == FunctionBlock) {
        flags |= CO_NEWLOCALS | CO_OPTIMIZED;
        if (ste->ste_nested)
            flags |= CO_NESTED;
        if (ste->ste_generator && !ste->ste_coroutine)
            flags |= CO_GENERATOR;
        if (!ste->ste_generator && ste->ste_coroutine)
            flags |= CO_COROUTINE;
        if (ste->ste_generator && ste->ste_coroutine)
            flags |= CO_ASYNC_GENERATOR;
        if (ste->ste_varargs)
            flags |= CO_VARARGS;
        if (ste->ste_varkeywords)
            flags |= CO_VARKEYWORDS;
    }

    /* (Only) inherit compilerflags in PyCF_MASK */
    flags |= (c->c_flags->cf_flags & PyCF_MASK);

    return flags;
}

static PyCodeObject *
makecode(struct compiler *c, struct assembler *a)
{
    PyObject *tmp;
    PyCodeObject *co = NULL;
    PyObject *consts = NULL;
    PyObject *names = NULL;
    PyObject *varnames = NULL;
    PyObject *name = NULL;
    PyObject *freevars = NULL;
    PyObject *cellvars = NULL;
    PyObject *bytecode = NULL;
    Py_ssize_t nlocals;
    int nlocals_int;
    int flags;
    int argcount, kwonlyargcount;

    tmp = dict_keys_inorder(c->u->u_consts, 0);
    if (!tmp)
        goto error;
    consts = PySequence_List(tmp); /* optimize_code requires a list */
    Py_DECREF(tmp);

    names = dict_keys_inorder(c->u->u_names, 0);
    varnames = dict_keys_inorder(c->u->u_varnames, 0);
    if (!consts || !names || !varnames)
        goto error;

    cellvars = dict_keys_inorder(c->u->u_cellvars, 0);
    if (!cellvars)
        goto error;
    freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_Size(cellvars));
    if (!freevars)
        goto error;

    nlocals = PyDict_Size(c->u->u_varnames);
    assert(nlocals < INT_MAX);
    nlocals_int = Py_SAFE_DOWNCAST(nlocals, Py_ssize_t, int);

    flags = compute_code_flags(c);
    if (flags < 0)
        goto error;

    bytecode = PyCode_Optimize(a->a_bytecode, consts, names, a->a_lnotab);
    if (!bytecode)
        goto error;

    tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */
    if (!tmp)
        goto error;
    Py_DECREF(consts);
    consts = tmp;

    argcount = Py_SAFE_DOWNCAST(c->u->u_argcount, Py_ssize_t, int);
    kwonlyargcount = Py_SAFE_DOWNCAST(c->u->u_kwonlyargcount, Py_ssize_t, int);
    co = PyCode_New(argcount, kwonlyargcount,
                    nlocals_int, stackdepth(c), flags,
                    bytecode, consts, names, varnames,
                    freevars, cellvars,
                    c->c_filename, c->u->u_name,
                    c->u->u_firstlineno,
                    a->a_lnotab);
 error:
    Py_XDECREF(consts);
    Py_XDECREF(names);
    Py_XDECREF(varnames);
    Py_XDECREF(name);
    Py_XDECREF(freevars);
    Py_XDECREF(cellvars);
    Py_XDECREF(bytecode);
    return co;
}


/* For debugging purposes only */
#if 0
static void
dump_instr(const struct instr *i)
{
    const char *jrel = i->i_jrel ? "jrel " : "";
    const char *jabs = i->i_jabs ? "jabs " : "";
    char arg[128];

    *arg = '\0';
    if (HAS_ARG(i->i_opcode)) {
        sprintf(arg, "arg: %d ", i->i_oparg);
    }
    fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
                    i->i_lineno, i->i_opcode, arg, jabs, jrel);
}

static void
dump_basicblock(const basicblock *b)
{
    const char *seen = b->b_seen ? "seen " : "";
    const char *b_return = b->b_return ? "return " : "";
    fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n",
        b->b_iused, b->b_startdepth, b->b_offset, seen, b_return);
    if (b->b_instr) {
        int i;
        for (i = 0; i < b->b_iused; i++) {
            fprintf(stderr, "  [%02d] ", i);
            dump_instr(b->b_instr + i);
        }
    }
}
#endif

static PyCodeObject *
assemble(struct compiler *c, int addNone)
{
    basicblock *b, *entryblock;
    struct assembler a;
    int i, j, nblocks;
    PyCodeObject *co = NULL;

    /* Make sure every block that falls off the end returns None.
       XXX NEXT_BLOCK() isn't quite right, because if the last
       block ends with a jump or return b_next shouldn't set.
     */
    if (!c->u->u_curblock->b_return) {
        NEXT_BLOCK(c);
        if (addNone)
            ADDOP_O(c, LOAD_CONST, Py_None, consts);
        ADDOP(c, RETURN_VALUE);
    }

    nblocks = 0;
    entryblock = NULL;
    for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
        nblocks++;
        entryblock = b;
    }

    /* Set firstlineno if it wasn't explicitly set. */
    if (!c->u->u_firstlineno) {
        if (entryblock && entryblock->b_instr && entryblock->b_instr->i_lineno)
            c->u->u_firstlineno = entryblock->b_instr->i_lineno;
        else
            c->u->u_firstlineno = 1;
    }
    if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
        goto error;
    dfs(c, entryblock, &a);

    /* Can't modify the bytecode after computing jump offsets. */
    assemble_jump_offsets(&a, c);

    /* Emit code in reverse postorder from dfs. */
    for (i = a.a_nblocks - 1; i >= 0; i--) {
        b = a.a_postorder[i];
        for (j = 0; j < b->b_iused; j++)
            if (!assemble_emit(&a, &b->b_instr[j]))
                goto error;
    }

    if (_PyBytes_Resize(&a.a_lnotab, a.a_lnotab_off) < 0)
        goto error;
    if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0)
        goto error;

    co = makecode(c, &a);
 error:
    assemble_free(&a);
    return co;
}

#undef PyAST_Compile
PyAPI_FUNC(PyCodeObject *)
PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags,
              PyArena *arena)
{
    return PyAST_CompileEx(mod, filename, flags, -1, arena);
}