1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
|
// This implements the reference cycle garbage collector.
// The Python module inteface to the collector is in gcmodule.c.
// See https://devguide.python.org/internals/garbage-collector/
#include "Python.h"
#include "pycore_ceval.h" // _Py_set_eval_breaker_bit()
#include "pycore_context.h"
#include "pycore_dict.h" // _PyDict_MaybeUntrack()
#include "pycore_initconfig.h"
#include "pycore_interp.h" // PyInterpreterState.gc
#include "pycore_object.h"
#include "pycore_object_alloc.h" // _PyObject_MallocWithType()
#include "pycore_pyerrors.h"
#include "pycore_pystate.h" // _PyThreadState_GET()
#include "pycore_weakref.h" // _PyWeakref_ClearRef()
#include "pydtrace.h"
#ifndef Py_GIL_DISABLED
typedef struct _gc_runtime_state GCState;
#ifdef Py_DEBUG
# define GC_DEBUG
#endif
#define GC_NEXT _PyGCHead_NEXT
#define GC_PREV _PyGCHead_PREV
// update_refs() set this bit for all objects in current generation.
// subtract_refs() and move_unreachable() uses this to distinguish
// visited object is in GCing or not.
//
// move_unreachable() removes this flag from reachable objects.
// Only unreachable objects have this flag.
//
// No objects in interpreter have this flag after GC ends.
#define PREV_MASK_COLLECTING _PyGC_PREV_MASK_COLLECTING
// Lowest bit of _gc_next is used for UNREACHABLE flag.
//
// This flag represents the object is in unreachable list in move_unreachable()
//
// Although this flag is used only in move_unreachable(), move_unreachable()
// doesn't clear this flag to skip unnecessary iteration.
// move_legacy_finalizers() removes this flag instead.
// Between them, unreachable list is not normal list and we can not use
// most gc_list_* functions for it.
#define NEXT_MASK_UNREACHABLE (1)
#define AS_GC(op) _Py_AS_GC(op)
#define FROM_GC(gc) _Py_FROM_GC(gc)
// Automatically choose the generation that needs collecting.
#define GENERATION_AUTO (-1)
static inline int
gc_is_collecting(PyGC_Head *g)
{
return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
}
static inline void
gc_clear_collecting(PyGC_Head *g)
{
g->_gc_prev &= ~PREV_MASK_COLLECTING;
}
static inline Py_ssize_t
gc_get_refs(PyGC_Head *g)
{
return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
}
static inline void
gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
{
g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
| ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
}
static inline void
gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
{
g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
| PREV_MASK_COLLECTING
| ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
}
static inline void
gc_decref(PyGC_Head *g)
{
_PyObject_ASSERT_WITH_MSG(FROM_GC(g),
gc_get_refs(g) > 0,
"refcount is too small");
g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
}
#define GEN_HEAD(gcstate, n) (&(gcstate)->generations[n].head)
static GCState *
get_gc_state(void)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
return &interp->gc;
}
void
_PyGC_InitState(GCState *gcstate)
{
#define INIT_HEAD(GEN) \
do { \
GEN.head._gc_next = (uintptr_t)&GEN.head; \
GEN.head._gc_prev = (uintptr_t)&GEN.head; \
} while (0)
for (int i = 0; i < NUM_GENERATIONS; i++) {
assert(gcstate->generations[i].count == 0);
INIT_HEAD(gcstate->generations[i]);
};
gcstate->generation0 = GEN_HEAD(gcstate, 0);
INIT_HEAD(gcstate->permanent_generation);
#undef INIT_HEAD
}
PyStatus
_PyGC_Init(PyInterpreterState *interp)
{
GCState *gcstate = &interp->gc;
gcstate->garbage = PyList_New(0);
if (gcstate->garbage == NULL) {
return _PyStatus_NO_MEMORY();
}
gcstate->callbacks = PyList_New(0);
if (gcstate->callbacks == NULL) {
return _PyStatus_NO_MEMORY();
}
return _PyStatus_OK();
}
/*
_gc_prev values
---------------
Between collections, _gc_prev is used for doubly linked list.
Lowest two bits of _gc_prev are used for flags.
PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
or _PyObject_GC_UNTRACK() is called.
During a collection, _gc_prev is temporary used for gc_refs, and the gc list
is singly linked until _gc_prev is restored.
gc_refs
At the start of a collection, update_refs() copies the true refcount
to gc_refs, for each object in the generation being collected.
subtract_refs() then adjusts gc_refs so that it equals the number of
times an object is referenced directly from outside the generation
being collected.
PREV_MASK_COLLECTING
Objects in generation being collected are marked PREV_MASK_COLLECTING in
update_refs().
_gc_next values
---------------
_gc_next takes these values:
0
The object is not tracked
!= 0
Pointer to the next object in the GC list.
Additionally, lowest bit is used temporary for
NEXT_MASK_UNREACHABLE flag described below.
NEXT_MASK_UNREACHABLE
move_unreachable() then moves objects not reachable (whether directly or
indirectly) from outside the generation into an "unreachable" set and
set this flag.
Objects that are found to be reachable have gc_refs set to 1.
When this flag is set for the reachable object, the object must be in
"unreachable" set.
The flag is unset and the object is moved back to "reachable" set.
move_legacy_finalizers() will remove this flag from "unreachable" set.
*/
/*** list functions ***/
static inline void
gc_list_init(PyGC_Head *list)
{
// List header must not have flags.
// We can assign pointer by simple cast.
list->_gc_prev = (uintptr_t)list;
list->_gc_next = (uintptr_t)list;
}
static inline int
gc_list_is_empty(PyGC_Head *list)
{
return (list->_gc_next == (uintptr_t)list);
}
/* Append `node` to `list`. */
static inline void
gc_list_append(PyGC_Head *node, PyGC_Head *list)
{
PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
// last <-> node
_PyGCHead_SET_PREV(node, last);
_PyGCHead_SET_NEXT(last, node);
// node <-> list
_PyGCHead_SET_NEXT(node, list);
list->_gc_prev = (uintptr_t)node;
}
/* Remove `node` from the gc list it's currently in. */
static inline void
gc_list_remove(PyGC_Head *node)
{
PyGC_Head *prev = GC_PREV(node);
PyGC_Head *next = GC_NEXT(node);
_PyGCHead_SET_NEXT(prev, next);
_PyGCHead_SET_PREV(next, prev);
node->_gc_next = 0; /* object is not currently tracked */
}
/* Move `node` from the gc list it's currently in (which is not explicitly
* named here) to the end of `list`. This is semantically the same as
* gc_list_remove(node) followed by gc_list_append(node, list).
*/
static void
gc_list_move(PyGC_Head *node, PyGC_Head *list)
{
/* Unlink from current list. */
PyGC_Head *from_prev = GC_PREV(node);
PyGC_Head *from_next = GC_NEXT(node);
_PyGCHead_SET_NEXT(from_prev, from_next);
_PyGCHead_SET_PREV(from_next, from_prev);
/* Relink at end of new list. */
// list must not have flags. So we can skip macros.
PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
_PyGCHead_SET_PREV(node, to_prev);
_PyGCHead_SET_NEXT(to_prev, node);
list->_gc_prev = (uintptr_t)node;
_PyGCHead_SET_NEXT(node, list);
}
/* append list `from` onto list `to`; `from` becomes an empty list */
static void
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
{
assert(from != to);
if (!gc_list_is_empty(from)) {
PyGC_Head *to_tail = GC_PREV(to);
PyGC_Head *from_head = GC_NEXT(from);
PyGC_Head *from_tail = GC_PREV(from);
assert(from_head != from);
assert(from_tail != from);
_PyGCHead_SET_NEXT(to_tail, from_head);
_PyGCHead_SET_PREV(from_head, to_tail);
_PyGCHead_SET_NEXT(from_tail, to);
_PyGCHead_SET_PREV(to, from_tail);
}
gc_list_init(from);
}
static Py_ssize_t
gc_list_size(PyGC_Head *list)
{
PyGC_Head *gc;
Py_ssize_t n = 0;
for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
n++;
}
return n;
}
/* Walk the list and mark all objects as non-collecting */
static inline void
gc_list_clear_collecting(PyGC_Head *collectable)
{
PyGC_Head *gc;
for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
gc_clear_collecting(gc);
}
}
/* Append objects in a GC list to a Python list.
* Return 0 if all OK, < 0 if error (out of memory for list)
*/
static int
append_objects(PyObject *py_list, PyGC_Head *gc_list)
{
PyGC_Head *gc;
for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
if (op != py_list) {
if (PyList_Append(py_list, op)) {
return -1; /* exception */
}
}
}
return 0;
}
// Constants for validate_list's flags argument.
enum flagstates {collecting_clear_unreachable_clear,
collecting_clear_unreachable_set,
collecting_set_unreachable_clear,
collecting_set_unreachable_set};
#ifdef GC_DEBUG
// validate_list checks list consistency. And it works as document
// describing when flags are expected to be set / unset.
// `head` must be a doubly-linked gc list, although it's fine (expected!) if
// the prev and next pointers are "polluted" with flags.
// What's checked:
// - The `head` pointers are not polluted.
// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
// `set or clear, as specified by the 'flags' argument.
// - The prev and next pointers are mutually consistent.
static void
validate_list(PyGC_Head *head, enum flagstates flags)
{
assert((head->_gc_prev & PREV_MASK_COLLECTING) == 0);
assert((head->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
uintptr_t prev_value = 0, next_value = 0;
switch (flags) {
case collecting_clear_unreachable_clear:
break;
case collecting_set_unreachable_clear:
prev_value = PREV_MASK_COLLECTING;
break;
case collecting_clear_unreachable_set:
next_value = NEXT_MASK_UNREACHABLE;
break;
case collecting_set_unreachable_set:
prev_value = PREV_MASK_COLLECTING;
next_value = NEXT_MASK_UNREACHABLE;
break;
default:
assert(! "bad internal flags argument");
}
PyGC_Head *prev = head;
PyGC_Head *gc = GC_NEXT(head);
while (gc != head) {
PyGC_Head *trueprev = GC_PREV(gc);
PyGC_Head *truenext = (PyGC_Head *)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
assert(truenext != NULL);
assert(trueprev == prev);
assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
prev = gc;
gc = truenext;
}
assert(prev == GC_PREV(head));
}
#else
#define validate_list(x, y) do{}while(0)
#endif
/*** end of list stuff ***/
/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 and
* PREV_MASK_COLLECTING bit is set for all objects in containers.
*/
static void
update_refs(PyGC_Head *containers)
{
PyGC_Head *next;
PyGC_Head *gc = GC_NEXT(containers);
while (gc != containers) {
next = GC_NEXT(gc);
PyObject *op = FROM_GC(gc);
/* Move any object that might have become immortal to the
* permanent generation as the reference count is not accurately
* reflecting the actual number of live references to this object
*/
if (_Py_IsImmortal(op)) {
gc_list_move(gc, &get_gc_state()->permanent_generation.head);
gc = next;
continue;
}
gc_reset_refs(gc, Py_REFCNT(op));
/* Python's cyclic gc should never see an incoming refcount
* of 0: if something decref'ed to 0, it should have been
* deallocated immediately at that time.
* Possible cause (if the assert triggers): a tp_dealloc
* routine left a gc-aware object tracked during its teardown
* phase, and did something-- or allowed something to happen --
* that called back into Python. gc can trigger then, and may
* see the still-tracked dying object. Before this assert
* was added, such mistakes went on to allow gc to try to
* delete the object again. In a debug build, that caused
* a mysterious segfault, when _Py_ForgetReference tried
* to remove the object from the doubly-linked list of all
* objects a second time. In a release build, an actual
* double deallocation occurred, which leads to corruption
* of the allocator's internal bookkeeping pointers. That's
* so serious that maybe this should be a release-build
* check instead of an assert?
*/
_PyObject_ASSERT(op, gc_get_refs(gc) != 0);
gc = next;
}
}
/* A traversal callback for subtract_refs. */
static int
visit_decref(PyObject *op, void *parent)
{
OBJECT_STAT_INC(object_visits);
_PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
if (_PyObject_IS_GC(op)) {
PyGC_Head *gc = AS_GC(op);
/* We're only interested in gc_refs for objects in the
* generation being collected, which can be recognized
* because only they have positive gc_refs.
*/
if (gc_is_collecting(gc)) {
gc_decref(gc);
}
}
return 0;
}
/* Subtract internal references from gc_refs. After this, gc_refs is >= 0
* for all objects in containers, and is GC_REACHABLE for all tracked gc
* objects not in containers. The ones with gc_refs > 0 are directly
* reachable from outside containers, and so can't be collected.
*/
static void
subtract_refs(PyGC_Head *containers)
{
traverseproc traverse;
PyGC_Head *gc = GC_NEXT(containers);
for (; gc != containers; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
traverse = Py_TYPE(op)->tp_traverse;
(void) traverse(op,
visit_decref,
op);
}
}
/* A traversal callback for move_unreachable. */
static int
visit_reachable(PyObject *op, void *arg)
{
PyGC_Head *reachable = arg;
OBJECT_STAT_INC(object_visits);
if (!_PyObject_IS_GC(op)) {
return 0;
}
PyGC_Head *gc = AS_GC(op);
const Py_ssize_t gc_refs = gc_get_refs(gc);
// Ignore objects in other generation.
// This also skips objects "to the left" of the current position in
// move_unreachable's scan of the 'young' list - they've already been
// traversed, and no longer have the PREV_MASK_COLLECTING flag.
if (! gc_is_collecting(gc)) {
return 0;
}
// It would be a logic error elsewhere if the collecting flag were set on
// an untracked object.
_PyObject_ASSERT(op, gc->_gc_next != 0);
if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
/* This had gc_refs = 0 when move_unreachable got
* to it, but turns out it's reachable after all.
* Move it back to move_unreachable's 'young' list,
* and move_unreachable will eventually get to it
* again.
*/
// Manually unlink gc from unreachable list because the list functions
// don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
PyGC_Head *prev = GC_PREV(gc);
PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
_PyObject_ASSERT(FROM_GC(prev),
prev->_gc_next & NEXT_MASK_UNREACHABLE);
_PyObject_ASSERT(FROM_GC(next),
next->_gc_next & NEXT_MASK_UNREACHABLE);
prev->_gc_next = gc->_gc_next; // copy NEXT_MASK_UNREACHABLE
_PyGCHead_SET_PREV(next, prev);
gc_list_append(gc, reachable);
gc_set_refs(gc, 1);
}
else if (gc_refs == 0) {
/* This is in move_unreachable's 'young' list, but
* the traversal hasn't yet gotten to it. All
* we need to do is tell move_unreachable that it's
* reachable.
*/
gc_set_refs(gc, 1);
}
/* Else there's nothing to do.
* If gc_refs > 0, it must be in move_unreachable's 'young'
* list, and move_unreachable will eventually get to it.
*/
else {
_PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
}
return 0;
}
/* Move the unreachable objects from young to unreachable. After this,
* all objects in young don't have PREV_MASK_COLLECTING flag and
* unreachable have the flag.
* All objects in young after this are directly or indirectly reachable
* from outside the original young; and all objects in unreachable are
* not.
*
* This function restores _gc_prev pointer. young and unreachable are
* doubly linked list after this function.
* But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
* So we can not gc_list_* functions for unreachable until we remove the flag.
*/
static void
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
{
// previous elem in the young list, used for restore gc_prev.
PyGC_Head *prev = young;
PyGC_Head *gc = GC_NEXT(young);
/* Invariants: all objects "to the left" of us in young are reachable
* (directly or indirectly) from outside the young list as it was at entry.
*
* All other objects from the original young "to the left" of us are in
* unreachable now, and have NEXT_MASK_UNREACHABLE. All objects to the
* left of us in 'young' now have been scanned, and no objects here
* or to the right have been scanned yet.
*/
while (gc != young) {
if (gc_get_refs(gc)) {
/* gc is definitely reachable from outside the
* original 'young'. Mark it as such, and traverse
* its pointers to find any other objects that may
* be directly reachable from it. Note that the
* call to tp_traverse may append objects to young,
* so we have to wait until it returns to determine
* the next object to visit.
*/
PyObject *op = FROM_GC(gc);
traverseproc traverse = Py_TYPE(op)->tp_traverse;
_PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
"refcount is too small");
// NOTE: visit_reachable may change gc->_gc_next when
// young->_gc_prev == gc. Don't do gc = GC_NEXT(gc) before!
(void) traverse(op,
visit_reachable,
(void *)young);
// relink gc_prev to prev element.
_PyGCHead_SET_PREV(gc, prev);
// gc is not COLLECTING state after here.
gc_clear_collecting(gc);
prev = gc;
}
else {
/* This *may* be unreachable. To make progress,
* assume it is. gc isn't directly reachable from
* any object we've already traversed, but may be
* reachable from an object we haven't gotten to yet.
* visit_reachable will eventually move gc back into
* young if that's so, and we'll see it again.
*/
// Move gc to unreachable.
// No need to gc->next->prev = prev because it is single linked.
prev->_gc_next = gc->_gc_next;
// We can't use gc_list_append() here because we use
// NEXT_MASK_UNREACHABLE here.
PyGC_Head *last = GC_PREV(unreachable);
// NOTE: Since all objects in unreachable set has
// NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
// But this may pollute the unreachable list head's 'next' pointer
// too. That's semantically senseless but expedient here - the
// damage is repaired when this function ends.
last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
_PyGCHead_SET_PREV(gc, last);
gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
unreachable->_gc_prev = (uintptr_t)gc;
}
gc = (PyGC_Head*)prev->_gc_next;
}
// young->_gc_prev must be last element remained in the list.
young->_gc_prev = (uintptr_t)prev;
// don't let the pollution of the list head's next pointer leak
unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
}
static void
untrack_tuples(PyGC_Head *head)
{
PyGC_Head *next, *gc = GC_NEXT(head);
while (gc != head) {
PyObject *op = FROM_GC(gc);
next = GC_NEXT(gc);
if (PyTuple_CheckExact(op)) {
_PyTuple_MaybeUntrack(op);
}
gc = next;
}
}
/* Try to untrack all currently tracked dictionaries */
static void
untrack_dicts(PyGC_Head *head)
{
PyGC_Head *next, *gc = GC_NEXT(head);
while (gc != head) {
PyObject *op = FROM_GC(gc);
next = GC_NEXT(gc);
if (PyDict_CheckExact(op)) {
_PyDict_MaybeUntrack(op);
}
gc = next;
}
}
/* Return true if object has a pre-PEP 442 finalization method. */
static int
has_legacy_finalizer(PyObject *op)
{
return Py_TYPE(op)->tp_del != NULL;
}
/* Move the objects in unreachable with tp_del slots into `finalizers`.
*
* This function also removes NEXT_MASK_UNREACHABLE flag
* from _gc_next in unreachable.
*/
static void
move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
{
PyGC_Head *gc, *next;
_PyObject_ASSERT(
FROM_GC(unreachable),
(unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
/* March over unreachable. Move objects with finalizers into
* `finalizers`.
*/
for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
PyObject *op = FROM_GC(gc);
_PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
next = (PyGC_Head*)gc->_gc_next;
if (has_legacy_finalizer(op)) {
gc_clear_collecting(gc);
gc_list_move(gc, finalizers);
}
}
}
static inline void
clear_unreachable_mask(PyGC_Head *unreachable)
{
/* Check that the list head does not have the unreachable bit set */
_PyObject_ASSERT(
FROM_GC(unreachable),
((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
_PyObject_ASSERT(
FROM_GC(unreachable),
(unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
PyGC_Head *gc, *next;
for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
_PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
next = (PyGC_Head*)gc->_gc_next;
}
validate_list(unreachable, collecting_set_unreachable_clear);
}
/* A traversal callback for move_legacy_finalizer_reachable. */
static int
visit_move(PyObject *op, void *arg)
{
PyGC_Head *tolist = arg;
OBJECT_STAT_INC(object_visits);
if (_PyObject_IS_GC(op)) {
PyGC_Head *gc = AS_GC(op);
if (gc_is_collecting(gc)) {
gc_list_move(gc, tolist);
gc_clear_collecting(gc);
}
}
return 0;
}
/* Move objects that are reachable from finalizers, from the unreachable set
* into finalizers set.
*/
static void
move_legacy_finalizer_reachable(PyGC_Head *finalizers)
{
traverseproc traverse;
PyGC_Head *gc = GC_NEXT(finalizers);
for (; gc != finalizers; gc = GC_NEXT(gc)) {
/* Note that the finalizers list may grow during this. */
traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
(void) traverse(FROM_GC(gc),
visit_move,
(void *)finalizers);
}
}
/* Clear all weakrefs to unreachable objects, and if such a weakref has a
* callback, invoke it if necessary. Note that it's possible for such
* weakrefs to be outside the unreachable set -- indeed, those are precisely
* the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
* overview & some details. Some weakrefs with callbacks may be reclaimed
* directly by this routine; the number reclaimed is the return value. Other
* weakrefs with callbacks may be moved into the `old` generation. Objects
* moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
* unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
* no object in `unreachable` is weakly referenced anymore.
*/
static int
handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
{
PyGC_Head *gc;
PyObject *op; /* generally FROM_GC(gc) */
PyWeakReference *wr; /* generally a cast of op */
PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
PyGC_Head *next;
int num_freed = 0;
gc_list_init(&wrcb_to_call);
/* Clear all weakrefs to the objects in unreachable. If such a weakref
* also has a callback, move it into `wrcb_to_call` if the callback
* needs to be invoked. Note that we cannot invoke any callbacks until
* all weakrefs to unreachable objects are cleared, lest the callback
* resurrect an unreachable object via a still-active weakref. We
* make another pass over wrcb_to_call, invoking callbacks, after this
* pass completes.
*/
for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
PyWeakReference **wrlist;
op = FROM_GC(gc);
next = GC_NEXT(gc);
if (PyWeakref_Check(op)) {
/* A weakref inside the unreachable set must be cleared. If we
* allow its callback to execute inside delete_garbage(), it
* could expose objects that have tp_clear already called on
* them. Or, it could resurrect unreachable objects. One way
* this can happen is if some container objects do not implement
* tp_traverse. Then, wr_object can be outside the unreachable
* set but can be deallocated as a result of breaking the
* reference cycle. If we don't clear the weakref, the callback
* will run and potentially cause a crash. See bpo-38006 for
* one example.
*/
_PyWeakref_ClearRef((PyWeakReference *)op);
}
if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
continue;
}
/* It supports weakrefs. Does it have any?
*
* This is never triggered for static types so we can avoid the
* (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
*/
wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
/* `op` may have some weakrefs. March over the list, clear
* all the weakrefs, and move the weakrefs with callbacks
* that must be called into wrcb_to_call.
*/
for (wr = *wrlist; wr != NULL; wr = *wrlist) {
PyGC_Head *wrasgc; /* AS_GC(wr) */
/* _PyWeakref_ClearRef clears the weakref but leaves
* the callback pointer intact. Obscure: it also
* changes *wrlist.
*/
_PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
_PyWeakref_ClearRef(wr);
_PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
if (wr->wr_callback == NULL) {
/* no callback */
continue;
}
/* Headache time. `op` is going away, and is weakly referenced by
* `wr`, which has a callback. Should the callback be invoked? If wr
* is also trash, no:
*
* 1. There's no need to call it. The object and the weakref are
* both going away, so it's legitimate to pretend the weakref is
* going away first. The user has to ensure a weakref outlives its
* referent if they want a guarantee that the wr callback will get
* invoked.
*
* 2. It may be catastrophic to call it. If the callback is also in
* cyclic trash (CT), then although the CT is unreachable from
* outside the current generation, CT may be reachable from the
* callback. Then the callback could resurrect insane objects.
*
* Since the callback is never needed and may be unsafe in this case,
* wr is simply left in the unreachable set. Note that because we
* already called _PyWeakref_ClearRef(wr), its callback will never
* trigger.
*
* OTOH, if wr isn't part of CT, we should invoke the callback: the
* weakref outlived the trash. Note that since wr isn't CT in this
* case, its callback can't be CT either -- wr acted as an external
* root to this generation, and therefore its callback did too. So
* nothing in CT is reachable from the callback either, so it's hard
* to imagine how calling it later could create a problem for us. wr
* is moved to wrcb_to_call in this case.
*/
if (gc_is_collecting(AS_GC((PyObject *)wr))) {
/* it should already have been cleared above */
_PyObject_ASSERT((PyObject*)wr, wr->wr_object == Py_None);
continue;
}
/* Create a new reference so that wr can't go away
* before we can process it again.
*/
Py_INCREF(wr);
/* Move wr to wrcb_to_call, for the next pass. */
wrasgc = AS_GC((PyObject *)wr);
// wrasgc is reachable, but next isn't, so they can't be the same
_PyObject_ASSERT((PyObject *)wr, wrasgc != next);
gc_list_move(wrasgc, &wrcb_to_call);
}
}
/* Invoke the callbacks we decided to honor. It's safe to invoke them
* because they can't reference unreachable objects.
*/
while (! gc_list_is_empty(&wrcb_to_call)) {
PyObject *temp;
PyObject *callback;
gc = (PyGC_Head*)wrcb_to_call._gc_next;
op = FROM_GC(gc);
_PyObject_ASSERT(op, PyWeakref_Check(op));
wr = (PyWeakReference *)op;
callback = wr->wr_callback;
_PyObject_ASSERT(op, callback != NULL);
/* copy-paste of weakrefobject.c's handle_callback() */
temp = PyObject_CallOneArg(callback, (PyObject *)wr);
if (temp == NULL) {
PyErr_WriteUnraisable(callback);
}
else {
Py_DECREF(temp);
}
/* Give up the reference we created in the first pass. When
* op's refcount hits 0 (which it may or may not do right now),
* op's tp_dealloc will decref op->wr_callback too. Note
* that the refcount probably will hit 0 now, and because this
* weakref was reachable to begin with, gc didn't already
* add it to its count of freed objects. Example: a reachable
* weak value dict maps some key to this reachable weakref.
* The callback removes this key->weakref mapping from the
* dict, leaving no other references to the weakref (excepting
* ours).
*/
Py_DECREF(op);
if (wrcb_to_call._gc_next == (uintptr_t)gc) {
/* object is still alive -- move it */
gc_list_move(gc, old);
}
else {
++num_freed;
}
}
return num_freed;
}
static void
debug_cycle(const char *msg, PyObject *op)
{
PySys_FormatStderr("gc: %s <%s %p>\n",
msg, Py_TYPE(op)->tp_name, op);
}
/* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
* only from such cycles).
* If _PyGC_DEBUG_SAVEALL, all objects in finalizers are appended to the module
* garbage list (a Python list), else only the objects in finalizers with
* __del__ methods are appended to garbage. All objects in finalizers are
* merged into the old list regardless.
*/
static void
handle_legacy_finalizers(PyThreadState *tstate,
GCState *gcstate,
PyGC_Head *finalizers, PyGC_Head *old)
{
assert(!_PyErr_Occurred(tstate));
assert(gcstate->garbage != NULL);
PyGC_Head *gc = GC_NEXT(finalizers);
for (; gc != finalizers; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
if ((gcstate->debug & _PyGC_DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
if (PyList_Append(gcstate->garbage, op) < 0) {
_PyErr_Clear(tstate);
break;
}
}
}
gc_list_merge(finalizers, old);
}
/* Run first-time finalizers (if any) on all the objects in collectable.
* Note that this may remove some (or even all) of the objects from the
* list, due to refcounts falling to 0.
*/
static void
finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
{
destructor finalize;
PyGC_Head seen;
/* While we're going through the loop, `finalize(op)` may cause op, or
* other objects, to be reclaimed via refcounts falling to zero. So
* there's little we can rely on about the structure of the input
* `collectable` list across iterations. For safety, we always take the
* first object in that list and move it to a temporary `seen` list.
* If objects vanish from the `collectable` and `seen` lists we don't
* care.
*/
gc_list_init(&seen);
while (!gc_list_is_empty(collectable)) {
PyGC_Head *gc = GC_NEXT(collectable);
PyObject *op = FROM_GC(gc);
gc_list_move(gc, &seen);
if (!_PyGC_FINALIZED(op) &&
(finalize = Py_TYPE(op)->tp_finalize) != NULL)
{
_PyGC_SET_FINALIZED(op);
Py_INCREF(op);
finalize(op);
assert(!_PyErr_Occurred(tstate));
Py_DECREF(op);
}
}
gc_list_merge(&seen, collectable);
}
/* Break reference cycles by clearing the containers involved. This is
* tricky business as the lists can be changing and we don't know which
* objects may be freed. It is possible I screwed something up here.
*/
static void
delete_garbage(PyThreadState *tstate, GCState *gcstate,
PyGC_Head *collectable, PyGC_Head *old)
{
assert(!_PyErr_Occurred(tstate));
while (!gc_list_is_empty(collectable)) {
PyGC_Head *gc = GC_NEXT(collectable);
PyObject *op = FROM_GC(gc);
_PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
"refcount is too small");
if (gcstate->debug & _PyGC_DEBUG_SAVEALL) {
assert(gcstate->garbage != NULL);
if (PyList_Append(gcstate->garbage, op) < 0) {
_PyErr_Clear(tstate);
}
}
else {
inquiry clear;
if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
Py_INCREF(op);
(void) clear(op);
if (_PyErr_Occurred(tstate)) {
PyErr_FormatUnraisable("Exception ignored in tp_clear of %s",
Py_TYPE(op)->tp_name);
}
Py_DECREF(op);
}
}
if (GC_NEXT(collectable) == gc) {
/* object is still alive, move it, it may die later */
gc_clear_collecting(gc);
gc_list_move(gc, old);
}
}
}
// Show stats for objects in each generations
static void
show_stats_each_generations(GCState *gcstate)
{
char buf[100];
size_t pos = 0;
for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
" %zd",
gc_list_size(GEN_HEAD(gcstate, i)));
}
PySys_FormatStderr(
"gc: objects in each generation:%s\n"
"gc: objects in permanent generation: %zd\n",
buf, gc_list_size(&gcstate->permanent_generation.head));
}
/* Deduce which objects among "base" are unreachable from outside the list
and move them to 'unreachable'. The process consist in the following steps:
1. Copy all reference counts to a different field (gc_prev is used to hold
this copy to save memory).
2. Traverse all objects in "base" and visit all referred objects using
"tp_traverse" and for every visited object, subtract 1 to the reference
count (the one that we copied in the previous step). After this step, all
objects that can be reached directly from outside must have strictly positive
reference count, while all unreachable objects must have a count of exactly 0.
3. Identify all unreachable objects (the ones with 0 reference count) and move
them to the "unreachable" list. This step also needs to move back to "base" all
objects that were initially marked as unreachable but are referred transitively
by the reachable objects (the ones with strictly positive reference count).
Contracts:
* The "base" has to be a valid list with no mask set.
* The "unreachable" list must be uninitialized (this function calls
gc_list_init over 'unreachable').
IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
flag set but it does not clear it to skip unnecessary iteration. Before the
flag is cleared (for example, by using 'clear_unreachable_mask' function or
by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
list and we can not use most gc_list_* functions for it. */
static inline void
deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
validate_list(base, collecting_clear_unreachable_clear);
/* Using ob_refcnt and gc_refs, calculate which objects in the
* container set are reachable from outside the set (i.e., have a
* refcount greater than 0 when all the references within the
* set are taken into account).
*/
update_refs(base); // gc_prev is used for gc_refs
subtract_refs(base);
/* Leave everything reachable from outside base in base, and move
* everything else (in base) to unreachable.
*
* NOTE: This used to move the reachable objects into a reachable
* set instead. But most things usually turn out to be reachable,
* so it's more efficient to move the unreachable things. It "sounds slick"
* to move the unreachable objects, until you think about it - the reason it
* pays isn't actually obvious.
*
* Suppose we create objects A, B, C in that order. They appear in the young
* generation in the same order. If B points to A, and C to B, and C is
* reachable from outside, then the adjusted refcounts will be 0, 0, and 1
* respectively.
*
* When move_unreachable finds A, A is moved to the unreachable list. The
* same for B when it's first encountered. Then C is traversed, B is moved
* _back_ to the reachable list. B is eventually traversed, and then A is
* moved back to the reachable list.
*
* So instead of not moving at all, the reachable objects B and A are moved
* twice each. Why is this a win? A straightforward algorithm to move the
* reachable objects instead would move A, B, and C once each.
*
* The key is that this dance leaves the objects in order C, B, A - it's
* reversed from the original order. On all _subsequent_ scans, none of
* them will move. Since most objects aren't in cycles, this can save an
* unbounded number of moves across an unbounded number of later collections.
* It can cost more only the first time the chain is scanned.
*
* Drawback: move_unreachable is also used to find out what's still trash
* after finalizers may resurrect objects. In _that_ case most unreachable
* objects will remain unreachable, so it would be more efficient to move
* the reachable objects instead. But this is a one-time cost, probably not
* worth complicating the code to speed just a little.
*/
gc_list_init(unreachable);
move_unreachable(base, unreachable); // gc_prev is pointer again
validate_list(base, collecting_clear_unreachable_clear);
validate_list(unreachable, collecting_set_unreachable_set);
}
/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
them to 'old_generation' and placing the rest on 'still_unreachable'.
Contracts:
* After this function 'unreachable' must not be used anymore and 'still_unreachable'
will contain the objects that did not resurrect.
* The "still_unreachable" list must be uninitialized (this function calls
gc_list_init over 'still_unreachable').
IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
we can skip the expense of clearing the flag to avoid extra iteration. */
static inline void
handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
PyGC_Head *old_generation)
{
// Remove the PREV_MASK_COLLECTING from unreachable
// to prepare it for a new call to 'deduce_unreachable'
gc_list_clear_collecting(unreachable);
// After the call to deduce_unreachable, the 'still_unreachable' set will
// have the PREV_MARK_COLLECTING set, but the objects are going to be
// removed so we can skip the expense of clearing the flag.
PyGC_Head* resurrected = unreachable;
deduce_unreachable(resurrected, still_unreachable);
clear_unreachable_mask(still_unreachable);
// Move the resurrected objects to the old generation for future collection.
gc_list_merge(resurrected, old_generation);
}
/* Invoke progress callbacks to notify clients that garbage collection
* is starting or stopping
*/
static void
invoke_gc_callback(PyThreadState *tstate, const char *phase,
int generation, Py_ssize_t collected,
Py_ssize_t uncollectable)
{
assert(!_PyErr_Occurred(tstate));
/* we may get called very early */
GCState *gcstate = &tstate->interp->gc;
if (gcstate->callbacks == NULL) {
return;
}
/* The local variable cannot be rebound, check it for sanity */
assert(PyList_CheckExact(gcstate->callbacks));
PyObject *info = NULL;
if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
info = Py_BuildValue("{sisnsn}",
"generation", generation,
"collected", collected,
"uncollectable", uncollectable);
if (info == NULL) {
PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
return;
}
}
PyObject *phase_obj = PyUnicode_FromString(phase);
if (phase_obj == NULL) {
Py_XDECREF(info);
PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
return;
}
PyObject *stack[] = {phase_obj, info};
for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
Py_INCREF(cb); /* make sure cb doesn't go away */
r = PyObject_Vectorcall(cb, stack, 2, NULL);
if (r == NULL) {
PyErr_WriteUnraisable(cb);
}
else {
Py_DECREF(r);
}
Py_DECREF(cb);
}
Py_DECREF(phase_obj);
Py_XDECREF(info);
assert(!_PyErr_Occurred(tstate));
}
/* Find the oldest generation (highest numbered) where the count
* exceeds the threshold. Objects in the that generation and
* generations younger than it will be collected. */
static int
gc_select_generation(GCState *gcstate)
{
for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
if (gcstate->generations[i].count > gcstate->generations[i].threshold) {
/* Avoid quadratic performance degradation in number
of tracked objects (see also issue #4074):
To limit the cost of garbage collection, there are two strategies;
- make each collection faster, e.g. by scanning fewer objects
- do less collections
This heuristic is about the latter strategy.
In addition to the various configurable thresholds, we only trigger a
full collection if the ratio
long_lived_pending / long_lived_total
is above a given value (hardwired to 25%).
The reason is that, while "non-full" collections (i.e., collections of
the young and middle generations) will always examine roughly the same
number of objects -- determined by the aforementioned thresholds --,
the cost of a full collection is proportional to the total number of
long-lived objects, which is virtually unbounded.
Indeed, it has been remarked that doing a full collection every
<constant number> of object creations entails a dramatic performance
degradation in workloads which consist in creating and storing lots of
long-lived objects (e.g. building a large list of GC-tracked objects would
show quadratic performance, instead of linear as expected: see issue #4074).
Using the above ratio, instead, yields amortized linear performance in
the total number of objects (the effect of which can be summarized
thusly: "each full garbage collection is more and more costly as the
number of objects grows, but we do fewer and fewer of them").
This heuristic was suggested by Martin von Löwis on python-dev in
June 2008. His original analysis and proposal can be found at:
http://mail.python.org/pipermail/python-dev/2008-June/080579.html
*/
if (i == NUM_GENERATIONS - 1
&& gcstate->long_lived_pending < gcstate->long_lived_total / 4)
{
continue;
}
return i;
}
}
return -1;
}
/* This is the main function. Read this to understand how the
* collection process works. */
static Py_ssize_t
gc_collect_main(PyThreadState *tstate, int generation, _PyGC_Reason reason)
{
int i;
Py_ssize_t m = 0; /* # objects collected */
Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
PyGC_Head *young; /* the generation we are examining */
PyGC_Head *old; /* next older generation */
PyGC_Head unreachable; /* non-problematic unreachable trash */
PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
PyGC_Head *gc;
_PyTime_t t1 = 0; /* initialize to prevent a compiler warning */
GCState *gcstate = &tstate->interp->gc;
// gc_collect_main() must not be called before _PyGC_Init
// or after _PyGC_Fini()
assert(gcstate->garbage != NULL);
assert(!_PyErr_Occurred(tstate));
int expected = 0;
if (!_Py_atomic_compare_exchange_int(&gcstate->collecting, &expected, 1)) {
// Don't start a garbage collection if one is already in progress.
return 0;
}
if (generation == GENERATION_AUTO) {
// Select the oldest generation that needs collecting. We will collect
// objects from that generation and all generations younger than it.
generation = gc_select_generation(gcstate);
if (generation < 0) {
// No generation needs to be collected.
_Py_atomic_store_int(&gcstate->collecting, 0);
return 0;
}
}
assert(generation >= 0 && generation < NUM_GENERATIONS);
#ifdef Py_STATS
if (_Py_stats) {
_Py_stats->object_stats.object_visits = 0;
}
#endif
GC_STAT_ADD(generation, collections, 1);
if (reason != _Py_GC_REASON_SHUTDOWN) {
invoke_gc_callback(tstate, "start", generation, 0, 0);
}
if (gcstate->debug & _PyGC_DEBUG_STATS) {
PySys_WriteStderr("gc: collecting generation %d...\n", generation);
show_stats_each_generations(gcstate);
t1 = _PyTime_GetPerfCounter();
}
if (PyDTrace_GC_START_ENABLED()) {
PyDTrace_GC_START(generation);
}
/* update collection and allocation counters */
if (generation+1 < NUM_GENERATIONS) {
gcstate->generations[generation+1].count += 1;
}
for (i = 0; i <= generation; i++) {
gcstate->generations[i].count = 0;
}
/* merge younger generations with one we are currently collecting */
for (i = 0; i < generation; i++) {
gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
}
/* handy references */
young = GEN_HEAD(gcstate, generation);
if (generation < NUM_GENERATIONS-1) {
old = GEN_HEAD(gcstate, generation+1);
}
else {
old = young;
}
validate_list(old, collecting_clear_unreachable_clear);
deduce_unreachable(young, &unreachable);
untrack_tuples(young);
/* Move reachable objects to next generation. */
if (young != old) {
if (generation == NUM_GENERATIONS - 2) {
gcstate->long_lived_pending += gc_list_size(young);
}
gc_list_merge(young, old);
}
else {
/* We only un-track dicts in full collections, to avoid quadratic
dict build-up. See issue #14775. */
untrack_dicts(young);
gcstate->long_lived_pending = 0;
gcstate->long_lived_total = gc_list_size(young);
}
/* All objects in unreachable are trash, but objects reachable from
* legacy finalizers (e.g. tp_del) can't safely be deleted.
*/
gc_list_init(&finalizers);
// NEXT_MASK_UNREACHABLE is cleared here.
// After move_legacy_finalizers(), unreachable is normal list.
move_legacy_finalizers(&unreachable, &finalizers);
/* finalizers contains the unreachable objects with a legacy finalizer;
* unreachable objects reachable *from* those are also uncollectable,
* and we move those into the finalizers list too.
*/
move_legacy_finalizer_reachable(&finalizers);
validate_list(&finalizers, collecting_clear_unreachable_clear);
validate_list(&unreachable, collecting_set_unreachable_clear);
/* Print debugging information. */
if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE) {
for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
debug_cycle("collectable", FROM_GC(gc));
}
}
/* Clear weakrefs and invoke callbacks as necessary. */
m += handle_weakrefs(&unreachable, old);
validate_list(old, collecting_clear_unreachable_clear);
validate_list(&unreachable, collecting_set_unreachable_clear);
/* Call tp_finalize on objects which have one. */
finalize_garbage(tstate, &unreachable);
/* Handle any objects that may have resurrected after the call
* to 'finalize_garbage' and continue the collection with the
* objects that are still unreachable */
PyGC_Head final_unreachable;
handle_resurrected_objects(&unreachable, &final_unreachable, old);
/* Call tp_clear on objects in the final_unreachable set. This will cause
* the reference cycles to be broken. It may also cause some objects
* in finalizers to be freed.
*/
m += gc_list_size(&final_unreachable);
delete_garbage(tstate, gcstate, &final_unreachable, old);
/* Collect statistics on uncollectable objects found and print
* debugging information. */
for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
n++;
if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE)
debug_cycle("uncollectable", FROM_GC(gc));
}
if (gcstate->debug & _PyGC_DEBUG_STATS) {
double d = _PyTime_AsSecondsDouble(_PyTime_GetPerfCounter() - t1);
PySys_WriteStderr(
"gc: done, %zd unreachable, %zd uncollectable, %.4fs elapsed\n",
n+m, n, d);
}
/* Append instances in the uncollectable set to a Python
* reachable list of garbage. The programmer has to deal with
* this if they insist on creating this type of structure.
*/
handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
validate_list(old, collecting_clear_unreachable_clear);
/* Clear free list only during the collection of the highest
* generation */
if (generation == NUM_GENERATIONS-1) {
_PyGC_ClearAllFreeLists(tstate->interp);
}
if (_PyErr_Occurred(tstate)) {
if (reason == _Py_GC_REASON_SHUTDOWN) {
_PyErr_Clear(tstate);
}
else {
PyErr_FormatUnraisable("Exception ignored in garbage collection");
}
}
/* Update stats */
struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
stats->collections++;
stats->collected += m;
stats->uncollectable += n;
GC_STAT_ADD(generation, objects_collected, m);
#ifdef Py_STATS
if (_Py_stats) {
GC_STAT_ADD(generation, object_visits,
_Py_stats->object_stats.object_visits);
_Py_stats->object_stats.object_visits = 0;
}
#endif
if (PyDTrace_GC_DONE_ENABLED()) {
PyDTrace_GC_DONE(n + m);
}
if (reason != _Py_GC_REASON_SHUTDOWN) {
invoke_gc_callback(tstate, "stop", generation, m, n);
}
assert(!_PyErr_Occurred(tstate));
_Py_atomic_store_int(&gcstate->collecting, 0);
return n + m;
}
static int
referrersvisit(PyObject* obj, void *arg)
{
PyObject *objs = arg;
Py_ssize_t i;
for (i = 0; i < PyTuple_GET_SIZE(objs); i++) {
if (PyTuple_GET_ITEM(objs, i) == obj) {
return 1;
}
}
return 0;
}
static int
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
{
PyGC_Head *gc;
PyObject *obj;
traverseproc traverse;
for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
obj = FROM_GC(gc);
traverse = Py_TYPE(obj)->tp_traverse;
if (obj == objs || obj == resultlist) {
continue;
}
if (traverse(obj, referrersvisit, objs)) {
if (PyList_Append(resultlist, obj) < 0) {
return 0; /* error */
}
}
}
return 1; /* no error */
}
PyObject *
_PyGC_GetReferrers(PyInterpreterState *interp, PyObject *objs)
{
PyObject *result = PyList_New(0);
if (!result) {
return NULL;
}
GCState *gcstate = &interp->gc;
for (int i = 0; i < NUM_GENERATIONS; i++) {
if (!(gc_referrers_for(objs, GEN_HEAD(gcstate, i), result))) {
Py_DECREF(result);
return NULL;
}
}
return result;
}
PyObject *
_PyGC_GetObjects(PyInterpreterState *interp, Py_ssize_t generation)
{
assert(generation >= -1 && generation < NUM_GENERATIONS);
GCState *gcstate = &interp->gc;
PyObject *result = PyList_New(0);
if (result == NULL) {
return NULL;
}
if (generation == -1) {
/* If generation is -1, get all objects from all generations */
for (int i = 0; i < NUM_GENERATIONS; i++) {
if (append_objects(result, GEN_HEAD(gcstate, i))) {
goto error;
}
}
}
else {
if (append_objects(result, GEN_HEAD(gcstate, generation))) {
goto error;
}
}
return result;
error:
Py_DECREF(result);
return NULL;
}
void
_PyGC_Freeze(PyInterpreterState *interp)
{
GCState *gcstate = &interp->gc;
for (int i = 0; i < NUM_GENERATIONS; ++i) {
gc_list_merge(GEN_HEAD(gcstate, i), &gcstate->permanent_generation.head);
gcstate->generations[i].count = 0;
}
}
void
_PyGC_Unfreeze(PyInterpreterState *interp)
{
GCState *gcstate = &interp->gc;
gc_list_merge(&gcstate->permanent_generation.head,
GEN_HEAD(gcstate, NUM_GENERATIONS-1));
}
Py_ssize_t
_PyGC_GetFreezeCount(PyInterpreterState *interp)
{
GCState *gcstate = &interp->gc;
return gc_list_size(&gcstate->permanent_generation.head);
}
/* C API for controlling the state of the garbage collector */
int
PyGC_Enable(void)
{
GCState *gcstate = get_gc_state();
int old_state = gcstate->enabled;
gcstate->enabled = 1;
return old_state;
}
int
PyGC_Disable(void)
{
GCState *gcstate = get_gc_state();
int old_state = gcstate->enabled;
gcstate->enabled = 0;
return old_state;
}
int
PyGC_IsEnabled(void)
{
GCState *gcstate = get_gc_state();
return gcstate->enabled;
}
/* Public API to invoke gc.collect() from C */
Py_ssize_t
PyGC_Collect(void)
{
PyThreadState *tstate = _PyThreadState_GET();
GCState *gcstate = &tstate->interp->gc;
if (!gcstate->enabled) {
return 0;
}
Py_ssize_t n;
PyObject *exc = _PyErr_GetRaisedException(tstate);
n = gc_collect_main(tstate, NUM_GENERATIONS - 1, _Py_GC_REASON_MANUAL);
_PyErr_SetRaisedException(tstate, exc);
return n;
}
Py_ssize_t
_PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
{
return gc_collect_main(tstate, generation, reason);
}
Py_ssize_t
_PyGC_CollectNoFail(PyThreadState *tstate)
{
/* Ideally, this function is only called on interpreter shutdown,
and therefore not recursively. Unfortunately, when there are daemon
threads, a daemon thread can start a cyclic garbage collection
during interpreter shutdown (and then never finish it).
See http://bugs.python.org/issue8713#msg195178 for an example.
*/
return gc_collect_main(tstate, NUM_GENERATIONS - 1, _Py_GC_REASON_SHUTDOWN);
}
void
_PyGC_DumpShutdownStats(PyInterpreterState *interp)
{
GCState *gcstate = &interp->gc;
if (!(gcstate->debug & _PyGC_DEBUG_SAVEALL)
&& gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
const char *message;
if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
message = "gc: %zd uncollectable objects at shutdown";
}
else {
message = "gc: %zd uncollectable objects at shutdown; " \
"use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
}
/* PyErr_WarnFormat does too many things and we are at shutdown,
the warnings module's dependencies (e.g. linecache) may be gone
already. */
if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
"gc", NULL, message,
PyList_GET_SIZE(gcstate->garbage)))
{
PyErr_WriteUnraisable(NULL);
}
if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
PyObject *repr = NULL, *bytes = NULL;
repr = PyObject_Repr(gcstate->garbage);
if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) {
PyErr_WriteUnraisable(gcstate->garbage);
}
else {
PySys_WriteStderr(
" %s\n",
PyBytes_AS_STRING(bytes)
);
}
Py_XDECREF(repr);
Py_XDECREF(bytes);
}
}
}
void
_PyGC_Fini(PyInterpreterState *interp)
{
GCState *gcstate = &interp->gc;
Py_CLEAR(gcstate->garbage);
Py_CLEAR(gcstate->callbacks);
/* We expect that none of this interpreters objects are shared
with other interpreters.
See https://github.com/python/cpython/issues/90228. */
}
/* for debugging */
void
_PyGC_Dump(PyGC_Head *g)
{
_PyObject_Dump(FROM_GC(g));
}
#ifdef Py_DEBUG
static int
visit_validate(PyObject *op, void *parent_raw)
{
PyObject *parent = _PyObject_CAST(parent_raw);
if (_PyObject_IsFreed(op)) {
_PyObject_ASSERT_FAILED_MSG(parent,
"PyObject_GC_Track() object is not valid");
}
return 0;
}
#endif
/* extension modules might be compiled with GC support so these
functions must always be available */
void
PyObject_GC_Track(void *op_raw)
{
PyObject *op = _PyObject_CAST(op_raw);
if (_PyObject_GC_IS_TRACKED(op)) {
_PyObject_ASSERT_FAILED_MSG(op,
"object already tracked "
"by the garbage collector");
}
_PyObject_GC_TRACK(op);
#ifdef Py_DEBUG
/* Check that the object is valid: validate objects traversed
by tp_traverse() */
traverseproc traverse = Py_TYPE(op)->tp_traverse;
(void)traverse(op, visit_validate, op);
#endif
}
void
PyObject_GC_UnTrack(void *op_raw)
{
PyObject *op = _PyObject_CAST(op_raw);
/* Obscure: the Py_TRASHCAN mechanism requires that we be able to
* call PyObject_GC_UnTrack twice on an object.
*/
if (_PyObject_GC_IS_TRACKED(op)) {
_PyObject_GC_UNTRACK(op);
}
}
int
PyObject_IS_GC(PyObject *obj)
{
return _PyObject_IS_GC(obj);
}
void
_Py_ScheduleGC(PyThreadState *tstate)
{
if (!_Py_eval_breaker_bit_is_set(tstate, _PY_GC_SCHEDULED_BIT))
{
_Py_set_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
}
}
void
_PyObject_GC_Link(PyObject *op)
{
PyGC_Head *gc = AS_GC(op);
// gc must be correctly aligned
_PyObject_ASSERT(op, ((uintptr_t)gc & (sizeof(uintptr_t)-1)) == 0);
PyThreadState *tstate = _PyThreadState_GET();
GCState *gcstate = &tstate->interp->gc;
gc->_gc_next = 0;
gc->_gc_prev = 0;
gcstate->generations[0].count++; /* number of allocated GC objects */
if (gcstate->generations[0].count > gcstate->generations[0].threshold &&
gcstate->enabled &&
gcstate->generations[0].threshold &&
!_Py_atomic_load_int_relaxed(&gcstate->collecting) &&
!_PyErr_Occurred(tstate))
{
_Py_ScheduleGC(tstate);
}
}
void
_Py_RunGC(PyThreadState *tstate)
{
gc_collect_main(tstate, GENERATION_AUTO, _Py_GC_REASON_HEAP);
}
static PyObject *
gc_alloc(PyTypeObject *tp, size_t basicsize, size_t presize)
{
PyThreadState *tstate = _PyThreadState_GET();
if (basicsize > PY_SSIZE_T_MAX - presize) {
return _PyErr_NoMemory(tstate);
}
size_t size = presize + basicsize;
char *mem = _PyObject_MallocWithType(tp, size);
if (mem == NULL) {
return _PyErr_NoMemory(tstate);
}
((PyObject **)mem)[0] = NULL;
((PyObject **)mem)[1] = NULL;
PyObject *op = (PyObject *)(mem + presize);
_PyObject_GC_Link(op);
return op;
}
PyObject *
_PyObject_GC_New(PyTypeObject *tp)
{
size_t presize = _PyType_PreHeaderSize(tp);
PyObject *op = gc_alloc(tp, _PyObject_SIZE(tp), presize);
if (op == NULL) {
return NULL;
}
_PyObject_Init(op, tp);
return op;
}
PyVarObject *
_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
{
PyVarObject *op;
if (nitems < 0) {
PyErr_BadInternalCall();
return NULL;
}
size_t presize = _PyType_PreHeaderSize(tp);
size_t size = _PyObject_VAR_SIZE(tp, nitems);
op = (PyVarObject *)gc_alloc(tp, size, presize);
if (op == NULL) {
return NULL;
}
_PyObject_InitVar(op, tp, nitems);
return op;
}
PyObject *
PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *tp, size_t extra_size)
{
size_t presize = _PyType_PreHeaderSize(tp);
PyObject *op = gc_alloc(tp, _PyObject_SIZE(tp) + extra_size, presize);
if (op == NULL) {
return NULL;
}
memset(op, 0, _PyObject_SIZE(tp) + extra_size);
_PyObject_Init(op, tp);
return op;
}
PyVarObject *
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
{
const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
const size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
_PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
if (basicsize > (size_t)PY_SSIZE_T_MAX - presize) {
return (PyVarObject *)PyErr_NoMemory();
}
char *mem = (char *)op - presize;
mem = (char *)_PyObject_ReallocWithType(Py_TYPE(op), mem, presize + basicsize);
if (mem == NULL) {
return (PyVarObject *)PyErr_NoMemory();
}
op = (PyVarObject *) (mem + presize);
Py_SET_SIZE(op, nitems);
return op;
}
void
PyObject_GC_Del(void *op)
{
size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
PyGC_Head *g = AS_GC(op);
if (_PyObject_GC_IS_TRACKED(op)) {
gc_list_remove(g);
#ifdef Py_DEBUG
PyObject *exc = PyErr_GetRaisedException();
if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
"gc", NULL, "Object of type %s is not untracked before destruction",
((PyObject*)op)->ob_type->tp_name)) {
PyErr_WriteUnraisable(NULL);
}
PyErr_SetRaisedException(exc);
#endif
}
GCState *gcstate = get_gc_state();
if (gcstate->generations[0].count > 0) {
gcstate->generations[0].count--;
}
PyObject_Free(((char *)op)-presize);
}
int
PyObject_GC_IsTracked(PyObject* obj)
{
if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
return 1;
}
return 0;
}
int
PyObject_GC_IsFinalized(PyObject *obj)
{
if (_PyObject_IS_GC(obj) && _PyGC_FINALIZED(obj)) {
return 1;
}
return 0;
}
void
PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)
{
size_t i;
GCState *gcstate = get_gc_state();
int origenstate = gcstate->enabled;
gcstate->enabled = 0;
for (i = 0; i < NUM_GENERATIONS; i++) {
PyGC_Head *gc_list, *gc;
gc_list = GEN_HEAD(gcstate, i);
for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
Py_INCREF(op);
int res = callback(op, arg);
Py_DECREF(op);
if (!res) {
goto done;
}
}
}
done:
gcstate->enabled = origenstate;
}
#endif // Py_GIL_DISABLED
|