1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/* bytes to hex implementation */
#include "Python.h"
#include "pystrhex.h"
static PyObject *_Py_strhex_impl(const char* argbuf, const Py_ssize_t arglen,
const PyObject* sep, int bytes_per_sep_group,
const int return_bytes)
{
PyObject *retval;
Py_UCS1* retbuf;
Py_ssize_t i, j, resultlen = 0;
Py_UCS1 sep_char;
unsigned int abs_bytes_per_sep;
if (sep) {
Py_ssize_t seplen = PyObject_Length(sep);
if (seplen < 0) {
return NULL;
}
if (seplen != 1) {
PyErr_SetString(PyExc_ValueError, "sep must be length 1.");
return NULL;
}
if (PyUnicode_Check(sep)) {
if (PyUnicode_READY(sep))
return NULL;
if (PyUnicode_KIND(sep) != PyUnicode_1BYTE_KIND) {
PyErr_SetString(PyExc_ValueError, "sep must be ASCII.");
return NULL;
}
sep_char = PyUnicode_READ_CHAR(sep, 0);
} else if (PyBytes_Check(sep)) {
sep_char = PyBytes_AS_STRING(sep)[0];
} else {
PyErr_SetString(PyExc_TypeError, "sep must be str or bytes.");
return NULL;
}
if (sep_char > 127 && !return_bytes) {
PyErr_SetString(PyExc_ValueError, "sep must be ASCII.");
return NULL;
}
} else {
bytes_per_sep_group = 0;
}
assert(arglen >= 0);
abs_bytes_per_sep = abs(bytes_per_sep_group);
if (bytes_per_sep_group && arglen > 0) {
/* How many sep characters we'll be inserting. */
resultlen = (arglen - 1) / abs_bytes_per_sep;
}
/* Bounds checking for our Py_ssize_t indices. */
if (arglen >= PY_SSIZE_T_MAX / 2 - resultlen) {
return PyErr_NoMemory();
}
resultlen += arglen * 2;
if (abs_bytes_per_sep >= arglen) {
bytes_per_sep_group = 0;
abs_bytes_per_sep = 0;
}
if (return_bytes) {
/* If _PyBytes_FromSize() were public we could avoid malloc+copy. */
retbuf = (Py_UCS1*) PyMem_Malloc(resultlen);
if (!retbuf)
return PyErr_NoMemory();
retval = NULL; /* silence a compiler warning, assigned later. */
} else {
retval = PyUnicode_New(resultlen, 127);
if (!retval)
return NULL;
retbuf = PyUnicode_1BYTE_DATA(retval);
}
/* Hexlify */
for (i=j=0; i < arglen; ++i) {
assert(j < resultlen);
unsigned char c;
c = (argbuf[i] >> 4) & 0xf;
retbuf[j++] = Py_hexdigits[c];
c = argbuf[i] & 0xf;
retbuf[j++] = Py_hexdigits[c];
if (bytes_per_sep_group && i < arglen - 1) {
Py_ssize_t anchor;
anchor = (bytes_per_sep_group > 0) ? (arglen - 1 - i) : (i + 1);
if (anchor % abs_bytes_per_sep == 0) {
retbuf[j++] = sep_char;
}
}
}
assert(j == resultlen);
if (return_bytes) {
retval = PyBytes_FromStringAndSize((const char *)retbuf, resultlen);
PyMem_Free(retbuf);
}
#ifdef Py_DEBUG
else {
assert(_PyUnicode_CheckConsistency(retval, 1));
}
#endif
return retval;
}
PyObject * _Py_strhex(const char* argbuf, const Py_ssize_t arglen)
{
return _Py_strhex_impl(argbuf, arglen, NULL, 0, 0);
}
/* Same as above but returns a bytes() instead of str() to avoid the
* need to decode the str() when bytes are needed. */
PyObject * _Py_strhex_bytes(const char* argbuf, const Py_ssize_t arglen)
{
return _Py_strhex_impl(argbuf, arglen, NULL, 0, 1);
}
/* These variants include support for a separator between every N bytes: */
PyObject * _Py_strhex_with_sep(const char* argbuf, const Py_ssize_t arglen, const PyObject* sep, const int bytes_per_group)
{
return _Py_strhex_impl(argbuf, arglen, sep, bytes_per_group, 0);
}
/* Same as above but returns a bytes() instead of str() to avoid the
* need to decode the str() when bytes are needed. */
PyObject * _Py_strhex_bytes_with_sep(const char* argbuf, const Py_ssize_t arglen, const PyObject* sep, const int bytes_per_group)
{
return _Py_strhex_impl(argbuf, arglen, sep, bytes_per_group, 1);
}
|