summaryrefslogtreecommitdiffstats
path: root/Python/structmember.c
blob: d2305903303f421e78240254ac0331c77ebaef3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

/* Map C struct members to Python object attributes */

#include "Python.h"

#include "structmember.h"

static PyObject *
listmembers(struct memberlist *mlist)
{
	int i, n;
	PyObject *v;
	for (n = 0; mlist[n].name != NULL; n++)
		;
	v = PyList_New(n);
	if (v != NULL) {
		for (i = 0; i < n; i++)
			PyList_SetItem(v, i,
				       PyString_FromString(mlist[i].name));
		if (PyErr_Occurred()) {
			Py_DECREF(v);
			v = NULL;
		}
		else {
			PyList_Sort(v);
		}
	}
	return v;
}

PyObject *
PyMember_Get(const char *addr, struct memberlist *mlist, const char *name)
{
	struct memberlist *l;

	if (strcmp(name, "__members__") == 0)
		return listmembers(mlist);
	for (l = mlist; l->name != NULL; l++) {
		if (strcmp(l->name, name) == 0) {
			PyMemberDef copy;
			copy.name = l->name;
			copy.type = l->type;
			copy.offset = l->offset;
			copy.flags = l->flags;
			copy.doc = NULL;
			return PyMember_GetOne(addr, &copy);
		}
	}
	PyErr_SetString(PyExc_AttributeError, name);
	return NULL;
}

PyObject *
PyMember_GetOne(const char *addr, PyMemberDef *l)
{
	PyObject *v;
	if ((l->flags & READ_RESTRICTED) &&
	    PyEval_GetRestricted()) {
		PyErr_SetString(PyExc_RuntimeError, "restricted attribute");
		return NULL;
	}
	addr += l->offset;
	switch (l->type) {
	case T_BOOL:
		v = PyBool_FromLong(*(char*)addr);
		break;
	case T_BYTE:
		v = PyInt_FromLong(*(char*)addr);
		break;
	case T_UBYTE:
		v = PyLong_FromUnsignedLong(*(unsigned char*)addr);
		break;
	case T_SHORT:
		v = PyInt_FromLong(*(short*)addr);
		break;
	case T_USHORT:
		v = PyLong_FromUnsignedLong(*(unsigned short*)addr);
		break;
	case T_INT:
		v = PyInt_FromLong(*(int*)addr);
		break;
	case T_UINT:
		v = PyLong_FromUnsignedLong(*(unsigned int*)addr);
		break;
	case T_LONG:
		v = PyInt_FromLong(*(long*)addr);
		break;
	case T_ULONG:
		v = PyLong_FromUnsignedLong(*(unsigned long*)addr);
		break;
	case T_PYSSIZET:
		v = PyInt_FromSsize_t(*(Py_ssize_t*)addr);
		break;
	case T_FLOAT:
		v = PyFloat_FromDouble((double)*(float*)addr);
		break;
	case T_DOUBLE:
		v = PyFloat_FromDouble(*(double*)addr);
		break;
	case T_STRING:
		if (*(char**)addr == NULL) {
			Py_INCREF(Py_None);
			v = Py_None;
		}
		else
			v = PyString_FromString(*(char**)addr);
		break;
	case T_STRING_INPLACE:
		v = PyString_FromString((char*)addr);
		break;
	case T_CHAR:
		v = PyString_FromStringAndSize((char*)addr, 1);
		break;
	case T_OBJECT:
		v = *(PyObject **)addr;
		if (v == NULL)
			v = Py_None;
		Py_INCREF(v);
		break;
	case T_OBJECT_EX:
		v = *(PyObject **)addr;
		if (v == NULL)
			PyErr_SetString(PyExc_AttributeError, l->name);
		Py_XINCREF(v);
		break;
#ifdef HAVE_LONG_LONG
	case T_LONGLONG:
		v = PyLong_FromLongLong(*(PY_LONG_LONG *)addr);
		break;
	case T_ULONGLONG:
		v = PyLong_FromUnsignedLongLong(*(unsigned PY_LONG_LONG *)addr);
		break;
#endif /* HAVE_LONG_LONG */
	default:
		PyErr_SetString(PyExc_SystemError, "bad memberdescr type");
		v = NULL;
	}
	return v;
}

int
PyMember_Set(char *addr, struct memberlist *mlist, const char *name, PyObject *v)
{
	struct memberlist *l;

	for (l = mlist; l->name != NULL; l++) {
		if (strcmp(l->name, name) == 0) {
			PyMemberDef copy;
			copy.name = l->name;
			copy.type = l->type;
			copy.offset = l->offset;
			copy.flags = l->flags;
			copy.doc = NULL;
			return PyMember_SetOne(addr, &copy, v);
		}
	}

	PyErr_SetString(PyExc_AttributeError, name);
	return -1;
}

#define WARN(msg)					\
    do {						\
	if (PyErr_Warn(PyExc_RuntimeWarning, msg) < 0)	\
		return -1;				\
    } while (0)

int
PyMember_SetOne(char *addr, PyMemberDef *l, PyObject *v)
{
	PyObject *oldv;

	if ((l->flags & READONLY) || l->type == T_STRING)
	{
		PyErr_SetString(PyExc_TypeError, "readonly attribute");
		return -1;
	}
	if ((l->flags & PY_WRITE_RESTRICTED) && PyEval_GetRestricted()) {
		PyErr_SetString(PyExc_RuntimeError, "restricted attribute");
		return -1;
	}
	if (v == NULL && l->type != T_OBJECT_EX && l->type != T_OBJECT) {
		PyErr_SetString(PyExc_TypeError,
				"can't delete numeric/char attribute");
		return -1;
	}
	addr += l->offset;
	switch (l->type) {
	case T_BOOL:{
		if (!PyBool_Check(v)) {
			PyErr_SetString(PyExc_TypeError,
					"attribute value type must be bool");
			return -1;
		}
		if (v == Py_True)
			*(char*)addr = (char) 1;
		else
			*(char*)addr = (char) 0;
		break;
		}
	case T_BYTE:{
		long long_val = PyInt_AsLong(v);
		if ((long_val == -1) && PyErr_Occurred())
			return -1;
		*(char*)addr = (char)long_val;
		/* XXX: For compatibility, only warn about truncations
		   for now. */
		if ((long_val > CHAR_MAX) || (long_val < CHAR_MIN))
			WARN("Truncation of value to char");
		break;
		}
	case T_UBYTE:{
		long long_val = PyInt_AsLong(v);
		if ((long_val == -1) && PyErr_Occurred())
			return -1;
		*(unsigned char*)addr = (unsigned char)long_val;
		if ((long_val > UCHAR_MAX) || (long_val < 0))
			WARN("Truncation of value to unsigned char");
		break;
		}
	case T_SHORT:{
		long long_val = PyInt_AsLong(v);
		if ((long_val == -1) && PyErr_Occurred())
			return -1;
		*(short*)addr = (short)long_val;
		if ((long_val > SHRT_MAX) || (long_val < SHRT_MIN))
			WARN("Truncation of value to short");
		break;
		}
	case T_USHORT:{
		long long_val = PyInt_AsLong(v);
		if ((long_val == -1) && PyErr_Occurred())
			return -1;
		*(unsigned short*)addr = (unsigned short)long_val;
		if ((long_val > USHRT_MAX) || (long_val < 0))
			WARN("Truncation of value to unsigned short");
		break;
		}
  	case T_INT:{
		long long_val = PyInt_AsLong(v);
		if ((long_val == -1) && PyErr_Occurred())
			return -1;
		*(int *)addr = (int)long_val;
		if ((long_val > INT_MAX) || (long_val < INT_MIN))
			WARN("Truncation of value to int");
		break;
		}
	case T_UINT:{
		unsigned long ulong_val = PyLong_AsUnsignedLong(v);
		if ((ulong_val == (unsigned int)-1) && PyErr_Occurred()) {
			/* XXX: For compatibility, accept negative int values
			   as well. */
			PyErr_Clear();
			ulong_val = PyLong_AsLong(v);
			if ((ulong_val == (unsigned int)-1) && PyErr_Occurred())
				return -1;
			*(unsigned int *)addr = (unsigned int)ulong_val;
			WARN("Writing negative value into unsigned field");
		} else
			*(unsigned int *)addr = (unsigned int)ulong_val;
		if (ulong_val > UINT_MAX)
			WARN("Truncation of value to unsigned int");
		break;
		}
	case T_LONG:{
		*(long*)addr = PyLong_AsLong(v);
		if ((*(long*)addr == -1) && PyErr_Occurred())
			return -1;
		break;
		}
	case T_ULONG:{
		*(unsigned long*)addr = PyLong_AsUnsignedLong(v);
		if ((*(unsigned long*)addr == (unsigned long)-1)
		    && PyErr_Occurred()) {
			/* XXX: For compatibility, accept negative int values
			   as well. */
			PyErr_Clear();
			*(unsigned long*)addr = PyLong_AsLong(v);
			if ((*(unsigned long*)addr == (unsigned int)-1)
			    && PyErr_Occurred())
				return -1;
			WARN("Writing negative value into unsigned field");
		}
		break;
		}
	case T_PYSSIZET:{
		*(Py_ssize_t*)addr = PyInt_AsSsize_t(v);
		if ((*(Py_ssize_t*)addr == (Py_ssize_t)-1)
		    && PyErr_Occurred())
				return -1;
		break;
		}
	case T_FLOAT:{
		double double_val = PyFloat_AsDouble(v);
		if ((double_val == -1) && PyErr_Occurred())
			return -1;
		*(float*)addr = (float)double_val;
		break;
		}
	case T_DOUBLE:
		*(double*)addr = PyFloat_AsDouble(v);
		if ((*(double*)addr == -1) && PyErr_Occurred())
			return -1;
		break;
	case T_OBJECT:
	case T_OBJECT_EX:
		Py_XINCREF(v);
		oldv = *(PyObject **)addr;
		*(PyObject **)addr = v;
		Py_XDECREF(oldv);
		break;
	case T_CHAR:
		if (PyString_Check(v) && PyString_Size(v) == 1) {
			*(char*)addr = PyString_AsString(v)[0];
		}
		else {
			PyErr_BadArgument();
			return -1;
		}
		break;
#ifdef HAVE_LONG_LONG
	case T_LONGLONG:{
		PY_LONG_LONG value;
		*(PY_LONG_LONG*)addr = value = PyLong_AsLongLong(v);
		if ((value == -1) && PyErr_Occurred())
			return -1;
		break;
		}
	case T_ULONGLONG:{
		unsigned PY_LONG_LONG value;
		/* ??? PyLong_AsLongLong accepts an int, but PyLong_AsUnsignedLongLong
			doesn't ??? */
		if (PyLong_Check(v))
			*(unsigned PY_LONG_LONG*)addr = value = PyLong_AsUnsignedLongLong(v);
		else
			*(unsigned PY_LONG_LONG*)addr = value = PyInt_AsLong(v);
		if ((value == (unsigned PY_LONG_LONG)-1) && PyErr_Occurred())
			return -1;
		break;
		}
#endif /* HAVE_LONG_LONG */
	default:
		PyErr_Format(PyExc_SystemError,
			     "bad memberdescr type for %s", l->name);
		return -1;
	}
	return 0;
}
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
*  Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
*  Copyright (C) 2001 Peter Kelly (pmk@post.com)
*  Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
*  Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
*  Copyright (C) 2007 Maks Orlovich
*  Copyright (C) 2007 Eric Seidel <eric@webkit.org>
*
*  This library is free software; you can redistribute it and/or
*  modify it under the terms of the GNU Library General Public
*  License as published by the Free Software Foundation; either
*  version 2 of the License, or (at your option) any later version.
*
*  This library is distributed in the hope that it will be useful,
*  but WITHOUT ANY WARRANTY; without even the implied warranty of
*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*  Library General Public License for more details.
*
*  You should have received a copy of the GNU Library General Public License
*  along with this library; see the file COPYING.LIB.  If not, write to
*  the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
*  Boston, MA 02110-1301, USA.
*
*/

#include "config.h"
#include "Nodes.h"
#include "NodeConstructors.h"

#include "BytecodeGenerator.h"
#include "CallFrame.h"
#include "Debugger.h"
#include "JIT.h"
#include "JSFunction.h"
#include "JSGlobalObject.h"
#include "JSStaticScopeObject.h"
#include "LabelScope.h"
#include "Lexer.h"
#include "Operations.h"
#include "Parser.h"
#include "PropertyNameArray.h"
#include "RegExpObject.h"
#include "SamplingTool.h"
#include <wtf/Assertions.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/Threading.h>

using namespace WTF;

namespace JSC {

/*
    Details of the emitBytecode function.

    Return value: The register holding the production's value.
             dst: An optional parameter specifying the most efficient destination at
                  which to store the production's value. The callee must honor dst.

    The dst argument provides for a crude form of copy propagation. For example,

        x = 1

    becomes
    
        load r[x], 1
    
    instead of 

        load r0, 1
        mov r[x], r0
    
    because the assignment node, "x =", passes r[x] as dst to the number node, "1".
*/

// ------------------------------ ThrowableExpressionData --------------------------------

static void substitute(UString& string, const UString& substring)
{
    int position = string.find("%s");
    ASSERT(position != -1);
    UString newString = string.substr(0, position);
    newString.append(substring);
    newString.append(string.substr(position + 2));
    string = newString;
}

RegisterID* ThrowableExpressionData::emitThrowError(BytecodeGenerator& generator, ErrorType type, const char* message)
{
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    RegisterID* exception = generator.emitNewError(generator.newTemporary(), type, jsString(generator.globalData(), message));
    generator.emitThrow(exception);
    return exception;
}

RegisterID* ThrowableExpressionData::emitThrowError(BytecodeGenerator& generator, ErrorType type, const char* messageTemplate, const UString& label)
{
    UString message = messageTemplate;
    substitute(message, label);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    RegisterID* exception = generator.emitNewError(generator.newTemporary(), type, jsString(generator.globalData(), message));
    generator.emitThrow(exception);
    return exception;
}

inline RegisterID* ThrowableExpressionData::emitThrowError(BytecodeGenerator& generator, ErrorType type, const char* messageTemplate, const Identifier& label)
{
    return emitThrowError(generator, type, messageTemplate, label.ustring());
}

// ------------------------------ StatementNode --------------------------------

void StatementNode::setLoc(int firstLine, int lastLine)
{
    m_line = firstLine;
    m_lastLine = lastLine;
}

// ------------------------------ SourceElements --------------------------------

void SourceElements::append(StatementNode* statement)
{
    if (statement->isEmptyStatement())
        return;
    m_statements.append(statement);
}

inline StatementNode* SourceElements::singleStatement() const
{
    size_t size = m_statements.size();
    return size == 1 ? m_statements[0] : 0;
}

inline StatementNode* SourceElements::lastStatement() const
{
    size_t size = m_statements.size();
    return size ? m_statements[size - 1] : 0;
}

// ------------------------------ NullNode -------------------------------------

RegisterID* NullNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult())
        return 0;
    return generator.emitLoad(dst, jsNull());
}

// ------------------------------ BooleanNode ----------------------------------

RegisterID* BooleanNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult())
        return 0;
    return generator.emitLoad(dst, m_value);
}

// ------------------------------ NumberNode -----------------------------------

RegisterID* NumberNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult())
        return 0;
    return generator.emitLoad(dst, m_value);
}

// ------------------------------ StringNode -----------------------------------

RegisterID* StringNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult())
        return 0;
    return generator.emitLoad(dst, m_value);
}

// ------------------------------ RegExpNode -----------------------------------

RegisterID* RegExpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegExp> regExp = RegExp::create(generator.globalData(), m_pattern.ustring(), m_flags.ustring());
    if (!regExp->isValid())
        return emitThrowError(generator, SyntaxError, "Invalid regular expression: %s", regExp->errorMessage());
    if (dst == generator.ignoredResult())
        return 0;
    return generator.emitNewRegExp(generator.finalDestination(dst), regExp.get());
}

// ------------------------------ ThisNode -------------------------------------

RegisterID* ThisNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult())
        return 0;
    return generator.moveToDestinationIfNeeded(dst, generator.thisRegister());
}

// ------------------------------ ResolveNode ----------------------------------

bool ResolveNode::isPure(BytecodeGenerator& generator) const
{
    return generator.isLocal(m_ident);
}

RegisterID* ResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RegisterID* local = generator.registerFor(m_ident)) {
        if (dst == generator.ignoredResult())
            return 0;
        return generator.moveToDestinationIfNeeded(dst, local);
    }
    
    generator.emitExpressionInfo(m_startOffset + m_ident.size(), m_ident.size(), 0);
    return generator.emitResolve(generator.finalDestination(dst), m_ident);
}

// ------------------------------ ArrayNode ------------------------------------

RegisterID* ArrayNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    // FIXME: Should we put all of this code into emitNewArray?

    unsigned length = 0;
    ElementNode* firstPutElement;
    for (firstPutElement = m_element; firstPutElement; firstPutElement = firstPutElement->next()) {
        if (firstPutElement->elision())
            break;
        ++length;
    }

    if (!firstPutElement && !m_elision)
        return generator.emitNewArray(generator.finalDestination(dst), m_element);

    RefPtr<RegisterID> array = generator.emitNewArray(generator.tempDestination(dst), m_element);

    for (ElementNode* n = firstPutElement; n; n = n->next()) {
        RegisterID* value = generator.emitNode(n->value());
        length += n->elision();
        generator.emitPutByIndex(array.get(), length++, value);
    }

    if (m_elision) {
        RegisterID* value = generator.emitLoad(0, jsNumber(generator.globalData(), m_elision + length));
        generator.emitPutById(array.get(), generator.propertyNames().length, value);
    }

    return generator.moveToDestinationIfNeeded(dst, array.get());
}

bool ArrayNode::isSimpleArray() const
{
    if (m_elision || m_optional)
        return false;
    for (ElementNode* ptr = m_element; ptr; ptr = ptr->next()) {
        if (ptr->elision())
            return false;
    }
    return true;
}

ArgumentListNode* ArrayNode::toArgumentList(JSGlobalData* globalData) const
{
    ASSERT(!m_elision && !m_optional);
    ElementNode* ptr = m_element;
    if (!ptr)
        return 0;
    ArgumentListNode* head = new (globalData) ArgumentListNode(globalData, ptr->value());
    ArgumentListNode* tail = head;
    ptr = ptr->next();
    for (; ptr; ptr = ptr->next()) {
        ASSERT(!ptr->elision());
        tail = new (globalData) ArgumentListNode(globalData, tail, ptr->value());
    }
    return head;
}

// ------------------------------ ObjectLiteralNode ----------------------------

RegisterID* ObjectLiteralNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
     if (!m_list) {
         if (dst == generator.ignoredResult())
             return 0;
         return generator.emitNewObject(generator.finalDestination(dst));
     }
     return generator.emitNode(dst, m_list);
}

// ------------------------------ PropertyListNode -----------------------------

RegisterID* PropertyListNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> newObj = generator.tempDestination(dst);
    
    generator.emitNewObject(newObj.get());
    
    for (PropertyListNode* p = this; p; p = p->m_next) {
        RegisterID* value = generator.emitNode(p->m_node->m_assign);
        
        switch (p->m_node->m_type) {
            case PropertyNode::Constant: {
                generator.emitPutById(newObj.get(), p->m_node->name(), value);
                break;
            }
            case PropertyNode::Getter: {
                generator.emitPutGetter(newObj.get(), p->m_node->name(), value);
                break;
            }
            case PropertyNode::Setter: {
                generator.emitPutSetter(newObj.get(), p->m_node->name(), value);
                break;
            }
            default:
                ASSERT_NOT_REACHED();
        }
    }
    
    return generator.moveToDestinationIfNeeded(dst, newObj.get());
}

// ------------------------------ BracketAccessorNode --------------------------------

RegisterID* BracketAccessorNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments, m_subscript->isPure(generator));
    RegisterID* property = generator.emitNode(m_subscript);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitGetByVal(generator.finalDestination(dst), base.get(), property);
}

// ------------------------------ DotAccessorNode --------------------------------

RegisterID* DotAccessorNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RegisterID* base = generator.emitNode(m_base);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitGetById(generator.finalDestination(dst), base, m_ident);
}

// ------------------------------ ArgumentListNode -----------------------------

RegisterID* ArgumentListNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    ASSERT(m_expr);
    return generator.emitNode(dst, m_expr);
}

// ------------------------------ NewExprNode ----------------------------------

RegisterID* NewExprNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> func = generator.emitNode(m_expr);
    return generator.emitConstruct(generator.finalDestination(dst), func.get(), m_args, divot(), startOffset(), endOffset());
}

// ------------------------------ EvalFunctionCallNode ----------------------------------

RegisterID* EvalFunctionCallNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> func = generator.tempDestination(dst);
    RefPtr<RegisterID> thisRegister = generator.newTemporary();
    generator.emitExpressionInfo(divot() - startOffset() + 4, 4, 0);
    generator.emitResolveWithBase(thisRegister.get(), func.get(), generator.propertyNames().eval);
    return generator.emitCallEval(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}

// ------------------------------ FunctionCallValueNode ----------------------------------

RegisterID* FunctionCallValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> func = generator.emitNode(m_expr);
    RefPtr<RegisterID> thisRegister = generator.emitLoad(generator.newTemporary(), jsNull());
    return generator.emitCall(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}

// ------------------------------ FunctionCallResolveNode ----------------------------------

RegisterID* FunctionCallResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RefPtr<RegisterID> local = generator.registerFor(m_ident)) {
        RefPtr<RegisterID> thisRegister = generator.emitLoad(generator.newTemporary(), jsNull());
        return generator.emitCall(generator.finalDestination(dst, thisRegister.get()), local.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
    }

    int index = 0;
    size_t depth = 0;
    JSObject* globalObject = 0;
    if (generator.findScopedProperty(m_ident, index, depth, false, globalObject) && index != missingSymbolMarker()) {
        RefPtr<RegisterID> func = generator.emitGetScopedVar(generator.newTemporary(), depth, index, globalObject);
        RefPtr<RegisterID> thisRegister = generator.emitLoad(generator.newTemporary(), jsNull());
        return generator.emitCall(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
    }

    RefPtr<RegisterID> func = generator.newTemporary();
    RefPtr<RegisterID> thisRegister = generator.newTemporary();
    int identifierStart = divot() - startOffset();
    generator.emitExpressionInfo(identifierStart + m_ident.size(), m_ident.size(), 0);
    generator.emitResolveWithBase(thisRegister.get(), func.get(), m_ident);
    return generator.emitCall(generator.finalDestination(dst, func.get()), func.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}

// ------------------------------ FunctionCallBracketNode ----------------------------------

RegisterID* FunctionCallBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNode(m_base);
    RegisterID* property = generator.emitNode(m_subscript);
    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> function = generator.emitGetByVal(generator.tempDestination(dst), base.get(), property);
    RefPtr<RegisterID> thisRegister = generator.emitMove(generator.newTemporary(), base.get());
    return generator.emitCall(generator.finalDestination(dst, function.get()), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}

// ------------------------------ FunctionCallDotNode ----------------------------------

RegisterID* FunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> function = generator.tempDestination(dst);
    RefPtr<RegisterID> thisRegister = generator.newTemporary();
    generator.emitNode(thisRegister.get(), m_base);
    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    generator.emitMethodCheck();
    generator.emitGetById(function.get(), thisRegister.get(), m_ident);
    return generator.emitCall(generator.finalDestination(dst, function.get()), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
}

RegisterID* CallFunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<Label> realCall = generator.newLabel();
    RefPtr<Label> end = generator.newLabel();
    RefPtr<RegisterID> base = generator.emitNode(m_base);
    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> function = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
    RefPtr<RegisterID> finalDestination = generator.finalDestination(dst, function.get());
    generator.emitJumpIfNotFunctionCall(function.get(), realCall.get());
    {
        RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
        RefPtr<RegisterID> thisRegister = generator.newTemporary();
        ArgumentListNode* oldList = m_args->m_listNode;
        if (m_args->m_listNode && m_args->m_listNode->m_expr) {
            generator.emitNode(thisRegister.get(), m_args->m_listNode->m_expr);
            m_args->m_listNode = m_args->m_listNode->m_next;
        } else
            generator.emitLoad(thisRegister.get(), jsNull());

        generator.emitCall(finalDestination.get(), realFunction.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
        generator.emitJump(end.get());
        m_args->m_listNode = oldList;
    }
    generator.emitLabel(realCall.get());
    {
        RefPtr<RegisterID> thisRegister = generator.emitMove(generator.newTemporary(), base.get());
        generator.emitCall(finalDestination.get(), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
    }
    generator.emitLabel(end.get());
    return finalDestination.get();
}
    
static bool areTrivialApplyArguments(ArgumentsNode* args)
{
    return !args->m_listNode || !args->m_listNode->m_expr || !args->m_listNode->m_next
        || (!args->m_listNode->m_next->m_next && args->m_listNode->m_next->m_expr->isSimpleArray());
}

RegisterID* ApplyFunctionCallDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    // A few simple cases can be trivially handled as ordinary function calls.
    // function.apply(), function.apply(arg) -> identical to function.call
    // function.apply(thisArg, [arg0, arg1, ...]) -> can be trivially coerced into function.call(thisArg, arg0, arg1, ...) and saves object allocation
    bool mayBeCall = areTrivialApplyArguments(m_args);

    RefPtr<Label> realCall = generator.newLabel();
    RefPtr<Label> end = generator.newLabel();
    RefPtr<RegisterID> base = generator.emitNode(m_base);
    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> function = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
    RefPtr<RegisterID> finalDestination = generator.finalDestination(dst, function.get());
    generator.emitJumpIfNotFunctionApply(function.get(), realCall.get());
    {
        if (mayBeCall) {
            RefPtr<RegisterID> realFunction = generator.emitMove(generator.tempDestination(dst), base.get());
            RefPtr<RegisterID> thisRegister = generator.newTemporary();
            ArgumentListNode* oldList = m_args->m_listNode;
            if (m_args->m_listNode && m_args->m_listNode->m_expr) {
                generator.emitNode(thisRegister.get(), m_args->m_listNode->m_expr);
                m_args->m_listNode = m_args->m_listNode->m_next;
                if (m_args->m_listNode) {
                    ASSERT(m_args->m_listNode->m_expr->isSimpleArray());
                    ASSERT(!m_args->m_listNode->m_next);
                    m_args->m_listNode = static_cast<ArrayNode*>(m_args->m_listNode->m_expr)->toArgumentList(generator.globalData());
                }
            } else
                generator.emitLoad(thisRegister.get(), jsNull());
            generator.emitCall(finalDestination.get(), realFunction.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
            m_args->m_listNode = oldList;
        } else {
            ASSERT(m_args->m_listNode && m_args->m_listNode->m_next);
            RefPtr<RegisterID> realFunction = generator.emitMove(generator.newTemporary(), base.get());
            RefPtr<RegisterID> argsCountRegister = generator.newTemporary();
            RefPtr<RegisterID> thisRegister = generator.newTemporary();
            RefPtr<RegisterID> argsRegister = generator.newTemporary();
            generator.emitNode(thisRegister.get(), m_args->m_listNode->m_expr);
            ArgumentListNode* args = m_args->m_listNode->m_next;
            bool isArgumentsApply = false;
            if (args->m_expr->isResolveNode()) {
                ResolveNode* resolveNode = static_cast<ResolveNode*>(args->m_expr);
                isArgumentsApply = generator.willResolveToArguments(resolveNode->identifier());
                if (isArgumentsApply)
                    generator.emitMove(argsRegister.get(), generator.uncheckedRegisterForArguments());
            }
            if (!isArgumentsApply)
                generator.emitNode(argsRegister.get(), args->m_expr);
            while ((args = args->m_next))
                generator.emitNode(args->m_expr);

            generator.emitLoadVarargs(argsCountRegister.get(), argsRegister.get());
            generator.emitCallVarargs(finalDestination.get(), realFunction.get(), thisRegister.get(), argsCountRegister.get(), divot(), startOffset(), endOffset());
        }
        generator.emitJump(end.get());
    }
    generator.emitLabel(realCall.get());
    {
        RefPtr<RegisterID> thisRegister = generator.emitMove(generator.newTemporary(), base.get());
        generator.emitCall(finalDestination.get(), function.get(), thisRegister.get(), m_args, divot(), startOffset(), endOffset());
    }
    generator.emitLabel(end.get());
    return finalDestination.get();
}

// ------------------------------ PostfixResolveNode ----------------------------------

static RegisterID* emitPreIncOrDec(BytecodeGenerator& generator, RegisterID* srcDst, Operator oper)
{
    return (oper == OpPlusPlus) ? generator.emitPreInc(srcDst) : generator.emitPreDec(srcDst);
}

static RegisterID* emitPostIncOrDec(BytecodeGenerator& generator, RegisterID* dst, RegisterID* srcDst, Operator oper)
{
    if (srcDst == dst)
        return generator.emitToJSNumber(dst, srcDst);
    return (oper == OpPlusPlus) ? generator.emitPostInc(dst, srcDst) : generator.emitPostDec(dst, srcDst);
}

RegisterID* PostfixResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RegisterID* local = generator.registerFor(m_ident)) {
        if (generator.isLocalConstant(m_ident)) {
            if (dst == generator.ignoredResult())
                return 0;
            return generator.emitToJSNumber(generator.finalDestination(dst), local);
        }

        if (dst == generator.ignoredResult())
            return emitPreIncOrDec(generator, local, m_operator);
        return emitPostIncOrDec(generator, generator.finalDestination(dst), local, m_operator);
    }

    int index = 0;
    size_t depth = 0;
    JSObject* globalObject = 0;
    if (generator.findScopedProperty(m_ident, index, depth, true, globalObject) && index != missingSymbolMarker()) {
        RefPtr<RegisterID> value = generator.emitGetScopedVar(generator.newTemporary(), depth, index, globalObject);
        RegisterID* oldValue;
        if (dst == generator.ignoredResult()) {
            oldValue = 0;
            emitPreIncOrDec(generator, value.get(), m_operator);
        } else {
            oldValue = emitPostIncOrDec(generator, generator.finalDestination(dst), value.get(), m_operator);
        }
        generator.emitPutScopedVar(depth, index, value.get(), globalObject);
        return oldValue;
    }

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    RefPtr<RegisterID> value = generator.newTemporary();
    RefPtr<RegisterID> base = generator.emitResolveWithBase(generator.newTemporary(), value.get(), m_ident);
    RegisterID* oldValue;
    if (dst == generator.ignoredResult()) {
        oldValue = 0;
        emitPreIncOrDec(generator, value.get(), m_operator);
    } else {
        oldValue = emitPostIncOrDec(generator, generator.finalDestination(dst), value.get(), m_operator);
    }
    generator.emitPutById(base.get(), m_ident, value.get());
    return oldValue;
}

// ------------------------------ PostfixBracketNode ----------------------------------

RegisterID* PostfixBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNode(m_base);
    RefPtr<RegisterID> property = generator.emitNode(m_subscript);

    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> value = generator.emitGetByVal(generator.newTemporary(), base.get(), property.get());
    RegisterID* oldValue;
    if (dst == generator.ignoredResult()) {
        oldValue = 0;
        if (m_operator == OpPlusPlus)
            generator.emitPreInc(value.get());
        else
            generator.emitPreDec(value.get());
    } else {
        oldValue = (m_operator == OpPlusPlus) ? generator.emitPostInc(generator.finalDestination(dst), value.get()) : generator.emitPostDec(generator.finalDestination(dst), value.get());
    }
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutByVal(base.get(), property.get(), value.get());
    return oldValue;
}

// ------------------------------ PostfixDotNode ----------------------------------

RegisterID* PostfixDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNode(m_base);

    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> value = generator.emitGetById(generator.newTemporary(), base.get(), m_ident);
    RegisterID* oldValue;
    if (dst == generator.ignoredResult()) {
        oldValue = 0;
        if (m_operator == OpPlusPlus)
            generator.emitPreInc(value.get());
        else
            generator.emitPreDec(value.get());
    } else {
        oldValue = (m_operator == OpPlusPlus) ? generator.emitPostInc(generator.finalDestination(dst), value.get()) : generator.emitPostDec(generator.finalDestination(dst), value.get());
    }
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutById(base.get(), m_ident, value.get());
    return oldValue;
}

// ------------------------------ PostfixErrorNode -----------------------------------

RegisterID* PostfixErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    return emitThrowError(generator, ReferenceError, m_operator == OpPlusPlus
        ? "Postfix ++ operator applied to value that is not a reference."
        : "Postfix -- operator applied to value that is not a reference.");
}

// ------------------------------ DeleteResolveNode -----------------------------------

RegisterID* DeleteResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (generator.registerFor(m_ident))
        return generator.emitLoad(generator.finalDestination(dst), false);

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    RegisterID* base = generator.emitResolveBase(generator.tempDestination(dst), m_ident);
    return generator.emitDeleteById(generator.finalDestination(dst, base), base, m_ident);
}

// ------------------------------ DeleteBracketNode -----------------------------------

RegisterID* DeleteBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> r0 = generator.emitNode(m_base);
    RegisterID* r1 = generator.emitNode(m_subscript);

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitDeleteByVal(generator.finalDestination(dst), r0.get(), r1);
}

// ------------------------------ DeleteDotNode -----------------------------------

RegisterID* DeleteDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RegisterID* r0 = generator.emitNode(m_base);

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitDeleteById(generator.finalDestination(dst), r0, m_ident);
}

// ------------------------------ DeleteValueNode -----------------------------------

RegisterID* DeleteValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitNode(generator.ignoredResult(), m_expr);

    // delete on a non-location expression ignores the value and returns true
    return generator.emitLoad(generator.finalDestination(dst), true);
}

// ------------------------------ VoidNode -------------------------------------

RegisterID* VoidNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult()) {
        generator.emitNode(generator.ignoredResult(), m_expr);
        return 0;
    }
    RefPtr<RegisterID> r0 = generator.emitNode(m_expr);
    return generator.emitLoad(dst, jsUndefined());
}

// ------------------------------ TypeOfValueNode -----------------------------------

RegisterID* TypeOfResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RegisterID* local = generator.registerFor(m_ident)) {
        if (dst == generator.ignoredResult())
            return 0;
        return generator.emitTypeOf(generator.finalDestination(dst), local);
    }

    RefPtr<RegisterID> scratch = generator.emitResolveBase(generator.tempDestination(dst), m_ident);
    generator.emitGetById(scratch.get(), scratch.get(), m_ident);
    if (dst == generator.ignoredResult())
        return 0;
    return generator.emitTypeOf(generator.finalDestination(dst, scratch.get()), scratch.get());
}

// ------------------------------ TypeOfValueNode -----------------------------------

RegisterID* TypeOfValueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult()) {
        generator.emitNode(generator.ignoredResult(), m_expr);
        return 0;
    }
    RefPtr<RegisterID> src = generator.emitNode(m_expr);
    return generator.emitTypeOf(generator.finalDestination(dst), src.get());
}

// ------------------------------ PrefixResolveNode ----------------------------------

RegisterID* PrefixResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RegisterID* local = generator.registerFor(m_ident)) {
        if (generator.isLocalConstant(m_ident)) {
            if (dst == generator.ignoredResult())
                return 0;
            RefPtr<RegisterID> r0 = generator.emitLoad(generator.finalDestination(dst), (m_operator == OpPlusPlus) ? 1.0 : -1.0);
            return generator.emitBinaryOp(op_add, r0.get(), local, r0.get(), OperandTypes());
        }

        emitPreIncOrDec(generator, local, m_operator);
        return generator.moveToDestinationIfNeeded(dst, local);
    }

    int index = 0;
    size_t depth = 0;
    JSObject* globalObject = 0;
    if (generator.findScopedProperty(m_ident, index, depth, false, globalObject) && index != missingSymbolMarker()) {
        RefPtr<RegisterID> propDst = generator.emitGetScopedVar(generator.tempDestination(dst), depth, index, globalObject);
        emitPreIncOrDec(generator, propDst.get(), m_operator);
        generator.emitPutScopedVar(depth, index, propDst.get(), globalObject);
        return generator.moveToDestinationIfNeeded(dst, propDst.get());
    }

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    RefPtr<RegisterID> propDst = generator.tempDestination(dst);
    RefPtr<RegisterID> base = generator.emitResolveWithBase(generator.newTemporary(), propDst.get(), m_ident);
    emitPreIncOrDec(generator, propDst.get(), m_operator);
    generator.emitPutById(base.get(), m_ident, propDst.get());
    return generator.moveToDestinationIfNeeded(dst, propDst.get());
}

// ------------------------------ PrefixBracketNode ----------------------------------

RegisterID* PrefixBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNode(m_base);
    RefPtr<RegisterID> property = generator.emitNode(m_subscript);
    RefPtr<RegisterID> propDst = generator.tempDestination(dst);

    generator.emitExpressionInfo(divot() + m_subexpressionDivotOffset, m_subexpressionStartOffset, endOffset() - m_subexpressionDivotOffset);
    RegisterID* value = generator.emitGetByVal(propDst.get(), base.get(), property.get());
    if (m_operator == OpPlusPlus)
        generator.emitPreInc(value);
    else
        generator.emitPreDec(value);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutByVal(base.get(), property.get(), value);
    return generator.moveToDestinationIfNeeded(dst, propDst.get());
}

// ------------------------------ PrefixDotNode ----------------------------------

RegisterID* PrefixDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNode(m_base);
    RefPtr<RegisterID> propDst = generator.tempDestination(dst);

    generator.emitExpressionInfo(divot() + m_subexpressionDivotOffset, m_subexpressionStartOffset, endOffset() - m_subexpressionDivotOffset);
    RegisterID* value = generator.emitGetById(propDst.get(), base.get(), m_ident);
    if (m_operator == OpPlusPlus)
        generator.emitPreInc(value);
    else
        generator.emitPreDec(value);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutById(base.get(), m_ident, value);
    return generator.moveToDestinationIfNeeded(dst, propDst.get());
}

// ------------------------------ PrefixErrorNode -----------------------------------

RegisterID* PrefixErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    return emitThrowError(generator, ReferenceError, m_operator == OpPlusPlus
        ? "Prefix ++ operator applied to value that is not a reference."
        : "Prefix -- operator applied to value that is not a reference.");
}

// ------------------------------ Unary Operation Nodes -----------------------------------

RegisterID* UnaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RegisterID* src = generator.emitNode(m_expr);
    return generator.emitUnaryOp(opcodeID(), generator.finalDestination(dst), src);
}

// ------------------------------ Binary Operation Nodes -----------------------------------

// BinaryOpNode::emitStrcat:
//
// This node generates an op_strcat operation.  This opcode can handle concatenation of three or
// more values, where we can determine a set of separate op_add operations would be operating on
// string values.
//
// This function expects to be operating on a graph of AST nodes looking something like this:
//
//     (a)...     (b)
//          \   /
//           (+)     (c)
//              \   /
//      [d]     ((+))
//         \    /
//          [+=]
//
// The assignment operation is optional, if it exists the register holding the value on the
// lefthand side of the assignment should be passing as the optional 'lhs' argument.
//
// The method should be called on the node at the root of the tree of regular binary add
// operations (marked in the diagram with a double set of parentheses).  This node must
// be performing a string concatenation (determined by statically detecting that at least
// one child must be a string).  
//
// Since the minimum number of values being concatenated together is expected to be 3, if
// a lhs to a concatenating assignment is not provided then the  root add should have at
// least one left child that is also an add that can be determined to be operating on strings.
//
RegisterID* BinaryOpNode::emitStrcat(BytecodeGenerator& generator, RegisterID* dst, RegisterID* lhs, ReadModifyResolveNode* emitExpressionInfoForMe)
{
    ASSERT(isAdd());
    ASSERT(resultDescriptor().definitelyIsString());

    // Create a list of expressions for all the adds in the tree of nodes we can convert into
    // a string concatenation.  The rightmost node (c) is added first.  The rightmost node is
    // added first, and the leftmost child is never added, so the vector produced for the
    // example above will be [ c, b ].
    Vector<ExpressionNode*, 16> reverseExpressionList;
    reverseExpressionList.append(m_expr2);

    // Examine the left child of the add.  So long as this is a string add, add its right-child
    // to the list, and keep processing along the left fork.
    ExpressionNode* leftMostAddChild = m_expr1;
    while (leftMostAddChild->isAdd() && leftMostAddChild->resultDescriptor().definitelyIsString()) {
        reverseExpressionList.append(static_cast<AddNode*>(leftMostAddChild)->m_expr2);
        leftMostAddChild = static_cast<AddNode*>(leftMostAddChild)->m_expr1;
    }

    Vector<RefPtr<RegisterID>, 16> temporaryRegisters;

    // If there is an assignment, allocate a temporary to hold the lhs after conversion.
    // We could possibly avoid this (the lhs is converted last anyway, we could let the
    // op_strcat node handle its conversion if required).
    if (lhs)
        temporaryRegisters.append(generator.newTemporary());

    // Emit code for the leftmost node ((a) in the example).
    temporaryRegisters.append(generator.newTemporary());
    RegisterID* leftMostAddChildTempRegister = temporaryRegisters.last().get();
    generator.emitNode(leftMostAddChildTempRegister, leftMostAddChild);

    // Note on ordering of conversions:
    //
    // We maintain the same ordering of conversions as we would see if the concatenations
    // was performed as a sequence of adds (otherwise this optimization could change
    // behaviour should an object have been provided a valueOf or toString method).
    //
    // Considering the above example, the sequnce of execution is:
    //     * evaluate operand (a)
    //     * evaluate operand (b)
    //     * convert (a) to primitive   <-  (this would be triggered by the first add)
    //     * convert (b) to primitive   <-  (ditto)
    //     * evaluate operand (c)
    //     * convert (c) to primitive   <-  (this would be triggered by the second add)
    // And optionally, if there is an assignment:
    //     * convert (d) to primitive   <-  (this would be triggered by the assigning addition)
    //
    // As such we do not plant an op to convert the leftmost child now.  Instead, use
    // 'leftMostAddChildTempRegister' as a flag to trigger generation of the conversion
    // once the second node has been generated.  However, if the leftmost child is an
    // immediate we can trivially determine that no conversion will be required.
    // If this is the case
    if (leftMostAddChild->isString())
        leftMostAddChildTempRegister = 0;

    while (reverseExpressionList.size()) {
        ExpressionNode* node = reverseExpressionList.last();
        reverseExpressionList.removeLast();

        // Emit the code for the current node.
        temporaryRegisters.append(generator.newTemporary());
        generator.emitNode(temporaryRegisters.last().get(), node);

        // On the first iteration of this loop, when we first reach this point we have just
        // generated the second node, which means it is time to convert the leftmost operand.
        if (leftMostAddChildTempRegister) {
            generator.emitToPrimitive(leftMostAddChildTempRegister, leftMostAddChildTempRegister);
            leftMostAddChildTempRegister = 0; // Only do this once.
        }
        // Plant a conversion for this node, if necessary.
        if (!node->isString())
            generator.emitToPrimitive(temporaryRegisters.last().get(), temporaryRegisters.last().get());
    }
    ASSERT(temporaryRegisters.size() >= 3);

    // Certain read-modify nodes require expression info to be emitted *after* m_right has been generated.
    // If this is required the node is passed as 'emitExpressionInfoForMe'; do so now.
    if (emitExpressionInfoForMe)
        generator.emitExpressionInfo(emitExpressionInfoForMe->divot(), emitExpressionInfoForMe->startOffset(), emitExpressionInfoForMe->endOffset());

    // If there is an assignment convert the lhs now.  This will also copy lhs to
    // the temporary register we allocated for it.
    if (lhs)
        generator.emitToPrimitive(temporaryRegisters[0].get(), lhs);

    return generator.emitStrcat(generator.finalDestination(dst, temporaryRegisters[0].get()), temporaryRegisters[0].get(), temporaryRegisters.size());
}

RegisterID* BinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    OpcodeID opcodeID = this->opcodeID();

    if (opcodeID == op_add && m_expr1->isAdd() && m_expr1->resultDescriptor().definitelyIsString())
        return emitStrcat(generator, dst);

    if (opcodeID == op_neq) {
        if (m_expr1->isNull() || m_expr2->isNull()) {
            RefPtr<RegisterID> src = generator.tempDestination(dst);
            generator.emitNode(src.get(), m_expr1->isNull() ? m_expr2 : m_expr1);
            return generator.emitUnaryOp(op_neq_null, generator.finalDestination(dst, src.get()), src.get());
        }
    }

    RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
    RegisterID* src2 = generator.emitNode(m_expr2);
    return generator.emitBinaryOp(opcodeID, generator.finalDestination(dst, src1.get()), src1.get(), src2, OperandTypes(m_expr1->resultDescriptor(), m_expr2->resultDescriptor()));
}

RegisterID* EqualNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (m_expr1->isNull() || m_expr2->isNull()) {
        RefPtr<RegisterID> src = generator.tempDestination(dst);
        generator.emitNode(src.get(), m_expr1->isNull() ? m_expr2 : m_expr1);
        return generator.emitUnaryOp(op_eq_null, generator.finalDestination(dst, src.get()), src.get());
    }

    RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
    RegisterID* src2 = generator.emitNode(m_expr2);
    return generator.emitEqualityOp(op_eq, generator.finalDestination(dst, src1.get()), src1.get(), src2);
}

RegisterID* StrictEqualNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
    RegisterID* src2 = generator.emitNode(m_expr2);
    return generator.emitEqualityOp(op_stricteq, generator.finalDestination(dst, src1.get()), src1.get(), src2);
}

RegisterID* ReverseBinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
    RegisterID* src2 = generator.emitNode(m_expr2);
    return generator.emitBinaryOp(opcodeID(), generator.finalDestination(dst, src1.get()), src2, src1.get(), OperandTypes(m_expr2->resultDescriptor(), m_expr1->resultDescriptor()));
}

RegisterID* ThrowableBinaryOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
    RegisterID* src2 = generator.emitNode(m_expr2);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitBinaryOp(opcodeID(), generator.finalDestination(dst, src1.get()), src1.get(), src2, OperandTypes(m_expr1->resultDescriptor(), m_expr2->resultDescriptor()));
}

RegisterID* InstanceOfNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> src1 = generator.emitNodeForLeftHandSide(m_expr1, m_rightHasAssignments, m_expr2->isPure(generator));
    RefPtr<RegisterID> src2 = generator.emitNode(m_expr2);

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitGetByIdExceptionInfo(op_instanceof);
    RegisterID* src2Prototype = generator.emitGetById(generator.newTemporary(), src2.get(), generator.globalData()->propertyNames->prototype);

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitInstanceOf(generator.finalDestination(dst, src1.get()), src1.get(), src2.get(), src2Prototype);
}

// ------------------------------ LogicalOpNode ----------------------------

RegisterID* LogicalOpNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> temp = generator.tempDestination(dst);
    RefPtr<Label> target = generator.newLabel();
    
    generator.emitNode(temp.get(), m_expr1);
    if (m_operator == OpLogicalAnd)
        generator.emitJumpIfFalse(temp.get(), target.get());
    else
        generator.emitJumpIfTrue(temp.get(), target.get());
    generator.emitNode(temp.get(), m_expr2);
    generator.emitLabel(target.get());

    return generator.moveToDestinationIfNeeded(dst, temp.get());
}

// ------------------------------ ConditionalNode ------------------------------

RegisterID* ConditionalNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> newDst = generator.finalDestination(dst);
    RefPtr<Label> beforeElse = generator.newLabel();
    RefPtr<Label> afterElse = generator.newLabel();

    RegisterID* cond = generator.emitNode(m_logical);
    generator.emitJumpIfFalse(cond, beforeElse.get());

    generator.emitNode(newDst.get(), m_expr1);
    generator.emitJump(afterElse.get());

    generator.emitLabel(beforeElse.get());
    generator.emitNode(newDst.get(), m_expr2);

    generator.emitLabel(afterElse.get());

    return newDst.get();
}

// ------------------------------ ReadModifyResolveNode -----------------------------------

// FIXME: should this be moved to be a method on BytecodeGenerator?
static ALWAYS_INLINE RegisterID* emitReadModifyAssignment(BytecodeGenerator& generator, RegisterID* dst, RegisterID* src1, ExpressionNode* m_right, Operator oper, OperandTypes types, ReadModifyResolveNode* emitExpressionInfoForMe = 0)
{
    OpcodeID opcodeID;
    switch (oper) {
        case OpMultEq:
            opcodeID = op_mul;
            break;
        case OpDivEq:
            opcodeID = op_div;
            break;
        case OpPlusEq:
            if (m_right->isAdd() && m_right->resultDescriptor().definitelyIsString())
                return static_cast<AddNode*>(m_right)->emitStrcat(generator, dst, src1, emitExpressionInfoForMe);
            opcodeID = op_add;
            break;
        case OpMinusEq:
            opcodeID = op_sub;
            break;
        case OpLShift:
            opcodeID = op_lshift;
            break;
        case OpRShift:
            opcodeID = op_rshift;
            break;
        case OpURShift:
            opcodeID = op_urshift;
            break;
        case OpAndEq:
            opcodeID = op_bitand;
            break;
        case OpXOrEq:
            opcodeID = op_bitxor;
            break;
        case OpOrEq:
            opcodeID = op_bitor;
            break;
        case OpModEq:
            opcodeID = op_mod;
            break;
        default:
            ASSERT_NOT_REACHED();
            return dst;
    }

    RegisterID* src2 = generator.emitNode(m_right);

    // Certain read-modify nodes require expression info to be emitted *after* m_right has been generated.
    // If this is required the node is passed as 'emitExpressionInfoForMe'; do so now.
    if (emitExpressionInfoForMe)
        generator.emitExpressionInfo(emitExpressionInfoForMe->divot(), emitExpressionInfoForMe->startOffset(), emitExpressionInfoForMe->endOffset());

    return generator.emitBinaryOp(opcodeID, dst, src1, src2, types);
}

RegisterID* ReadModifyResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RegisterID* local = generator.registerFor(m_ident)) {
        if (generator.isLocalConstant(m_ident)) {
            return emitReadModifyAssignment(generator, generator.finalDestination(dst), local, m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
        }
        
        if (generator.leftHandSideNeedsCopy(m_rightHasAssignments, m_right->isPure(generator))) {
            RefPtr<RegisterID> result = generator.newTemporary();
            generator.emitMove(result.get(), local);
            emitReadModifyAssignment(generator, result.get(), result.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
            generator.emitMove(local, result.get());
            return generator.moveToDestinationIfNeeded(dst, result.get());
        }
        
        RegisterID* result = emitReadModifyAssignment(generator, local, local, m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
        return generator.moveToDestinationIfNeeded(dst, result);
    }

    int index = 0;
    size_t depth = 0;
    JSObject* globalObject = 0;
    if (generator.findScopedProperty(m_ident, index, depth, true, globalObject) && index != missingSymbolMarker()) {
        RefPtr<RegisterID> src1 = generator.emitGetScopedVar(generator.tempDestination(dst), depth, index, globalObject);
        RegisterID* result = emitReadModifyAssignment(generator, generator.finalDestination(dst, src1.get()), src1.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));
        generator.emitPutScopedVar(depth, index, result, globalObject);
        return result;
    }

    RefPtr<RegisterID> src1 = generator.tempDestination(dst);
    generator.emitExpressionInfo(divot() - startOffset() + m_ident.size(), m_ident.size(), 0);
    RefPtr<RegisterID> base = generator.emitResolveWithBase(generator.newTemporary(), src1.get(), m_ident);
    RegisterID* result = emitReadModifyAssignment(generator, generator.finalDestination(dst, src1.get()), src1.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()), this);
    return generator.emitPutById(base.get(), m_ident, result);
}

// ------------------------------ AssignResolveNode -----------------------------------

RegisterID* AssignResolveNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (RegisterID* local = generator.registerFor(m_ident)) {
        if (generator.isLocalConstant(m_ident))
            return generator.emitNode(dst, m_right);
        
        RegisterID* result = generator.emitNode(local, m_right);
        return generator.moveToDestinationIfNeeded(dst, result);
    }

    int index = 0;
    size_t depth = 0;
    JSObject* globalObject = 0;
    if (generator.findScopedProperty(m_ident, index, depth, true, globalObject) && index != missingSymbolMarker()) {
        if (dst == generator.ignoredResult())
            dst = 0;
        RegisterID* value = generator.emitNode(dst, m_right);
        generator.emitPutScopedVar(depth, index, value, globalObject);
        return value;
    }

    RefPtr<RegisterID> base = generator.emitResolveBase(generator.newTemporary(), m_ident);
    if (dst == generator.ignoredResult())
        dst = 0;
    RegisterID* value = generator.emitNode(dst, m_right);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitPutById(base.get(), m_ident, value);
}

// ------------------------------ AssignDotNode -----------------------------------

RegisterID* AssignDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_rightHasAssignments, m_right->isPure(generator));
    RefPtr<RegisterID> value = generator.destinationForAssignResult(dst);
    RegisterID* result = generator.emitNode(value.get(), m_right);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutById(base.get(), m_ident, result);
    return generator.moveToDestinationIfNeeded(dst, result);
}

// ------------------------------ ReadModifyDotNode -----------------------------------

RegisterID* ReadModifyDotNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_rightHasAssignments, m_right->isPure(generator));

    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> value = generator.emitGetById(generator.tempDestination(dst), base.get(), m_ident);
    RegisterID* updatedValue = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    return generator.emitPutById(base.get(), m_ident, updatedValue);
}

// ------------------------------ AssignErrorNode -----------------------------------

RegisterID* AssignErrorNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    return emitThrowError(generator, ReferenceError, "Left side of assignment is not a reference.");
}

// ------------------------------ AssignBracketNode -----------------------------------

RegisterID* AssignBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments || m_rightHasAssignments, m_subscript->isPure(generator) && m_right->isPure(generator));
    RefPtr<RegisterID> property = generator.emitNodeForLeftHandSide(m_subscript, m_rightHasAssignments, m_right->isPure(generator));
    RefPtr<RegisterID> value = generator.destinationForAssignResult(dst);
    RegisterID* result = generator.emitNode(value.get(), m_right);

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutByVal(base.get(), property.get(), result);
    return generator.moveToDestinationIfNeeded(dst, result);
}

// ------------------------------ ReadModifyBracketNode -----------------------------------

RegisterID* ReadModifyBracketNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<RegisterID> base = generator.emitNodeForLeftHandSide(m_base, m_subscriptHasAssignments || m_rightHasAssignments, m_subscript->isPure(generator) && m_right->isPure(generator));
    RefPtr<RegisterID> property = generator.emitNodeForLeftHandSide(m_subscript, m_rightHasAssignments, m_right->isPure(generator));

    generator.emitExpressionInfo(divot() - m_subexpressionDivotOffset, startOffset() - m_subexpressionDivotOffset, m_subexpressionEndOffset);
    RefPtr<RegisterID> value = generator.emitGetByVal(generator.tempDestination(dst), base.get(), property.get());
    RegisterID* updatedValue = emitReadModifyAssignment(generator, generator.finalDestination(dst, value.get()), value.get(), m_right, m_operator, OperandTypes(ResultType::unknownType(), m_right->resultDescriptor()));

    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitPutByVal(base.get(), property.get(), updatedValue);

    return updatedValue;
}

// ------------------------------ CommaNode ------------------------------------

RegisterID* CommaNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    ASSERT(m_expressions.size() > 1);
    for (size_t i = 0; i < m_expressions.size() - 1; i++)
        generator.emitNode(generator.ignoredResult(), m_expressions[i]);
    return generator.emitNode(dst, m_expressions.last());
}

// ------------------------------ ConstDeclNode ------------------------------------

RegisterID* ConstDeclNode::emitCodeSingle(BytecodeGenerator& generator)
{
    if (RegisterID* local = generator.constRegisterFor(m_ident)) {
        if (!m_init)
            return local;

        return generator.emitNode(local, m_init);
    }

    if (generator.codeType() != EvalCode) {
        if (m_init)
            return generator.emitNode(m_init);
        else
            return generator.emitResolve(generator.newTemporary(), m_ident);
    }
    // FIXME: While this code should only be hit in eval code, it will potentially
    // assign to the wrong base if m_ident exists in an intervening dynamic scope.
    RefPtr<RegisterID> base = generator.emitResolveBase(generator.newTemporary(), m_ident);
    RegisterID* value = m_init ? generator.emitNode(m_init) : generator.emitLoad(0, jsUndefined());
    return generator.emitPutById(base.get(), m_ident, value);
}

RegisterID* ConstDeclNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    RegisterID* result = 0;
    for (ConstDeclNode* n = this; n; n = n->m_next)
        result = n->emitCodeSingle(generator);

    return result;
}

// ------------------------------ ConstStatementNode -----------------------------

RegisterID* ConstStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    return generator.emitNode(m_next);
}

// ------------------------------ SourceElements -------------------------------

inline void SourceElements::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    size_t size = m_statements.size();
    for (size_t i = 0; i < size; ++i)
        generator.emitNode(dst, m_statements[i]);
}

// ------------------------------ BlockNode ------------------------------------

inline StatementNode* BlockNode::lastStatement() const
{
    return m_statements ? m_statements->lastStatement() : 0;
}

RegisterID* BlockNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (m_statements)
        m_statements->emitBytecode(generator, dst);
    return 0;
}

// ------------------------------ EmptyStatementNode ---------------------------

RegisterID* EmptyStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    return dst;
}

// ------------------------------ DebuggerStatementNode ---------------------------

RegisterID* DebuggerStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(DidReachBreakpoint, firstLine(), lastLine());
    return dst;
}

// ------------------------------ ExprStatementNode ----------------------------

RegisterID* ExprStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    ASSERT(m_expr);
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine()); 
    return generator.emitNode(dst, m_expr);
}

// ------------------------------ VarStatementNode ----------------------------

RegisterID* VarStatementNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    ASSERT(m_expr);
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    return generator.emitNode(m_expr);
}

// ------------------------------ IfNode ---------------------------------------

RegisterID* IfNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    
    RefPtr<Label> afterThen = generator.newLabel();

    RegisterID* cond = generator.emitNode(m_condition);
    generator.emitJumpIfFalse(cond, afterThen.get());

    generator.emitNode(dst, m_ifBlock);
    generator.emitLabel(afterThen.get());

    // FIXME: This should return the last statement executed so that it can be returned as a Completion.
    return 0;
}

// ------------------------------ IfElseNode ---------------------------------------

RegisterID* IfElseNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    
    RefPtr<Label> beforeElse = generator.newLabel();
    RefPtr<Label> afterElse = generator.newLabel();

    RegisterID* cond = generator.emitNode(m_condition);
    generator.emitJumpIfFalse(cond, beforeElse.get());

    generator.emitNode(dst, m_ifBlock);
    generator.emitJump(afterElse.get());

    generator.emitLabel(beforeElse.get());

    generator.emitNode(dst, m_elseBlock);

    generator.emitLabel(afterElse.get());

    // FIXME: This should return the last statement executed so that it can be returned as a Completion.
    return 0;
}

// ------------------------------ DoWhileNode ----------------------------------

RegisterID* DoWhileNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);

    RefPtr<Label> topOfLoop = generator.newLabel();
    generator.emitLabel(topOfLoop.get());

    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
   
    RefPtr<RegisterID> result = generator.emitNode(dst, m_statement);

    generator.emitLabel(scope->continueTarget());
    generator.emitDebugHook(WillExecuteStatement, m_expr->lineNo(), m_expr->lineNo());
    RegisterID* cond = generator.emitNode(m_expr);
    generator.emitJumpIfTrue(cond, topOfLoop.get());

    generator.emitLabel(scope->breakTarget());
    return result.get();
}

// ------------------------------ WhileNode ------------------------------------

RegisterID* WhileNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);

    generator.emitJump(scope->continueTarget());

    RefPtr<Label> topOfLoop = generator.newLabel();
    generator.emitLabel(topOfLoop.get());
    
    generator.emitNode(dst, m_statement);

    generator.emitLabel(scope->continueTarget());
    generator.emitDebugHook(WillExecuteStatement, m_expr->lineNo(), m_expr->lineNo());
    RegisterID* cond = generator.emitNode(m_expr);
    generator.emitJumpIfTrue(cond, topOfLoop.get());

    generator.emitLabel(scope->breakTarget());
    
    // FIXME: This should return the last statement executed so that it can be returned as a Completion
    return 0;
}

// ------------------------------ ForNode --------------------------------------

RegisterID* ForNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);

    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());

    if (m_expr1)
        generator.emitNode(generator.ignoredResult(), m_expr1);

    RefPtr<Label> condition = generator.newLabel();
    generator.emitJump(condition.get());

    RefPtr<Label> topOfLoop = generator.newLabel();
    generator.emitLabel(topOfLoop.get());

    RefPtr<RegisterID> result = generator.emitNode(dst, m_statement);

    generator.emitLabel(scope->continueTarget());
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    if (m_expr3)
        generator.emitNode(generator.ignoredResult(), m_expr3);

    generator.emitLabel(condition.get());
    if (m_expr2) {
        RegisterID* cond = generator.emitNode(m_expr2);
        generator.emitJumpIfTrue(cond, topOfLoop.get());
    } else
        generator.emitJump(topOfLoop.get());

    generator.emitLabel(scope->breakTarget());
    return result.get();
}

// ------------------------------ ForInNode ------------------------------------

RegisterID* ForInNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Loop);

    if (!m_lexpr->isLocation())
        return emitThrowError(generator, ReferenceError, "Left side of for-in statement is not a reference.");

    RefPtr<Label> continueTarget = generator.newLabel(); 

    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());

    if (m_init)
        generator.emitNode(generator.ignoredResult(), m_init);
    RegisterID* forInBase = generator.emitNode(m_expr);
    RefPtr<RegisterID> iter = generator.emitGetPropertyNames(generator.newTemporary(), forInBase);
    generator.emitJump(scope->continueTarget());

    RefPtr<Label> loopStart = generator.newLabel();
    generator.emitLabel(loopStart.get());

    RegisterID* propertyName;
    if (m_lexpr->isResolveNode()) {
        const Identifier& ident = static_cast<ResolveNode*>(m_lexpr)->identifier();
        propertyName = generator.registerFor(ident);
        if (!propertyName) {
            propertyName = generator.newTemporary();
            RefPtr<RegisterID> protect = propertyName;
            RegisterID* base = generator.emitResolveBase(generator.newTemporary(), ident);

            generator.emitExpressionInfo(divot(), startOffset(), endOffset());
            generator.emitPutById(base, ident, propertyName);
        }
    } else if (m_lexpr->isDotAccessorNode()) {
        DotAccessorNode* assignNode = static_cast<DotAccessorNode*>(m_lexpr);
        const Identifier& ident = assignNode->identifier();
        propertyName = generator.newTemporary();
        RefPtr<RegisterID> protect = propertyName;
        RegisterID* base = generator.emitNode(assignNode->base());

        generator.emitExpressionInfo(assignNode->divot(), assignNode->startOffset(), assignNode->endOffset());
        generator.emitPutById(base, ident, propertyName);
    } else {
        ASSERT(m_lexpr->isBracketAccessorNode());
        BracketAccessorNode* assignNode = static_cast<BracketAccessorNode*>(m_lexpr);
        propertyName = generator.newTemporary();
        RefPtr<RegisterID> protect = propertyName;
        RefPtr<RegisterID> base = generator.emitNode(assignNode->base());
        RegisterID* subscript = generator.emitNode(assignNode->subscript());
        
        generator.emitExpressionInfo(assignNode->divot(), assignNode->startOffset(), assignNode->endOffset());
        generator.emitPutByVal(base.get(), subscript, propertyName);
    }   

    generator.emitNode(dst, m_statement);

    generator.emitLabel(scope->continueTarget());
    generator.emitNextPropertyName(propertyName, iter.get(), loopStart.get());
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    generator.emitLabel(scope->breakTarget());
    return dst;
}

// ------------------------------ ContinueNode ---------------------------------

// ECMA 12.7
RegisterID* ContinueNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    
    LabelScope* scope = generator.continueTarget(m_ident);

    if (!scope)
        return m_ident.isEmpty()
            ? emitThrowError(generator, SyntaxError, "Invalid continue statement.")
            : emitThrowError(generator, SyntaxError, "Undefined label: '%s'.", m_ident);

    generator.emitJumpScopes(scope->continueTarget(), scope->scopeDepth());
    return dst;
}

// ------------------------------ BreakNode ------------------------------------

// ECMA 12.8
RegisterID* BreakNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    
    LabelScope* scope = generator.breakTarget(m_ident);
    
    if (!scope)
        return m_ident.isEmpty()
            ? emitThrowError(generator, SyntaxError, "Invalid break statement.")
            : emitThrowError(generator, SyntaxError, "Undefined label: '%s'.", m_ident);

    generator.emitJumpScopes(scope->breakTarget(), scope->scopeDepth());
    return dst;
}

// ------------------------------ ReturnNode -----------------------------------

RegisterID* ReturnNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    if (generator.codeType() != FunctionCode)
        return emitThrowError(generator, SyntaxError, "Invalid return statement.");

    if (dst == generator.ignoredResult())
        dst = 0;
    RegisterID* r0 = m_value ? generator.emitNode(dst, m_value) : generator.emitLoad(dst, jsUndefined());
    RefPtr<RegisterID> returnRegister;
    if (generator.scopeDepth()) {
        RefPtr<Label> l0 = generator.newLabel();
        if (generator.hasFinaliser() && !r0->isTemporary()) {
            returnRegister = generator.emitMove(generator.newTemporary(), r0);
            r0 = returnRegister.get();
        }
        generator.emitJumpScopes(l0.get(), 0);
        generator.emitLabel(l0.get());
    }
    generator.emitDebugHook(WillLeaveCallFrame, firstLine(), lastLine());
    return generator.emitReturn(r0);
}

// ------------------------------ WithNode -------------------------------------

RegisterID* WithNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    
    RefPtr<RegisterID> scope = generator.newTemporary();
    generator.emitNode(scope.get(), m_expr); // scope must be protected until popped
    generator.emitExpressionInfo(m_divot, m_expressionLength, 0);
    generator.emitPushScope(scope.get());
    RegisterID* result = generator.emitNode(dst, m_statement);
    generator.emitPopScope();
    return result;
}

// ------------------------------ CaseClauseNode --------------------------------

inline void CaseClauseNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (m_statements)
        m_statements->emitBytecode(generator, dst);
}

// ------------------------------ CaseBlockNode --------------------------------

enum SwitchKind { 
    SwitchUnset = 0,
    SwitchNumber = 1, 
    SwitchString = 2, 
    SwitchNeither = 3 
};

static void processClauseList(ClauseListNode* list, Vector<ExpressionNode*, 8>& literalVector, SwitchKind& typeForTable, bool& singleCharacterSwitch, int32_t& min_num, int32_t& max_num)
{
    for (; list; list = list->getNext()) {
        ExpressionNode* clauseExpression = list->getClause()->expr();
        literalVector.append(clauseExpression);
        if (clauseExpression->isNumber()) {
            double value = static_cast<NumberNode*>(clauseExpression)->value();
            int32_t intVal = static_cast<int32_t>(value);
            if ((typeForTable & ~SwitchNumber) || (intVal != value)) {
                typeForTable = SwitchNeither;
                break;
            }
            if (intVal < min_num)
                min_num = intVal;
            if (intVal > max_num)
                max_num = intVal;
            typeForTable = SwitchNumber;
            continue;
        }
        if (clauseExpression->isString()) {
            if (typeForTable & ~SwitchString) {
                typeForTable = SwitchNeither;
                break;
            }
            const UString& value = static_cast<StringNode*>(clauseExpression)->value().ustring();
            if (singleCharacterSwitch &= value.size() == 1) {
                int32_t intVal = value.rep()->data()[0];
                if (intVal < min_num)
                    min_num = intVal;
                if (intVal > max_num)
                    max_num = intVal;
            }
            typeForTable = SwitchString;
            continue;
        }
        typeForTable = SwitchNeither;
        break;        
    }
}
    
SwitchInfo::SwitchType CaseBlockNode::tryOptimizedSwitch(Vector<ExpressionNode*, 8>& literalVector, int32_t& min_num, int32_t& max_num)
{
    SwitchKind typeForTable = SwitchUnset;
    bool singleCharacterSwitch = true;
    
    processClauseList(m_list1, literalVector, typeForTable, singleCharacterSwitch, min_num, max_num);
    processClauseList(m_list2, literalVector, typeForTable, singleCharacterSwitch, min_num, max_num);
    
    if (typeForTable == SwitchUnset || typeForTable == SwitchNeither)
        return SwitchInfo::SwitchNone;
    
    if (typeForTable == SwitchNumber) {
        int32_t range = max_num - min_num;
        if (min_num <= max_num && range <= 1000 && (range / literalVector.size()) < 10)
            return SwitchInfo::SwitchImmediate;
        return SwitchInfo::SwitchNone;
    } 
    
    ASSERT(typeForTable == SwitchString);
    
    if (singleCharacterSwitch) {
        int32_t range = max_num - min_num;
        if (min_num <= max_num && range <= 1000 && (range / literalVector.size()) < 10)
            return SwitchInfo::SwitchCharacter;
    }

    return SwitchInfo::SwitchString;
}

RegisterID* CaseBlockNode::emitBytecodeForBlock(BytecodeGenerator& generator, RegisterID* switchExpression, RegisterID* dst)
{
    RefPtr<Label> defaultLabel;
    Vector<RefPtr<Label>, 8> labelVector;
    Vector<ExpressionNode*, 8> literalVector;
    int32_t min_num = std::numeric_limits<int32_t>::max();
    int32_t max_num = std::numeric_limits<int32_t>::min();
    SwitchInfo::SwitchType switchType = tryOptimizedSwitch(literalVector, min_num, max_num);

    if (switchType != SwitchInfo::SwitchNone) {
        // Prepare the various labels
        for (uint32_t i = 0; i < literalVector.size(); i++)
            labelVector.append(generator.newLabel());
        defaultLabel = generator.newLabel();
        generator.beginSwitch(switchExpression, switchType);
    } else {
        // Setup jumps
        for (ClauseListNode* list = m_list1; list; list = list->getNext()) {
            RefPtr<RegisterID> clauseVal = generator.newTemporary();
            generator.emitNode(clauseVal.get(), list->getClause()->expr());
            generator.emitBinaryOp(op_stricteq, clauseVal.get(), clauseVal.get(), switchExpression, OperandTypes());
            labelVector.append(generator.newLabel());
            generator.emitJumpIfTrue(clauseVal.get(), labelVector[labelVector.size() - 1].get());
        }
        
        for (ClauseListNode* list = m_list2; list; list = list->getNext()) {
            RefPtr<RegisterID> clauseVal = generator.newTemporary();
            generator.emitNode(clauseVal.get(), list->getClause()->expr());
            generator.emitBinaryOp(op_stricteq, clauseVal.get(), clauseVal.get(), switchExpression, OperandTypes());
            labelVector.append(generator.newLabel());
            generator.emitJumpIfTrue(clauseVal.get(), labelVector[labelVector.size() - 1].get());
        }
        defaultLabel = generator.newLabel();
        generator.emitJump(defaultLabel.get());
    }

    RegisterID* result = 0;

    size_t i = 0;
    for (ClauseListNode* list = m_list1; list; list = list->getNext()) {
        generator.emitLabel(labelVector[i++].get());
        list->getClause()->emitBytecode(generator, dst);
    }

    if (m_defaultClause) {
        generator.emitLabel(defaultLabel.get());
        m_defaultClause->emitBytecode(generator, dst);
    }

    for (ClauseListNode* list = m_list2; list; list = list->getNext()) {
        generator.emitLabel(labelVector[i++].get());
        list->getClause()->emitBytecode(generator, dst);
    }
    if (!m_defaultClause)
        generator.emitLabel(defaultLabel.get());

    ASSERT(i == labelVector.size());
    if (switchType != SwitchInfo::SwitchNone) {
        ASSERT(labelVector.size() == literalVector.size());
        generator.endSwitch(labelVector.size(), labelVector.data(), literalVector.data(), defaultLabel.get(), min_num, max_num);
    }
    return result;
}

// ------------------------------ SwitchNode -----------------------------------

RegisterID* SwitchNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());
    
    RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::Switch);

    RefPtr<RegisterID> r0 = generator.emitNode(m_expr);
    RegisterID* r1 = m_block->emitBytecodeForBlock(generator, r0.get(), dst);

    generator.emitLabel(scope->breakTarget());
    return r1;
}

// ------------------------------ LabelNode ------------------------------------

RegisterID* LabelNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());

    if (generator.breakTarget(m_name))
        return emitThrowError(generator, SyntaxError, "Duplicate label: %s.", m_name);

    RefPtr<LabelScope> scope = generator.newLabelScope(LabelScope::NamedLabel, &m_name);
    RegisterID* r0 = generator.emitNode(dst, m_statement);

    generator.emitLabel(scope->breakTarget());
    return r0;
}

// ------------------------------ ThrowNode ------------------------------------

RegisterID* ThrowNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());

    if (dst == generator.ignoredResult())
        dst = 0;
    RefPtr<RegisterID> expr = generator.emitNode(m_expr);
    generator.emitExpressionInfo(divot(), startOffset(), endOffset());
    generator.emitThrow(expr.get());
    return 0;
}

// ------------------------------ TryNode --------------------------------------

RegisterID* TryNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    // NOTE: The catch and finally blocks must be labeled explicitly, so the
    // optimizer knows they may be jumped to from anywhere.

    generator.emitDebugHook(WillExecuteStatement, firstLine(), lastLine());

    RefPtr<Label> tryStartLabel = generator.newLabel();
    RefPtr<Label> finallyStart;
    RefPtr<RegisterID> finallyReturnAddr;
    if (m_finallyBlock) {
        finallyStart = generator.newLabel();
        finallyReturnAddr = generator.newTemporary();
        generator.pushFinallyContext(finallyStart.get(), finallyReturnAddr.get());
    }

    generator.emitLabel(tryStartLabel.get());
    generator.emitNode(dst, m_tryBlock);

    if (m_catchBlock) {
        RefPtr<Label> catchEndLabel = generator.newLabel();
        
        // Normal path: jump over the catch block.
        generator.emitJump(catchEndLabel.get());

        // Uncaught exception path: the catch block.
        RefPtr<Label> here = generator.emitLabel(generator.newLabel().get());
        RefPtr<RegisterID> exceptionRegister = generator.emitCatch(generator.newTemporary(), tryStartLabel.get(), here.get());
        if (m_catchHasEval) {
            RefPtr<RegisterID> dynamicScopeObject = generator.emitNewObject(generator.newTemporary());
            generator.emitPutById(dynamicScopeObject.get(), m_exceptionIdent, exceptionRegister.get());
            generator.emitMove(exceptionRegister.get(), dynamicScopeObject.get());
            generator.emitPushScope(exceptionRegister.get());
        } else
            generator.emitPushNewScope(exceptionRegister.get(), m_exceptionIdent, exceptionRegister.get());
        generator.emitNode(dst, m_catchBlock);
        generator.emitPopScope();
        generator.emitLabel(catchEndLabel.get());
    }

    if (m_finallyBlock) {
        generator.popFinallyContext();
        // there may be important registers live at the time we jump
        // to a finally block (such as for a return or throw) so we
        // ref the highest register ever used as a conservative
        // approach to not clobbering anything important
        RefPtr<RegisterID> highestUsedRegister = generator.highestUsedRegister();
        RefPtr<Label> finallyEndLabel = generator.newLabel();

        // Normal path: invoke the finally block, then jump over it.
        generator.emitJumpSubroutine(finallyReturnAddr.get(), finallyStart.get());
        generator.emitJump(finallyEndLabel.get());

        // Uncaught exception path: invoke the finally block, then re-throw the exception.
        RefPtr<Label> here = generator.emitLabel(generator.newLabel().get());
        RefPtr<RegisterID> tempExceptionRegister = generator.emitCatch(generator.newTemporary(), tryStartLabel.get(), here.get());
        generator.emitJumpSubroutine(finallyReturnAddr.get(), finallyStart.get());
        generator.emitThrow(tempExceptionRegister.get());

        // The finally block.
        generator.emitLabel(finallyStart.get());
        generator.emitNode(dst, m_finallyBlock);
        generator.emitSubroutineReturn(finallyReturnAddr.get());

        generator.emitLabel(finallyEndLabel.get());
    }

    return dst;
}

// -----------------------------ScopeNodeData ---------------------------

ScopeNodeData::ScopeNodeData(ParserArena& arena, SourceElements* statements, VarStack* varStack, FunctionStack* funcStack, int numConstants)
    : m_numConstants(numConstants)
    , m_statements(statements)
{
    m_arena.swap(arena);
    if (varStack)
        m_varStack.swap(*varStack);
    if (funcStack)
        m_functionStack.swap(*funcStack);
}

// ------------------------------ ScopeNode -----------------------------

ScopeNode::ScopeNode(JSGlobalData* globalData)
    : StatementNode(globalData)
    , ParserArenaRefCounted(globalData)
    , m_features(NoFeatures)
{
}

ScopeNode::ScopeNode(JSGlobalData* globalData, const SourceCode& source, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, CodeFeatures features, int numConstants)
    : StatementNode(globalData)
    , ParserArenaRefCounted(globalData)
    , m_data(new ScopeNodeData(globalData->parser->arena(), children, varStack, funcStack, numConstants))
    , m_features(features)
    , m_source(source)
{
}

inline void ScopeNode::emitStatementsBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (m_data->m_statements)
        m_data->m_statements->emitBytecode(generator, dst);
}

StatementNode* ScopeNode::singleStatement() const
{
    return m_data->m_statements ? m_data->m_statements->singleStatement() : 0;
}

// ------------------------------ ProgramNode -----------------------------

inline ProgramNode::ProgramNode(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
    : ScopeNode(globalData, source, children, varStack, funcStack, features, numConstants)
{
}

PassRefPtr<ProgramNode> ProgramNode::create(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
{
    RefPtr<ProgramNode> node = new ProgramNode(globalData, children, varStack, funcStack, source, features, numConstants);

    ASSERT(node->data()->m_arena.last() == node);
    node->data()->m_arena.removeLast();
    ASSERT(!node->data()->m_arena.contains(node.get()));

    return node.release();
}

RegisterID* ProgramNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    generator.emitDebugHook(WillExecuteProgram, firstLine(), lastLine());

    RefPtr<RegisterID> dstRegister = generator.newTemporary();
    generator.emitLoad(dstRegister.get(), jsUndefined());
    emitStatementsBytecode(generator, dstRegister.get());

    generator.emitDebugHook(DidExecuteProgram, firstLine(), lastLine());
    generator.emitEnd(dstRegister.get());
    return 0;
}

// ------------------------------ EvalNode -----------------------------

inline EvalNode::EvalNode(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
    : ScopeNode(globalData, source, children, varStack, funcStack, features, numConstants)
{
}

PassRefPtr<EvalNode> EvalNode::create(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& source, CodeFeatures features, int numConstants)
{
    RefPtr<EvalNode> node = new EvalNode(globalData, children, varStack, funcStack, source, features, numConstants);

    ASSERT(node->data()->m_arena.last() == node);
    node->data()->m_arena.removeLast();
    ASSERT(!node->data()->m_arena.contains(node.get()));

    return node.release();
}

RegisterID* EvalNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    generator.emitDebugHook(WillExecuteProgram, firstLine(), lastLine());

    RefPtr<RegisterID> dstRegister = generator.newTemporary();
    generator.emitLoad(dstRegister.get(), jsUndefined());
    emitStatementsBytecode(generator, dstRegister.get());

    generator.emitDebugHook(DidExecuteProgram, firstLine(), lastLine());
    generator.emitEnd(dstRegister.get());
    return 0;
}

// ------------------------------ FunctionBodyNode -----------------------------

FunctionParameters::FunctionParameters(ParameterNode* firstParameter)
{
    for (ParameterNode* parameter = firstParameter; parameter; parameter = parameter->nextParam())
        append(parameter->ident());
}

inline FunctionBodyNode::FunctionBodyNode(JSGlobalData* globalData)
    : ScopeNode(globalData)
{
}

inline FunctionBodyNode::FunctionBodyNode(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& sourceCode, CodeFeatures features, int numConstants)
    : ScopeNode(globalData, sourceCode, children, varStack, funcStack, features, numConstants)
{
}

void FunctionBodyNode::finishParsing(const SourceCode& source, ParameterNode* firstParameter, const Identifier& ident)
{
    setSource(source);
    finishParsing(FunctionParameters::create(firstParameter), ident);
}

void FunctionBodyNode::finishParsing(PassRefPtr<FunctionParameters> parameters, const Identifier& ident)
{
    ASSERT(!source().isNull());
    m_parameters = parameters;
    m_ident = ident;
}

FunctionBodyNode* FunctionBodyNode::create(JSGlobalData* globalData)
{
    return new FunctionBodyNode(globalData);
}

PassRefPtr<FunctionBodyNode> FunctionBodyNode::create(JSGlobalData* globalData, SourceElements* children, VarStack* varStack, FunctionStack* funcStack, const SourceCode& sourceCode, CodeFeatures features, int numConstants)
{
    RefPtr<FunctionBodyNode> node = new FunctionBodyNode(globalData, children, varStack, funcStack, sourceCode, features, numConstants);

    ASSERT(node->data()->m_arena.last() == node);
    node->data()->m_arena.removeLast();
    ASSERT(!node->data()->m_arena.contains(node.get()));

    return node.release();
}

RegisterID* FunctionBodyNode::emitBytecode(BytecodeGenerator& generator, RegisterID*)
{
    generator.emitDebugHook(DidEnterCallFrame, firstLine(), lastLine());
    emitStatementsBytecode(generator, generator.ignoredResult());
    StatementNode* singleStatement = this->singleStatement();
    if (singleStatement && singleStatement->isBlock()) {
        StatementNode* lastStatementInBlock = static_cast<BlockNode*>(singleStatement)->lastStatement();
        if (lastStatementInBlock && lastStatementInBlock->isReturnNode())
            return 0;
    }

    RegisterID* r0 = generator.emitLoad(0, jsUndefined());
    generator.emitDebugHook(WillLeaveCallFrame, firstLine(), lastLine());
    generator.emitReturn(r0);
    return 0;
}

// ------------------------------ FuncDeclNode ---------------------------------

RegisterID* FuncDeclNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    if (dst == generator.ignoredResult())
        dst = 0;
    return dst;
}

// ------------------------------ FuncExprNode ---------------------------------

RegisterID* FuncExprNode::emitBytecode(BytecodeGenerator& generator, RegisterID* dst)
{
    return generator.emitNewFunctionExpression(generator.finalDestination(dst), this);
}

} // namespace JSC