summaryrefslogtreecommitdiffstats
path: root/Python/symtable.c
blob: 8040665b58661df8bcd9bffb531d52ec1e655939 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
#include "Python.h"
#include "Python-ast.h"
#include "code.h"
#include "symtable.h"
#include "structmember.h"

/* error strings used for warnings */
#define GLOBAL_AFTER_ASSIGN \
"name '%.400s' is assigned to before global declaration"

#define NONLOCAL_AFTER_ASSIGN \
"name '%.400s' is assigned to before nonlocal declaration"

#define GLOBAL_AFTER_USE \
"name '%.400s' is used prior to global declaration"

#define NONLOCAL_AFTER_USE \
"name '%.400s' is used prior to nonlocal declaration"

#define IMPORT_STAR_WARNING "import * only allowed at module level"

#define RETURN_VAL_IN_GENERATOR \
    "'return' with argument inside generator"


static PySTEntryObject *
ste_new(struct symtable *st, identifier name, _Py_block_ty block,
        void *key, int lineno, int col_offset)
{
    PySTEntryObject *ste = NULL;
    PyObject *k;

    k = PyLong_FromVoidPtr(key);
    if (k == NULL)
        goto fail;
    ste = PyObject_New(PySTEntryObject, &PySTEntry_Type);
    if (ste == NULL)
        goto fail;
    ste->ste_table = st;
    ste->ste_id = k;

    ste->ste_name = name;
    Py_INCREF(name);

    ste->ste_symbols = NULL;
    ste->ste_varnames = NULL;
    ste->ste_children = NULL;

    ste->ste_symbols = PyDict_New();
    if (ste->ste_symbols == NULL)
        goto fail;

    ste->ste_varnames = PyList_New(0);
    if (ste->ste_varnames == NULL)
        goto fail;

    ste->ste_children = PyList_New(0);
    if (ste->ste_children == NULL)
        goto fail;

    ste->ste_type = block;
    ste->ste_unoptimized = 0;
    ste->ste_nested = 0;
    ste->ste_free = 0;
    ste->ste_varargs = 0;
    ste->ste_varkeywords = 0;
    ste->ste_opt_lineno = 0;
    ste->ste_opt_col_offset = 0;
    ste->ste_tmpname = 0;
    ste->ste_lineno = lineno;
    ste->ste_col_offset = col_offset;

    if (st->st_cur != NULL &&
        (st->st_cur->ste_nested ||
         st->st_cur->ste_type == FunctionBlock))
        ste->ste_nested = 1;
    ste->ste_child_free = 0;
    ste->ste_generator = 0;
    ste->ste_returns_value = 0;

    if (PyDict_SetItem(st->st_blocks, ste->ste_id, (PyObject *)ste) < 0)
        goto fail;

    return ste;
 fail:
    Py_XDECREF(ste);
    return NULL;
}

static PyObject *
ste_repr(PySTEntryObject *ste)
{
    return PyUnicode_FromFormat("<symtable entry %U(%ld), line %d>",
                                ste->ste_name,
                                PyLong_AS_LONG(ste->ste_id), ste->ste_lineno);
}

static void
ste_dealloc(PySTEntryObject *ste)
{
    ste->ste_table = NULL;
    Py_XDECREF(ste->ste_id);
    Py_XDECREF(ste->ste_name);
    Py_XDECREF(ste->ste_symbols);
    Py_XDECREF(ste->ste_varnames);
    Py_XDECREF(ste->ste_children);
    PyObject_Del(ste);
}

#define OFF(x) offsetof(PySTEntryObject, x)

static PyMemberDef ste_memberlist[] = {
    {"id",       T_OBJECT, OFF(ste_id), READONLY},
    {"name",     T_OBJECT, OFF(ste_name), READONLY},
    {"symbols",  T_OBJECT, OFF(ste_symbols), READONLY},
    {"varnames", T_OBJECT, OFF(ste_varnames), READONLY},
    {"children", T_OBJECT, OFF(ste_children), READONLY},
    {"optimized",T_INT,    OFF(ste_unoptimized), READONLY},
    {"nested",   T_INT,    OFF(ste_nested), READONLY},
    {"type",     T_INT,    OFF(ste_type), READONLY},
    {"lineno",   T_INT,    OFF(ste_lineno), READONLY},
    {NULL}
};

PyTypeObject PySTEntry_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "symtable entry",
    sizeof(PySTEntryObject),
    0,
    (destructor)ste_dealloc,                /* tp_dealloc */
    0,                                      /* tp_print */
    0,                                         /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_reserved */
    (reprfunc)ste_repr,                         /* tp_repr */
    0,                                          /* tp_as_number */
    0,                                          /* tp_as_sequence */
    0,                                          /* tp_as_mapping */
    0,                                          /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT,                         /* tp_flags */
    0,                                          /* tp_doc */
    0,                                          /* tp_traverse */
    0,                                          /* tp_clear */
    0,                                          /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    0,                                          /* tp_iter */
    0,                                          /* tp_iternext */
    0,                                          /* tp_methods */
    ste_memberlist,                             /* tp_members */
    0,                                          /* tp_getset */
    0,                                          /* tp_base */
    0,                                          /* tp_dict */
    0,                                          /* tp_descr_get */
    0,                                          /* tp_descr_set */
    0,                                          /* tp_dictoffset */
    0,                                          /* tp_init */
    0,                                          /* tp_alloc */
    0,                                          /* tp_new */
};

static int symtable_analyze(struct symtable *st);
static int symtable_warn(struct symtable *st, char *msg, int lineno);
static int symtable_enter_block(struct symtable *st, identifier name,
                                _Py_block_ty block, void *ast, int lineno,
                                int col_offset);
static int symtable_exit_block(struct symtable *st, void *ast);
static int symtable_visit_stmt(struct symtable *st, stmt_ty s);
static int symtable_visit_expr(struct symtable *st, expr_ty s);
static int symtable_visit_genexp(struct symtable *st, expr_ty s);
static int symtable_visit_listcomp(struct symtable *st, expr_ty s);
static int symtable_visit_setcomp(struct symtable *st, expr_ty s);
static int symtable_visit_dictcomp(struct symtable *st, expr_ty s);
static int symtable_visit_arguments(struct symtable *st, arguments_ty);
static int symtable_visit_excepthandler(struct symtable *st, excepthandler_ty);
static int symtable_visit_alias(struct symtable *st, alias_ty);
static int symtable_visit_comprehension(struct symtable *st, comprehension_ty);
static int symtable_visit_keyword(struct symtable *st, keyword_ty);
static int symtable_visit_slice(struct symtable *st, slice_ty);
static int symtable_visit_params(struct symtable *st, asdl_seq *args);
static int symtable_visit_argannotations(struct symtable *st, asdl_seq *args);
static int symtable_implicit_arg(struct symtable *st, int pos);
static int symtable_visit_annotations(struct symtable *st, stmt_ty s);


static identifier top = NULL, lambda = NULL, genexpr = NULL,
    listcomp = NULL, setcomp = NULL, dictcomp = NULL,
    __class__ = NULL, __locals__ = NULL;

#define GET_IDENTIFIER(VAR) \
    ((VAR) ? (VAR) : ((VAR) = PyUnicode_InternFromString(# VAR)))

#define DUPLICATE_ARGUMENT \
"duplicate argument '%U' in function definition"

static struct symtable *
symtable_new(void)
{
    struct symtable *st;

    st = (struct symtable *)PyMem_Malloc(sizeof(struct symtable));
    if (st == NULL)
        return NULL;

    st->st_filename = NULL;
    st->st_blocks = NULL;

    if ((st->st_stack = PyList_New(0)) == NULL)
        goto fail;
    if ((st->st_blocks = PyDict_New()) == NULL)
        goto fail;
    st->st_cur = NULL;
    st->st_private = NULL;
    return st;
 fail:
    PySymtable_Free(st);
    return NULL;
}

struct symtable *
PySymtable_Build(mod_ty mod, const char *filename, PyFutureFeatures *future)
{
    struct symtable *st = symtable_new();
    asdl_seq *seq;
    int i;

    if (st == NULL)
        return st;
    st->st_filename = filename;
    st->st_future = future;
    /* Make the initial symbol information gathering pass */
    if (!GET_IDENTIFIER(top) ||
        !symtable_enter_block(st, top, ModuleBlock, (void *)mod, 0, 0)) {
        PySymtable_Free(st);
        return NULL;
    }

    st->st_top = st->st_cur;
    st->st_cur->ste_unoptimized = OPT_TOPLEVEL;
    switch (mod->kind) {
    case Module_kind:
        seq = mod->v.Module.body;
        for (i = 0; i < asdl_seq_LEN(seq); i++)
            if (!symtable_visit_stmt(st,
                        (stmt_ty)asdl_seq_GET(seq, i)))
                goto error;
        break;
    case Expression_kind:
        if (!symtable_visit_expr(st, mod->v.Expression.body))
            goto error;
        break;
    case Interactive_kind:
        seq = mod->v.Interactive.body;
        for (i = 0; i < asdl_seq_LEN(seq); i++)
            if (!symtable_visit_stmt(st,
                        (stmt_ty)asdl_seq_GET(seq, i)))
                goto error;
        break;
    case Suite_kind:
        PyErr_SetString(PyExc_RuntimeError,
                        "this compiler does not handle Suites");
        goto error;
    }
    if (!symtable_exit_block(st, (void *)mod)) {
        PySymtable_Free(st);
        return NULL;
    }
    /* Make the second symbol analysis pass */
    if (symtable_analyze(st))
        return st;
    PySymtable_Free(st);
    return NULL;
 error:
    (void) symtable_exit_block(st, (void *)mod);
    PySymtable_Free(st);
    return NULL;
}

void
PySymtable_Free(struct symtable *st)
{
    Py_XDECREF(st->st_blocks);
    Py_XDECREF(st->st_stack);
    PyMem_Free((void *)st);
}

PySTEntryObject *
PySymtable_Lookup(struct symtable *st, void *key)
{
    PyObject *k, *v;

    k = PyLong_FromVoidPtr(key);
    if (k == NULL)
        return NULL;
    v = PyDict_GetItem(st->st_blocks, k);
    if (v) {
        assert(PySTEntry_Check(v));
        Py_INCREF(v);
    }
    else {
        PyErr_SetString(PyExc_KeyError,
                        "unknown symbol table entry");
    }

    Py_DECREF(k);
    return (PySTEntryObject *)v;
}

int
PyST_GetScope(PySTEntryObject *ste, PyObject *name)
{
    PyObject *v = PyDict_GetItem(ste->ste_symbols, name);
    if (!v)
        return 0;
    assert(PyLong_Check(v));
    return (PyLong_AS_LONG(v) >> SCOPE_OFFSET) & SCOPE_MASK;
}


/* Analyze raw symbol information to determine scope of each name.

   The next several functions are helpers for symtable_analyze(),
   which determines whether a name is local, global, or free.  In addition,
   it determines which local variables are cell variables; they provide
   bindings that are used for free variables in enclosed blocks.

   There are also two kinds of global variables, implicit and explicit.  An
   explicit global is declared with the global statement.  An implicit
   global is a free variable for which the compiler has found no binding
   in an enclosing function scope.  The implicit global is either a global
   or a builtin.  Python's module and class blocks use the xxx_NAME opcodes
   to handle these names to implement slightly odd semantics.  In such a
   block, the name is treated as global until it is assigned to; then it
   is treated as a local.

   The symbol table requires two passes to determine the scope of each name.
   The first pass collects raw facts from the AST via the symtable_visit_*
   functions: the name is a parameter here, the name is used but not defined
   here, etc.  The second pass analyzes these facts during a pass over the
   PySTEntryObjects created during pass 1.

   When a function is entered during the second pass, the parent passes
   the set of all name bindings visible to its children.  These bindings
   are used to determine if non-local variables are free or implicit globals.
   Names which are explicitly declared nonlocal must exist in this set of
   visible names - if they do not, a syntax error is raised. After doing
   the local analysis, it analyzes each of its child blocks using an
   updated set of name bindings.

   The children update the free variable set.  If a local variable is added to
   the free variable set by the child, the variable is marked as a cell.  The
   function object being defined must provide runtime storage for the variable
   that may outlive the function's frame.  Cell variables are removed from the
   free set before the analyze function returns to its parent.

   During analysis, the names are:
      symbols: dict mapping from symbol names to flag values (including offset scope values)
      scopes: dict mapping from symbol names to scope values (no offset)
      local: set of all symbol names local to the current scope
      bound: set of all symbol names local to a containing function scope
      free: set of all symbol names referenced but not bound in child scopes
      global: set of all symbol names explicitly declared as global
*/

#define SET_SCOPE(DICT, NAME, I) { \
    PyObject *o = PyLong_FromLong(I); \
    if (!o) \
        return 0; \
    if (PyDict_SetItem((DICT), (NAME), o) < 0) { \
        Py_DECREF(o); \
        return 0; \
    } \
    Py_DECREF(o); \
}

/* Decide on scope of name, given flags.

   The namespace dictionaries may be modified to record information
   about the new name.  For example, a new global will add an entry to
   global.  A name that was global can be changed to local.
*/

static int
analyze_name(PySTEntryObject *ste, PyObject *scopes, PyObject *name, long flags,
             PyObject *bound, PyObject *local, PyObject *free,
             PyObject *global)
{
    if (flags & DEF_GLOBAL) {
        if (flags & DEF_PARAM) {
            PyErr_Format(PyExc_SyntaxError,
                        "name '%U' is parameter and global",
                        name);
            PyErr_SyntaxLocationEx(ste->ste_table->st_filename,
                                   ste->ste_lineno, ste->ste_col_offset);

            return 0;
        }
        if (flags & DEF_NONLOCAL) {
            PyErr_Format(PyExc_SyntaxError,
                         "name '%U' is nonlocal and global",
                         name);
            return 0;
        }
        SET_SCOPE(scopes, name, GLOBAL_EXPLICIT);
        if (PySet_Add(global, name) < 0)
            return 0;
        if (bound && (PySet_Discard(bound, name) < 0))
            return 0;
        return 1;
    }
    if (flags & DEF_NONLOCAL) {
        if (flags & DEF_PARAM) {
            PyErr_Format(PyExc_SyntaxError,
                         "name '%U' is parameter and nonlocal",
                         name);
            return 0;
        }
        if (!bound) {
            PyErr_Format(PyExc_SyntaxError,
                         "nonlocal declaration not allowed at module level");
            return 0;
        }
        if (!PySet_Contains(bound, name)) {
            PyErr_Format(PyExc_SyntaxError,
                         "no binding for nonlocal '%U' found",
                         name);

            return 0;
        }
        SET_SCOPE(scopes, name, FREE);
        ste->ste_free = 1;
        return PySet_Add(free, name) >= 0;
    }
    if (flags & DEF_BOUND) {
        SET_SCOPE(scopes, name, LOCAL);
        if (PySet_Add(local, name) < 0)
            return 0;
        if (PySet_Discard(global, name) < 0)
            return 0;
        return 1;
    }
    /* If an enclosing block has a binding for this name, it
       is a free variable rather than a global variable.
       Note that having a non-NULL bound implies that the block
       is nested.
    */
    if (bound && PySet_Contains(bound, name)) {
        SET_SCOPE(scopes, name, FREE);
        ste->ste_free = 1;
        return PySet_Add(free, name) >= 0;
    }
    /* If a parent has a global statement, then call it global
       explicit?  It could also be global implicit.
     */
    if (global && PySet_Contains(global, name)) {
        SET_SCOPE(scopes, name, GLOBAL_IMPLICIT);
        return 1;
    }
    if (ste->ste_nested)
        ste->ste_free = 1;
    SET_SCOPE(scopes, name, GLOBAL_IMPLICIT);
    return 1;
}

#undef SET_SCOPE

/* If a name is defined in free and also in locals, then this block
   provides the binding for the free variable.  The name should be
   marked CELL in this block and removed from the free list.

   Note that the current block's free variables are included in free.
   That's safe because no name can be free and local in the same scope.

   The 'restricted' argument may be set to a string to restrict the analysis
   to the one variable whose name equals that string (e.g. "__class__").
*/

static int
analyze_cells(PyObject *scopes, PyObject *free, const char *restricted)
{
    PyObject *name, *v, *v_cell;
    int success = 0;
    Py_ssize_t pos = 0;

    v_cell = PyLong_FromLong(CELL);
    if (!v_cell)
        return 0;
    while (PyDict_Next(scopes, &pos, &name, &v)) {
        long scope;
        assert(PyLong_Check(v));
        scope = PyLong_AS_LONG(v);
        if (scope != LOCAL)
            continue;
        if (!PySet_Contains(free, name))
            continue;
        if (restricted != NULL &&
            PyUnicode_CompareWithASCIIString(name, restricted))
            continue;
        /* Replace LOCAL with CELL for this name, and remove
           from free. It is safe to replace the value of name
           in the dict, because it will not cause a resize.
         */
        if (PyDict_SetItem(scopes, name, v_cell) < 0)
            goto error;
        if (PySet_Discard(free, name) < 0)
            goto error;
    }
    success = 1;
 error:
    Py_DECREF(v_cell);
    return success;
}

/* Check for illegal statements in unoptimized namespaces */
static int
check_unoptimized(const PySTEntryObject* ste) {
    const char* trailer;

    if (ste->ste_type != FunctionBlock || !ste->ste_unoptimized
        || !(ste->ste_free || ste->ste_child_free))
        return 1;

    trailer = (ste->ste_child_free ?
                   "contains a nested function with free variables" :
                   "is a nested function");

    switch (ste->ste_unoptimized) {
    case OPT_TOPLEVEL: /* import * at top-level is fine */
        return 1;
    case OPT_IMPORT_STAR:
        PyErr_Format(PyExc_SyntaxError,
                     "import * is not allowed in function '%U' because it %s",
                     ste->ste_name, trailer);
        break;
    }

    PyErr_SyntaxLocationEx(ste->ste_table->st_filename, ste->ste_opt_lineno,
                           ste->ste_opt_col_offset);
    return 0;
}

/* Enter the final scope information into the ste_symbols dict.
 *
 * All arguments are dicts.  Modifies symbols, others are read-only.
*/
static int
update_symbols(PyObject *symbols, PyObject *scopes,
               PyObject *bound, PyObject *free, int classflag)
{
    PyObject *name = NULL, *itr = NULL;
    PyObject *v = NULL, *v_scope = NULL, *v_new = NULL, *v_free = NULL;
    Py_ssize_t pos = 0;

    /* Update scope information for all symbols in this scope */
    while (PyDict_Next(symbols, &pos, &name, &v)) {
        long scope, flags;
        assert(PyLong_Check(v));
        flags = PyLong_AS_LONG(v);
        v_scope = PyDict_GetItem(scopes, name);
        assert(v_scope && PyLong_Check(v_scope));
        scope = PyLong_AS_LONG(v_scope);
        flags |= (scope << SCOPE_OFFSET);
        v_new = PyLong_FromLong(flags);
        if (!v_new)
            return 0;
        if (PyDict_SetItem(symbols, name, v_new) < 0) {
            Py_DECREF(v_new);
            return 0;
        }
        Py_DECREF(v_new);
    }

    /* Record not yet resolved free variables from children (if any) */
    v_free = PyLong_FromLong(FREE << SCOPE_OFFSET);
    if (!v_free)
        return 0;

    itr = PyObject_GetIter(free);
    if (!itr)
        goto error;

    while ((name = PyIter_Next(itr))) {
        v = PyDict_GetItem(symbols, name);

        /* Handle symbol that already exists in this scope */
        if (v) {
            /* Handle a free variable in a method of
               the class that has the same name as a local
               or global in the class scope.
            */
            if  (classflag &&
                 PyLong_AS_LONG(v) & (DEF_BOUND | DEF_GLOBAL)) {
                long flags = PyLong_AS_LONG(v) | DEF_FREE_CLASS;
                v_new = PyLong_FromLong(flags);
                if (!v_new) {
                    goto error;
                }
                if (PyDict_SetItem(symbols, name, v_new) < 0) {
                    Py_DECREF(v_new);
                    goto error;
                }
                Py_DECREF(v_new);
            }
            /* It's a cell, or already free in this scope */
            Py_DECREF(name);
            continue;
        }
        /* Handle global symbol */
        if (!PySet_Contains(bound, name)) {
            Py_DECREF(name);
            continue;       /* it's a global */
        }
        /* Propagate new free symbol up the lexical stack */
        if (PyDict_SetItem(symbols, name, v_free) < 0) {
            goto error;
        }
        Py_DECREF(name);
    }
    Py_DECREF(itr);
    Py_DECREF(v_free);
    return 1;
error:
    Py_XDECREF(v_free);
    Py_XDECREF(itr);
    Py_XDECREF(name);
    return 0;
}

/* Make final symbol table decisions for block of ste.

   Arguments:
   ste -- current symtable entry (input/output)
   bound -- set of variables bound in enclosing scopes (input).  bound
       is NULL for module blocks.
   free -- set of free variables in enclosed scopes (output)
   globals -- set of declared global variables in enclosing scopes (input)

   The implementation uses two mutually recursive functions,
   analyze_block() and analyze_child_block().  analyze_block() is
   responsible for analyzing the individual names defined in a block.
   analyze_child_block() prepares temporary namespace dictionaries
   used to evaluated nested blocks.

   The two functions exist because a child block should see the name
   bindings of its enclosing blocks, but those bindings should not
   propagate back to a parent block.
*/

static int
analyze_child_block(PySTEntryObject *entry, PyObject *bound, PyObject *free,
                    PyObject *global, PyObject* child_free);

static int
analyze_block(PySTEntryObject *ste, PyObject *bound, PyObject *free,
              PyObject *global)
{
    PyObject *name, *v, *local = NULL, *scopes = NULL, *newbound = NULL;
    PyObject *newglobal = NULL, *newfree = NULL, *allfree = NULL;
    PyObject *temp;
    int i, success = 0;
    Py_ssize_t pos = 0;

    local = PySet_New(NULL);  /* collect new names bound in block */
    if (!local)
        goto error;
    scopes = PyDict_New();  /* collect scopes defined for each name */
    if (!scopes)
        goto error;

    /* Allocate new global and bound variable dictionaries.  These
       dictionaries hold the names visible in nested blocks.  For
       ClassBlocks, the bound and global names are initialized
       before analyzing names, because class bindings aren't
       visible in methods.  For other blocks, they are initialized
       after names are analyzed.
     */

    /* TODO(jhylton): Package these dicts in a struct so that we
       can write reasonable helper functions?
    */
    newglobal = PySet_New(NULL);
    if (!newglobal)
        goto error;
    newfree = PySet_New(NULL);
    if (!newfree)
        goto error;
    newbound = PySet_New(NULL);
    if (!newbound)
        goto error;

    /* Class namespace has no effect on names visible in
       nested functions, so populate the global and bound
       sets to be passed to child blocks before analyzing
       this one.
     */
    if (ste->ste_type == ClassBlock) {
        /* Pass down known globals */
        temp = PyNumber_InPlaceOr(newglobal, global);
        if (!temp)
            goto error;
        Py_DECREF(temp);
        /* Pass down previously bound symbols */
        if (bound) {
            temp = PyNumber_InPlaceOr(newbound, bound);
            if (!temp)
                goto error;
            Py_DECREF(temp);
        }
    }

    while (PyDict_Next(ste->ste_symbols, &pos, &name, &v)) {
        long flags = PyLong_AS_LONG(v);
        if (!analyze_name(ste, scopes, name, flags,
                          bound, local, free, global))
            goto error;
    }

    /* Populate global and bound sets to be passed to children. */
    if (ste->ste_type != ClassBlock) {
        /* Add function locals to bound set */
        if (ste->ste_type == FunctionBlock) {
            temp = PyNumber_InPlaceOr(newbound, local);
            if (!temp)
                goto error;
            Py_DECREF(temp);
        }
        /* Pass down previously bound symbols */
        if (bound) {
            temp = PyNumber_InPlaceOr(newbound, bound);
            if (!temp)
                goto error;
            Py_DECREF(temp);
        }
        /* Pass down known globals */
        temp = PyNumber_InPlaceOr(newglobal, global);
        if (!temp)
            goto error;
        Py_DECREF(temp);
    }
    else {
        /* Special-case __class__ */
        if (!GET_IDENTIFIER(__class__))
            goto error;
        assert(PySet_Contains(local, __class__) == 1);
        if (PySet_Add(newbound, __class__) < 0)
            goto error;
    }

    /* Recursively call analyze_child_block() on each child block.

       newbound, newglobal now contain the names visible in
       nested blocks.  The free variables in the children will
       be collected in allfree.
    */
    allfree = PySet_New(NULL);
    if (!allfree)
        goto error;
    for (i = 0; i < PyList_GET_SIZE(ste->ste_children); ++i) {
        PyObject *c = PyList_GET_ITEM(ste->ste_children, i);
        PySTEntryObject* entry;
        assert(c && PySTEntry_Check(c));
        entry = (PySTEntryObject*)c;
        if (!analyze_child_block(entry, newbound, newfree, newglobal,
                                 allfree))
            goto error;
        /* Check if any children have free variables */
        if (entry->ste_free || entry->ste_child_free)
            ste->ste_child_free = 1;
    }

    temp = PyNumber_InPlaceOr(newfree, allfree);
    if (!temp)
        goto error;
    Py_DECREF(temp);

    /* Check if any local variables must be converted to cell variables */
    if (ste->ste_type == FunctionBlock && !analyze_cells(scopes, newfree,
                                                         NULL))
        goto error;
    else if (ste->ste_type == ClassBlock && !analyze_cells(scopes, newfree,
                                                           "__class__"))
        goto error;
    /* Records the results of the analysis in the symbol table entry */
    if (!update_symbols(ste->ste_symbols, scopes, bound, newfree,
                        ste->ste_type == ClassBlock))
        goto error;
    if (!check_unoptimized(ste))
        goto error;

    temp = PyNumber_InPlaceOr(free, newfree);
    if (!temp)
        goto error;
    Py_DECREF(temp);
    success = 1;
 error:
    Py_XDECREF(scopes);
    Py_XDECREF(local);
    Py_XDECREF(newbound);
    Py_XDECREF(newglobal);
    Py_XDECREF(newfree);
    Py_XDECREF(allfree);
    if (!success)
        assert(PyErr_Occurred());
    return success;
}

static int
analyze_child_block(PySTEntryObject *entry, PyObject *bound, PyObject *free,
                    PyObject *global, PyObject* child_free)
{
    PyObject *temp_bound = NULL, *temp_global = NULL, *temp_free = NULL;
    PyObject *temp;

    /* Copy the bound and global dictionaries.

       These dictionary are used by all blocks enclosed by the
       current block.  The analyze_block() call modifies these
       dictionaries.

    */
    temp_bound = PySet_New(bound);
    if (!temp_bound)
        goto error;
    temp_free = PySet_New(free);
    if (!temp_free)
        goto error;
    temp_global = PySet_New(global);
    if (!temp_global)
        goto error;

    if (!analyze_block(entry, temp_bound, temp_free, temp_global))
        goto error;
    temp = PyNumber_InPlaceOr(child_free, temp_free);
    if (!temp)
        goto error;
    Py_DECREF(temp);
    Py_DECREF(temp_bound);
    Py_DECREF(temp_free);
    Py_DECREF(temp_global);
    return 1;
 error:
    Py_XDECREF(temp_bound);
    Py_XDECREF(temp_free);
    Py_XDECREF(temp_global);
    return 0;
}

static int
symtable_analyze(struct symtable *st)
{
    PyObject *free, *global;
    int r;

    free = PySet_New(NULL);
    if (!free)
        return 0;
    global = PySet_New(NULL);
    if (!global) {
        Py_DECREF(free);
        return 0;
    }
    r = analyze_block(st->st_top, NULL, free, global);
    Py_DECREF(free);
    Py_DECREF(global);
    return r;
}


static int
symtable_warn(struct symtable *st, char *msg, int lineno)
{
    if (PyErr_WarnExplicit(PyExc_SyntaxWarning, msg, st->st_filename,
                           lineno, NULL, NULL) < 0)     {
        if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
            PyErr_SetString(PyExc_SyntaxError, msg);
            PyErr_SyntaxLocationEx(st->st_filename, st->st_cur->ste_lineno,
                                   st->st_cur->ste_col_offset);
        }
        return 0;
    }
    return 1;
}

/* symtable_enter_block() gets a reference via ste_new.
   This reference is released when the block is exited, via the DECREF
   in symtable_exit_block().
*/

static int
symtable_exit_block(struct symtable *st, void *ast)
{
    Py_ssize_t end;

    Py_CLEAR(st->st_cur);
    end = PyList_GET_SIZE(st->st_stack) - 1;
    if (end >= 0) {
        st->st_cur = (PySTEntryObject *)PyList_GET_ITEM(st->st_stack,
                                                        end);
        if (st->st_cur == NULL)
            return 0;
        Py_INCREF(st->st_cur);
        if (PySequence_DelItem(st->st_stack, end) < 0)
            return 0;
    }
    return 1;
}

static int
symtable_enter_block(struct symtable *st, identifier name, _Py_block_ty block,
                     void *ast, int lineno, int col_offset)
{
    PySTEntryObject *prev = NULL;

    if (st->st_cur) {
        prev = st->st_cur;
        if (PyList_Append(st->st_stack, (PyObject *)st->st_cur) < 0) {
            return 0;
        }
        Py_DECREF(st->st_cur);
    }
    st->st_cur = ste_new(st, name, block, ast, lineno, col_offset);
    if (st->st_cur == NULL)
        return 0;
    if (block == ModuleBlock)
        st->st_global = st->st_cur->ste_symbols;
    if (prev) {
        if (PyList_Append(prev->ste_children,
                          (PyObject *)st->st_cur) < 0) {
            return 0;
        }
    }
    return 1;
}

static long
symtable_lookup(struct symtable *st, PyObject *name)
{
    PyObject *o;
    PyObject *mangled = _Py_Mangle(st->st_private, name);
    if (!mangled)
        return 0;
    o = PyDict_GetItem(st->st_cur->ste_symbols, mangled);
    Py_DECREF(mangled);
    if (!o)
        return 0;
    return PyLong_AsLong(o);
}

static int
symtable_add_def(struct symtable *st, PyObject *name, int flag)
{
    PyObject *o;
    PyObject *dict;
    long val;
    PyObject *mangled = _Py_Mangle(st->st_private, name);


    if (!mangled)
        return 0;
    dict = st->st_cur->ste_symbols;
    if ((o = PyDict_GetItem(dict, mangled))) {
        val = PyLong_AS_LONG(o);
        if ((flag & DEF_PARAM) && (val & DEF_PARAM)) {
            /* Is it better to use 'mangled' or 'name' here? */
            PyErr_Format(PyExc_SyntaxError, DUPLICATE_ARGUMENT, name);
            PyErr_SyntaxLocationEx(st->st_filename,
                                   st->st_cur->ste_lineno,
                                   st->st_cur->ste_col_offset);
            goto error;
        }
        val |= flag;
    } else
        val = flag;
    o = PyLong_FromLong(val);
    if (o == NULL)
        goto error;
    if (PyDict_SetItem(dict, mangled, o) < 0) {
        Py_DECREF(o);
        goto error;
    }
    Py_DECREF(o);

    if (flag & DEF_PARAM) {
        if (PyList_Append(st->st_cur->ste_varnames, mangled) < 0)
            goto error;
    } else      if (flag & DEF_GLOBAL) {
        /* XXX need to update DEF_GLOBAL for other flags too;
           perhaps only DEF_FREE_GLOBAL */
        val = flag;
        if ((o = PyDict_GetItem(st->st_global, mangled))) {
            val |= PyLong_AS_LONG(o);
        }
        o = PyLong_FromLong(val);
        if (o == NULL)
            goto error;
        if (PyDict_SetItem(st->st_global, mangled, o) < 0) {
            Py_DECREF(o);
            goto error;
        }
        Py_DECREF(o);
    }
    Py_DECREF(mangled);
    return 1;

error:
    Py_DECREF(mangled);
    return 0;
}

/* VISIT, VISIT_SEQ and VIST_SEQ_TAIL take an ASDL type as their second argument.
   They use the ASDL name to synthesize the name of the C type and the visit
   function.

   VISIT_SEQ_TAIL permits the start of an ASDL sequence to be skipped, which is
   useful if the first node in the sequence requires special treatment.
*/

#define VISIT(ST, TYPE, V) \
    if (!symtable_visit_ ## TYPE((ST), (V))) \
        return 0;

#define VISIT_IN_BLOCK(ST, TYPE, V, S) \
    if (!symtable_visit_ ## TYPE((ST), (V))) { \
        symtable_exit_block((ST), (S)); \
        return 0; \
    }

#define VISIT_SEQ(ST, TYPE, SEQ) { \
    int i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (i = 0; i < asdl_seq_LEN(seq); i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, i); \
        if (!symtable_visit_ ## TYPE((ST), elt)) \
            return 0; \
    } \
}

#define VISIT_SEQ_IN_BLOCK(ST, TYPE, SEQ, S) { \
    int i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (i = 0; i < asdl_seq_LEN(seq); i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, i); \
        if (!symtable_visit_ ## TYPE((ST), elt)) { \
            symtable_exit_block((ST), (S)); \
            return 0; \
        } \
    } \
}

#define VISIT_SEQ_TAIL(ST, TYPE, SEQ, START) { \
    int i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (i = (START); i < asdl_seq_LEN(seq); i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, i); \
        if (!symtable_visit_ ## TYPE((ST), elt)) \
            return 0; \
    } \
}

#define VISIT_SEQ_TAIL_IN_BLOCK(ST, TYPE, SEQ, START, S) { \
    int i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (i = (START); i < asdl_seq_LEN(seq); i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, i); \
        if (!symtable_visit_ ## TYPE((ST), elt)) { \
            symtable_exit_block((ST), (S)); \
            return 0; \
        } \
    } \
}

#define VISIT_KWONLYDEFAULTS(ST, KW_DEFAULTS) { \
    int i = 0; \
    asdl_seq *seq = (KW_DEFAULTS); /* avoid variable capture */ \
    for (i = 0; i < asdl_seq_LEN(seq); i++) { \
        expr_ty elt = (expr_ty)asdl_seq_GET(seq, i); \
        if (!elt) continue; /* can be NULL */ \
        if (!symtable_visit_expr((ST), elt)) \
            return 0; \
    } \
}

static int
symtable_new_tmpname(struct symtable *st)
{
    char tmpname[256];
    identifier tmp;

    PyOS_snprintf(tmpname, sizeof(tmpname), "_[%d]",
                  ++st->st_cur->ste_tmpname);
    tmp = PyUnicode_InternFromString(tmpname);
    if (!tmp)
        return 0;
    if (!symtable_add_def(st, tmp, DEF_LOCAL))
        return 0;
    Py_DECREF(tmp);
    return 1;
}


static int
symtable_visit_stmt(struct symtable *st, stmt_ty s)
{
    switch (s->kind) {
    case FunctionDef_kind:
        if (!symtable_add_def(st, s->v.FunctionDef.name, DEF_LOCAL))
            return 0;
        if (s->v.FunctionDef.args->defaults)
            VISIT_SEQ(st, expr, s->v.FunctionDef.args->defaults);
        if (s->v.FunctionDef.args->kw_defaults)
            VISIT_KWONLYDEFAULTS(st,
                               s->v.FunctionDef.args->kw_defaults);
        if (!symtable_visit_annotations(st, s))
            return 0;
        if (s->v.FunctionDef.decorator_list)
            VISIT_SEQ(st, expr, s->v.FunctionDef.decorator_list);
        if (!symtable_enter_block(st, s->v.FunctionDef.name,
                                  FunctionBlock, (void *)s, s->lineno,
                                  s->col_offset))
            return 0;
        VISIT_IN_BLOCK(st, arguments, s->v.FunctionDef.args, s);
        VISIT_SEQ_IN_BLOCK(st, stmt, s->v.FunctionDef.body, s);
        if (!symtable_exit_block(st, s))
            return 0;
        break;
    case ClassDef_kind: {
        PyObject *tmp;
        if (!symtable_add_def(st, s->v.ClassDef.name, DEF_LOCAL))
            return 0;
        VISIT_SEQ(st, expr, s->v.ClassDef.bases);
        VISIT_SEQ(st, keyword, s->v.ClassDef.keywords);
        if (s->v.ClassDef.starargs)
            VISIT(st, expr, s->v.ClassDef.starargs);
        if (s->v.ClassDef.kwargs)
            VISIT(st, expr, s->v.ClassDef.kwargs);
        if (s->v.ClassDef.decorator_list)
            VISIT_SEQ(st, expr, s->v.ClassDef.decorator_list);
        if (!symtable_enter_block(st, s->v.ClassDef.name, ClassBlock,
                                  (void *)s, s->lineno, s->col_offset))
            return 0;
        if (!GET_IDENTIFIER(__class__) ||
            !symtable_add_def(st, __class__, DEF_LOCAL) ||
            !GET_IDENTIFIER(__locals__) ||
            !symtable_add_def(st, __locals__, DEF_PARAM)) {
            symtable_exit_block(st, s);
            return 0;
        }
        tmp = st->st_private;
        st->st_private = s->v.ClassDef.name;
        VISIT_SEQ_IN_BLOCK(st, stmt, s->v.ClassDef.body, s);
        st->st_private = tmp;
        if (!symtable_exit_block(st, s))
            return 0;
        break;
    }
    case Return_kind:
        if (s->v.Return.value) {
            VISIT(st, expr, s->v.Return.value);
            st->st_cur->ste_returns_value = 1;
            if (st->st_cur->ste_generator) {
                PyErr_SetString(PyExc_SyntaxError,
                    RETURN_VAL_IN_GENERATOR);
                PyErr_SyntaxLocationEx(st->st_filename,
                                       s->lineno,
                                       s->col_offset);
                return 0;
            }
        }
        break;
    case Delete_kind:
        VISIT_SEQ(st, expr, s->v.Delete.targets);
        break;
    case Assign_kind:
        VISIT_SEQ(st, expr, s->v.Assign.targets);
        VISIT(st, expr, s->v.Assign.value);
        break;
    case AugAssign_kind:
        VISIT(st, expr, s->v.AugAssign.target);
        VISIT(st, expr, s->v.AugAssign.value);
        break;
    case For_kind:
        VISIT(st, expr, s->v.For.target);
        VISIT(st, expr, s->v.For.iter);
        VISIT_SEQ(st, stmt, s->v.For.body);
        if (s->v.For.orelse)
            VISIT_SEQ(st, stmt, s->v.For.orelse);
        break;
    case While_kind:
        VISIT(st, expr, s->v.While.test);
        VISIT_SEQ(st, stmt, s->v.While.body);
        if (s->v.While.orelse)
            VISIT_SEQ(st, stmt, s->v.While.orelse);
        break;
    case If_kind:
        /* XXX if 0: and lookup_yield() hacks */
        VISIT(st, expr, s->v.If.test);
        VISIT_SEQ(st, stmt, s->v.If.body);
        if (s->v.If.orelse)
            VISIT_SEQ(st, stmt, s->v.If.orelse);
        break;
    case Raise_kind:
        if (s->v.Raise.exc) {
            VISIT(st, expr, s->v.Raise.exc);
            if (s->v.Raise.cause) {
                VISIT(st, expr, s->v.Raise.cause);
            }
        }
        break;
    case TryExcept_kind:
        VISIT_SEQ(st, stmt, s->v.TryExcept.body);
        VISIT_SEQ(st, stmt, s->v.TryExcept.orelse);
        VISIT_SEQ(st, excepthandler, s->v.TryExcept.handlers);
        break;
    case TryFinally_kind:
        VISIT_SEQ(st, stmt, s->v.TryFinally.body);
        VISIT_SEQ(st, stmt, s->v.TryFinally.finalbody);
        break;
    case Assert_kind:
        VISIT(st, expr, s->v.Assert.test);
        if (s->v.Assert.msg)
            VISIT(st, expr, s->v.Assert.msg);
        break;
    case Import_kind:
        VISIT_SEQ(st, alias, s->v.Import.names);
        /* XXX Don't have the lineno available inside
           visit_alias */
        if (st->st_cur->ste_unoptimized && !st->st_cur->ste_opt_lineno) {
            st->st_cur->ste_opt_lineno = s->lineno;
            st->st_cur->ste_opt_col_offset = s->col_offset;
        }
        break;
    case ImportFrom_kind:
        VISIT_SEQ(st, alias, s->v.ImportFrom.names);
        /* XXX Don't have the lineno available inside
           visit_alias */
        if (st->st_cur->ste_unoptimized && !st->st_cur->ste_opt_lineno) {
            st->st_cur->ste_opt_lineno = s->lineno;
            st->st_cur->ste_opt_col_offset = s->col_offset;
        }
        break;
    case Global_kind: {
        int i;
        asdl_seq *seq = s->v.Global.names;
        for (i = 0; i < asdl_seq_LEN(seq); i++) {
            identifier name = (identifier)asdl_seq_GET(seq, i);
            char *c_name = _PyUnicode_AsString(name);
            long cur = symtable_lookup(st, name);
            if (cur < 0)
                return 0;
            if (cur & (DEF_LOCAL | USE)) {
                char buf[256];
                if (cur & DEF_LOCAL)
                    PyOS_snprintf(buf, sizeof(buf),
                                  GLOBAL_AFTER_ASSIGN,
                                  c_name);
                else
                    PyOS_snprintf(buf, sizeof(buf),
                                  GLOBAL_AFTER_USE,
                                  c_name);
                if (!symtable_warn(st, buf, s->lineno))
                    return 0;
            }
            if (!symtable_add_def(st, name, DEF_GLOBAL))
                return 0;
        }
        break;
    }
    case Nonlocal_kind: {
        int i;
        asdl_seq *seq = s->v.Nonlocal.names;
        for (i = 0; i < asdl_seq_LEN(seq); i++) {
            identifier name = (identifier)asdl_seq_GET(seq, i);
            char *c_name = _PyUnicode_AsString(name);
            long cur = symtable_lookup(st, name);
            if (cur < 0)
                return 0;
            if (cur & (DEF_LOCAL | USE)) {
                char buf[256];
                if (cur & DEF_LOCAL)
                    PyOS_snprintf(buf, sizeof(buf),
                                  NONLOCAL_AFTER_ASSIGN,
                                  c_name);
                else
                    PyOS_snprintf(buf, sizeof(buf),
                                  NONLOCAL_AFTER_USE,
                                  c_name);
                if (!symtable_warn(st, buf, s->lineno))
                    return 0;
            }
            if (!symtable_add_def(st, name, DEF_NONLOCAL))
                return 0;
        }
        break;
    }
    case Expr_kind:
        VISIT(st, expr, s->v.Expr.value);
        break;
    case Pass_kind:
    case Break_kind:
    case Continue_kind:
        /* nothing to do here */
        break;
    case With_kind:
        VISIT(st, expr, s->v.With.context_expr);
        if (s->v.With.optional_vars) {
            VISIT(st, expr, s->v.With.optional_vars);
        }
        VISIT_SEQ(st, stmt, s->v.With.body);
        break;
    }
    return 1;
}

static int
symtable_visit_expr(struct symtable *st, expr_ty e)
{
    switch (e->kind) {
    case BoolOp_kind:
        VISIT_SEQ(st, expr, e->v.BoolOp.values);
        break;
    case BinOp_kind:
        VISIT(st, expr, e->v.BinOp.left);
        VISIT(st, expr, e->v.BinOp.right);
        break;
    case UnaryOp_kind:
        VISIT(st, expr, e->v.UnaryOp.operand);
        break;
    case Lambda_kind: {
        if (!GET_IDENTIFIER(lambda))
            return 0;
        if (e->v.Lambda.args->defaults)
            VISIT_SEQ(st, expr, e->v.Lambda.args->defaults);
        if (!symtable_enter_block(st, lambda,
                                  FunctionBlock, (void *)e, e->lineno,
                                  e->col_offset))
            return 0;
        VISIT_IN_BLOCK(st, arguments, e->v.Lambda.args, (void*)e);
        VISIT_IN_BLOCK(st, expr, e->v.Lambda.body, (void*)e);
        if (!symtable_exit_block(st, (void *)e))
            return 0;
        break;
    }
    case IfExp_kind:
        VISIT(st, expr, e->v.IfExp.test);
        VISIT(st, expr, e->v.IfExp.body);
        VISIT(st, expr, e->v.IfExp.orelse);
        break;
    case Dict_kind:
        VISIT_SEQ(st, expr, e->v.Dict.keys);
        VISIT_SEQ(st, expr, e->v.Dict.values);
        break;
    case Set_kind:
        VISIT_SEQ(st, expr, e->v.Set.elts);
        break;
    case GeneratorExp_kind:
        if (!symtable_visit_genexp(st, e))
            return 0;
        break;
    case ListComp_kind:
        if (!symtable_visit_listcomp(st, e))
            return 0;
        break;
    case SetComp_kind:
        if (!symtable_visit_setcomp(st, e))
            return 0;
        break;
    case DictComp_kind:
        if (!symtable_visit_dictcomp(st, e))
            return 0;
        break;
    case Yield_kind:
        if (e->v.Yield.value)
            VISIT(st, expr, e->v.Yield.value);
        st->st_cur->ste_generator = 1;
        if (st->st_cur->ste_returns_value) {
            PyErr_SetString(PyExc_SyntaxError,
                RETURN_VAL_IN_GENERATOR);
            PyErr_SyntaxLocationEx(st->st_filename,
                                   e->lineno, e->col_offset);
            return 0;
        }
        break;
    case Compare_kind:
        VISIT(st, expr, e->v.Compare.left);
        VISIT_SEQ(st, expr, e->v.Compare.comparators);
        break;
    case Call_kind:
        VISIT(st, expr, e->v.Call.func);
        VISIT_SEQ(st, expr, e->v.Call.args);
        VISIT_SEQ(st, keyword, e->v.Call.keywords);
        if (e->v.Call.starargs)
            VISIT(st, expr, e->v.Call.starargs);
        if (e->v.Call.kwargs)
            VISIT(st, expr, e->v.Call.kwargs);
        break;
    case Num_kind:
    case Str_kind:
    case Bytes_kind:
    case Ellipsis_kind:
        /* Nothing to do here. */
        break;
    /* The following exprs can be assignment targets. */
    case Attribute_kind:
        VISIT(st, expr, e->v.Attribute.value);
        break;
    case Subscript_kind:
        VISIT(st, expr, e->v.Subscript.value);
        VISIT(st, slice, e->v.Subscript.slice);
        break;
    case Starred_kind:
        VISIT(st, expr, e->v.Starred.value);
        break;
    case Name_kind:
        if (!symtable_add_def(st, e->v.Name.id,
                              e->v.Name.ctx == Load ? USE : DEF_LOCAL))
            return 0;
        /* Special-case super: it counts as a use of __class__ */
        if (e->v.Name.ctx == Load &&
            st->st_cur->ste_type == FunctionBlock &&
            !PyUnicode_CompareWithASCIIString(e->v.Name.id, "super")) {
            if (!GET_IDENTIFIER(__class__) ||
                !symtable_add_def(st, __class__, USE))
                return 0;
        }
        break;
    /* child nodes of List and Tuple will have expr_context set */
    case List_kind:
        VISIT_SEQ(st, expr, e->v.List.elts);
        break;
    case Tuple_kind:
        VISIT_SEQ(st, expr, e->v.Tuple.elts);
        break;
    }
    return 1;
}

static int
symtable_implicit_arg(struct symtable *st, int pos)
{
    PyObject *id = PyUnicode_FromFormat(".%d", pos);
    if (id == NULL)
        return 0;
    if (!symtable_add_def(st, id, DEF_PARAM)) {
        Py_DECREF(id);
        return 0;
    }
    Py_DECREF(id);
    return 1;
}

static int
symtable_visit_params(struct symtable *st, asdl_seq *args)
{
    int i;

    if (!args)
        return -1;

    for (i = 0; i < asdl_seq_LEN(args); i++) {
        arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
        if (!symtable_add_def(st, arg->arg, DEF_PARAM))
            return 0;
    }

    return 1;
}

static int
symtable_visit_argannotations(struct symtable *st, asdl_seq *args)
{
    int i;

    if (!args)
        return -1;

    for (i = 0; i < asdl_seq_LEN(args); i++) {
        arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
        if (arg->annotation)
            VISIT(st, expr, arg->annotation);
    }

    return 1;
}

static int
symtable_visit_annotations(struct symtable *st, stmt_ty s)
{
    arguments_ty a = s->v.FunctionDef.args;

    if (a->args && !symtable_visit_argannotations(st, a->args))
        return 0;
    if (a->varargannotation)
        VISIT(st, expr, a->varargannotation);
    if (a->kwargannotation)
        VISIT(st, expr, a->kwargannotation);
    if (a->kwonlyargs && !symtable_visit_argannotations(st, a->kwonlyargs))
        return 0;
    if (s->v.FunctionDef.returns)
        VISIT(st, expr, s->v.FunctionDef.returns);
    return 1;
}

static int
symtable_visit_arguments(struct symtable *st, arguments_ty a)
{
    /* skip default arguments inside function block
       XXX should ast be different?
    */
    if (a->args && !symtable_visit_params(st, a->args))
        return 0;
    if (a->kwonlyargs && !symtable_visit_params(st, a->kwonlyargs))
        return 0;
    if (a->vararg) {
        if (!symtable_add_def(st, a->vararg, DEF_PARAM))
            return 0;
        st->st_cur->ste_varargs = 1;
    }
    if (a->kwarg) {
        if (!symtable_add_def(st, a->kwarg, DEF_PARAM))
            return 0;
        st->st_cur->ste_varkeywords = 1;
    }
    return 1;
}


static int
symtable_visit_excepthandler(struct symtable *st, excepthandler_ty eh)
{
    if (eh->v.ExceptHandler.type)
        VISIT(st, expr, eh->v.ExceptHandler.type);
    if (eh->v.ExceptHandler.name)
        if (!symtable_add_def(st, eh->v.ExceptHandler.name, DEF_LOCAL))
            return 0;
    VISIT_SEQ(st, stmt, eh->v.ExceptHandler.body);
    return 1;
}


static int
symtable_visit_alias(struct symtable *st, alias_ty a)
{
    /* Compute store_name, the name actually bound by the import
       operation.  It is different than a->name when a->name is a
       dotted package name (e.g. spam.eggs)
    */
    PyObject *store_name;
    PyObject *name = (a->asname == NULL) ? a->name : a->asname;
    const Py_UNICODE *base = PyUnicode_AS_UNICODE(name);
    Py_UNICODE *dot = Py_UNICODE_strchr(base, '.');
    if (dot) {
        store_name = PyUnicode_FromUnicode(base, dot - base);
        if (!store_name)
            return 0;
    }
    else {
        store_name = name;
        Py_INCREF(store_name);
    }
    if (PyUnicode_CompareWithASCIIString(name, "*")) {
        int r = symtable_add_def(st, store_name, DEF_IMPORT);
        Py_DECREF(store_name);
        return r;
    }
    else {
        if (st->st_cur->ste_type != ModuleBlock) {
        int lineno = st->st_cur->ste_lineno;
        int col_offset = st->st_cur->ste_col_offset;
        PyErr_SetString(PyExc_SyntaxError, IMPORT_STAR_WARNING);
        PyErr_SyntaxLocationEx(st->st_filename, lineno, col_offset);
        Py_DECREF(store_name);
        return 0;
        }
        st->st_cur->ste_unoptimized |= OPT_IMPORT_STAR;
        Py_DECREF(store_name);
        return 1;
    }
}


static int
symtable_visit_comprehension(struct symtable *st, comprehension_ty lc)
{
    VISIT(st, expr, lc->target);
    VISIT(st, expr, lc->iter);
    VISIT_SEQ(st, expr, lc->ifs);
    return 1;
}


static int
symtable_visit_keyword(struct symtable *st, keyword_ty k)
{
    VISIT(st, expr, k->value);
    return 1;
}


static int
symtable_visit_slice(struct symtable *st, slice_ty s)
{
    switch (s->kind) {
    case Slice_kind:
        if (s->v.Slice.lower)
            VISIT(st, expr, s->v.Slice.lower)
        if (s->v.Slice.upper)
            VISIT(st, expr, s->v.Slice.upper)
        if (s->v.Slice.step)
            VISIT(st, expr, s->v.Slice.step)
        break;
    case ExtSlice_kind:
        VISIT_SEQ(st, slice, s->v.ExtSlice.dims)
        break;
    case Index_kind:
        VISIT(st, expr, s->v.Index.value)
        break;
    }
    return 1;
}

static int
symtable_handle_comprehension(struct symtable *st, expr_ty e,
                              identifier scope_name, asdl_seq *generators,
                              expr_ty elt, expr_ty value)
{
    int is_generator = (e->kind == GeneratorExp_kind);
    int needs_tmp = !is_generator;
    comprehension_ty outermost = ((comprehension_ty)
                                    asdl_seq_GET(generators, 0));
    /* Outermost iterator is evaluated in current scope */
    VISIT(st, expr, outermost->iter);
    /* Create comprehension scope for the rest */
    if (!scope_name ||
        !symtable_enter_block(st, scope_name, FunctionBlock, (void *)e,
                              e->lineno, e->col_offset)) {
        return 0;
    }
    st->st_cur->ste_generator = is_generator;
    /* Outermost iter is received as an argument */
    if (!symtable_implicit_arg(st, 0)) {
        symtable_exit_block(st, (void *)e);
        return 0;
    }
    /* Allocate temporary name if needed */
    if (needs_tmp && !symtable_new_tmpname(st)) {
        symtable_exit_block(st, (void *)e);
        return 0;
    }
    VISIT_IN_BLOCK(st, expr, outermost->target, (void*)e);
    VISIT_SEQ_IN_BLOCK(st, expr, outermost->ifs, (void*)e);
    VISIT_SEQ_TAIL_IN_BLOCK(st, comprehension,
                            generators, 1, (void*)e);
    if (value)
        VISIT_IN_BLOCK(st, expr, value, (void*)e);
    VISIT_IN_BLOCK(st, expr, elt, (void*)e);
    return symtable_exit_block(st, (void *)e);
}

static int
symtable_visit_genexp(struct symtable *st, expr_ty e)
{
    return symtable_handle_comprehension(st, e, GET_IDENTIFIER(genexpr),
                                         e->v.GeneratorExp.generators,
                                         e->v.GeneratorExp.elt, NULL);
}

static int
symtable_visit_listcomp(struct symtable *st, expr_ty e)
{
    return symtable_handle_comprehension(st, e, GET_IDENTIFIER(listcomp),
                                         e->v.ListComp.generators,
                                         e->v.ListComp.elt, NULL);
}

static int
symtable_visit_setcomp(struct symtable *st, expr_ty e)
{
    return symtable_handle_comprehension(st, e, GET_IDENTIFIER(setcomp),
                                         e->v.SetComp.generators,
                                         e->v.SetComp.elt, NULL);
}

static int
symtable_visit_dictcomp(struct symtable *st, expr_ty e)
{
    return symtable_handle_comprehension(st, e, GET_IDENTIFIER(dictcomp),
                                         e->v.DictComp.generators,
                                         e->v.DictComp.key,
                                         e->v.DictComp.value);
}
written to the * parent channel for further processing. */ if (!TransformWrite(rtPtr, errorCodePtr, UCHARP(buf), toWrite)) { Tcl_Release(rtPtr); return -1; } *errorCodePtr = EOK; Tcl_Release(rtPtr); return toWrite; } /* *---------------------------------------------------------------------- * * ReflectSeekWide / ReflectSeek -- * * This function is invoked when the user wishes to seek on the channel. * * Results: * The new location of the access point. * * Side effects: * Allocates memory. Arbitrary, per the parent channel, and the called * scripts. * *---------------------------------------------------------------------- */ static Tcl_WideInt ReflectSeekWide( ClientData clientData, Tcl_WideInt offset, int seekMode, int *errorCodePtr) { ReflectedTransform *rtPtr = clientData; Channel *parent = (Channel *) rtPtr->parent; Tcl_WideInt curPos; /* Position on the device. */ Tcl_DriverSeekProc *seekProc = Tcl_ChannelSeekProc(Tcl_GetChannelType(rtPtr->parent)); /* * Fail if the parent channel is not seekable. */ if (seekProc == NULL) { Tcl_SetErrno(EINVAL); return Tcl_LongAsWide(-1); } /* * Check if we can leave out involving the Tcl level, i.e. transformation * handler. This is true for tell requests, and transformations which * support neither flush, nor drain. For these cases we can pass the * request down and the result back up unchanged. */ Tcl_Preserve(rtPtr); if (((seekMode != SEEK_CUR) || (offset != 0)) && (HAS(rtPtr->methods, METH_CLEAR) || HAS(rtPtr->methods, METH_FLUSH))) { /* * Neither a tell request, nor clear/flush both not supported. We have * to go through the Tcl level to clear and/or flush the * transformation. */ if (rtPtr->methods & FLAG(METH_CLEAR)) { TransformClear(rtPtr); } /* * When flushing the transform for seeking the generated results are * irrelevant. We cannot put them into the channel, this would move * the location, throwing it off with regard to where we are and are * seeking to. */ if (HAS(rtPtr->methods, METH_FLUSH)) { if (!TransformFlush(rtPtr, errorCodePtr, FLUSH_DISCARD)) { Tcl_Release(rtPtr); return -1; } } } /* * Now seek to the new position in the channel as requested by the * caller. Note that we prefer the wideSeekProc if that is available and * non-NULL... */ if (HaveVersion(parent->typePtr, TCL_CHANNEL_VERSION_3) && parent->typePtr->wideSeekProc != NULL) { curPos = parent->typePtr->wideSeekProc(parent->instanceData, offset, seekMode, errorCodePtr); } else if (offset < Tcl_LongAsWide(LONG_MIN) || offset > Tcl_LongAsWide(LONG_MAX)) { *errorCodePtr = EOVERFLOW; curPos = Tcl_LongAsWide(-1); } else { curPos = Tcl_LongAsWide(parent->typePtr->seekProc( parent->instanceData, Tcl_WideAsLong(offset), seekMode, errorCodePtr)); } if (curPos == Tcl_LongAsWide(-1)) { Tcl_SetErrno(*errorCodePtr); } *errorCodePtr = EOK; Tcl_Release(rtPtr); return curPos; } static int ReflectSeek( ClientData clientData, long offset, int seekMode, int *errorCodePtr) { /* * This function can be invoked from a transformation which is based on * standard seeking, i.e. non-wide. Because of this we have to implement * it, a dummy is not enough. We simply delegate the call to the wide * routine. */ return (int) ReflectSeekWide(clientData, Tcl_LongAsWide(offset), seekMode, errorCodePtr); } /* *---------------------------------------------------------------------- * * ReflectWatch -- * * This function is invoked to tell the channel what events the I/O * system is interested in. * * Results: * None. * * Side effects: * Allocates memory. Arbitrary, as it calls upon a script. * *---------------------------------------------------------------------- */ static void ReflectWatch( ClientData clientData, int mask) { ReflectedTransform *rtPtr = clientData; Tcl_DriverWatchProc *watchProc; watchProc = Tcl_ChannelWatchProc(Tcl_GetChannelType(rtPtr->parent)); watchProc(Tcl_GetChannelInstanceData(rtPtr->parent), mask); /* * Management of the internal timer. */ if (!(mask & TCL_READABLE) || (ResultLength(&rtPtr->result) == 0)) { /* * A pending timer may exist, but either is there no (more) interest * in the events it generates or nothing is available for reading. * Remove it, if existing. */ TimerKill(rtPtr); } else { /* * There might be no pending timer, but there is interest in readable * events and we actually have data waiting, so generate a timer to * flush that if it does not exist. */ TimerSetup(rtPtr); } } /* *---------------------------------------------------------------------- * * ReflectBlock -- * * This function is invoked to tell the channel which blocking behaviour * is required of it. * * Results: * A posix error number. * * Side effects: * Allocates memory. Arbitrary, as it calls upon a script. * *---------------------------------------------------------------------- */ static int ReflectBlock( ClientData clientData, int nonblocking) { ReflectedTransform *rtPtr = clientData; /* * Transformations simply record the blocking mode in their C level * structure for use by --> ReflectInput. The Tcl level doesn't see this * information or change. As such thread forwarding is not required. */ rtPtr->nonblocking = nonblocking; return EOK; } /* *---------------------------------------------------------------------- * * ReflectSetOption -- * * This function is invoked to configure a channel option. * * Results: * A standard Tcl result code. * * Side effects: * Arbitrary, per the parent channel. * *---------------------------------------------------------------------- */ static int ReflectSetOption( ClientData clientData, /* Channel to query */ Tcl_Interp *interp, /* Interpreter to leave error messages in */ const char *optionName, /* Name of requested option */ const char *newValue) /* The new value */ { ReflectedTransform *rtPtr = clientData; /* * Transformations have no options. Thus the call is passed down unchanged * to the parent channel for processing. Its results are passed back * unchanged as well. This all happens in the thread we are in. As the Tcl * level is not involved there is no need for thread forwarding. */ Tcl_DriverSetOptionProc *setOptionProc = Tcl_ChannelSetOptionProc(Tcl_GetChannelType(rtPtr->parent)); if (setOptionProc == NULL) { return TCL_ERROR; } return setOptionProc(Tcl_GetChannelInstanceData(rtPtr->parent), interp, optionName, newValue); } /* *---------------------------------------------------------------------- * * ReflectGetOption -- * * This function is invoked to retrieve all or a channel options. * * Results: * A standard Tcl result code. * * Side effects: * Arbitrary, per the parent channel. * *---------------------------------------------------------------------- */ static int ReflectGetOption( ClientData clientData, /* Channel to query */ Tcl_Interp *interp, /* Interpreter to leave error messages in */ const char *optionName, /* Name of reuqested option */ Tcl_DString *dsPtr) /* String to place the result into */ { ReflectedTransform *rtPtr = clientData; /* * Transformations have no options. Thus the call is passed down unchanged * to the parent channel for processing. Its results are passed back * unchanged as well. This all happens in the thread we are in. As the Tcl * level is not involved there is no need for thread forwarding. * * Note that the parent not having a driver for option retrieval is not an * immediate error. A query for all options is ok. Only a request for a * specific option has to fail. */ Tcl_DriverGetOptionProc *getOptionProc = Tcl_ChannelGetOptionProc(Tcl_GetChannelType(rtPtr->parent)); if (getOptionProc != NULL) { return getOptionProc(Tcl_GetChannelInstanceData(rtPtr->parent), interp, optionName, dsPtr); } else if (optionName == NULL) { return TCL_OK; } else { return TCL_ERROR; } } /* *---------------------------------------------------------------------- * * ReflectHandle -- * * This function is invoked to retrieve the associated file handle. * * Results: * A standard Tcl result code. * * Side effects: * Arbitrary, per the parent channel. * *---------------------------------------------------------------------- */ static int ReflectHandle( ClientData clientData, int direction, ClientData *handlePtr) { ReflectedTransform *rtPtr = clientData; /* * Transformations have no handle of their own. As such we simply query * the parent channel for it. This way the qery will ripple down through * all transformations until reaches the base channel. Which then returns * its handle, or fails. The former will then ripple up the stack. * * This all happens in the thread we are in. As the Tcl level is not * involved no forwarding is required. */ return Tcl_GetChannelHandle(rtPtr->parent, direction, handlePtr); } /* *---------------------------------------------------------------------- * * ReflectNotify -- * * This function is invoked to reported incoming events. * * Results: * A standard Tcl result code. * * Side effects: * Arbitrary, per the parent channel. * *---------------------------------------------------------------------- */ static int ReflectNotify( ClientData clientData, int mask) { ReflectedTransform *rtPtr = clientData; /* * An event occured in the underlying channel. * * We delete our timer. It was not fired, yet we are here, so the channel * below generated such an event and we don't have to. The renewal of the * interest after the execution of channel handlers will eventually cause * us to recreate the timer (in ReflectWatch). */ TimerKill(rtPtr); /* * Pass to higher layers. */ return mask; } /* * Helpers. ========================================================= */ /* *---------------------------------------------------------------------- * * DecodeEventMask -- * * This function takes an internal bitmask of events and constructs the * equivalent list of event items. * * Results: * A Tcl_Obj reference. The object will have a refCount of one. The user * has to decrement it to release the object. * * Side effects: * None. * *---------------------------------------------------------------------- * DUPLICATE of 'DecodeEventMask' in tclIORChan.c */ static Tcl_Obj * DecodeEventMask( int mask) { register const char *eventStr; Tcl_Obj *evObj; switch (mask & RANDW) { case RANDW: eventStr = "read write"; break; case TCL_READABLE: eventStr = "read"; break; case TCL_WRITABLE: eventStr = "write"; break; default: eventStr = ""; break; } evObj = Tcl_NewStringObj(eventStr, -1); Tcl_IncrRefCount(evObj); return evObj; } /* *---------------------------------------------------------------------- * * NewReflectedTransform -- * * This function is invoked to allocate and initialize the instance data * of a new reflected channel. * * Results: * A heap-allocated channel instance. * * Side effects: * Allocates memory. * *---------------------------------------------------------------------- */ static ReflectedTransform * NewReflectedTransform( Tcl_Interp *interp, Tcl_Obj *cmdpfxObj, int mode, Tcl_Obj *handleObj, Tcl_Channel parentChan) { ReflectedTransform *rtPtr; int listc; Tcl_Obj **listv; int i; rtPtr = ckalloc(sizeof(ReflectedTransform)); /* rtPtr->chan: Assigned by caller. Dummy data here. */ /* rtPtr->methods: Assigned by caller. Dummy data here. */ rtPtr->chan = NULL; rtPtr->methods = 0; #ifdef TCL_THREADS rtPtr->thread = Tcl_GetCurrentThread(); #endif rtPtr->parent = parentChan; rtPtr->interp = interp; rtPtr->handle = handleObj; Tcl_IncrRefCount(handleObj); rtPtr->timer = NULL; rtPtr->mode = 0; rtPtr->readIsDrained = 0; rtPtr->eofPending = 0; rtPtr->nonblocking = (((Channel *) parentChan)->state->flags & CHANNEL_NONBLOCKING); rtPtr->dead = 0; /* * Query parent for current blocking mode. */ ResultInit(&rtPtr->result); /* * Method placeholder. */ /* ASSERT: cmdpfxObj is a Tcl List */ Tcl_ListObjGetElements(interp, cmdpfxObj, &listc, &listv); /* * See [==] as well. * Storage for the command prefix and the additional words required for * the invocation of methods in the command handler. * * listv [0] [listc-1] | [listc] [listc+1] | * argv [0] ... [.] | [argc-2] [argc-1] | [argc] [argc+2] * cmd ... pfx | method chan | detail1 detail2 */ rtPtr->argc = listc + 2; rtPtr->argv = ckalloc(sizeof(Tcl_Obj *) * (listc+4)); /* * Duplicate object references. */ for (i=0; i<listc ; i++) { Tcl_Obj *word = rtPtr->argv[i] = listv[i]; Tcl_IncrRefCount(word); } i++; /* Skip placeholder for method */ /* * See [x] in FreeReflectedTransform for release */ rtPtr->argv[i] = handleObj; Tcl_IncrRefCount(handleObj); /* * The next two objects are kept empty, varying arguments. */ /* * Initialization complete. */ return rtPtr; } /* *---------------------------------------------------------------------- * * NextHandle -- * * This function is invoked to generate a channel handle for a new * reflected channel. * * Results: * A Tcl_Obj containing the string of the new channel handle. The * refcount of the returned object is -- zero --. * * Side effects: * May allocate memory. Mutex protected critical section locks out other * threads for a short time. * *---------------------------------------------------------------------- */ static Tcl_Obj * NextHandle(void) { /* * Count number of generated reflected channels. Used for id generation. * Ids are never reclaimed and there is no dealing with wrap around. On * the other hand, "unsigned long" should be big enough except for * absolute longrunners (generate a 100 ids per second => overflow will * occur in 1 1/3 years). */ TCL_DECLARE_MUTEX(rtCounterMutex) static unsigned long rtCounter = 0; Tcl_Obj *resObj; Tcl_MutexLock(&rtCounterMutex); resObj = Tcl_ObjPrintf("rt%lu", rtCounter); rtCounter++; Tcl_MutexUnlock(&rtCounterMutex); return resObj; } static void FreeReflectedTransformArgs( ReflectedTransform *rtPtr) { int i, n = rtPtr->argc - 2; if (n < 0) { return; } Tcl_DecrRefCount(rtPtr->handle); rtPtr->handle = NULL; for (i=0; i<n; i++) { Tcl_DecrRefCount(rtPtr->argv[i]); } /* * See [x] in NewReflectedTransform for lock * n+1 = argc-1. */ Tcl_DecrRefCount(rtPtr->argv[n+1]); rtPtr->argc = 1; } static void FreeReflectedTransform( ReflectedTransform *rtPtr) { TimerKill(rtPtr); ResultClear(&rtPtr->result); FreeReflectedTransformArgs(rtPtr); ckfree(rtPtr->argv); ckfree(rtPtr); } /* *---------------------------------------------------------------------- * * InvokeTclMethod -- * * This function is used to invoke the Tcl level of a reflected channel. * It handles all the command assembly, invokation, and generic state and * result mgmt. It does *not* handle thread redirection; that is the * responsibility of clients of this function. * * Results: * Result code and data as returned by the method. * * Side effects: * Arbitrary, as it calls upon a Tcl script. * * Contract: * argOneObj.refCount >= 1 on entry and exit, if argOneObj != NULL * argTwoObj.refCount >= 1 on entry and exit, if argTwoObj != NULL * resObj.refCount in {0, 1, ...} * *---------------------------------------------------------------------- * Semi-DUPLICATE of 'InvokeTclMethod' in tclIORChan.c * - Semi because different structures are used. * - Still possible to factor out the commonalities into a separate structure. */ static int InvokeTclMethod( ReflectedTransform *rtPtr, const char *method, Tcl_Obj *argOneObj, /* NULL'able */ Tcl_Obj *argTwoObj, /* NULL'able */ Tcl_Obj **resultObjPtr) /* NULL'able */ { int cmdc; /* #words in constructed command */ Tcl_Obj *methObj = NULL; /* Method name in object form */ Tcl_InterpState sr; /* State of handler interp */ int result; /* Result code of method invokation */ Tcl_Obj *resObj = NULL; /* Result of method invokation. */ if (rtPtr->dead) { /* * The transform is marked as dead. Bail out immediately, with an * appropriate error. */ if (resultObjPtr != NULL) { resObj = Tcl_NewStringObj(msg_dstlost,-1); *resultObjPtr = resObj; Tcl_IncrRefCount(resObj); } return TCL_ERROR; } /* * NOTE (5): Decide impl. issue: Cache objects with method names? * Requires TSD data as reflections can be created in many different * threads. * NO: Caching of command resolutions means storage per channel. */ /* * Insert method into the pre-allocated area, after the command prefix, * before the channel id. */ methObj = Tcl_NewStringObj(method, -1); Tcl_IncrRefCount(methObj); rtPtr->argv[rtPtr->argc - 2] = methObj; /* * Append the additional argument containing method specific details * behind the channel id. If specified. * * Because of the contract there is no need to increment the refcounts. * The objects will survive the Tcl_EvalObjv without change. */ cmdc = rtPtr->argc; if (argOneObj) { rtPtr->argv[cmdc] = argOneObj; cmdc++; if (argTwoObj) { rtPtr->argv[cmdc] = argTwoObj; cmdc++; } } /* * And run the handler... This is done in auch a manner which leaves any * existing state intact. */ sr = Tcl_SaveInterpState(rtPtr->interp, 0 /* Dummy */); Tcl_Preserve(rtPtr); Tcl_Preserve(rtPtr->interp); result = Tcl_EvalObjv(rtPtr->interp, cmdc, rtPtr->argv, TCL_EVAL_GLOBAL); /* * We do not try to extract the result information if the caller has no * interest in it. I.e. there is no need to put effort into creating * something which is discarded immediately after. */ if (resultObjPtr) { if (result == TCL_OK) { /* * Ok result taken as is, also if the caller requests that there * is no capture. */ resObj = Tcl_GetObjResult(rtPtr->interp); } else { /* * Non-ok result is always treated as an error. We have to capture * the full state of the result, including additional options. * * This is complex and ugly, and would be completely unnecessary * if we only added support for a TCL_FORBID_EXCEPTIONS flag. */ if (result != TCL_ERROR) { Tcl_Obj *cmd = Tcl_NewListObj(cmdc, rtPtr->argv); int cmdLen; const char *cmdString = TclGetStringFromObj(cmd, &cmdLen); Tcl_IncrRefCount(cmd); Tcl_ResetResult(rtPtr->interp); Tcl_SetObjResult(rtPtr->interp, Tcl_ObjPrintf( "chan handler returned bad code: %d", result)); Tcl_LogCommandInfo(rtPtr->interp, cmdString, cmdString, cmdLen); Tcl_DecrRefCount(cmd); result = TCL_ERROR; } Tcl_AppendObjToErrorInfo(rtPtr->interp, Tcl_ObjPrintf( "\n (chan handler subcommand \"%s\")", method)); resObj = MarshallError(rtPtr->interp); } Tcl_IncrRefCount(resObj); } Tcl_RestoreInterpState(rtPtr->interp, sr); Tcl_Release(rtPtr->interp); Tcl_Release(rtPtr); /* * Cleanup of the dynamic parts of the command. * * The detail objects survived the Tcl_EvalObjv without change because of * the contract. Therefore there is no need to decrement the refcounts. Only * the internal method object has to be disposed of. */ Tcl_DecrRefCount(methObj); /* * The resObj has a ref count of 1 at this location. This means that the * caller of InvokeTclMethod has to dispose of it (but only if it was * returned to it). */ if (resultObjPtr != NULL) { *resultObjPtr = resObj; } /* * There no need to handle the case where nothing is returned, because for * that case resObj was not set anyway. */ return result; } /* *---------------------------------------------------------------------- * * GetReflectedTransformMap -- * * Gets and potentially initializes the reflected channel map for an * interpreter. * * Results: * A pointer to the map created, for use by the caller. * * Side effects: * Initializes the reflected channel map for an interpreter. * *---------------------------------------------------------------------- */ static ReflectedTransformMap * GetReflectedTransformMap( Tcl_Interp *interp) { ReflectedTransformMap *rtmPtr = Tcl_GetAssocData(interp, RTMKEY, NULL); if (rtmPtr == NULL) { rtmPtr = ckalloc(sizeof(ReflectedTransformMap)); Tcl_InitHashTable(&rtmPtr->map, TCL_STRING_KEYS); Tcl_SetAssocData(interp, RTMKEY, (Tcl_InterpDeleteProc *) DeleteReflectedTransformMap, rtmPtr); } return rtmPtr; } /* *---------------------------------------------------------------------- * * DeleteReflectedTransformMap -- * * Deletes the channel table for an interpreter, closing any open * channels whose refcount reaches zero. This procedure is invoked when * an interpreter is deleted, via the AssocData cleanup mechanism. * * Results: * None. * * Side effects: * Deletes the hash table of channels. May close channels. May flush * output on closed channels. Removes any channeEvent handlers that were * registered in this interpreter. * *---------------------------------------------------------------------- */ static void DeleteReflectedTransformMap( ClientData clientData, /* The per-interpreter data structure. */ Tcl_Interp *interp) /* The interpreter being deleted. */ { ReflectedTransformMap *rtmPtr; /* The map */ Tcl_HashSearch hSearch; /* Search variable. */ Tcl_HashEntry *hPtr; /* Search variable. */ ReflectedTransform *rtPtr; #ifdef TCL_THREADS ForwardingResult *resultPtr; ForwardingEvent *evPtr; ForwardParam *paramPtr; #endif /* TCL_THREADS */ /* * Delete all entries. The channels may have been closed already, or will * be closed later, by the standard IO finalization of an interpreter * under destruction. Except for the channels which were moved to a * different interpreter and/or thread. They do not exist from the IO * systems point of view and will not get closed. Therefore mark all as * dead so that any future access will cause a proper error. For channels * in a different thread we actually do the same as * DeleteThreadReflectedTransformMap(), just restricted to the channels of * this interp. */ rtmPtr = clientData; for (hPtr = Tcl_FirstHashEntry(&rtmPtr->map, &hSearch); hPtr != NULL; hPtr = Tcl_FirstHashEntry(&rtmPtr->map, &hSearch)) { rtPtr = Tcl_GetHashValue(hPtr); rtPtr->dead = 1; Tcl_DeleteHashEntry(hPtr); } Tcl_DeleteHashTable(&rtmPtr->map); ckfree(&rtmPtr->map); #ifdef TCL_THREADS /* * The origin interpreter for one or more reflected channels is gone. */ /* * Get the map of all channels handled by the current thread. This is a * ReflectedTransformMap, but on a per-thread basis, not per-interp. Go * through the channels and remove all which were handled by this * interpreter. They have already been marked as dead. */ rtmPtr = GetThreadReflectedTransformMap(); for (hPtr = Tcl_FirstHashEntry(&rtmPtr->map, &hSearch); hPtr != NULL; hPtr = Tcl_NextHashEntry(&hSearch)) { rtPtr = Tcl_GetHashValue(hPtr); if (rtPtr->interp != interp) { /* * Ignore entries for other interpreters. */ continue; } rtPtr->dead = 1; FreeReflectedTransformArgs(rtPtr); Tcl_DeleteHashEntry(hPtr); } /* * Go through the list of pending results and cancel all whose events were * destined for this interpreter. While this is in progress we block any * other access to the list of pending results. */ Tcl_MutexLock(&rtForwardMutex); for (resultPtr = forwardList; resultPtr != NULL; resultPtr = resultPtr->nextPtr) { if (resultPtr->dsti != interp) { /* * Ignore results/events for other interpreters. */ continue; } /* * The receiver for the event exited, before processing the event. We * detach the result now, wake the originator up and signal failure. */ evPtr = resultPtr->evPtr; if (evPtr == NULL) { continue; } paramPtr = evPtr->param; evPtr->resultPtr = NULL; resultPtr->evPtr = NULL; resultPtr->result = TCL_ERROR; ForwardSetStaticError(paramPtr, msg_send_dstlost); Tcl_ConditionNotify(&resultPtr->done); } Tcl_MutexUnlock(&rtForwardMutex); #endif /* TCL_THREADS */ } #ifdef TCL_THREADS /* *---------------------------------------------------------------------- * * GetThreadReflectedTransformMap -- * * Gets and potentially initializes the reflected channel map for a * thread. * * Results: * A pointer to the map created, for use by the caller. * * Side effects: * Initializes the reflected channel map for a thread. * *---------------------------------------------------------------------- */ static ReflectedTransformMap * GetThreadReflectedTransformMap(void) { ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); if (!tsdPtr->rtmPtr) { tsdPtr->rtmPtr = ckalloc(sizeof(ReflectedTransformMap)); Tcl_InitHashTable(&tsdPtr->rtmPtr->map, TCL_STRING_KEYS); Tcl_CreateThreadExitHandler(DeleteThreadReflectedTransformMap, NULL); } return tsdPtr->rtmPtr; } /* *---------------------------------------------------------------------- * * DeleteThreadReflectedTransformMap -- * * Deletes the channel table for a thread. This procedure is invoked when * a thread is deleted. The channels have already been marked as dead, in * DeleteReflectedTransformMap(). * * Results: * None. * * Side effects: * Deletes the hash table of channels. * *---------------------------------------------------------------------- */ static void DeleteThreadReflectedTransformMap( ClientData clientData) /* The per-thread data structure. */ { Tcl_HashSearch hSearch; /* Search variable. */ Tcl_HashEntry *hPtr; /* Search variable. */ Tcl_ThreadId self = Tcl_GetCurrentThread(); ReflectedTransformMap *rtmPtr; /* The map */ ForwardingResult *resultPtr; /* * The origin thread for one or more reflected channels is gone. * NOTE: If this function is called due to a thread getting killed the * per-interp DeleteReflectedTransformMap is apparently not called. */ /* * Get the map of all channels handled by the current thread. This is a * ReflectedTransformMap, but on a per-thread basis, not per-interp. Go * through the channels, remove all, mark them as dead. */ rtmPtr = GetThreadReflectedTransformMap(); for (hPtr = Tcl_FirstHashEntry(&rtmPtr->map, &hSearch); hPtr != NULL; hPtr = Tcl_FirstHashEntry(&rtmPtr->map, &hSearch)) { ReflectedTransform *rtPtr = Tcl_GetHashValue(hPtr); rtPtr->dead = 1; FreeReflectedTransformArgs(rtPtr); Tcl_DeleteHashEntry(hPtr); } ckfree(rtmPtr); /* * Go through the list of pending results and cancel all whose events were * destined for this thread. While this is in progress we block any * other access to the list of pending results. */ Tcl_MutexLock(&rtForwardMutex); for (resultPtr = forwardList; resultPtr != NULL; resultPtr = resultPtr->nextPtr) { ForwardingEvent *evPtr; ForwardParam *paramPtr; if (resultPtr->dst != self) { /* * Ignore results/events for other threads. */ continue; } /* * The receiver for the event exited, before processing the event. We * detach the result now, wake the originator up and signal failure. */ evPtr = resultPtr->evPtr; if (evPtr == NULL) { continue; } paramPtr = evPtr->param; evPtr->resultPtr = NULL; resultPtr->evPtr = NULL; resultPtr->result = TCL_ERROR; ForwardSetStaticError(paramPtr, msg_send_dstlost); Tcl_ConditionNotify(&resultPtr->done); } Tcl_MutexUnlock(&rtForwardMutex); } static void ForwardOpToOwnerThread( ReflectedTransform *rtPtr, /* Channel instance */ ForwardedOperation op, /* Forwarded driver operation */ const void *param) /* Arguments */ { Tcl_ThreadId dst = rtPtr->thread; ForwardingEvent *evPtr; ForwardingResult *resultPtr; /* * We gather the lock early. This allows us to check the liveness of the * channel without interference from DeleteThreadReflectedTransformMap(). */ Tcl_MutexLock(&rtForwardMutex); if (rtPtr->dead) { /* * The channel is marked as dead. Bail out immediately, with an * appropriate error. Do not forget to unlock the mutex on this path. */ ForwardSetStaticError((ForwardParam *) param, msg_send_dstlost); Tcl_MutexUnlock(&rtForwardMutex); return; } /* * Create and initialize the event and data structures. */ evPtr = ckalloc(sizeof(ForwardingEvent)); resultPtr = ckalloc(sizeof(ForwardingResult)); evPtr->event.proc = ForwardProc; evPtr->resultPtr = resultPtr; evPtr->op = op; evPtr->rtPtr = rtPtr; evPtr->param = (ForwardParam *) param; resultPtr->src = Tcl_GetCurrentThread(); resultPtr->dst = dst; resultPtr->dsti = rtPtr->interp; resultPtr->done = NULL; resultPtr->result = -1; resultPtr->evPtr = evPtr; /* * Now execute the forward. */ TclSpliceIn(resultPtr, forwardList); /* Do not unlock here. That is done by the ConditionWait */ /* * Ensure cleanup of the event if the origin thread exits while this event * is pending or in progress. Exit of the destination thread is handled by * DeleteThreadReflectionChannelMap(), this is set up by * GetThreadReflectedTransformMap(). This is what we use the 'forwardList' * (see above) for. */ Tcl_CreateThreadExitHandler(SrcExitProc, evPtr); /* * Queue the event and poke the other thread's notifier. */ Tcl_ThreadQueueEvent(dst, (Tcl_Event *) evPtr, TCL_QUEUE_TAIL); Tcl_ThreadAlert(dst); /* * (*) Block until the other thread has either processed the transfer or * rejected it. */ while (resultPtr->result < 0) { /* * NOTE (1): Is it possible that the current thread goes away while * waiting here? IOW Is it possible that "SrcExitProc" is called * while we are here? See complementary note (2) in "SrcExitProc" * * The ConditionWait unlocks the mutex during the wait and relocks it * immediately after. */ Tcl_ConditionWait(&resultPtr->done, &rtForwardMutex, NULL); } /* * Unlink result from the forwarder list. No need to lock. Either still * locked, or locked by the ConditionWait */ TclSpliceOut(resultPtr, forwardList); resultPtr->nextPtr = NULL; resultPtr->prevPtr = NULL; Tcl_MutexUnlock(&rtForwardMutex); Tcl_ConditionFinalize(&resultPtr->done); /* * Kill the cleanup handler now, and the result structure as well, before * returning the success code. * * Note: The event structure has already been deleted by the destination * notifier, after it serviced the event. */ Tcl_DeleteThreadExitHandler(SrcExitProc, evPtr); ckfree(resultPtr); } static int ForwardProc( Tcl_Event *evGPtr, int mask) { /* * Notes regarding access to the referenced data. * * In principle the data belongs to the originating thread (see * evPtr->src), however this thread is currently blocked at (*), i.e. * quiescent. Because of this we can treat the data as belonging to us, * without fear of race conditions. I.e. we can read and write as we like. * * The only thing we cannot be sure of is the resultPtr. This can be be * NULLed if the originating thread went away while the event is handled * here now. */ ForwardingEvent *evPtr = (ForwardingEvent *) evGPtr; ForwardingResult *resultPtr = evPtr->resultPtr; ReflectedTransform *rtPtr = evPtr->rtPtr; Tcl_Interp *interp = rtPtr->interp; ForwardParam *paramPtr = evPtr->param; Tcl_Obj *resObj = NULL; /* Interp result of InvokeTclMethod */ ReflectedTransformMap *rtmPtr; /* Map of reflected channels with handlers in * this interp. */ Tcl_HashEntry *hPtr; /* Entry in the above map */ /* * Ignore the event if no one is waiting for its result anymore. */ if (!resultPtr) { return 1; } paramPtr->base.code = TCL_OK; paramPtr->base.msgStr = NULL; paramPtr->base.mustFree = 0; switch (evPtr->op) { /* * The destination thread for the following operations is * rtPtr->thread, which contains rtPtr->interp, the interp we have to * call upon for the driver. */ case ForwardedClose: /* * No parameters/results. */ if (InvokeTclMethod(rtPtr, "finalize", NULL, NULL, &resObj) != TCL_OK) { ForwardSetObjError(paramPtr, resObj); } /* * Freeing is done here, in the origin thread, because the argv[] * objects belong to this thread. Deallocating them in a different * thread is not allowed */ /* * Remove the channel from the map before releasing the memory, to * prevent future accesses (like by 'postevent') from finding and * dereferencing a dangling pointer. */ rtmPtr = GetReflectedTransformMap(interp); hPtr = Tcl_FindHashEntry(&rtmPtr->map, TclGetString(rtPtr->handle)); Tcl_DeleteHashEntry(hPtr); /* * In a threaded interpreter we manage a per-thread map as well, to * allow us to survive if the script level pulls the rug out under a * channel by deleting the owning thread. */ rtmPtr = GetThreadReflectedTransformMap(); hPtr = Tcl_FindHashEntry(&rtmPtr->map, TclGetString(rtPtr->handle)); Tcl_DeleteHashEntry(hPtr); FreeReflectedTransformArgs(rtPtr); break; case ForwardedInput: { Tcl_Obj *bufObj = Tcl_NewByteArrayObj((unsigned char *) paramPtr->transform.buf, paramPtr->transform.size); Tcl_IncrRefCount(bufObj); if (InvokeTclMethod(rtPtr, "read", bufObj, NULL, &resObj) != TCL_OK) { ForwardSetObjError(paramPtr, resObj); paramPtr->transform.size = -1; } else { /* * Process a regular return. Contains the transformation result. * Sent it back to the request originator. */ int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); paramPtr->transform.size = bytec; if (bytec > 0) { paramPtr->transform.buf = ckalloc(bytec); memcpy(paramPtr->transform.buf, bytev, (size_t)bytec); } else { paramPtr->transform.buf = NULL; } } Tcl_DecrRefCount(bufObj); break; } case ForwardedOutput: { Tcl_Obj *bufObj = Tcl_NewByteArrayObj((unsigned char *) paramPtr->transform.buf, paramPtr->transform.size); Tcl_IncrRefCount(bufObj); if (InvokeTclMethod(rtPtr, "write", bufObj, NULL, &resObj) != TCL_OK) { ForwardSetObjError(paramPtr, resObj); paramPtr->transform.size = -1; } else { /* * Process a regular return. Contains the transformation result. * Sent it back to the request originator. */ int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); paramPtr->transform.size = bytec; if (bytec > 0) { paramPtr->transform.buf = ckalloc(bytec); memcpy(paramPtr->transform.buf, bytev, (size_t)bytec); } else { paramPtr->transform.buf = NULL; } } Tcl_DecrRefCount(bufObj); break; } case ForwardedDrain: if (InvokeTclMethod(rtPtr, "drain", NULL, NULL, &resObj) != TCL_OK) { ForwardSetObjError(paramPtr, resObj); paramPtr->transform.size = -1; } else { /* * Process a regular return. Contains the transformation result. * Sent it back to the request originator. */ int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); paramPtr->transform.size = bytec; if (bytec > 0) { paramPtr->transform.buf = ckalloc(bytec); memcpy(paramPtr->transform.buf, bytev, (size_t)bytec); } else { paramPtr->transform.buf = NULL; } } break; case ForwardedFlush: if (InvokeTclMethod(rtPtr, "flush", NULL, NULL, &resObj) != TCL_OK) { ForwardSetObjError(paramPtr, resObj); paramPtr->transform.size = -1; } else { /* * Process a regular return. Contains the transformation result. * Sent it back to the request originator. */ int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); paramPtr->transform.size = bytec; if (bytec > 0) { paramPtr->transform.buf = ckalloc(bytec); memcpy(paramPtr->transform.buf, bytev, (size_t)bytec); } else { paramPtr->transform.buf = NULL; } } break; case ForwardedClear: (void) InvokeTclMethod(rtPtr, "clear", NULL, NULL, NULL); break; case ForwardedLimit: if (InvokeTclMethod(rtPtr, "limit?", NULL, NULL, &resObj) != TCL_OK) { ForwardSetObjError(paramPtr, resObj); paramPtr->limit.max = -1; } else if (Tcl_GetIntFromObj(interp, resObj, &paramPtr->limit.max) != TCL_OK) { ForwardSetObjError(paramPtr, MarshallError(interp)); paramPtr->limit.max = -1; } break; default: /* * Bad operation code. */ Tcl_Panic("Bad operation code in ForwardProc"); break; } /* * Remove the reference we held on the result of the invoke, if we had * such. */ if (resObj != NULL) { Tcl_DecrRefCount(resObj); } if (resultPtr) { /* * Report the forwarding result synchronously to the waiting caller. * This unblocks (*) as well. This is wrapped into a conditional * because the caller may have exited in the mean time. */ Tcl_MutexLock(&rtForwardMutex); resultPtr->result = TCL_OK; Tcl_ConditionNotify(&resultPtr->done); Tcl_MutexUnlock(&rtForwardMutex); } return 1; } static void SrcExitProc( ClientData clientData) { ForwardingEvent *evPtr = clientData; ForwardingResult *resultPtr; ForwardParam *paramPtr; /* * NOTE (2): Can this handler be called with the originator blocked? */ /* * The originator for the event exited. It is not sure if this can happen, * as the originator should be blocked at (*) while the event is in * transit/pending. * * We make sure that the event cannot refer to the result anymore, remove * it from the list of pending results and free the structure. Locking the * access ensures that we cannot get in conflict with "ForwardProc", * should it already execute the event. */ Tcl_MutexLock(&rtForwardMutex); resultPtr = evPtr->resultPtr; paramPtr = evPtr->param; evPtr->resultPtr = NULL; resultPtr->evPtr = NULL; resultPtr->result = TCL_ERROR; ForwardSetStaticError(paramPtr, msg_send_originlost); /* * See below: TclSpliceOut(resultPtr, forwardList); */ Tcl_MutexUnlock(&rtForwardMutex); /* * This unlocks (*). The structure will be spliced out and freed by * "ForwardProc". Maybe. */ Tcl_ConditionNotify(&resultPtr->done); } static void ForwardSetObjError( ForwardParam *paramPtr, Tcl_Obj *obj) { int len; const char *msgStr = TclGetStringFromObj(obj, &len); len++; ForwardSetDynamicError(paramPtr, ckalloc(len)); memcpy(paramPtr->base.msgStr, msgStr, (unsigned) len); } #endif /* TCL_THREADS */ /* *---------------------------------------------------------------------- * * TimerKill -- * * Timer management. Removes the internal timer if it exists. * * Side effects: * See above. * * Result: * None. * *---------------------------------------------------------------------- */ static void TimerKill( ReflectedTransform *rtPtr) { if (rtPtr->timer == NULL) { return; } /* * Delete an existing flush-out timer, prevent it from firing on a * removed/dead channel. */ Tcl_DeleteTimerHandler(rtPtr->timer); rtPtr->timer = NULL; } /* *---------------------------------------------------------------------- * * TimerSetup -- * * Timer management. Creates the internal timer if it does not exist. * * Side effects: * See above. * * Result: * None. * *---------------------------------------------------------------------- */ static void TimerSetup( ReflectedTransform *rtPtr) { if (rtPtr->timer != NULL) { return; } rtPtr->timer = Tcl_CreateTimerHandler(SYNTHETIC_EVENT_TIME, TimerRun, rtPtr); } /* *---------------------------------------------------------------------- * * TimerRun -- * * Called by the notifier (-> timer) to flush out information waiting in * channel buffers. * * Side effects: * As of 'Tcl_NotifyChannel'. * * Result: * None. * *---------------------------------------------------------------------- */ static void TimerRun( ClientData clientData) { ReflectedTransform *rtPtr = clientData; rtPtr->timer = NULL; Tcl_NotifyChannel(rtPtr->chan, TCL_READABLE); } /* *---------------------------------------------------------------------- * * ResultInit -- * * Initializes the specified buffer structure. The structure will contain * valid information for an emtpy buffer. * * Side effects: * See above. * * Result: * None. * *---------------------------------------------------------------------- */ static void ResultInit( ResultBuffer *rPtr) /* Reference to the structure to * initialize. */ { rPtr->used = 0; rPtr->allocated = 0; rPtr->buf = NULL; } /* *---------------------------------------------------------------------- * * ResultClear -- * * Deallocates any memory allocated by 'ResultAdd'. * * Side effects: * See above. * * Result: * None. * *---------------------------------------------------------------------- */ static void ResultClear( ResultBuffer *rPtr) /* Reference to the buffer to clear out */ { rPtr->used = 0; if (!rPtr->allocated) { return; } ckfree(rPtr->buf); rPtr->buf = NULL; rPtr->allocated = 0; } /* *---------------------------------------------------------------------- * * ResultAdd -- * * Adds the bytes in the specified array to the buffer, by appending it. * * Side effects: * See above. * * Result: * None. * *---------------------------------------------------------------------- */ static void ResultAdd( ResultBuffer *rPtr, /* The buffer to extend */ unsigned char *buf, /* The buffer to read from */ int toWrite) /* The number of bytes in 'buf' */ { if ((rPtr->used + toWrite + 1) > rPtr->allocated) { /* * Extension of the internal buffer is required. * NOTE: Currently linear. Should be doubling to amortize. */ if (rPtr->allocated == 0) { rPtr->allocated = toWrite + RB_INCREMENT; rPtr->buf = UCHARP(ckalloc(rPtr->allocated)); } else { rPtr->allocated += toWrite + RB_INCREMENT; rPtr->buf = UCHARP(ckrealloc((char *) rPtr->buf, rPtr->allocated)); } } /* * Now copy data. */ memcpy(rPtr->buf + rPtr->used, buf, toWrite); rPtr->used += toWrite; } /* *---------------------------------------------------------------------- * * ResultCopy -- * * Copies the requested number of bytes from the buffer into the * specified array and removes them from the buffer afterward. Copies * less if there is not enough data in the buffer. * * Side effects: * See above. * * Result: * The number of actually copied bytes, possibly less than 'toRead'. * *---------------------------------------------------------------------- */ static int ResultCopy( ResultBuffer *rPtr, /* The buffer to read from */ unsigned char *buf, /* The buffer to copy into */ int toRead) /* Number of requested bytes */ { int copied; if (rPtr->used == 0) { /* * Nothing to copy in the case of an empty buffer. */ copied = 0; } else if (rPtr->used == toRead) { /* * We have just enough. Copy everything to the caller. */ memcpy(buf, rPtr->buf, toRead); rPtr->used = 0; copied = toRead; } else if (rPtr->used > toRead) { /* * The internal buffer contains more than requested. Copy the * requested subset to the caller, and shift the remaining bytes down. */ memcpy(buf, rPtr->buf, toRead); memmove(rPtr->buf, rPtr->buf + toRead, rPtr->used - toRead); rPtr->used -= toRead; copied = toRead; } else { /* * There is not enough in the buffer to satisfy the caller, so take * everything. */ memcpy(buf, rPtr->buf, rPtr->used); toRead = rPtr->used; rPtr->used = 0; copied = toRead; } /* -- common postwork code ------- */ return copied; } static int TransformRead( ReflectedTransform *rtPtr, int *errorCodePtr, Tcl_Obj *bufObj) { Tcl_Obj *resObj; int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ /* * Are we in the correct thread? */ #ifdef TCL_THREADS if (rtPtr->thread != Tcl_GetCurrentThread()) { ForwardParam p; p.transform.buf = (char *) Tcl_GetByteArrayFromObj(bufObj, &(p.transform.size)); ForwardOpToOwnerThread(rtPtr, ForwardedInput, &p); if (p.base.code != TCL_OK) { PassReceivedError(rtPtr->chan, &p); *errorCodePtr = EINVAL; return 0; } *errorCodePtr = EOK; ResultAdd(&rtPtr->result, UCHARP(p.transform.buf), p.transform.size); ckfree(p.transform.buf); return 1; } #endif /* TCL_THREADS */ /* ASSERT: rtPtr->method & FLAG(METH_READ) */ /* ASSERT: rtPtr->mode & TCL_READABLE */ if (InvokeTclMethod(rtPtr, "read", bufObj, NULL, &resObj) != TCL_OK) { Tcl_SetChannelError(rtPtr->chan, resObj); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ *errorCodePtr = EINVAL; return 0; } bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); ResultAdd(&rtPtr->result, bytev, bytec); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ return 1; } static int TransformWrite( ReflectedTransform *rtPtr, int *errorCodePtr, unsigned char *buf, int toWrite) { Tcl_Obj *bufObj; Tcl_Obj *resObj; int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ int res; /* * Are we in the correct thread? */ #ifdef TCL_THREADS if (rtPtr->thread != Tcl_GetCurrentThread()) { ForwardParam p; p.transform.buf = (char *) buf; p.transform.size = toWrite; ForwardOpToOwnerThread(rtPtr, ForwardedOutput, &p); if (p.base.code != TCL_OK) { PassReceivedError(rtPtr->chan, &p); *errorCodePtr = EINVAL; return 0; } *errorCodePtr = EOK; res = Tcl_WriteRaw(rtPtr->parent, (char *) p.transform.buf, p.transform.size); ckfree(p.transform.buf); } else #endif /* TCL_THREADS */ { /* ASSERT: rtPtr->method & FLAG(METH_WRITE) */ /* ASSERT: rtPtr->mode & TCL_WRITABLE */ bufObj = Tcl_NewByteArrayObj((unsigned char *) buf, toWrite); Tcl_IncrRefCount(bufObj); if (InvokeTclMethod(rtPtr, "write", bufObj, NULL, &resObj) != TCL_OK) { *errorCodePtr = EINVAL; Tcl_SetChannelError(rtPtr->chan, resObj); Tcl_DecrRefCount(bufObj); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ return 0; } *errorCodePtr = EOK; bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); res = Tcl_WriteRaw(rtPtr->parent, (char *) bytev, bytec); Tcl_DecrRefCount(bufObj); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ } if (res < 0) { *errorCodePtr = Tcl_GetErrno(); return 0; } return 1; } static int TransformDrain( ReflectedTransform *rtPtr, int *errorCodePtr) { Tcl_Obj *resObj; int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ /* * Are we in the correct thread? */ #ifdef TCL_THREADS if (rtPtr->thread != Tcl_GetCurrentThread()) { ForwardParam p; ForwardOpToOwnerThread(rtPtr, ForwardedDrain, &p); if (p.base.code != TCL_OK) { PassReceivedError(rtPtr->chan, &p); *errorCodePtr = EINVAL; return 0; } *errorCodePtr = EOK; ResultAdd(&rtPtr->result, UCHARP(p.transform.buf), p.transform.size); ckfree(p.transform.buf); } else #endif /* TCL_THREADS */ { if (InvokeTclMethod(rtPtr, "drain", NULL, NULL, &resObj)!=TCL_OK) { Tcl_SetChannelError(rtPtr->chan, resObj); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ *errorCodePtr = EINVAL; return 0; } bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); ResultAdd(&rtPtr->result, bytev, bytec); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ } rtPtr->readIsDrained = 1; return 1; } static int TransformFlush( ReflectedTransform *rtPtr, int *errorCodePtr, int op) { Tcl_Obj *resObj; int bytec; /* Number of returned bytes */ unsigned char *bytev; /* Array of returned bytes */ int res; /* * Are we in the correct thread? */ #ifdef TCL_THREADS if (rtPtr->thread != Tcl_GetCurrentThread()) { ForwardParam p; ForwardOpToOwnerThread(rtPtr, ForwardedFlush, &p); if (p.base.code != TCL_OK) { PassReceivedError(rtPtr->chan, &p); *errorCodePtr = EINVAL; return 0; } *errorCodePtr = EOK; if (op == FLUSH_WRITE) { res = Tcl_WriteRaw(rtPtr->parent, (char *) p.transform.buf, p.transform.size); } else { res = 0; } ckfree(p.transform.buf); } else #endif /* TCL_THREADS */ { if (InvokeTclMethod(rtPtr, "flush", NULL, NULL, &resObj)!=TCL_OK) { Tcl_SetChannelError(rtPtr->chan, resObj); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ *errorCodePtr = EINVAL; return 0; } if (op == FLUSH_WRITE) { bytev = Tcl_GetByteArrayFromObj(resObj, &bytec); res = Tcl_WriteRaw(rtPtr->parent, (char *) bytev, bytec); } else { res = 0; } Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ } if (res < 0) { *errorCodePtr = Tcl_GetErrno(); return 0; } return 1; } static void TransformClear( ReflectedTransform *rtPtr) { /* * Are we in the correct thread? */ #ifdef TCL_THREADS if (rtPtr->thread != Tcl_GetCurrentThread()) { ForwardParam p; ForwardOpToOwnerThread(rtPtr, ForwardedClear, &p); return; } #endif /* TCL_THREADS */ /* ASSERT: rtPtr->method & FLAG(METH_READ) */ /* ASSERT: rtPtr->mode & TCL_READABLE */ (void) InvokeTclMethod(rtPtr, "clear", NULL, NULL, NULL); rtPtr->readIsDrained = 0; rtPtr->eofPending = 0; ResultClear(&rtPtr->result); } static int TransformLimit( ReflectedTransform *rtPtr, int *errorCodePtr, int *maxPtr) { Tcl_Obj *resObj; Tcl_InterpState sr; /* State of handler interp */ /* * Are we in the correct thread? */ #ifdef TCL_THREADS if (rtPtr->thread != Tcl_GetCurrentThread()) { ForwardParam p; ForwardOpToOwnerThread(rtPtr, ForwardedLimit, &p); if (p.base.code != TCL_OK) { PassReceivedError(rtPtr->chan, &p); *errorCodePtr = EINVAL; return 0; } *errorCodePtr = EOK; *maxPtr = p.limit.max; return 1; } #endif /* ASSERT: rtPtr->method & FLAG(METH_WRITE) */ /* ASSERT: rtPtr->mode & TCL_WRITABLE */ if (InvokeTclMethod(rtPtr, "limit?", NULL, NULL, &resObj) != TCL_OK) { Tcl_SetChannelError(rtPtr->chan, resObj); Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ *errorCodePtr = EINVAL; return 0; } sr = Tcl_SaveInterpState(rtPtr->interp, 0 /* Dummy */); if (Tcl_GetIntFromObj(rtPtr->interp, resObj, maxPtr) != TCL_OK) { Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ Tcl_SetChannelError(rtPtr->chan, MarshallError(rtPtr->interp)); *errorCodePtr = EINVAL; Tcl_RestoreInterpState(rtPtr->interp, sr); return 0; } Tcl_DecrRefCount(resObj); /* Remove reference held from invoke */ Tcl_RestoreInterpState(rtPtr->interp, sr); return 1; } /* DUPLICATE of HaveVersion() in tclIO.c *---------------------------------------------------------------------- * * HaveVersion -- * * Return whether a channel type is (at least) of a given version. * * Results: * True if the minimum version is exceeded by the version actually * present. * * Side effects: * None. * *---------------------------------------------------------------------- */ static int HaveVersion( const Tcl_ChannelType *chanTypePtr, Tcl_ChannelTypeVersion minimumVersion) { Tcl_ChannelTypeVersion actualVersion = Tcl_ChannelVersion(chanTypePtr); return PTR2INT(actualVersion) >= PTR2INT(minimumVersion); } /* * Local Variables: * mode: c * c-basic-offset: 4 * fill-column: 78 * End: */