summaryrefslogtreecommitdiffstats
path: root/Python/thread.c
blob: d224046e6471d1ab58f12b24626b2171726e8537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

/* Thread package.
   This is intended to be usable independently from Python.
   The implementation for system foobar is in a file thread_foobar.h
   which is included by this file dependent on config settings.
   Stuff shared by all thread_*.h files is collected here. */

#include "Python.h"


#ifndef _POSIX_THREADS
/* This means pthreads are not implemented in libc headers, hence the macro
   not present in unistd.h. But they still can be implemented as an external
   library (e.g. gnu pth in pthread emulation) */
# ifdef HAVE_PTHREAD_H
#  include <pthread.h> /* _POSIX_THREADS */
# endif
#endif

#ifndef DONT_HAVE_STDIO_H
#include <stdio.h>
#endif

#include <stdlib.h>

#include "pythread.h"

#ifndef _POSIX_THREADS

#ifdef __sgi
#define SGI_THREADS
#endif

#ifdef HAVE_THREAD_H
#define SOLARIS_THREADS
#endif

#if defined(sun) && !defined(SOLARIS_THREADS)
#define SUN_LWP
#endif

/* Check if we're running on HP-UX and _SC_THREADS is defined. If so, then
   enough of the Posix threads package is implemented to support python
   threads.

   This is valid for HP-UX 11.23 running on an ia64 system. If needed, add
   a check of __ia64 to verify that we're running on a ia64 system instead
   of a pa-risc system.
*/
#ifdef __hpux
#ifdef _SC_THREADS
#define _POSIX_THREADS
#endif
#endif

#endif /* _POSIX_THREADS */


#ifdef Py_DEBUG
static int thread_debug = 0;
#define dprintf(args)   (void)((thread_debug & 1) && printf args)
#define d2printf(args)  ((thread_debug & 8) && printf args)
#else
#define dprintf(args)
#define d2printf(args)
#endif

static int initialized;

static void PyThread__init_thread(void); /* Forward */

void
PyThread_init_thread(void)
{
#ifdef Py_DEBUG
    char *p = Py_GETENV("PYTHONTHREADDEBUG");

    if (p) {
        if (*p)
            thread_debug = atoi(p);
        else
            thread_debug = 1;
    }
#endif /* Py_DEBUG */
    if (initialized)
        return;
    initialized = 1;
    dprintf(("PyThread_init_thread called\n"));
    PyThread__init_thread();
}

/* Support for runtime thread stack size tuning.
   A value of 0 means using the platform's default stack size
   or the size specified by the THREAD_STACK_SIZE macro. */
static size_t _pythread_stacksize = 0;

#ifdef SGI_THREADS
#error SGI Irix threads are now unsupported, and code will be removed in 3.3.
#include "thread_sgi.h"
#endif

#ifdef SOLARIS_THREADS
#include "thread_solaris.h"
#endif

#ifdef SUN_LWP
#error SunOS lightweight processes are now unsupported, and code will be removed in 3.3.
#include "thread_lwp.h"
#endif

#ifdef HAVE_PTH
#error GNU pth threads are now unsupported, and code will be removed in 3.3.
#include "thread_pth.h"
#undef _POSIX_THREADS
#endif

#ifdef _POSIX_THREADS
#include "thread_pthread.h"
#endif

#ifdef C_THREADS
#error Mach C Threads are now unsupported, and code will be removed in 3.3.
#include "thread_cthread.h"
#endif

#ifdef NT_THREADS
#include "thread_nt.h"
#endif

#ifdef OS2_THREADS
#include "thread_os2.h"
#endif

#ifdef PLAN9_THREADS
#include "thread_plan9.h"
#endif

/*
#ifdef FOOBAR_THREADS
#include "thread_foobar.h"
#endif
*/

/* return the current thread stack size */
size_t
PyThread_get_stacksize(void)
{
    return _pythread_stacksize;
}

/* Only platforms defining a THREAD_SET_STACKSIZE() macro
   in thread_<platform>.h support changing the stack size.
   Return 0 if stack size is valid,
      -1 if stack size value is invalid,
      -2 if setting stack size is not supported. */
int
PyThread_set_stacksize(size_t size)
{
#if defined(THREAD_SET_STACKSIZE)
    return THREAD_SET_STACKSIZE(size);
#else
    return -2;
#endif
}

#ifndef Py_HAVE_NATIVE_TLS
/* If the platform has not supplied a platform specific
   TLS implementation, provide our own.

   This code stolen from "thread_sgi.h", where it was the only
   implementation of an existing Python TLS API.
*/
/* ------------------------------------------------------------------------
Per-thread data ("key") support.

Use PyThread_create_key() to create a new key.  This is typically shared
across threads.

Use PyThread_set_key_value(thekey, value) to associate void* value with
thekey in the current thread.  Each thread has a distinct mapping of thekey
to a void* value.  Caution:  if the current thread already has a mapping
for thekey, value is ignored.

Use PyThread_get_key_value(thekey) to retrieve the void* value associated
with thekey in the current thread.  This returns NULL if no value is
associated with thekey in the current thread.

Use PyThread_delete_key_value(thekey) to forget the current thread's associated
value for thekey.  PyThread_delete_key(thekey) forgets the values associated
with thekey across *all* threads.

While some of these functions have error-return values, none set any
Python exception.

None of the functions does memory management on behalf of the void* values.
You need to allocate and deallocate them yourself.  If the void* values
happen to be PyObject*, these functions don't do refcount operations on
them either.

The GIL does not need to be held when calling these functions; they supply
their own locking.  This isn't true of PyThread_create_key(), though (see
next paragraph).

There's a hidden assumption that PyThread_create_key() will be called before
any of the other functions are called.  There's also a hidden assumption
that calls to PyThread_create_key() are serialized externally.
------------------------------------------------------------------------ */

/* A singly-linked list of struct key objects remembers all the key->value
 * associations.  File static keyhead heads the list.  keymutex is used
 * to enforce exclusion internally.
 */
struct key {
    /* Next record in the list, or NULL if this is the last record. */
    struct key *next;

    /* The thread id, according to PyThread_get_thread_ident(). */
    long id;

    /* The key and its associated value. */
    int key;
    void *value;
};

static struct key *keyhead = NULL;
static PyThread_type_lock keymutex = NULL;
static int nkeys = 0;  /* PyThread_create_key() hands out nkeys+1 next */

/* Internal helper.
 * If the current thread has a mapping for key, the appropriate struct key*
 * is returned.  NB:  value is ignored in this case!
 * If there is no mapping for key in the current thread, then:
 *     If value is NULL, NULL is returned.
 *     Else a mapping of key to value is created for the current thread,
 *     and a pointer to a new struct key* is returned; except that if
 *     malloc() can't find room for a new struct key*, NULL is returned.
 * So when value==NULL, this acts like a pure lookup routine, and when
 * value!=NULL, this acts like dict.setdefault(), returning an existing
 * mapping if one exists, else creating a new mapping.
 *
 * Caution:  this used to be too clever, trying to hold keymutex only
 * around the "p->next = keyhead; keyhead = p" pair.  That allowed
 * another thread to mutate the list, via key deletion, concurrent with
 * find_key() crawling over the list.  Hilarity ensued.  For example, when
 * the for-loop here does "p = p->next", p could end up pointing at a
 * record that PyThread_delete_key_value() was concurrently free()'ing.
 * That could lead to anything, from failing to find a key that exists, to
 * segfaults.  Now we lock the whole routine.
 */
static struct key *
find_key(int key, void *value)
{
    struct key *p, *prev_p;
    long id = PyThread_get_thread_ident();

    if (!keymutex)
        return NULL;
    PyThread_acquire_lock(keymutex, 1);
    prev_p = NULL;
    for (p = keyhead; p != NULL; p = p->next) {
        if (p->id == id && p->key == key)
            goto Done;
        /* Sanity check.  These states should never happen but if
         * they do we must abort.  Otherwise we'll end up spinning in
         * in a tight loop with the lock held.  A similar check is done
         * in pystate.c tstate_delete_common().  */
        if (p == prev_p)
            Py_FatalError("tls find_key: small circular list(!)");
        prev_p = p;
        if (p->next == keyhead)
            Py_FatalError("tls find_key: circular list(!)");
    }
    if (value == NULL) {
        assert(p == NULL);
        goto Done;
    }
    p = (struct key *)malloc(sizeof(struct key));
    if (p != NULL) {
        p->id = id;
        p->key = key;
        p->value = value;
        p->next = keyhead;
        keyhead = p;
    }
 Done:
    PyThread_release_lock(keymutex);
    return p;
}

/* Return a new key.  This must be called before any other functions in
 * this family, and callers must arrange to serialize calls to this
 * function.  No violations are detected.
 */
int
PyThread_create_key(void)
{
    /* All parts of this function are wrong if it's called by multiple
     * threads simultaneously.
     */
    if (keymutex == NULL)
        keymutex = PyThread_allocate_lock();
    return ++nkeys;
}

/* Forget the associations for key across *all* threads. */
void
PyThread_delete_key(int key)
{
    struct key *p, **q;

    PyThread_acquire_lock(keymutex, 1);
    q = &keyhead;
    while ((p = *q) != NULL) {
        if (p->key == key) {
            *q = p->next;
            free((void *)p);
            /* NB This does *not* free p->value! */
        }
        else
            q = &p->next;
    }
    PyThread_release_lock(keymutex);
}

/* Confusing:  If the current thread has an association for key,
 * value is ignored, and 0 is returned.  Else an attempt is made to create
 * an association of key to value for the current thread.  0 is returned
 * if that succeeds, but -1 is returned if there's not enough memory
 * to create the association.  value must not be NULL.
 */
int
PyThread_set_key_value(int key, void *value)
{
    struct key *p;

    assert(value != NULL);
    p = find_key(key, value);
    if (p == NULL)
        return -1;
    else
        return 0;
}

/* Retrieve the value associated with key in the current thread, or NULL
 * if the current thread doesn't have an association for key.
 */
void *
PyThread_get_key_value(int key)
{
    struct key *p = find_key(key, NULL);

    if (p == NULL)
        return NULL;
    else
        return p->value;
}

/* Forget the current thread's association for key, if any. */
void
PyThread_delete_key_value(int key)
{
    long id = PyThread_get_thread_ident();
    struct key *p, **q;

    PyThread_acquire_lock(keymutex, 1);
    q = &keyhead;
    while ((p = *q) != NULL) {
        if (p->key == key && p->id == id) {
            *q = p->next;
            free((void *)p);
            /* NB This does *not* free p->value! */
            break;
        }
        else
            q = &p->next;
    }
    PyThread_release_lock(keymutex);
}

/* Forget everything not associated with the current thread id.
 * This function is called from PyOS_AfterFork().  It is necessary
 * because other thread ids which were in use at the time of the fork
 * may be reused for new threads created in the forked process.
 */
void
PyThread_ReInitTLS(void)
{
    long id = PyThread_get_thread_ident();
    struct key *p, **q;

    if (!keymutex)
        return;

    /* As with interpreter_lock in PyEval_ReInitThreads()
       we just create a new lock without freeing the old one */
    keymutex = PyThread_allocate_lock();

    /* Delete all keys which do not match the current thread id */
    q = &keyhead;
    while ((p = *q) != NULL) {
        if (p->id != id) {
            *q = p->next;
            free((void *)p);
            /* NB This does *not* free p->value! */
        }
        else
            q = &p->next;
    }
}

#endif /* Py_HAVE_NATIVE_TLS */
="hl num">0; s = p; if (*s == '-') { negate = 1; s++; } else if (*s == '+') { s++; } if (case_insensitive_match(s, "inf")) { s += 3; if (case_insensitive_match(s, "inity")) s += 5; retval = _Py_dg_infinity(negate); } else if (case_insensitive_match(s, "nan")) { s += 3; retval = _Py_dg_stdnan(negate); } else { s = p; retval = -1.0; } *endptr = (char *)s; return retval; } #else double _Py_parse_inf_or_nan(const char *p, char **endptr) { double retval; const char *s; int negate = 0; s = p; if (*s == '-') { negate = 1; s++; } else if (*s == '+') { s++; } if (case_insensitive_match(s, "inf")) { s += 3; if (case_insensitive_match(s, "inity")) s += 5; retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL; } #ifdef Py_NAN else if (case_insensitive_match(s, "nan")) { s += 3; retval = negate ? -Py_NAN : Py_NAN; } #endif else { s = p; retval = -1.0; } *endptr = (char *)s; return retval; } #endif /** * _PyOS_ascii_strtod: * @nptr: the string to convert to a numeric value. * @endptr: if non-%NULL, it returns the character after * the last character used in the conversion. * * Converts a string to a #gdouble value. * This function behaves like the standard strtod() function * does in the C locale. It does this without actually * changing the current locale, since that would not be * thread-safe. * * This function is typically used when reading configuration * files or other non-user input that should be locale independent. * To handle input from the user you should normally use the * locale-sensitive system strtod() function. * * If the correct value would cause overflow, plus or minus %HUGE_VAL * is returned (according to the sign of the value), and %ERANGE is * stored in %errno. If the correct value would cause underflow, * zero is returned and %ERANGE is stored in %errno. * If memory allocation fails, %ENOMEM is stored in %errno. * * This function resets %errno before calling strtod() so that * you can reliably detect overflow and underflow. * * Return value: the #gdouble value. **/ #ifndef PY_NO_SHORT_FLOAT_REPR static double _PyOS_ascii_strtod(const char *nptr, char **endptr) { double result; _Py_SET_53BIT_PRECISION_HEADER; assert(nptr != NULL); /* Set errno to zero, so that we can distinguish zero results and underflows */ errno = 0; _Py_SET_53BIT_PRECISION_START; result = _Py_dg_strtod(nptr, endptr); _Py_SET_53BIT_PRECISION_END; if (*endptr == nptr) /* string might represent an inf or nan */ result = _Py_parse_inf_or_nan(nptr, endptr); return result; } #else /* Use system strtod; since strtod is locale aware, we may have to first fix the decimal separator. Note that unlike _Py_dg_strtod, the system strtod may not always give correctly rounded results. */ static double _PyOS_ascii_strtod(const char *nptr, char **endptr) { char *fail_pos; double val; struct lconv *locale_data; const char *decimal_point; size_t decimal_point_len; const char *p, *decimal_point_pos; const char *end = NULL; /* Silence gcc */ const char *digits_pos = NULL; int negate = 0; assert(nptr != NULL); fail_pos = NULL; locale_data = localeconv(); decimal_point = locale_data->decimal_point; decimal_point_len = strlen(decimal_point); assert(decimal_point_len != 0); decimal_point_pos = NULL; /* Parse infinities and nans */ val = _Py_parse_inf_or_nan(nptr, endptr); if (*endptr != nptr) return val; /* Set errno to zero, so that we can distinguish zero results and underflows */ errno = 0; /* We process the optional sign manually, then pass the remainder to the system strtod. This ensures that the result of an underflow has the correct sign. (bug #1725) */ p = nptr; /* Process leading sign, if present */ if (*p == '-') { negate = 1; p++; } else if (*p == '+') { p++; } /* Some platform strtods accept hex floats; Python shouldn't (at the moment), so we check explicitly for strings starting with '0x'. */ if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X')) goto invalid_string; /* Check that what's left begins with a digit or decimal point */ if (!Py_ISDIGIT(*p) && *p != '.') goto invalid_string; digits_pos = p; if (decimal_point[0] != '.' || decimal_point[1] != 0) { /* Look for a '.' in the input; if present, it'll need to be swapped for the current locale's decimal point before we call strtod. On the other hand, if we find the current locale's decimal point then the input is invalid. */ while (Py_ISDIGIT(*p)) p++; if (*p == '.') { decimal_point_pos = p++; /* locate end of number */ while (Py_ISDIGIT(*p)) p++; if (*p == 'e' || *p == 'E') p++; if (*p == '+' || *p == '-') p++; while (Py_ISDIGIT(*p)) p++; end = p; } else if (strncmp(p, decimal_point, decimal_point_len) == 0) /* Python bug #1417699 */ goto invalid_string; /* For the other cases, we need not convert the decimal point */ } if (decimal_point_pos) { char *copy, *c; /* Create a copy of the input, with the '.' converted to the locale-specific decimal point */ copy = (char *)PyMem_MALLOC(end - digits_pos + 1 + decimal_point_len); if (copy == NULL) { *endptr = (char *)nptr; errno = ENOMEM; return val; } c = copy; memcpy(c, digits_pos, decimal_point_pos - digits_pos); c += decimal_point_pos - digits_pos; memcpy(c, decimal_point, decimal_point_len); c += decimal_point_len; memcpy(c, decimal_point_pos + 1, end - (decimal_point_pos + 1)); c += end - (decimal_point_pos + 1); *c = 0; val = strtod(copy, &fail_pos); if (fail_pos) { if (fail_pos > decimal_point_pos) fail_pos = (char *)digits_pos + (fail_pos - copy) - (decimal_point_len - 1); else fail_pos = (char *)digits_pos + (fail_pos - copy); } PyMem_FREE(copy); } else { val = strtod(digits_pos, &fail_pos); } if (fail_pos == digits_pos) goto invalid_string; if (negate && fail_pos != nptr) val = -val; *endptr = fail_pos; return val; invalid_string: *endptr = (char*)nptr; errno = EINVAL; return -1.0; } #endif /* PyOS_string_to_double converts a null-terminated byte string s (interpreted as a string of ASCII characters) to a float. The string should not have leading or trailing whitespace. The conversion is independent of the current locale. If endptr is NULL, try to convert the whole string. Raise ValueError and return -1.0 if the string is not a valid representation of a floating-point number. If endptr is non-NULL, try to convert as much of the string as possible. If no initial segment of the string is the valid representation of a floating-point number then *endptr is set to point to the beginning of the string, -1.0 is returned and again ValueError is raised. On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine), if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python exception is raised. Otherwise, overflow_exception should point to a Python exception, this exception will be raised, -1.0 will be returned, and *endptr will point just past the end of the converted value. If any other failure occurs (for example lack of memory), -1.0 is returned and the appropriate Python exception will have been set. */ double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception) { double x, result=-1.0; char *fail_pos; errno = 0; PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0) x = _PyOS_ascii_strtod(s, &fail_pos); PyFPE_END_PROTECT(x) if (errno == ENOMEM) { PyErr_NoMemory(); fail_pos = (char *)s; } else if (!endptr && (fail_pos == s || *fail_pos != '\0')) PyErr_Format(PyExc_ValueError, "could not convert string to float: " "%.200s", s); else if (fail_pos == s) PyErr_Format(PyExc_ValueError, "could not convert string to float: " "%.200s", s); else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception) PyErr_Format(overflow_exception, "value too large to convert to float: " "%.200s", s); else result = x; if (endptr != NULL) *endptr = fail_pos; return result; } #ifdef PY_NO_SHORT_FLOAT_REPR /* Given a string that may have a decimal point in the current locale, change it back to a dot. Since the string cannot get longer, no need for a maximum buffer size parameter. */ Py_LOCAL_INLINE(void) change_decimal_from_locale_to_dot(char* buffer) { struct lconv *locale_data = localeconv(); const char *decimal_point = locale_data->decimal_point; if (decimal_point[0] != '.' || decimal_point[1] != 0) { size_t decimal_point_len = strlen(decimal_point); if (*buffer == '+' || *buffer == '-') buffer++; while (Py_ISDIGIT(*buffer)) buffer++; if (strncmp(buffer, decimal_point, decimal_point_len) == 0) { *buffer = '.'; buffer++; if (decimal_point_len > 1) { /* buffer needs to get smaller */ size_t rest_len = strlen(buffer + (decimal_point_len - 1)); memmove(buffer, buffer + (decimal_point_len - 1), rest_len); buffer[rest_len] = 0; } } } } /* From the C99 standard, section 7.19.6: The exponent always contains at least two digits, and only as many more digits as necessary to represent the exponent. */ #define MIN_EXPONENT_DIGITS 2 /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS in length. */ Py_LOCAL_INLINE(void) ensure_minimum_exponent_length(char* buffer, size_t buf_size) { char *p = strpbrk(buffer, "eE"); if (p && (*(p + 1) == '-' || *(p + 1) == '+')) { char *start = p + 2; int exponent_digit_cnt = 0; int leading_zero_cnt = 0; int in_leading_zeros = 1; int significant_digit_cnt; /* Skip over the exponent and the sign. */ p += 2; /* Find the end of the exponent, keeping track of leading zeros. */ while (*p && Py_ISDIGIT(*p)) { if (in_leading_zeros && *p == '0') ++leading_zero_cnt; if (*p != '0') in_leading_zeros = 0; ++p; ++exponent_digit_cnt; } significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt; if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) { /* If there are 2 exactly digits, we're done, regardless of what they contain */ } else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) { int extra_zeros_cnt; /* There are more than 2 digits in the exponent. See if we can delete some of the leading zeros */ if (significant_digit_cnt < MIN_EXPONENT_DIGITS) significant_digit_cnt = MIN_EXPONENT_DIGITS; extra_zeros_cnt = exponent_digit_cnt - significant_digit_cnt; /* Delete extra_zeros_cnt worth of characters from the front of the exponent */ assert(extra_zeros_cnt >= 0); /* Add one to significant_digit_cnt to copy the trailing 0 byte, thus setting the length */ memmove(start, start + extra_zeros_cnt, significant_digit_cnt + 1); } else { /* If there are fewer than 2 digits, add zeros until there are 2, if there's enough room */ int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt; if (start + zeros + exponent_digit_cnt + 1 < buffer + buf_size) { memmove(start + zeros, start, exponent_digit_cnt + 1); memset(start, '0', zeros); } } } } /* Remove trailing zeros after the decimal point from a numeric string; also remove the decimal point if all digits following it are zero. The numeric string must end in '\0', and should not have any leading or trailing whitespace. Assumes that the decimal point is '.'. */ Py_LOCAL_INLINE(void) remove_trailing_zeros(char *buffer) { char *old_fraction_end, *new_fraction_end, *end, *p; p = buffer; if (*p == '-' || *p == '+') /* Skip leading sign, if present */ ++p; while (Py_ISDIGIT(*p)) ++p; /* if there's no decimal point there's nothing to do */ if (*p++ != '.') return; /* scan any digits after the point */ while (Py_ISDIGIT(*p)) ++p; old_fraction_end = p; /* scan up to ending '\0' */ while (*p != '\0') p++; /* +1 to make sure that we move the null byte as well */ end = p+1; /* scan back from fraction_end, looking for removable zeros */ p = old_fraction_end; while (*(p-1) == '0') --p; /* and remove point if we've got that far */ if (*(p-1) == '.') --p; new_fraction_end = p; memmove(new_fraction_end, old_fraction_end, end-old_fraction_end); } /* Ensure that buffer has a decimal point in it. The decimal point will not be in the current locale, it will always be '.'. Don't add a decimal point if an exponent is present. Also, convert to exponential notation where adding a '.0' would produce too many significant digits (see issue 5864). Returns a pointer to the fixed buffer, or NULL on failure. */ Py_LOCAL_INLINE(char *) ensure_decimal_point(char* buffer, size_t buf_size, int precision) { int digit_count, insert_count = 0, convert_to_exp = 0; char *chars_to_insert, *digits_start; /* search for the first non-digit character */ char *p = buffer; if (*p == '-' || *p == '+') /* Skip leading sign, if present. I think this could only ever be '-', but it can't hurt to check for both. */ ++p; digits_start = p; while (*p && Py_ISDIGIT(*p)) ++p; digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int); if (*p == '.') { if (Py_ISDIGIT(*(p+1))) { /* Nothing to do, we already have a decimal point and a digit after it */ } else { /* We have a decimal point, but no following digit. Insert a zero after the decimal. */ /* can't ever get here via PyOS_double_to_string */ assert(precision == -1); ++p; chars_to_insert = "0"; insert_count = 1; } } else if (!(*p == 'e' || *p == 'E')) { /* Don't add ".0" if we have an exponent. */ if (digit_count == precision) { /* issue 5864: don't add a trailing .0 in the case where the '%g'-formatted result already has as many significant digits as were requested. Switch to exponential notation instead. */ convert_to_exp = 1; /* no exponent, no point, and we shouldn't land here for infs and nans, so we must be at the end of the string. */ assert(*p == '\0'); } else { assert(precision == -1 || digit_count < precision); chars_to_insert = ".0"; insert_count = 2; } } if (insert_count) { size_t buf_len = strlen(buffer); if (buf_len + insert_count + 1 >= buf_size) { /* If there is not enough room in the buffer for the additional text, just skip it. It's not worth generating an error over. */ } else { memmove(p + insert_count, p, buffer + strlen(buffer) - p + 1); memcpy(p, chars_to_insert, insert_count); } } if (convert_to_exp) { int written; size_t buf_avail; p = digits_start; /* insert decimal point */ assert(digit_count >= 1); memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */ p[1] = '.'; p += digit_count+1; assert(p <= buf_size+buffer); buf_avail = buf_size+buffer-p; if (buf_avail == 0) return NULL; /* Add exponent. It's okay to use lower case 'e': we only arrive here as a result of using the empty format code or repr/str builtins and those never want an upper case 'E' */ written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1); if (!(0 <= written && written < Py_SAFE_DOWNCAST(buf_avail, size_t, int))) /* output truncated, or something else bad happened */ return NULL; remove_trailing_zeros(buffer); } return buffer; } /* see FORMATBUFLEN in unicodeobject.c */ #define FLOAT_FORMATBUFLEN 120 /** * _PyOS_ascii_formatd: * @buffer: A buffer to place the resulting string in * @buf_size: The length of the buffer. * @format: The printf()-style format to use for the * code to use for converting. * @d: The #gdouble to convert * @precision: The precision to use when formatting. * * Converts a #gdouble to a string, using the '.' as * decimal point. To format the number you pass in * a printf()-style format string. Allowed conversion * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'. * * 'Z' is the same as 'g', except it always has a decimal and * at least one digit after the decimal. * * Return value: The pointer to the buffer with the converted string. * On failure returns NULL but does not set any Python exception. **/ static char * _PyOS_ascii_formatd(char *buffer, size_t buf_size, const char *format, double d, int precision) { char format_char; size_t format_len = strlen(format); /* Issue 2264: code 'Z' requires copying the format. 'Z' is 'g', but also with at least one character past the decimal. */ char tmp_format[FLOAT_FORMATBUFLEN]; /* The last character in the format string must be the format char */ format_char = format[format_len - 1]; if (format[0] != '%') return NULL; /* I'm not sure why this test is here. It's ensuring that the format string after the first character doesn't have a single quote, a lowercase l, or a percent. This is the reverse of the commented-out test about 10 lines ago. */ if (strpbrk(format + 1, "'l%")) return NULL; /* Also curious about this function is that it accepts format strings like "%xg", which are invalid for floats. In general, the interface to this function is not very good, but changing it is difficult because it's a public API. */ if (!(format_char == 'e' || format_char == 'E' || format_char == 'f' || format_char == 'F' || format_char == 'g' || format_char == 'G' || format_char == 'Z')) return NULL; /* Map 'Z' format_char to 'g', by copying the format string and replacing the final char with a 'g' */ if (format_char == 'Z') { if (format_len + 1 >= sizeof(tmp_format)) { /* The format won't fit in our copy. Error out. In practice, this will never happen and will be detected by returning NULL */ return NULL; } strcpy(tmp_format, format); tmp_format[format_len - 1] = 'g'; format = tmp_format; } /* Have PyOS_snprintf do the hard work */ PyOS_snprintf(buffer, buf_size, format, d); /* Do various fixups on the return string */ /* Get the current locale, and find the decimal point string. Convert that string back to a dot. */ change_decimal_from_locale_to_dot(buffer); /* If an exponent exists, ensure that the exponent is at least MIN_EXPONENT_DIGITS digits, providing the buffer is large enough for the extra zeros. Also, if there are more than MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get back to MIN_EXPONENT_DIGITS */ ensure_minimum_exponent_length(buffer, buf_size); /* If format_char is 'Z', make sure we have at least one character after the decimal point (and make sure we have a decimal point); also switch to exponential notation in some edge cases where the extra character would produce more significant digits that we really want. */ if (format_char == 'Z') buffer = ensure_decimal_point(buffer, buf_size, precision); return buffer; } /* The fallback code to use if _Py_dg_dtoa is not available. */ PyAPI_FUNC(char *) PyOS_double_to_string(double val, char format_code, int precision, int flags, int *type) { char format[32]; Py_ssize_t bufsize; char *buf; int t, exp; int upper = 0; /* Validate format_code, and map upper and lower case */ switch (format_code) { case 'e': /* exponent */ case 'f': /* fixed */ case 'g': /* general */ break; case 'E': upper = 1; format_code = 'e'; break; case 'F': upper = 1; format_code = 'f'; break; case 'G': upper = 1; format_code = 'g'; break; case 'r': /* repr format */ /* Supplied precision is unused, must be 0. */ if (precision != 0) { PyErr_BadInternalCall(); return NULL; } /* The repr() precision (17 significant decimal digits) is the minimal number that is guaranteed to have enough precision so that if the number is read back in the exact same binary value is recreated. This is true for IEEE floating point by design, and also happens to work for all other modern hardware. */ precision = 17; format_code = 'g'; break; default: PyErr_BadInternalCall(); return NULL; } /* Here's a quick-and-dirty calculation to figure out how big a buffer we need. In general, for a finite float we need: 1 byte for each digit of the decimal significand, and 1 for a possible sign 1 for a possible decimal point 2 for a possible [eE][+-] 1 for each digit of the exponent; if we allow 19 digits total then we're safe up to exponents of 2**63. 1 for the trailing nul byte This gives a total of 24 + the number of digits in the significand, and the number of digits in the significand is: for 'g' format: at most precision, except possibly when precision == 0, when it's 1. for 'e' format: precision+1 for 'f' format: precision digits after the point, at least 1 before. To figure out how many digits appear before the point we have to examine the size of the number. If fabs(val) < 1.0 then there will be only one digit before the point. If fabs(val) >= 1.0, then there are at most 1+floor(log10(ceiling(fabs(val)))) digits before the point (where the 'ceiling' allows for the possibility that the rounding rounds the integer part of val up). A safe upper bound for the above quantity is 1+floor(exp/3), where exp is the unique integer such that 0.5 <= fabs(val)/2**exp < 1.0. This exp can be obtained from frexp. So we allow room for precision+1 digits for all formats, plus an extra floor(exp/3) digits for 'f' format. */ if (Py_IS_NAN(val) || Py_IS_INFINITY(val)) /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */ bufsize = 5; else { bufsize = 25 + precision; if (format_code == 'f' && fabs(val) >= 1.0) { frexp(val, &exp); bufsize += exp/3; } } buf = PyMem_Malloc(bufsize); if (buf == NULL) { PyErr_NoMemory(); return NULL; } /* Handle nan and inf. */ if (Py_IS_NAN(val)) { strcpy(buf, "nan"); t = Py_DTST_NAN; } else if (Py_IS_INFINITY(val)) { if (copysign(1., val) == 1.) strcpy(buf, "inf"); else strcpy(buf, "-inf"); t = Py_DTST_INFINITE; } else { t = Py_DTST_FINITE; if (flags & Py_DTSF_ADD_DOT_0) format_code = 'Z'; PyOS_snprintf(format, sizeof(format), "%%%s.%i%c", (flags & Py_DTSF_ALT ? "#" : ""), precision, format_code); _PyOS_ascii_formatd(buf, bufsize, format, val, precision); } /* Add sign when requested. It's convenient (esp. when formatting complex numbers) to include a sign even for inf and nan. */ if (flags & Py_DTSF_SIGN && buf[0] != '-') { size_t len = strlen(buf); /* the bufsize calculations above should ensure that we've got space to add a sign */ assert((size_t)bufsize >= len+2); memmove(buf+1, buf, len+1); buf[0] = '+'; } if (upper) { /* Convert to upper case. */ char *p1; for (p1 = buf; *p1; p1++) *p1 = Py_TOUPPER(*p1); } if (type) *type = t; return buf; } #else /* _Py_dg_dtoa is available. */ /* I'm using a lookup table here so that I don't have to invent a non-locale specific way to convert to uppercase */ #define OFS_INF 0 #define OFS_NAN 1 #define OFS_E 2 /* The lengths of these are known to the code below, so don't change them */ static const char * const lc_float_strings[] = { "inf", "nan", "e", }; static const char * const uc_float_strings[] = { "INF", "NAN", "E", }; /* Convert a double d to a string, and return a PyMem_Malloc'd block of memory contain the resulting string. Arguments: d is the double to be converted format_code is one of 'e', 'f', 'g', 'r'. 'e', 'f' and 'g' correspond to '%e', '%f' and '%g'; 'r' corresponds to repr. mode is one of '0', '2' or '3', and is completely determined by format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0. precision is the desired precision always_add_sign is nonzero if a '+' sign should be included for positive numbers add_dot_0_if_integer is nonzero if integers in non-exponential form should have ".0" added. Only applies to format codes 'r' and 'g'. use_alt_formatting is nonzero if alternative formatting should be used. Only applies to format codes 'e', 'f' and 'g'. For code 'g', at most one of use_alt_formatting and add_dot_0_if_integer should be nonzero. type, if non-NULL, will be set to one of these constants to identify the type of the 'd' argument: Py_DTST_FINITE Py_DTST_INFINITE Py_DTST_NAN Returns a PyMem_Malloc'd block of memory containing the resulting string, or NULL on error. If NULL is returned, the Python error has been set. */ static char * format_float_short(double d, char format_code, int mode, int precision, int always_add_sign, int add_dot_0_if_integer, int use_alt_formatting, const char * const *float_strings, int *type) { char *buf = NULL; char *p = NULL; Py_ssize_t bufsize = 0; char *digits, *digits_end; int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0; Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end; _Py_SET_53BIT_PRECISION_HEADER; /* _Py_dg_dtoa returns a digit string (no decimal point or exponent). Must be matched by a call to _Py_dg_freedtoa. */ _Py_SET_53BIT_PRECISION_START; digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign, &digits_end); _Py_SET_53BIT_PRECISION_END; decpt = (Py_ssize_t)decpt_as_int; if (digits == NULL) { /* The only failure mode is no memory. */ PyErr_NoMemory(); goto exit; } assert(digits_end != NULL && digits_end >= digits); digits_len = digits_end - digits; if (digits_len && !Py_ISDIGIT(digits[0])) { /* Infinities and nans here; adapt Gay's output, so convert Infinity to inf and NaN to nan, and ignore sign of nan. Then return. */ /* ignore the actual sign of a nan */ if (digits[0] == 'n' || digits[0] == 'N') sign = 0; /* We only need 5 bytes to hold the result "+inf\0" . */ bufsize = 5; /* Used later in an assert. */ buf = (char *)PyMem_Malloc(bufsize); if (buf == NULL) { PyErr_NoMemory(); goto exit; } p = buf; if (sign == 1) { *p++ = '-'; } else if (always_add_sign) { *p++ = '+'; } if (digits[0] == 'i' || digits[0] == 'I') { strncpy(p, float_strings[OFS_INF], 3); p += 3; if (type) *type = Py_DTST_INFINITE; } else if (digits[0] == 'n' || digits[0] == 'N') { strncpy(p, float_strings[OFS_NAN], 3); p += 3; if (type) *type = Py_DTST_NAN; } else { /* shouldn't get here: Gay's code should always return something starting with a digit, an 'I', or 'N' */ strncpy(p, "ERR", 3); /* p += 3; */ assert(0); } goto exit; } /* The result must be finite (not inf or nan). */ if (type) *type = Py_DTST_FINITE; /* We got digits back, format them. We may need to pad 'digits' either on the left or right (or both) with extra zeros, so in general the resulting string has the form [<sign>]<zeros><digits><zeros>[<exponent>] where either of the <zeros> pieces could be empty, and there's a decimal point that could appear either in <digits> or in the leading or trailing <zeros>. Imagine an infinite 'virtual' string vdigits, consisting of the string 'digits' (starting at index 0) padded on both the left and right with infinite strings of zeros. We want to output a slice vdigits[vdigits_start : vdigits_end] of this virtual string. Thus if vdigits_start < 0 then we'll end up producing some leading zeros; if vdigits_end > digits_len there will be trailing zeros in the output. The next section of code determines whether to use an exponent or not, figures out the position 'decpt' of the decimal point, and computes 'vdigits_start' and 'vdigits_end'. */ vdigits_end = digits_len; switch (format_code) { case 'e': use_exp = 1; vdigits_end = precision; break; case 'f': vdigits_end = decpt + precision; break; case 'g': if (decpt <= -4 || decpt > (add_dot_0_if_integer ? precision-1 : precision)) use_exp = 1; if (use_alt_formatting) vdigits_end = precision; break; case 'r': /* convert to exponential format at 1e16. We used to convert at 1e17, but that gives odd-looking results for some values when a 16-digit 'shortest' repr is padded with bogus zeros. For example, repr(2e16+8) would give 20000000000000010.0; the true value is 20000000000000008.0. */ if (decpt <= -4 || decpt > 16) use_exp = 1; break; default: PyErr_BadInternalCall(); goto exit; } /* if using an exponent, reset decimal point position to 1 and adjust exponent accordingly.*/ if (use_exp) { exp = (int)decpt - 1; decpt = 1; } /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start < decpt < vdigits_end if add_dot_0_if_integer and no exponent */ vdigits_start = decpt <= 0 ? decpt-1 : 0; if (!use_exp && add_dot_0_if_integer) vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1; else vdigits_end = vdigits_end > decpt ? vdigits_end : decpt; /* double check inequalities */ assert(vdigits_start <= 0 && 0 <= digits_len && digits_len <= vdigits_end); /* decimal point should be in (vdigits_start, vdigits_end] */ assert(vdigits_start < decpt && decpt <= vdigits_end); /* Compute an upper bound how much memory we need. This might be a few chars too long, but no big deal. */ bufsize = /* sign, decimal point and trailing 0 byte */ 3 + /* total digit count (including zero padding on both sides) */ (vdigits_end - vdigits_start) + /* exponent "e+100", max 3 numerical digits */ (use_exp ? 5 : 0); /* Now allocate the memory and initialize p to point to the start of it. */ buf = (char *)PyMem_Malloc(bufsize); if (buf == NULL) { PyErr_NoMemory(); goto exit; } p = buf; /* Add a negative sign if negative, and a plus sign if non-negative and always_add_sign is true. */ if (sign == 1) *p++ = '-'; else if (always_add_sign) *p++ = '+'; /* note that exactly one of the three 'if' conditions is true, so we include exactly one decimal point */ /* Zero padding on left of digit string */ if (decpt <= 0) { memset(p, '0', decpt-vdigits_start); p += decpt - vdigits_start; *p++ = '.'; memset(p, '0', 0-decpt); p += 0-decpt; } else { memset(p, '0', 0-vdigits_start); p += 0 - vdigits_start; } /* Digits, with included decimal point */ if (0 < decpt && decpt <= digits_len) { strncpy(p, digits, decpt-0); p += decpt-0; *p++ = '.'; strncpy(p, digits+decpt, digits_len-decpt); p += digits_len-decpt; } else { strncpy(p, digits, digits_len); p += digits_len; } /* And zeros on the right */ if (digits_len < decpt) { memset(p, '0', decpt-digits_len); p += decpt-digits_len; *p++ = '.'; memset(p, '0', vdigits_end-decpt); p += vdigits_end-decpt; } else { memset(p, '0', vdigits_end-digits_len); p += vdigits_end-digits_len; } /* Delete a trailing decimal pt unless using alternative formatting. */ if (p[-1] == '.' && !use_alt_formatting) p--; /* Now that we've done zero padding, add an exponent if needed. */ if (use_exp) { *p++ = float_strings[OFS_E][0]; exp_len = sprintf(p, "%+.02d", exp); p += exp_len; } exit: if (buf) { *p = '\0'; /* It's too late if this fails, as we've already stepped on memory that isn't ours. But it's an okay debugging test. */ assert(p-buf < bufsize); } if (digits) _Py_dg_freedtoa(digits); return buf; } PyAPI_FUNC(char *) PyOS_double_to_string(double val, char format_code, int precision, int flags, int *type) { const char * const *float_strings = lc_float_strings; int mode; /* Validate format_code, and map upper and lower case. Compute the mode and make any adjustments as needed. */ switch (format_code) { /* exponent */ case 'E': float_strings = uc_float_strings; format_code = 'e'; /* Fall through. */ case 'e': mode = 2; precision++; break; /* fixed */ case 'F': float_strings = uc_float_strings; format_code = 'f'; /* Fall through. */ case 'f': mode = 3; break; /* general */ case 'G': float_strings = uc_float_strings; format_code = 'g'; /* Fall through. */ case 'g': mode = 2; /* precision 0 makes no sense for 'g' format; interpret as 1 */ if (precision == 0) precision = 1; break; /* repr format */ case 'r': mode = 0; /* Supplied precision is unused, must be 0. */ if (precision != 0) { PyErr_BadInternalCall(); return NULL; } break; default: PyErr_BadInternalCall(); return NULL; } return format_float_short(val, format_code, mode, precision, flags & Py_DTSF_SIGN, flags & Py_DTSF_ADD_DOT_0, flags & Py_DTSF_ALT, float_strings, type); } #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */