1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
"""
List sort performance test.
To install `pyperf` you would need to:
python3 -m pip install pyperf
To run:
python3 Tools/scripts/sortperf
Options:
* `benchmark` name to run
* `--rnd-seed` to set random seed
* `--size` to set the sorted list size
Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py
"""
from __future__ import annotations
import argparse
import time
import random
# ===============
# Data generation
# ===============
def _random_data(size: int, rand: random.Random) -> list[float]:
result = [rand.random() for _ in range(size)]
# Shuffle it a bit...
for i in range(10):
i = rand.randrange(size)
temp = result[:i]
del result[:i]
temp.reverse()
result.extend(temp)
del temp
assert len(result) == size
return result
def list_sort(size: int, rand: random.Random) -> list[float]:
return _random_data(size, rand)
def list_sort_descending(size: int, rand: random.Random) -> list[float]:
return list(reversed(list_sort_ascending(size, rand)))
def list_sort_ascending(size: int, rand: random.Random) -> list[float]:
return sorted(_random_data(size, rand))
def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]:
result = list_sort_ascending(size, rand)
# Do 3 random exchanges.
for _ in range(3):
i1 = rand.randrange(size)
i2 = rand.randrange(size)
result[i1], result[i2] = result[i2], result[i1]
return result
def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]:
assert size >= 10, "This benchmark requires size to be >= 10"
result = list_sort_ascending(size, rand)
# Replace the last 10 with random floats.
result[-10:] = [rand.random() for _ in range(10)]
return result
def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]:
result = list_sort_ascending(size, rand)
# Replace 1% of the elements at random.
for _ in range(size // 100):
result[rand.randrange(size)] = rand.random()
return result
def list_sort_duplicates(size: int, rand: random.Random) -> list[float]:
assert size >= 4
result = list_sort_ascending(4, rand)
# Arrange for lots of duplicates.
result = result * (size // 4)
# Force the elements to be distinct objects, else timings can be
# artificially low.
return list(map(abs, result))
def list_sort_equal(size: int, rand: random.Random) -> list[float]:
# All equal. Again, force the elements to be distinct objects.
return list(map(abs, [-0.519012] * size))
def list_sort_worst_case(size: int, rand: random.Random) -> list[float]:
# This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case
# for an older implementation of quicksort, which used the median
# of the first, last and middle elements as the pivot.
half = size // 2
result = list(range(half - 1, -1, -1))
result.extend(range(half))
# Force to float, so that the timings are comparable. This is
# significantly faster if we leave them as ints.
return list(map(float, result))
# =========
# Benchmark
# =========
class Benchmark:
def __init__(self, name: str, size: int, seed: int) -> None:
self._name = name
self._size = size
self._seed = seed
self._random = random.Random(self._seed)
def run(self, loops: int) -> float:
all_data = self._prepare_data(loops)
start = time.perf_counter()
for data in all_data:
data.sort() # Benching this method!
return time.perf_counter() - start
def _prepare_data(self, loops: int) -> list[float]:
bench = BENCHMARKS[self._name]
return [bench(self._size, self._random)] * loops
def add_cmdline_args(cmd: list[str], args) -> None:
if args.benchmark:
cmd.append(args.benchmark)
cmd.append(f"--size={args.size}")
cmd.append(f"--rng-seed={args.rng_seed}")
def add_parser_args(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"benchmark",
choices=BENCHMARKS,
nargs="?",
help="Can be any of: {0}".format(", ".join(BENCHMARKS)),
)
parser.add_argument(
"--size",
type=int,
default=DEFAULT_SIZE,
help=f"Size of the lists to sort (default: {DEFAULT_SIZE})",
)
parser.add_argument(
"--rng-seed",
type=int,
default=DEFAULT_RANDOM_SEED,
help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})",
)
DEFAULT_SIZE = 1 << 14
DEFAULT_RANDOM_SEED = 0
BENCHMARKS = {
"list_sort": list_sort,
"list_sort_descending": list_sort_descending,
"list_sort_ascending": list_sort_ascending,
"list_sort_ascending_exchanged": list_sort_ascending_exchanged,
"list_sort_ascending_random": list_sort_ascending_random,
"list_sort_ascending_one_percent": list_sort_ascending_one_percent,
"list_sort_duplicates": list_sort_duplicates,
"list_sort_equal": list_sort_equal,
"list_sort_worst_case": list_sort_worst_case,
}
if __name__ == "__main__":
# This needs `pyperf` 3rd party library:
import pyperf
runner = pyperf.Runner(add_cmdline_args=add_cmdline_args)
add_parser_args(runner.argparser)
args = runner.parse_args()
runner.metadata["description"] = "Test `list.sort()` with different data"
runner.metadata["list_sort_size"] = args.size
runner.metadata["list_sort_random_seed"] = args.rng_seed
if args.benchmark:
benchmarks = (args.benchmark,)
else:
benchmarks = sorted(BENCHMARKS)
for bench in benchmarks:
benchmark = Benchmark(bench, args.size, args.rng_seed)
runner.bench_time_func(bench, benchmark.run)
|