1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
|
# Original Algorithm:
# By Steve Hanov, 2011. Released to the public domain.
# Please see http://stevehanov.ca/blog/index.php?id=115 for the accompanying article.
#
# Adapted for PyPy/CPython by Carl Friedrich Bolz-Tereick
#
# Based on Daciuk, Jan, et al. "Incremental construction of minimal acyclic finite-state automata."
# Computational linguistics 26.1 (2000): 3-16.
#
# Updated 2014 to use DAWG as a mapping; see
# Kowaltowski, T.; CL. Lucchesi (1993), "Applications of finite automata representing large vocabularies",
# Software-Practice and Experience 1993
from collections import defaultdict
from functools import cached_property
# This class represents a node in the directed acyclic word graph (DAWG). It
# has a list of edges to other nodes. It has functions for testing whether it
# is equivalent to another node. Nodes are equivalent if they have identical
# edges, and each identical edge leads to identical states. The __hash__ and
# __eq__ functions allow it to be used as a key in a python dictionary.
class DawgNode:
def __init__(self, dawg):
self.id = dawg.next_id
dawg.next_id += 1
self.final = False
self.edges = {}
self.linear_edges = None # later: list of (string, next_state)
def __str__(self):
if self.final:
arr = ["1"]
else:
arr = ["0"]
for (label, node) in sorted(self.edges.items()):
arr.append(label)
arr.append(str(node.id))
return "_".join(arr)
__repr__ = __str__
def _as_tuple(self):
edges = sorted(self.edges.items())
edge_tuple = tuple((label, node.id) for label, node in edges)
return (self.final, edge_tuple)
def __hash__(self):
return hash(self._as_tuple())
def __eq__(self, other):
return self._as_tuple() == other._as_tuple()
@cached_property
def num_reachable_linear(self):
# returns the number of different paths to final nodes reachable from
# this one
count = 0
# staying at self counts as a path if self is final
if self.final:
count += 1
for label, node in self.linear_edges:
count += node.num_reachable_linear
return count
class Dawg:
def __init__(self):
self.previous_word = ""
self.next_id = 0
self.root = DawgNode(self)
# Here is a list of nodes that have not been checked for duplication.
self.unchecked_nodes = []
# To deduplicate, maintain a dictionary with
# minimized_nodes[canonical_node] is canonical_node.
# Based on __hash__ and __eq__, minimized_nodes[n] is the
# canonical node equal to n.
# In other words, self.minimized_nodes[x] == x for all nodes found in
# the dict.
self.minimized_nodes = {}
# word: value mapping
self.data = {}
# value: word mapping
self.inverse = {}
def insert(self, word, value):
if not all(0 <= ord(c) < 128 for c in word):
raise ValueError("Use 7-bit ASCII characters only")
if word <= self.previous_word:
raise ValueError("Error: Words must be inserted in alphabetical order.")
if value in self.inverse:
raise ValueError(f"value {value} is duplicate, got it for word {self.inverse[value]} and now {word}")
# find common prefix between word and previous word
common_prefix = 0
for i in range(min(len(word), len(self.previous_word))):
if word[i] != self.previous_word[i]:
break
common_prefix += 1
# Check the unchecked_nodes for redundant nodes, proceeding from last
# one down to the common prefix size. Then truncate the list at that
# point.
self._minimize(common_prefix)
self.data[word] = value
self.inverse[value] = word
# add the suffix, starting from the correct node mid-way through the
# graph
if len(self.unchecked_nodes) == 0:
node = self.root
else:
node = self.unchecked_nodes[-1][2]
for letter in word[common_prefix:]:
next_node = DawgNode(self)
node.edges[letter] = next_node
self.unchecked_nodes.append((node, letter, next_node))
node = next_node
node.final = True
self.previous_word = word
def finish(self):
if not self.data:
raise ValueError("need at least one word in the dawg")
# minimize all unchecked_nodes
self._minimize(0)
self._linearize_edges()
topoorder, linear_data, inverse = self._topological_order()
return self.compute_packed(topoorder), linear_data, inverse
def _minimize(self, down_to):
# proceed from the leaf up to a certain point
for i in range(len(self.unchecked_nodes) - 1, down_to - 1, -1):
(parent, letter, child) = self.unchecked_nodes[i]
if child in self.minimized_nodes:
# replace the child with the previously encountered one
parent.edges[letter] = self.minimized_nodes[child]
else:
# add the state to the minimized nodes.
self.minimized_nodes[child] = child
self.unchecked_nodes.pop()
def _lookup(self, word):
""" Return an integer 0 <= k < number of strings in dawg
where word is the kth successful traversal of the dawg. """
node = self.root
skipped = 0 # keep track of number of final nodes that we skipped
index = 0
while index < len(word):
for label, child in node.linear_edges:
if word[index] == label[0]:
if word[index:index + len(label)] == label:
if node.final:
skipped += 1
index += len(label)
node = child
break
else:
return None
skipped += child.num_reachable_linear
else:
return None
return skipped
def enum_all_nodes(self):
stack = [self.root]
done = set()
while stack:
node = stack.pop()
if node.id in done:
continue
yield node
done.add(node.id)
for label, child in sorted(node.edges.items()):
stack.append(child)
def prettyprint(self):
for node in sorted(self.enum_all_nodes(), key=lambda e: e.id):
s_final = " final" if node.final else ""
print(f"{node.id}: ({node}) {s_final}")
for label, child in sorted(node.edges.items()):
print(f" {label} goto {child.id}")
def _inverse_lookup(self, number):
assert 0, "not working in the current form, but keep it as the pure python version of compact lookup"
result = []
node = self.root
while 1:
if node.final:
if pos == 0:
return "".join(result)
pos -= 1
for label, child in sorted(node.edges.items()):
nextpos = pos - child.num_reachable_linear
if nextpos < 0:
result.append(label)
node = child
break
else:
pos = nextpos
else:
assert 0
def _linearize_edges(self):
# compute "linear" edges. the idea is that long chains of edges without
# any of the intermediate states being final or any extra incoming or
# outgoing edges can be represented by having removing them, and
# instead using longer strings as edge labels (instead of single
# characters)
incoming = defaultdict(list)
nodes = sorted(self.enum_all_nodes(), key=lambda e: e.id)
for node in nodes:
for label, child in sorted(node.edges.items()):
incoming[child].append(node)
for node in nodes:
node.linear_edges = []
for label, child in sorted(node.edges.items()):
s = [label]
while len(child.edges) == 1 and len(incoming[child]) == 1 and not child.final:
(c, child), = child.edges.items()
s.append(c)
node.linear_edges.append((''.join(s), child))
def _topological_order(self):
# compute reachable linear nodes, and the set of incoming edges for each node
order = []
stack = [self.root]
seen = set()
while stack:
# depth first traversal
node = stack.pop()
if node.id in seen:
continue
seen.add(node.id)
order.append(node)
for label, child in node.linear_edges:
stack.append(child)
# do a (slightly bad) topological sort
incoming = defaultdict(set)
for node in order:
for label, child in node.linear_edges:
incoming[child].add((label, node))
no_incoming = [order[0]]
topoorder = []
positions = {}
while no_incoming:
node = no_incoming.pop()
topoorder.append(node)
positions[node] = len(topoorder)
# use "reversed" to make sure that the linear_edges get reorderd
# from their alphabetical order as little as necessary (no_incoming
# is LIFO)
for label, child in reversed(node.linear_edges):
incoming[child].discard((label, node))
if not incoming[child]:
no_incoming.append(child)
del incoming[child]
# check result
assert set(topoorder) == set(order)
assert len(set(topoorder)) == len(topoorder)
for node in order:
node.linear_edges.sort(key=lambda element: positions[element[1]])
for node in order:
for label, child in node.linear_edges:
assert positions[child] > positions[node]
# number the nodes. afterwards every input string in the set has a
# unique number in the 0 <= number < len(data). We then put the data in
# self.data into a linear list using these numbers as indexes.
topoorder[0].num_reachable_linear
linear_data = [None] * len(self.data)
inverse = {} # maps value back to index
for word, value in self.data.items():
index = self._lookup(word)
linear_data[index] = value
inverse[value] = index
return topoorder, linear_data, inverse
def compute_packed(self, order):
def compute_chunk(node, offsets):
""" compute the packed node/edge data for a node. result is a
list of bytes as long as order. the jump distance calculations use
the offsets dictionary to know where in the final big output
bytestring the individual nodes will end up. """
result = bytearray()
offset = offsets[node]
encode_varint_unsigned(number_add_bits(node.num_reachable_linear, node.final), result)
if len(node.linear_edges) == 0:
assert node.final
encode_varint_unsigned(0, result) # add a 0 saying "done"
prev_child_offset = offset + len(result)
for edgeindex, (label, targetnode) in enumerate(node.linear_edges):
label = label.encode('ascii')
child_offset = offsets[targetnode]
child_offset_difference = child_offset - prev_child_offset
info = number_add_bits(child_offset_difference, len(label) == 1, edgeindex == len(node.linear_edges) - 1)
if edgeindex == 0:
assert info != 0
encode_varint_unsigned(info, result)
prev_child_offset = child_offset
if len(label) > 1:
encode_varint_unsigned(len(label), result)
result.extend(label)
return result
def compute_new_offsets(chunks, offsets):
""" Given a list of chunks, compute the new offsets (by adding the
chunk lengths together). Also check if we cannot shrink the output
further because none of the node offsets are smaller now. if that's
the case return None. """
new_offsets = {}
curr_offset = 0
should_continue = False
for node, result in zip(order, chunks):
if curr_offset < offsets[node]:
# the new offset is below the current assumption, this
# means we can shrink the output more
should_continue = True
new_offsets[node] = curr_offset
curr_offset += len(result)
if not should_continue:
return None
return new_offsets
# assign initial offsets to every node
offsets = {}
for i, node in enumerate(order):
# we don't know position of the edge yet, just use something big as
# the starting position. we'll have to do further iterations anyway,
# but the size is at least a lower limit then
offsets[node] = i * 2 ** 30
# due to the variable integer width encoding of edge targets we need to
# run this to fixpoint. in the process we shrink the output more and
# more until we can't any more. at any point we can stop and use the
# output, but we might need padding zero bytes when joining the chunks
# to have the correct jump distances
last_offsets = None
while 1:
chunks = [compute_chunk(node, offsets) for node in order]
last_offsets = offsets
offsets = compute_new_offsets(chunks, offsets)
if offsets is None: # couldn't shrink
break
# build the final packed string
total_result = bytearray()
for node, result in zip(order, chunks):
node_offset = last_offsets[node]
if node_offset > len(total_result):
# need to pad to get the offsets correct
padding = b"\x00" * (node_offset - len(total_result))
total_result.extend(padding)
assert node_offset == len(total_result)
total_result.extend(result)
return bytes(total_result)
# ______________________________________________________________________
# the following functions operate on the packed representation
def number_add_bits(x, *bits):
for bit in bits:
assert bit == 0 or bit == 1
x = (x << 1) | bit
return x
def encode_varint_unsigned(i, res):
# https://en.wikipedia.org/wiki/LEB128 unsigned variant
more = True
startlen = len(res)
if i < 0:
raise ValueError("only positive numbers supported", i)
while more:
lowest7bits = i & 0b1111111
i >>= 7
if i == 0:
more = False
else:
lowest7bits |= 0b10000000
res.append(lowest7bits)
return len(res) - startlen
def number_split_bits(x, n, acc=()):
if n == 1:
return x >> 1, x & 1
if n == 2:
return x >> 2, (x >> 1) & 1, x & 1
assert 0, "implement me!"
def decode_varint_unsigned(b, index=0):
res = 0
shift = 0
while True:
byte = b[index]
res = res | ((byte & 0b1111111) << shift)
index += 1
shift += 7
if not (byte & 0b10000000):
return res, index
def decode_node(packed, node):
x, node = decode_varint_unsigned(packed, node)
node_count, final = number_split_bits(x, 1)
return node_count, final, node
def decode_edge(packed, edgeindex, prev_child_offset, offset):
x, offset = decode_varint_unsigned(packed, offset)
if x == 0 and edgeindex == 0:
raise KeyError # trying to decode past a final node
child_offset_difference, len1, last_edge = number_split_bits(x, 2)
child_offset = prev_child_offset + child_offset_difference
if len1:
size = 1
else:
size, offset = decode_varint_unsigned(packed, offset)
return child_offset, last_edge, size, offset
def _match_edge(packed, s, size, node_offset, stringpos):
if size > 1 and stringpos + size > len(s):
# past the end of the string, can't match
return False
for i in range(size):
if packed[node_offset + i] != s[stringpos + i]:
# if a subsequent char of an edge doesn't match, the word isn't in
# the dawg
if i > 0:
raise KeyError
return False
return True
def lookup(packed, data, s):
return data[_lookup(packed, s)]
def _lookup(packed, s):
stringpos = 0
node_offset = 0
skipped = 0 # keep track of number of final nodes that we skipped
false = False
while stringpos < len(s):
#print(f"{node_offset=} {stringpos=}")
_, final, edge_offset = decode_node(packed, node_offset)
prev_child_offset = edge_offset
edgeindex = 0
while 1:
child_offset, last_edge, size, edgelabel_chars_offset = decode_edge(packed, edgeindex, prev_child_offset, edge_offset)
#print(f" {edge_offset=} {child_offset=} {last_edge=} {size=} {edgelabel_chars_offset=}")
edgeindex += 1
prev_child_offset = child_offset
if _match_edge(packed, s, size, edgelabel_chars_offset, stringpos):
# match
if final:
skipped += 1
stringpos += size
node_offset = child_offset
break
if last_edge:
raise KeyError
descendant_count, _, _ = decode_node(packed, child_offset)
skipped += descendant_count
edge_offset = edgelabel_chars_offset + size
_, final, _ = decode_node(packed, node_offset)
if final:
return skipped
raise KeyError
def inverse_lookup(packed, inverse, x):
pos = inverse[x]
return _inverse_lookup(packed, pos)
def _inverse_lookup(packed, pos):
result = bytearray()
node_offset = 0
while 1:
node_count, final, edge_offset = decode_node(packed, node_offset)
if final:
if pos == 0:
return bytes(result)
pos -= 1
prev_child_offset = edge_offset
edgeindex = 0
while 1:
child_offset, last_edge, size, edgelabel_chars_offset = decode_edge(packed, edgeindex, prev_child_offset, edge_offset)
edgeindex += 1
prev_child_offset = child_offset
descendant_count, _, _ = decode_node(packed, child_offset)
nextpos = pos - descendant_count
if nextpos < 0:
assert edgelabel_chars_offset >= 0
result.extend(packed[edgelabel_chars_offset: edgelabel_chars_offset + size])
node_offset = child_offset
break
elif not last_edge:
pos = nextpos
edge_offset = edgelabel_chars_offset + size
else:
raise KeyError
else:
raise KeyError
def build_compression_dawg(ucdata):
d = Dawg()
ucdata.sort()
for name, value in ucdata:
d.insert(name, value)
packed, pos_to_code, reversedict = d.finish()
print("size of dawg [KiB]", round(len(packed) / 1024, 2))
# check that lookup and inverse_lookup work correctly on the input data
for name, value in ucdata:
assert lookup(packed, pos_to_code, name.encode('ascii')) == value
assert inverse_lookup(packed, reversedict, value) == name.encode('ascii')
return packed, pos_to_code
|