1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
|
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in actions.
// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
// length exceeded) for MSVC.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4100)
#pragma warning(disable : 4503)
#if _MSC_VER == 1900
// and silence C4800 (C4800: 'int *const ': forcing value
// to bool 'true' or 'false') for MSVC 15
#pragma warning(disable : 4800)
#endif
#endif
#include "gmock/gmock-actions.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include "gmock/gmock.h"
#include "gmock/internal/gmock-port.h"
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
namespace testing {
namespace {
using ::testing::internal::BuiltInDefaultValue;
TEST(TypeTraits, Negation) {
// Direct use with std types.
static_assert(std::is_base_of<std::false_type,
internal::negation<std::true_type>>::value,
"");
static_assert(std::is_base_of<std::true_type,
internal::negation<std::false_type>>::value,
"");
// With other types that fit the requirement of a value member that is
// convertible to bool.
static_assert(std::is_base_of<
std::true_type,
internal::negation<std::integral_constant<int, 0>>>::value,
"");
static_assert(std::is_base_of<
std::false_type,
internal::negation<std::integral_constant<int, 1>>>::value,
"");
static_assert(std::is_base_of<
std::false_type,
internal::negation<std::integral_constant<int, -1>>>::value,
"");
}
// Weird false/true types that aren't actually bool constants (but should still
// be legal according to [meta.logical] because `bool(T::value)` is valid), are
// distinct from std::false_type and std::true_type, and are distinct from other
// instantiations of the same template.
//
// These let us check finicky details mandated by the standard like
// "std::conjunction should evaluate to a type that inherits from the first
// false-y input".
template <int>
struct MyFalse : std::integral_constant<int, 0> {};
template <int>
struct MyTrue : std::integral_constant<int, -1> {};
TEST(TypeTraits, Conjunction) {
// Base case: always true.
static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
"");
// One predicate: inherits from that predicate, regardless of value.
static_assert(
std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
"");
static_assert(
std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");
// Multiple predicates, with at least one false: inherits from that one.
static_assert(
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
MyTrue<2>>>::value,
"");
static_assert(
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
MyFalse<2>>>::value,
"");
// Short circuiting: in the case above, additional predicates need not even
// define a value member.
struct Empty {};
static_assert(
std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
Empty>>::value,
"");
// All predicates true: inherits from the last.
static_assert(
std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
MyTrue<2>>>::value,
"");
}
TEST(TypeTraits, Disjunction) {
// Base case: always false.
static_assert(
std::is_base_of<std::false_type, internal::disjunction<>>::value, "");
// One predicate: inherits from that predicate, regardless of value.
static_assert(
std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
"");
static_assert(
std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");
// Multiple predicates, with at least one true: inherits from that one.
static_assert(
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
MyFalse<2>>>::value,
"");
static_assert(
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
MyTrue<2>>>::value,
"");
// Short circuiting: in the case above, additional predicates need not even
// define a value member.
struct Empty {};
static_assert(
std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
Empty>>::value,
"");
// All predicates false: inherits from the last.
static_assert(
std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
MyFalse<2>>>::value,
"");
}
TEST(TypeTraits, IsInvocableRV) {
struct C {
int operator()() const { return 0; }
void operator()(int) & {}
std::string operator()(int) && { return ""; };
};
// The first overload is callable for const and non-const rvalues and lvalues.
// It can be used to obtain an int, void, or anything int is convertible too.
static_assert(internal::is_callable_r<int, C>::value, "");
static_assert(internal::is_callable_r<int, C&>::value, "");
static_assert(internal::is_callable_r<int, const C>::value, "");
static_assert(internal::is_callable_r<int, const C&>::value, "");
static_assert(internal::is_callable_r<void, C>::value, "");
static_assert(internal::is_callable_r<char, C>::value, "");
// It's possible to provide an int. If it's given to an lvalue, the result is
// void. Otherwise it is std::string (which is also treated as allowed for a
// void result type).
static_assert(internal::is_callable_r<void, C&, int>::value, "");
static_assert(!internal::is_callable_r<int, C&, int>::value, "");
static_assert(!internal::is_callable_r<std::string, C&, int>::value, "");
static_assert(!internal::is_callable_r<void, const C&, int>::value, "");
static_assert(internal::is_callable_r<std::string, C, int>::value, "");
static_assert(internal::is_callable_r<void, C, int>::value, "");
static_assert(!internal::is_callable_r<int, C, int>::value, "");
// It's not possible to provide other arguments.
static_assert(!internal::is_callable_r<void, C, std::string>::value, "");
static_assert(!internal::is_callable_r<void, C, int, int>::value, "");
// Nothing should choke when we try to call other arguments besides directly
// callable objects, but they should not show up as callable.
static_assert(!internal::is_callable_r<void, int>::value, "");
static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
}
// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
}
// Tests that BuiltInDefaultValue<T*>::Exists() return true.
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
}
// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
// built-in numeric type.
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
#if GMOCK_WCHAR_T_IS_NATIVE_
#if !defined(__WCHAR_UNSIGNED__)
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
#else
EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
#endif
#endif
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
}
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
// built-in numeric type.
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
#if GMOCK_WCHAR_T_IS_NATIVE_
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
#endif
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
}
// Tests that BuiltInDefaultValue<bool>::Get() returns false.
TEST(BuiltInDefaultValueTest, IsFalseForBool) {
EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
}
// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
TEST(BuiltInDefaultValueTest, BoolExists) {
EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
}
// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
// string type.
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
}
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
// string type.
TEST(BuiltInDefaultValueTest, ExistsForString) {
EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
}
// Tests that BuiltInDefaultValue<const T>::Get() returns the same
// value as BuiltInDefaultValue<T>::Get() does.
TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
}
// A type that's default constructible.
class MyDefaultConstructible {
public:
MyDefaultConstructible() : value_(42) {}
int value() const { return value_; }
private:
int value_;
};
// A type that's not default constructible.
class MyNonDefaultConstructible {
public:
// Does not have a default ctor.
explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
int value() const { return value_; }
private:
int value_;
};
TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
}
TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
}
TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
}
// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
}
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
EXPECT_DEATH_IF_SUPPORTED(
{ BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
}
// Tests that DefaultValue<T>::IsSet() is false initially.
TEST(DefaultValueTest, IsInitiallyUnset) {
EXPECT_FALSE(DefaultValue<int>::IsSet());
EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
}
// Tests that DefaultValue<T> can be set and then unset.
TEST(DefaultValueTest, CanBeSetAndUnset) {
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
DefaultValue<int>::Set(1);
DefaultValue<const MyNonDefaultConstructible>::Set(
MyNonDefaultConstructible(42));
EXPECT_EQ(1, DefaultValue<int>::Get());
EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
DefaultValue<int>::Clear();
DefaultValue<const MyNonDefaultConstructible>::Clear();
EXPECT_FALSE(DefaultValue<int>::IsSet());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
}
// Tests that DefaultValue<T>::Get() returns the
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
// false.
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
EXPECT_FALSE(DefaultValue<int>::IsSet());
EXPECT_TRUE(DefaultValue<int>::Exists());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
EXPECT_EQ(0, DefaultValue<int>::Get());
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
"");
}
TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
DefaultValue<std::unique_ptr<int>>::SetFactory(
[] { return std::unique_ptr<int>(new int(42)); });
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
EXPECT_EQ(42, *i);
}
// Tests that DefaultValue<void>::Get() returns void.
TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }
// Tests using DefaultValue with a reference type.
// Tests that DefaultValue<T&>::IsSet() is false initially.
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
EXPECT_FALSE(DefaultValue<int&>::IsSet());
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
}
// Tests that DefaultValue<T&>::Exists is false initiallly.
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
EXPECT_FALSE(DefaultValue<int&>::Exists());
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
}
// Tests that DefaultValue<T&> can be set and then unset.
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
int n = 1;
DefaultValue<const int&>::Set(n);
MyNonDefaultConstructible x(42);
DefaultValue<MyNonDefaultConstructible&>::Set(x);
EXPECT_TRUE(DefaultValue<const int&>::Exists());
EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
DefaultValue<const int&>::Clear();
DefaultValue<MyNonDefaultConstructible&>::Clear();
EXPECT_FALSE(DefaultValue<const int&>::Exists());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
EXPECT_FALSE(DefaultValue<const int&>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
}
// Tests that DefaultValue<T&>::Get() returns the
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
// false.
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
EXPECT_FALSE(DefaultValue<int&>::IsSet());
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, "");
EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
"");
}
// Tests that ActionInterface can be implemented by defining the
// Perform method.
typedef int MyGlobalFunction(bool, int);
class MyActionImpl : public ActionInterface<MyGlobalFunction> {
public:
int Perform(const std::tuple<bool, int>& args) override {
return std::get<0>(args) ? std::get<1>(args) : 0;
}
};
TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
MyActionImpl my_action_impl;
(void)my_action_impl;
}
TEST(ActionInterfaceTest, MakeAction) {
Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
// When exercising the Perform() method of Action<F>, we must pass
// it a tuple whose size and type are compatible with F's argument
// types. For example, if F is int(), then Perform() takes a
// 0-tuple; if F is void(bool, int), then Perform() takes a
// std::tuple<bool, int>, and so on.
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
}
// Tests that Action<F> can be constructed from a pointer to
// ActionInterface<F>.
TEST(ActionTest, CanBeConstructedFromActionInterface) {
Action<MyGlobalFunction> action(new MyActionImpl);
}
// Tests that Action<F> delegates actual work to ActionInterface<F>.
TEST(ActionTest, DelegatesWorkToActionInterface) {
const Action<MyGlobalFunction> action(new MyActionImpl);
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
}
// Tests that Action<F> can be copied.
TEST(ActionTest, IsCopyable) {
Action<MyGlobalFunction> a1(new MyActionImpl);
Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
// a1 should continue to work after being copied from.
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
// a2 should work like the action it was copied from.
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
a2 = a1; // Tests the assignment operator.
// a1 should continue to work after being copied from.
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
// a2 should work like the action it was copied from.
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
}
// Tests that an Action<From> object can be converted to a
// compatible Action<To> object.
class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
public:
bool Perform(const std::tuple<int>& arg) override {
return std::get<0>(arg) != 0;
}
};
TEST(ActionTest, CanBeConvertedToOtherActionType) {
const Action<bool(int)> a1(new IsNotZero); // NOLINT
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
}
// The following two classes are for testing MakePolymorphicAction().
// Implements a polymorphic action that returns the second of the
// arguments it receives.
class ReturnSecondArgumentAction {
public:
// We want to verify that MakePolymorphicAction() can work with a
// polymorphic action whose Perform() method template is either
// const or not. This lets us verify the non-const case.
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return std::get<1>(args);
}
};
// Implements a polymorphic action that can be used in a nullary
// function to return 0.
class ReturnZeroFromNullaryFunctionAction {
public:
// For testing that MakePolymorphicAction() works when the
// implementation class' Perform() method template takes only one
// template parameter.
//
// We want to verify that MakePolymorphicAction() can work with a
// polymorphic action whose Perform() method template is either
// const or not. This lets us verify the const case.
template <typename Result>
Result Perform(const std::tuple<>&) const {
return 0;
}
};
// These functions verify that MakePolymorphicAction() returns a
// PolymorphicAction<T> where T is the argument's type.
PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
return MakePolymorphicAction(ReturnSecondArgumentAction());
}
PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
ReturnZeroFromNullaryFunction() {
return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
}
// Tests that MakePolymorphicAction() turns a polymorphic action
// implementation class into a polymorphic action.
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
}
// Tests that MakePolymorphicAction() works when the implementation
// class' Perform() method template has only one template parameter.
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
Action<int()> a1 = ReturnZeroFromNullaryFunction();
EXPECT_EQ(0, a1.Perform(std::make_tuple()));
Action<void*()> a2 = ReturnZeroFromNullaryFunction();
EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
}
// Tests that Return() works as an action for void-returning
// functions.
TEST(ReturnTest, WorksForVoid) {
const Action<void(int)> ret = Return(); // NOLINT
return ret.Perform(std::make_tuple(1));
}
// Tests that Return(v) returns v.
TEST(ReturnTest, ReturnsGivenValue) {
Action<int()> ret = Return(1); // NOLINT
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
ret = Return(-5);
EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
}
// Tests that Return("string literal") works.
TEST(ReturnTest, AcceptsStringLiteral) {
Action<const char*()> a1 = Return("Hello");
EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
Action<std::string()> a2 = Return("world");
EXPECT_EQ("world", a2.Perform(std::make_tuple()));
}
// Return(x) should work fine when the mock function's return type is a
// reference-like wrapper for decltype(x), as when x is a std::string and the
// mock function returns std::string_view.
TEST(ReturnTest, SupportsReferenceLikeReturnType) {
// A reference wrapper for std::vector<int>, implicitly convertible from it.
struct Result {
const std::vector<int>* v;
Result(const std::vector<int>& v) : v(&v) {} // NOLINT
};
// Set up an action for a mock function that returns the reference wrapper
// type, initializing it with an actual vector.
//
// The returned wrapper should be initialized with a copy of that vector
// that's embedded within the action itself (which should stay alive as long
// as the mock object is alive), rather than e.g. a reference to the temporary
// we feed to Return. This should work fine both for WillOnce and
// WillRepeatedly.
MockFunction<Result()> mock;
EXPECT_CALL(mock, Call)
.WillOnce(Return(std::vector<int>{17, 19, 23}))
.WillRepeatedly(Return(std::vector<int>{29, 31, 37}));
EXPECT_THAT(mock.AsStdFunction()(),
Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));
EXPECT_THAT(mock.AsStdFunction()(),
Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
}
TEST(ReturnTest, PrefersConversionOperator) {
// Define types In and Out such that:
//
// * In is implicitly convertible to Out.
// * Out also has an explicit constructor from In.
//
struct In;
struct Out {
int x;
explicit Out(const int x) : x(x) {}
explicit Out(const In&) : x(0) {}
};
struct In {
operator Out() const { return Out{19}; } // NOLINT
};
// Assumption check: the C++ language rules are such that a function that
// returns Out which uses In a return statement will use the implicit
// conversion path rather than the explicit constructor.
EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));
// Return should work the same way: if the mock function's return type is Out
// and we feed Return an In value, then the Out should be created through the
// implicit conversion path rather than the explicit constructor.
MockFunction<Out()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return(In()));
EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
}
// It should be possible to use Return(R) with a mock function result type U
// that is convertible from const R& but *not* R (such as
// std::reference_wrapper). This should work for both WillOnce and
// WillRepeatedly.
TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
using R = int;
using U = std::reference_wrapper<const int>;
static_assert(std::is_convertible<const R&, U>::value, "");
static_assert(!std::is_convertible<R, U>::value, "");
MockFunction<U()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));
EXPECT_EQ(17, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
}
// Return(x) should not be usable with a mock function result type that's
// implicitly convertible from decltype(x) but requires a non-const lvalue
// reference to the input. It doesn't make sense for the conversion operator to
// modify the input.
TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
// Set up a type that is implicitly convertible from std::string&, but not
// std::string&& or `const std::string&`.
//
// Avoid asserting about conversion from std::string on MSVC, which seems to
// implement std::is_convertible incorrectly in this case.
struct S {
S(std::string&) {} // NOLINT
};
static_assert(std::is_convertible<std::string&, S>::value, "");
#ifndef _MSC_VER
static_assert(!std::is_convertible<std::string&&, S>::value, "");
#endif
static_assert(!std::is_convertible<const std::string&, S>::value, "");
// It shouldn't be possible to use the result of Return(std::string) in a
// context where an S is needed.
//
// Here too we disable the assertion for MSVC, since its incorrect
// implementation of is_convertible causes our SFINAE to be wrong.
using RA = decltype(Return(std::string()));
static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
#ifndef _MSC_VER
static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
#endif
}
TEST(ReturnTest, MoveOnlyResultType) {
// Return should support move-only result types when used with WillOnce.
{
MockFunction<std::unique_ptr<int>()> mock;
EXPECT_CALL(mock, Call)
// NOLINTNEXTLINE
.WillOnce(Return(std::unique_ptr<int>(new int(17))));
EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
}
// The result of Return should not be convertible to Action (so it can't be
// used with WillRepeatedly).
static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
Action<std::unique_ptr<int>()>>::value,
"");
}
// Tests that Return(v) is covaraint.
struct Base {
bool operator==(const Base&) { return true; }
};
struct Derived : public Base {
bool operator==(const Derived&) { return true; }
};
TEST(ReturnTest, IsCovariant) {
Base base;
Derived derived;
Action<Base*()> ret = Return(&base);
EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
ret = Return(&derived);
EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
}
// Tests that the type of the value passed into Return is converted into T
// when the action is cast to Action<T(...)> rather than when the action is
// performed. See comments on testing::internal::ReturnAction in
// gmock-actions.h for more information.
class FromType {
public:
explicit FromType(bool* is_converted) : converted_(is_converted) {}
bool* converted() const { return converted_; }
private:
bool* const converted_;
};
class ToType {
public:
// Must allow implicit conversion due to use in ImplicitCast_<T>.
ToType(const FromType& x) { *x.converted() = true; } // NOLINT
};
TEST(ReturnTest, ConvertsArgumentWhenConverted) {
bool converted = false;
FromType x(&converted);
Action<ToType()> action(Return(x));
EXPECT_TRUE(converted) << "Return must convert its argument in its own "
<< "conversion operator.";
converted = false;
action.Perform(std::tuple<>());
EXPECT_FALSE(converted) << "Action must NOT convert its argument "
<< "when performed.";
}
// Tests that ReturnNull() returns NULL in a pointer-returning function.
TEST(ReturnNullTest, WorksInPointerReturningFunction) {
const Action<int*()> a1 = ReturnNull();
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
}
// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
// functions.
TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
}
// Tests that ReturnRef(v) works for reference types.
TEST(ReturnRefTest, WorksForReference) {
const int n = 0;
const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
}
// Tests that ReturnRef(v) is covariant.
TEST(ReturnRefTest, IsCovariant) {
Base base;
Derived derived;
Action<Base&()> a = ReturnRef(base);
EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
a = ReturnRef(derived);
EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
}
template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
bool CanCallReturnRef(T&&) {
return true;
}
bool CanCallReturnRef(Unused) { return false; }
// Tests that ReturnRef(v) is working with non-temporaries (T&)
TEST(ReturnRefTest, WorksForNonTemporary) {
int scalar_value = 123;
EXPECT_TRUE(CanCallReturnRef(scalar_value));
std::string non_scalar_value("ABC");
EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
const int const_scalar_value{321};
EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
const std::string const_non_scalar_value("CBA");
EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
}
// Tests that ReturnRef(v) is not working with temporaries (T&&)
TEST(ReturnRefTest, DoesNotWorkForTemporary) {
auto scalar_value = []() -> int { return 123; };
EXPECT_FALSE(CanCallReturnRef(scalar_value()));
auto non_scalar_value = []() -> std::string { return "ABC"; };
EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
// cannot use here callable returning "const scalar type",
// because such const for scalar return type is ignored
EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
}
// Tests that ReturnRefOfCopy(v) works for reference types.
TEST(ReturnRefOfCopyTest, WorksForReference) {
int n = 42;
const Action<const int&()> ret = ReturnRefOfCopy(n);
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
n = 43;
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
}
// Tests that ReturnRefOfCopy(v) is covariant.
TEST(ReturnRefOfCopyTest, IsCovariant) {
Base base;
Derived derived;
Action<Base&()> a = ReturnRefOfCopy(base);
EXPECT_NE(&base, &a.Perform(std::make_tuple()));
a = ReturnRefOfCopy(derived);
EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
}
// Tests that ReturnRoundRobin(v) works with initializer lists
TEST(ReturnRoundRobinTest, WorksForInitList) {
Action<int()> ret = ReturnRoundRobin({1, 2, 3});
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
}
// Tests that ReturnRoundRobin(v) works with vectors
TEST(ReturnRoundRobinTest, WorksForVector) {
std::vector<double> v = {4.4, 5.5, 6.6};
Action<double()> ret = ReturnRoundRobin(v);
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
}
// Tests that DoDefault() does the default action for the mock method.
class MockClass {
public:
MockClass() {}
MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
MOCK_METHOD0(Foo, MyNonDefaultConstructible());
MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
MOCK_METHOD2(TakeUnique,
int(const std::unique_ptr<int>&, std::unique_ptr<int>));
private:
MockClass(const MockClass&) = delete;
MockClass& operator=(const MockClass&) = delete;
};
// Tests that DoDefault() returns the built-in default value for the
// return type by default.
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
MockClass mock;
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
EXPECT_EQ(0, mock.IntFunc(true));
}
// Tests that DoDefault() throws (when exceptions are enabled) or aborts
// the process when there is no built-in default value for the return type.
TEST(DoDefaultDeathTest, DiesForUnknowType) {
MockClass mock;
EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
#if GTEST_HAS_EXCEPTIONS
EXPECT_ANY_THROW(mock.Foo());
#else
EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
#endif
}
// Tests that using DoDefault() inside a composite action leads to a
// run-time error.
void VoidFunc(bool /* flag */) {}
TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
MockClass mock;
EXPECT_CALL(mock, IntFunc(_))
.WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));
// Ideally we should verify the error message as well. Sadly,
// EXPECT_DEATH() can only capture stderr, while Google Mock's
// errors are printed on stdout. Therefore we have to settle for
// not verifying the message.
EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
}
// Tests that DoDefault() returns the default value set by
// DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
DefaultValue<int>::Set(1);
MockClass mock;
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
EXPECT_EQ(1, mock.IntFunc(false));
DefaultValue<int>::Clear();
}
// Tests that DoDefault() does the action specified by ON_CALL().
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
MockClass mock;
ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
EXPECT_EQ(2, mock.IntFunc(false));
}
// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
TEST(DoDefaultTest, CannotBeUsedInOnCall) {
MockClass mock;
EXPECT_NONFATAL_FAILURE(
{ // NOLINT
ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
},
"DoDefault() cannot be used in ON_CALL()");
}
// Tests that SetArgPointee<N>(v) sets the variable pointed to by
// the N-th (0-based) argument to v.
TEST(SetArgPointeeTest, SetsTheNthPointee) {
typedef void MyFunction(bool, int*, char*);
Action<MyFunction> a = SetArgPointee<1>(2);
int n = 0;
char ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(2, n);
EXPECT_EQ('\0', ch);
a = SetArgPointee<2>('a');
n = 0;
ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(0, n);
EXPECT_EQ('a', ch);
}
// Tests that SetArgPointee<N>() accepts a string literal.
TEST(SetArgPointeeTest, AcceptsStringLiteral) {
typedef void MyFunction(std::string*, const char**);
Action<MyFunction> a = SetArgPointee<0>("hi");
std::string str;
const char* ptr = nullptr;
a.Perform(std::make_tuple(&str, &ptr));
EXPECT_EQ("hi", str);
EXPECT_TRUE(ptr == nullptr);
a = SetArgPointee<1>("world");
str = "";
a.Perform(std::make_tuple(&str, &ptr));
EXPECT_EQ("", str);
EXPECT_STREQ("world", ptr);
}
TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
typedef void MyFunction(const wchar_t**);
Action<MyFunction> a = SetArgPointee<0>(L"world");
const wchar_t* ptr = nullptr;
a.Perform(std::make_tuple(&ptr));
EXPECT_STREQ(L"world", ptr);
#if GTEST_HAS_STD_WSTRING
typedef void MyStringFunction(std::wstring*);
Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
std::wstring str = L"";
a2.Perform(std::make_tuple(&str));
EXPECT_EQ(L"world", str);
#endif
}
// Tests that SetArgPointee<N>() accepts a char pointer.
TEST(SetArgPointeeTest, AcceptsCharPointer) {
typedef void MyFunction(bool, std::string*, const char**);
const char* const hi = "hi";
Action<MyFunction> a = SetArgPointee<1>(hi);
std::string str;
const char* ptr = nullptr;
a.Perform(std::make_tuple(true, &str, &ptr));
EXPECT_EQ("hi", str);
EXPECT_TRUE(ptr == nullptr);
char world_array[] = "world";
char* const world = world_array;
a = SetArgPointee<2>(world);
str = "";
a.Perform(std::make_tuple(true, &str, &ptr));
EXPECT_EQ("", str);
EXPECT_EQ(world, ptr);
}
TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
typedef void MyFunction(bool, const wchar_t**);
const wchar_t* const hi = L"hi";
Action<MyFunction> a = SetArgPointee<1>(hi);
const wchar_t* ptr = nullptr;
a.Perform(std::make_tuple(true, &ptr));
EXPECT_EQ(hi, ptr);
#if GTEST_HAS_STD_WSTRING
typedef void MyStringFunction(bool, std::wstring*);
wchar_t world_array[] = L"world";
wchar_t* const world = world_array;
Action<MyStringFunction> a2 = SetArgPointee<1>(world);
std::wstring str;
a2.Perform(std::make_tuple(true, &str));
EXPECT_EQ(world_array, str);
#endif
}
// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
// the N-th (0-based) argument to v.
TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
typedef void MyFunction(bool, int*, char*);
Action<MyFunction> a = SetArgumentPointee<1>(2);
int n = 0;
char ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(2, n);
EXPECT_EQ('\0', ch);
a = SetArgumentPointee<2>('a');
n = 0;
ch = '\0';
a.Perform(std::make_tuple(true, &n, &ch));
EXPECT_EQ(0, n);
EXPECT_EQ('a', ch);
}
// Sample functions and functors for testing Invoke() and etc.
int Nullary() { return 1; }
class NullaryFunctor {
public:
int operator()() { return 2; }
};
bool g_done = false;
void VoidNullary() { g_done = true; }
class VoidNullaryFunctor {
public:
void operator()() { g_done = true; }
};
short Short(short n) { return n; } // NOLINT
char Char(char ch) { return ch; }
const char* CharPtr(const char* s) { return s; }
bool Unary(int x) { return x < 0; }
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
void VoidBinary(int, char) { g_done = true; }
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
class Foo {
public:
Foo() : value_(123) {}
int Nullary() const { return value_; }
private:
int value_;
};
// Tests InvokeWithoutArgs(function).
TEST(InvokeWithoutArgsTest, Function) {
// As an action that takes one argument.
Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
// As an action that takes two arguments.
Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
// As an action that returns void.
Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
g_done = false;
a3.Perform(std::make_tuple(1));
EXPECT_TRUE(g_done);
}
// Tests InvokeWithoutArgs(functor).
TEST(InvokeWithoutArgsTest, Functor) {
// As an action that takes no argument.
Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
EXPECT_EQ(2, a.Perform(std::make_tuple()));
// As an action that takes three arguments.
Action<int(int, double, char)> a2 = // NOLINT
InvokeWithoutArgs(NullaryFunctor());
EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
// As an action that returns void.
Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
g_done = false;
a3.Perform(std::make_tuple());
EXPECT_TRUE(g_done);
}
// Tests InvokeWithoutArgs(obj_ptr, method).
TEST(InvokeWithoutArgsTest, Method) {
Foo foo;
Action<int(bool, char)> a = // NOLINT
InvokeWithoutArgs(&foo, &Foo::Nullary);
EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
}
// Tests using IgnoreResult() on a polymorphic action.
TEST(IgnoreResultTest, PolymorphicAction) {
Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
a.Perform(std::make_tuple(1));
}
// Tests using IgnoreResult() on a monomorphic action.
int ReturnOne() {
g_done = true;
return 1;
}
TEST(IgnoreResultTest, MonomorphicAction) {
g_done = false;
Action<void()> a = IgnoreResult(Invoke(ReturnOne));
a.Perform(std::make_tuple());
EXPECT_TRUE(g_done);
}
// Tests using IgnoreResult() on an action that returns a class type.
MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
g_done = true;
return MyNonDefaultConstructible(42);
}
TEST(IgnoreResultTest, ActionReturningClass) {
g_done = false;
Action<void(int)> a =
IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
a.Perform(std::make_tuple(2));
EXPECT_TRUE(g_done);
}
TEST(AssignTest, Int) {
int x = 0;
Action<void(int)> a = Assign(&x, 5);
a.Perform(std::make_tuple(0));
EXPECT_EQ(5, x);
}
TEST(AssignTest, String) {
::std::string x;
Action<void(void)> a = Assign(&x, "Hello, world");
a.Perform(std::make_tuple());
EXPECT_EQ("Hello, world", x);
}
TEST(AssignTest, CompatibleTypes) {
double x = 0;
Action<void(int)> a = Assign(&x, 5);
a.Perform(std::make_tuple(0));
EXPECT_DOUBLE_EQ(5, x);
}
// DoAll should support &&-qualified actions when used with WillOnce.
TEST(DoAll, SupportsRefQualifiedActions) {
struct InitialAction {
void operator()(const int arg) && { EXPECT_EQ(17, arg); }
};
struct FinalAction {
int operator()() && { return 19; }
};
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
EXPECT_EQ(19, mock.AsStdFunction()(17));
}
// DoAll should never provide rvalue references to the initial actions. If the
// mock action itself accepts an rvalue reference or a non-scalar object by
// value then the final action should receive an rvalue reference, but initial
// actions should receive only lvalue references.
TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
struct Obj {};
// Mock action accepts by value: the initial action should be fed a const
// lvalue reference, and the final action an rvalue reference.
{
struct InitialAction {
void operator()(Obj&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(Obj)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
mock.AsStdFunction()(Obj{});
mock.AsStdFunction()(Obj{});
}
// Mock action accepts by const lvalue reference: both actions should receive
// a const lvalue reference.
{
struct InitialAction {
void operator()(Obj&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(const Obj&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
.WillRepeatedly(
DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));
mock.AsStdFunction()(Obj{});
mock.AsStdFunction()(Obj{});
}
// Mock action accepts by non-const lvalue reference: both actions should get
// a non-const lvalue reference if they want them.
{
struct InitialAction {
void operator()(Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(Obj&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
Obj obj;
mock.AsStdFunction()(obj);
mock.AsStdFunction()(obj);
}
// Mock action accepts by rvalue reference: the initial actions should receive
// a non-const lvalue reference if it wants it, and the final action an rvalue
// reference.
{
struct InitialAction {
void operator()(Obj&) const {}
void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
};
MockFunction<void(Obj &&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
.WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
mock.AsStdFunction()(Obj{});
mock.AsStdFunction()(Obj{});
}
// &&-qualified initial actions should also be allowed with WillOnce.
{
struct InitialAction {
void operator()(Obj&) && {}
};
MockFunction<void(Obj&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));
Obj obj;
mock.AsStdFunction()(obj);
}
{
struct InitialAction {
void operator()(Obj&) && {}
};
MockFunction<void(Obj &&)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));
mock.AsStdFunction()(Obj{});
}
}
// DoAll should support being used with type-erased Action objects, both through
// WillOnce and WillRepeatedly.
TEST(DoAll, SupportsTypeErasedActions) {
// With only type-erased actions.
const Action<void()> initial_action = [] {};
const Action<int()> final_action = [] { return 17; };
MockFunction<int()> mock;
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(initial_action, initial_action, final_action))
.WillRepeatedly(DoAll(initial_action, initial_action, final_action));
EXPECT_EQ(17, mock.AsStdFunction()());
// With &&-qualified and move-only final action.
{
struct FinalAction {
FinalAction() = default;
FinalAction(FinalAction&&) = default;
int operator()() && { return 17; }
};
EXPECT_CALL(mock, Call)
.WillOnce(DoAll(initial_action, initial_action, FinalAction{}));
EXPECT_EQ(17, mock.AsStdFunction()());
}
}
// Tests using WithArgs and with an action that takes 1 argument.
TEST(WithArgsTest, OneArg) {
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
}
// Tests using WithArgs with an action that takes 2 arguments.
TEST(WithArgsTest, TwoArgs) {
Action<const char*(const char* s, double x, short n)> a = // NOLINT
WithArgs<0, 2>(Invoke(Binary));
const char s[] = "Hello";
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
}
struct ConcatAll {
std::string operator()() const { return {}; }
template <typename... I>
std::string operator()(const char* a, I... i) const {
return a + ConcatAll()(i...);
}
};
// Tests using WithArgs with an action that takes 10 arguments.
TEST(WithArgsTest, TenArgs) {
Action<std::string(const char*, const char*, const char*, const char*)> a =
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
EXPECT_EQ("0123210123",
a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
CharPtr("3"))));
}
// Tests using WithArgs with an action that is not Invoke().
class SubtractAction : public ActionInterface<int(int, int)> {
public:
int Perform(const std::tuple<int, int>& args) override {
return std::get<0>(args) - std::get<1>(args);
}
};
TEST(WithArgsTest, NonInvokeAction) {
Action<int(const std::string&, int, int)> a =
WithArgs<2, 1>(MakeAction(new SubtractAction));
std::tuple<std::string, int, int> dummy =
std::make_tuple(std::string("hi"), 2, 10);
EXPECT_EQ(8, a.Perform(dummy));
}
// Tests using WithArgs to pass all original arguments in the original order.
TEST(WithArgsTest, Identity) {
Action<int(int x, char y, short z)> a = // NOLINT
WithArgs<0, 1, 2>(Invoke(Ternary));
EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
}
// Tests using WithArgs with repeated arguments.
TEST(WithArgsTest, RepeatedArguments) {
Action<int(bool, int m, int n)> a = // NOLINT
WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
}
// Tests using WithArgs with reversed argument order.
TEST(WithArgsTest, ReversedArgumentOrder) {
Action<const char*(short n, const char* input)> a = // NOLINT
WithArgs<1, 0>(Invoke(Binary));
const char s[] = "Hello";
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
}
// Tests using WithArgs with compatible, but not identical, argument types.
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
Action<long(short x, char y, double z, char c)> a = // NOLINT
WithArgs<0, 1, 3>(Invoke(Ternary));
EXPECT_EQ(123,
a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
}
// Tests using WithArgs with an action that returns void.
TEST(WithArgsTest, VoidAction) {
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
g_done = false;
a.Perform(std::make_tuple(1.5, 'a', 3));
EXPECT_TRUE(g_done);
}
TEST(WithArgsTest, ReturnReference) {
Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
int i = 0;
const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
EXPECT_EQ(&i, &res);
}
TEST(WithArgsTest, InnerActionWithConversion) {
Action<Derived*()> inner = [] { return nullptr; };
MockFunction<Base*(double)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(WithoutArgs(inner))
.WillRepeatedly(WithoutArgs(inner));
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
}
// It should be possible to use an &&-qualified inner action as long as the
// whole shebang is used as an rvalue with WillOnce.
TEST(WithArgsTest, RefQualifiedInnerAction) {
struct SomeAction {
int operator()(const int arg) && {
EXPECT_EQ(17, arg);
return 19;
}
};
MockFunction<int(int, int)> mock;
EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
}
#if !GTEST_OS_WINDOWS_MOBILE
class SetErrnoAndReturnTest : public testing::Test {
protected:
void SetUp() override { errno = 0; }
void TearDown() override { errno = 0; }
};
TEST_F(SetErrnoAndReturnTest, Int) {
Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
EXPECT_EQ(-5, a.Perform(std::make_tuple()));
EXPECT_EQ(ENOTTY, errno);
}
TEST_F(SetErrnoAndReturnTest, Ptr) {
int x;
Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
EXPECT_EQ(&x, a.Perform(std::make_tuple()));
EXPECT_EQ(ENOTTY, errno);
}
TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
EXPECT_EQ(EINVAL, errno);
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Tests ByRef().
// Tests that the result of ByRef() is copyable.
TEST(ByRefTest, IsCopyable) {
const std::string s1 = "Hi";
const std::string s2 = "Hello";
auto ref_wrapper = ByRef(s1);
const std::string& r1 = ref_wrapper;
EXPECT_EQ(&s1, &r1);
// Assigns a new value to ref_wrapper.
ref_wrapper = ByRef(s2);
const std::string& r2 = ref_wrapper;
EXPECT_EQ(&s2, &r2);
auto ref_wrapper1 = ByRef(s1);
// Copies ref_wrapper1 to ref_wrapper.
ref_wrapper = ref_wrapper1;
const std::string& r3 = ref_wrapper;
EXPECT_EQ(&s1, &r3);
}
// Tests using ByRef() on a const value.
TEST(ByRefTest, ConstValue) {
const int n = 0;
// int& ref = ByRef(n); // This shouldn't compile - we have a
// negative compilation test to catch it.
const int& const_ref = ByRef(n);
EXPECT_EQ(&n, &const_ref);
}
// Tests using ByRef() on a non-const value.
TEST(ByRefTest, NonConstValue) {
int n = 0;
// ByRef(n) can be used as either an int&,
int& ref = ByRef(n);
EXPECT_EQ(&n, &ref);
// or a const int&.
const int& const_ref = ByRef(n);
EXPECT_EQ(&n, &const_ref);
}
// Tests explicitly specifying the type when using ByRef().
TEST(ByRefTest, ExplicitType) {
int n = 0;
const int& r1 = ByRef<const int>(n);
EXPECT_EQ(&n, &r1);
// ByRef<char>(n); // This shouldn't compile - we have a negative
// compilation test to catch it.
Derived d;
Derived& r2 = ByRef<Derived>(d);
EXPECT_EQ(&d, &r2);
const Derived& r3 = ByRef<const Derived>(d);
EXPECT_EQ(&d, &r3);
Base& r4 = ByRef<Base>(d);
EXPECT_EQ(&d, &r4);
const Base& r5 = ByRef<const Base>(d);
EXPECT_EQ(&d, &r5);
// The following shouldn't compile - we have a negative compilation
// test for it.
//
// Base b;
// ByRef<Derived>(b);
}
// Tests that Google Mock prints expression ByRef(x) as a reference to x.
TEST(ByRefTest, PrintsCorrectly) {
int n = 42;
::std::stringstream expected, actual;
testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
testing::internal::UniversalPrint(ByRef(n), &actual);
EXPECT_EQ(expected.str(), actual.str());
}
struct UnaryConstructorClass {
explicit UnaryConstructorClass(int v) : value(v) {}
int value;
};
// Tests using ReturnNew() with a unary constructor.
TEST(ReturnNewTest, Unary) {
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
UnaryConstructorClass* c = a.Perform(std::make_tuple());
EXPECT_EQ(4000, c->value);
delete c;
}
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
Action<UnaryConstructorClass*(bool, int)> a =
ReturnNew<UnaryConstructorClass>(4000);
UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
EXPECT_EQ(4000, c->value);
delete c;
}
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
Action<const UnaryConstructorClass*()> a =
ReturnNew<UnaryConstructorClass>(4000);
const UnaryConstructorClass* c = a.Perform(std::make_tuple());
EXPECT_EQ(4000, c->value);
delete c;
}
class TenArgConstructorClass {
public:
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
int a8, int a9, int a10)
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
int value_;
};
// Tests using ReturnNew() with a 10-argument constructor.
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
0);
TenArgConstructorClass* c = a.Perform(std::make_tuple());
EXPECT_EQ(1234567890, c->value_);
delete c;
}
std::unique_ptr<int> UniquePtrSource() {
return std::unique_ptr<int>(new int(19));
}
std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
std::vector<std::unique_ptr<int>> out;
out.emplace_back(new int(7));
return out;
}
TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
MockClass mock;
std::unique_ptr<int> i(new int(19));
EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
EXPECT_CALL(mock, MakeVectorUnique())
.WillOnce(Return(ByMove(VectorUniquePtrSource())));
Derived* d = new Derived;
EXPECT_CALL(mock, MakeUniqueBase())
.WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
std::unique_ptr<int> result1 = mock.MakeUnique();
EXPECT_EQ(19, *result1);
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
EXPECT_EQ(1u, vresult.size());
EXPECT_NE(nullptr, vresult[0]);
EXPECT_EQ(7, *vresult[0]);
std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
EXPECT_EQ(d, result2.get());
}
TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
testing::MockFunction<void()> mock_function;
MockClass mock;
std::unique_ptr<int> i(new int(19));
EXPECT_CALL(mock_function, Call());
EXPECT_CALL(mock, MakeUnique())
.WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
&testing::MockFunction<void()>::Call),
Return(ByMove(std::move(i)))));
std::unique_ptr<int> result1 = mock.MakeUnique();
EXPECT_EQ(19, *result1);
}
TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
MockClass mock;
// Check default value
DefaultValue<std::unique_ptr<int>>::SetFactory(
[] { return std::unique_ptr<int>(new int(42)); });
EXPECT_EQ(42, *mock.MakeUnique());
EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
EXPECT_CALL(mock, MakeVectorUnique())
.WillRepeatedly(Invoke(VectorUniquePtrSource));
std::unique_ptr<int> result1 = mock.MakeUnique();
EXPECT_EQ(19, *result1);
std::unique_ptr<int> result2 = mock.MakeUnique();
EXPECT_EQ(19, *result2);
EXPECT_NE(result1, result2);
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
EXPECT_EQ(1u, vresult.size());
EXPECT_NE(nullptr, vresult[0]);
EXPECT_EQ(7, *vresult[0]);
}
TEST(MockMethodTest, CanTakeMoveOnlyValue) {
MockClass mock;
auto make = [](int i) { return std::unique_ptr<int>(new int(i)); };
EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
return *i;
});
// DoAll() does not compile, since it would move from its arguments twice.
// EXPECT_CALL(mock, TakeUnique(_, _))
// .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
// Return(1)));
EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
.WillOnce(Return(-7))
.RetiresOnSaturation();
EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
.WillOnce(Return(-1))
.RetiresOnSaturation();
EXPECT_EQ(5, mock.TakeUnique(make(5)));
EXPECT_EQ(-7, mock.TakeUnique(make(7)));
EXPECT_EQ(7, mock.TakeUnique(make(7)));
EXPECT_EQ(7, mock.TakeUnique(make(7)));
EXPECT_EQ(-1, mock.TakeUnique({}));
// Some arguments are moved, some passed by reference.
auto lvalue = make(6);
EXPECT_CALL(mock, TakeUnique(_, _))
.WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
return *i * *j;
});
EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
// The unique_ptr can be saved by the action.
std::unique_ptr<int> saved;
EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
saved = std::move(i);
return 0;
});
EXPECT_EQ(0, mock.TakeUnique(make(42)));
EXPECT_EQ(42, *saved);
}
// It should be possible to use callables with an &&-qualified call operator
// with WillOnce, since they will be called only once. This allows actions to
// contain and manipulate move-only types.
TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
struct Return17 {
int operator()() && { return 17; }
};
// Action is directly compatible with mocked function type.
{
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()());
}
// Action doesn't want mocked function arguments.
{
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()(0));
}
}
// Edge case: if an action has both a const-qualified and an &&-qualified call
// operator, there should be no "ambiguous call" errors. The &&-qualified
// operator should be used by WillOnce (since it doesn't need to retain the
// action beyond one call), and the const-qualified one by WillRepeatedly.
TEST(MockMethodTest, ActionHasMultipleCallOperators) {
struct ReturnInt {
int operator()() && { return 17; }
int operator()() const& { return 19; }
};
// Directly compatible with mocked function type.
{
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
EXPECT_EQ(17, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
}
// Ignores function arguments.
{
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
EXPECT_EQ(17, mock.AsStdFunction()(0));
EXPECT_EQ(19, mock.AsStdFunction()(0));
EXPECT_EQ(19, mock.AsStdFunction()(0));
}
}
// WillOnce should have no problem coping with a move-only action, whether it is
// &&-qualified or not.
TEST(MockMethodTest, MoveOnlyAction) {
// &&-qualified
{
struct Return17 {
Return17() = default;
Return17(Return17&&) = default;
Return17(const Return17&) = delete;
Return17 operator=(const Return17&) = delete;
int operator()() && { return 17; }
};
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()());
}
// Not &&-qualified
{
struct Return17 {
Return17() = default;
Return17(Return17&&) = default;
Return17(const Return17&) = delete;
Return17 operator=(const Return17&) = delete;
int operator()() const { return 17; }
};
MockFunction<int()> mock;
EXPECT_CALL(mock, Call).WillOnce(Return17());
EXPECT_EQ(17, mock.AsStdFunction()());
}
}
// It should be possible to use an action that returns a value with a mock
// function that doesn't, both through WillOnce and WillRepeatedly.
TEST(MockMethodTest, ActionReturnsIgnoredValue) {
struct ReturnInt {
int operator()() const { return 0; }
};
MockFunction<void()> mock;
EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());
mock.AsStdFunction()();
mock.AsStdFunction()();
}
// Despite the fanciness around move-only actions and so on, it should still be
// possible to hand an lvalue reference to a copyable action to WillOnce.
TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
MockFunction<int()> mock;
const auto action = [] { return 17; };
EXPECT_CALL(mock, Call).WillOnce(action);
EXPECT_EQ(17, mock.AsStdFunction()());
}
// A callable that doesn't use SFINAE to restrict its call operator's overload
// set, but is still picky about which arguments it will accept.
struct StaticAssertSingleArgument {
template <typename... Args>
static constexpr bool CheckArgs() {
static_assert(sizeof...(Args) == 1, "");
return true;
}
template <typename... Args, bool = CheckArgs<Args...>()>
int operator()(Args...) const {
return 17;
}
};
// WillOnce and WillRepeatedly should both work fine with naïve implementations
// of actions that don't use SFINAE to limit the overload set for their call
// operator. If they are compatible with the actual mocked signature, we
// shouldn't probe them with no arguments and trip a static_assert.
TEST(MockMethodTest, ActionSwallowsAllArguments) {
MockFunction<int(int)> mock;
EXPECT_CALL(mock, Call)
.WillOnce(StaticAssertSingleArgument{})
.WillRepeatedly(StaticAssertSingleArgument{});
EXPECT_EQ(17, mock.AsStdFunction()(0));
EXPECT_EQ(17, mock.AsStdFunction()(0));
}
struct ActionWithTemplatedConversionOperators {
template <typename... Args>
operator OnceAction<int(Args...)>() && { // NOLINT
return [] { return 17; };
}
template <typename... Args>
operator Action<int(Args...)>() const { // NOLINT
return [] { return 19; };
}
};
// It should be fine to hand both WillOnce and WillRepeatedly a function that
// defines templated conversion operators to OnceAction and Action. WillOnce
// should prefer the OnceAction version.
TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
MockFunction<int()> mock;
EXPECT_CALL(mock, Call)
.WillOnce(ActionWithTemplatedConversionOperators{})
.WillRepeatedly(ActionWithTemplatedConversionOperators{});
EXPECT_EQ(17, mock.AsStdFunction()());
EXPECT_EQ(19, mock.AsStdFunction()());
}
// Tests for std::function based action.
int Add(int val, int& ref, int* ptr) { // NOLINT
int result = val + ref + *ptr;
ref = 42;
*ptr = 43;
return result;
}
int Deref(std::unique_ptr<int> ptr) { return *ptr; }
struct Double {
template <typename T>
T operator()(T t) {
return 2 * t;
}
};
std::unique_ptr<int> UniqueInt(int i) {
return std::unique_ptr<int>(new int(i));
}
TEST(FunctorActionTest, ActionFromFunction) {
Action<int(int, int&, int*)> a = &Add;
int x = 1, y = 2, z = 3;
EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
EXPECT_EQ(42, y);
EXPECT_EQ(43, z);
Action<int(std::unique_ptr<int>)> a1 = &Deref;
EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
}
TEST(FunctorActionTest, ActionFromLambda) {
Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
std::unique_ptr<int> saved;
Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
saved = std::move(p);
};
a2.Perform(std::make_tuple(UniqueInt(5)));
EXPECT_EQ(5, *saved);
}
TEST(FunctorActionTest, PolymorphicFunctor) {
Action<int(int)> ai = Double();
EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
Action<double(double)> ad = Double(); // Double? Double double!
EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
}
TEST(FunctorActionTest, TypeConversion) {
// Numeric promotions are allowed.
const Action<bool(int)> a1 = [](int i) { return i > 1; };
const Action<int(bool)> a2 = Action<int(bool)>(a1);
EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
// Implicit constructors are allowed.
const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
// Also between the lambda and the action itself.
const Action<bool(std::string)> x1 = [](Unused) { return 42; };
const Action<bool(std::string)> x2 = [] { return 42; };
EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
// Ensure decay occurs where required.
std::function<int()> f = [] { return 7; };
Action<int(int)> d = f;
f = nullptr;
EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
// Ensure creation of an empty action succeeds.
Action<void(int)>(nullptr);
}
TEST(FunctorActionTest, UnusedArguments) {
// Verify that users can ignore uninteresting arguments.
Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
return 2 * i;
};
std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
EXPECT_EQ(6, a.Perform(dummy));
}
// Test that basic built-in actions work with move-only arguments.
TEST(MoveOnlyArgumentsTest, ReturningActions) {
Action<int(std::unique_ptr<int>)> a = Return(1);
EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
a = testing::WithoutArgs([]() { return 7; });
EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
int x = 0;
a2.Perform(std::make_tuple(nullptr, &x));
EXPECT_EQ(x, 3);
}
ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }
TEST(ActionMacro, LargeArity) {
EXPECT_EQ(
1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
EXPECT_EQ(
10,
testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
ReturnArity())
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
EXPECT_EQ(
20,
testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
int, int, int, int, int, int, int, int, int)>(
ReturnArity())
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19)));
}
} // namespace
} // namespace testing
|