summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_gcd.c
diff options
context:
space:
mode:
authorjan.nijtmans <nijtmans@users.sourceforge.net>2017-09-18 15:13:40 (GMT)
committerjan.nijtmans <nijtmans@users.sourceforge.net>2017-09-18 15:13:40 (GMT)
commitdb596f769f7d0d74193f88b121b949bce6853ebf (patch)
treefeb67968040c4869b021497e6e8859e0e90e41be /libtommath/bn_mp_gcd.c
parent36098aafd9bbd015808f0607f94acc590d192e0d (diff)
parent7a4fe54c26332c21cd95b01cc07bd74714d060ae (diff)
downloadtcl-z_modifier.zip
tcl-z_modifier.tar.gz
tcl-z_modifier.tar.bz2
Merge trunkz_modifier
Diffstat (limited to 'libtommath/bn_mp_gcd.c')
-rw-r--r--libtommath/bn_mp_gcd.c140
1 files changed, 71 insertions, 69 deletions
diff --git a/libtommath/bn_mp_gcd.c b/libtommath/bn_mp_gcd.c
index b0be8fb..f5aa78b 100644
--- a/libtommath/bn_mp_gcd.c
+++ b/libtommath/bn_mp_gcd.c
@@ -16,87 +16,89 @@
*/
/* Greatest Common Divisor using the binary method */
-int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
- mp_int u, v;
- int k, u_lsb, v_lsb, res;
+ mp_int u, v;
+ int k, u_lsb, v_lsb, res;
- /* either zero than gcd is the largest */
- if (mp_iszero (a) == MP_YES) {
- return mp_abs (b, c);
- }
- if (mp_iszero (b) == MP_YES) {
- return mp_abs (a, c);
- }
+ /* either zero than gcd is the largest */
+ if (mp_iszero(a) == MP_YES) {
+ return mp_abs(b, c);
+ }
+ if (mp_iszero(b) == MP_YES) {
+ return mp_abs(a, c);
+ }
- /* get copies of a and b we can modify */
- if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
- return res;
- }
+ /* get copies of a and b we can modify */
+ if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
+ return res;
+ }
- if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
- goto LBL_U;
- }
+ if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
+ goto LBL_U;
+ }
- /* must be positive for the remainder of the algorithm */
- u.sign = v.sign = MP_ZPOS;
+ /* must be positive for the remainder of the algorithm */
+ u.sign = v.sign = MP_ZPOS;
- /* B1. Find the common power of two for u and v */
- u_lsb = mp_cnt_lsb(&u);
- v_lsb = mp_cnt_lsb(&v);
- k = MIN(u_lsb, v_lsb);
+ /* B1. Find the common power of two for u and v */
+ u_lsb = mp_cnt_lsb(&u);
+ v_lsb = mp_cnt_lsb(&v);
+ k = MIN(u_lsb, v_lsb);
- if (k > 0) {
- /* divide the power of two out */
- if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
+ if (k > 0) {
+ /* divide the power of two out */
+ if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
- if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
+ if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
- /* divide any remaining factors of two out */
- if (u_lsb != k) {
- if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
+ /* divide any remaining factors of two out */
+ if (u_lsb != k) {
+ if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
- if (v_lsb != k) {
- if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
+ if (v_lsb != k) {
+ if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
- while (mp_iszero(&v) == MP_NO) {
- /* make sure v is the largest */
- if (mp_cmp_mag(&u, &v) == MP_GT) {
- /* swap u and v to make sure v is >= u */
- mp_exch(&u, &v);
- }
-
- /* subtract smallest from largest */
- if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
- goto LBL_V;
- }
-
- /* Divide out all factors of two */
- if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
- goto LBL_V;
- }
- }
+ while (mp_iszero(&v) == MP_NO) {
+ /* make sure v is the largest */
+ if (mp_cmp_mag(&u, &v) == MP_GT) {
+ /* swap u and v to make sure v is >= u */
+ mp_exch(&u, &v);
+ }
- /* multiply by 2**k which we divided out at the beginning */
- if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
- goto LBL_V;
- }
- c->sign = MP_ZPOS;
- res = MP_OKAY;
-LBL_V:mp_clear (&u);
-LBL_U:mp_clear (&v);
- return res;
+ /* subtract smallest from largest */
+ if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
+ goto LBL_V;
+ }
+
+ /* Divide out all factors of two */
+ if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ }
+
+ /* multiply by 2**k which we divided out at the beginning */
+ if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
+ goto LBL_V;
+ }
+ c->sign = MP_ZPOS;
+ res = MP_OKAY;
+LBL_V:
+ mp_clear(&u);
+LBL_U:
+ mp_clear(&v);
+ return res;
}
#endif