diff options
author | dkf <donal.k.fellows@manchester.ac.uk> | 2021-03-30 08:22:26 (GMT) |
---|---|---|
committer | dkf <donal.k.fellows@manchester.ac.uk> | 2021-03-30 08:22:26 (GMT) |
commit | 2dab8fa488cce34d6dc5538612f1b1fba01c8ab5 (patch) | |
tree | d66b37f125b65659aa27f8f62cb71d91295bcd9a /win/tclWinTime.c | |
parent | c49b98fa6b7afdb6f63c4abca16d73c56990b715 (diff) | |
download | tcl-2dab8fa488cce34d6dc5538612f1b1fba01c8ab5.zip tcl-2dab8fa488cce34d6dc5538612f1b1fba01c8ab5.tar.gz tcl-2dab8fa488cce34d6dc5538612f1b1fba01c8ab5.tar.bz2 |
Refactoring, ahoy
Diffstat (limited to 'win/tclWinTime.c')
-rw-r--r-- | win/tclWinTime.c | 468 |
1 files changed, 301 insertions, 167 deletions
diff --git a/win/tclWinTime.c b/win/tclWinTime.c index 64890c4..e05455f 100644 --- a/win/tclWinTime.c +++ b/win/tclWinTime.c @@ -53,7 +53,8 @@ typedef struct { * initialized. */ int perfCounterAvailable; /* Flag == 1 if the hardware has a performance * counter. */ - DWORD calibrationInterv; /* Calibration interval in seconds (start 1 sec) */ + DWORD calibrationInterv; /* Calibration interval in seconds (start 1 + * sec) */ HANDLE calibrationThread; /* Handle to the thread that keeps the virtual * clock calibrated. */ HANDLE readyEvent; /* System event used to trigger the requesting @@ -122,7 +123,8 @@ static TimeInfo timeInfo = { */ static struct { int initialized; /* 1 if initialized, 0 otherwise */ - int perfCounter; /* 1 if performance counter usable for wide clicks */ + int perfCounter; /* 1 if performance counter usable for wide + * clicks */ double microsecsScale; /* Denominator scale between clock / microsecs */ } wideClick = {0, 0, 0.0}; @@ -156,6 +158,23 @@ Tcl_ScaleTimeProc *tclScaleTimeProcPtr = NativeScaleTime; ClientData tclTimeClientData = NULL; /* + * Inlined version of Tcl_GetTime. + */ + +static inline void +GetTime( + Tcl_Time *timePtr) +{ + tclGetTimeProcPtr(timePtr, tclTimeClientData); +} + +static inline int +IsTimeNative(void) +{ + return tclGetTimeProcPtr == NativeGetTime; +} + +/* *---------------------------------------------------------------------- * * TclpGetSeconds -- @@ -177,15 +196,16 @@ TclpGetSeconds(void) { long long usecSincePosixEpoch; - /* Try to use high resolution timer */ - if ( tclGetTimeProcPtr == NativeGetTime - && (usecSincePosixEpoch = NativeGetMicroseconds()) - ) { + /* + * Try to use high resolution timer + */ + + if (IsTimeNative() && (usecSincePosixEpoch = NativeGetMicroseconds())) { return usecSincePosixEpoch / 1000000; } else { Tcl_Time t; - tclGetTimeProcPtr(&t, tclTimeClientData); /* Tcl_GetTime inlined. */ + GetTime(&t); return t.sec; } } @@ -214,11 +234,12 @@ TclpGetClicks(void) { long long usecSincePosixEpoch; - /* Try to use high resolution timer */ - if ( tclGetTimeProcPtr == NativeGetTime - && (usecSincePosixEpoch = NativeGetMicroseconds()) - ) { - return (unsigned long)usecSincePosixEpoch; + /* + * Try to use high resolution timer. + */ + + if (IsTimeNative() && (usecSincePosixEpoch = NativeGetMicroseconds())) { + return (unsigned long) usecSincePosixEpoch; } else { /* * Use the Tcl_GetTime abstraction to get the time in microseconds, as @@ -227,8 +248,8 @@ TclpGetClicks(void) Tcl_Time now; /* Current Tcl time */ - tclGetTimeProcPtr(&now, tclTimeClientData); /* Tcl_GetTime inlined */ - return (unsigned long)(now.sec * 1000000) + now.usec; + GetTime(&now); + return (unsigned long) (now.sec * 1000000) + now.usec; } } @@ -264,6 +285,7 @@ TclpGetWideClicks(void) * is consistent across all processors. Therefore, the frequency need * only be queried upon application initialization. */ + if (QueryPerformanceFrequency(&perfCounterFreq)) { wideClick.perfCounter = 1; wideClick.microsecsScale = 1000000.0 / perfCounterFreq.QuadPart; @@ -310,7 +332,7 @@ double TclpWideClickInMicrosec(void) { if (!wideClick.initialized) { - (void)TclpGetWideClicks(); /* initialize */ + (void) TclpGetWideClicks(); /* initialize */ } return wideClick.microsecsScale; } @@ -337,21 +359,22 @@ TclpGetMicroseconds(void) { long long usecSincePosixEpoch; - /* Try to use high resolution timer */ - if ( tclGetTimeProcPtr == NativeGetTime - && (usecSincePosixEpoch = NativeGetMicroseconds()) - ) { + /* + * Try to use high resolution timer. + */ + + if (IsTimeNative() && (usecSincePosixEpoch = NativeGetMicroseconds())) { return usecSincePosixEpoch; } else { /* - * Use the Tcl_GetTime abstraction to get the time in microseconds, as - * nearly as we can, and return it. - */ + * Use the Tcl_GetTime abstraction to get the time in microseconds, as + * nearly as we can, and return it. + */ Tcl_Time now; - tclGetTimeProcPtr(&now, tclTimeClientData); /* Tcl_GetTime inlined */ - return (((long long)now.sec) * 1000000) + now.usec; + GetTime(&now); + return (((long long) now.sec) * 1000000) + now.usec; } } @@ -383,14 +406,15 @@ Tcl_GetTime( { long long usecSincePosixEpoch; - /* Try to use high resolution timer */ - if ( tclGetTimeProcPtr == NativeGetTime - && (usecSincePosixEpoch = NativeGetMicroseconds()) - ) { + /* + * Try to use high resolution timer. + */ + + if (IsTimeNative() && (usecSincePosixEpoch = NativeGetMicroseconds())) { timePtr->sec = (long) (usecSincePosixEpoch / 1000000); timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000); } else { - tclGetTimeProcPtr(timePtr, tclTimeClientData); + GetTime(timePtr); } } @@ -424,6 +448,96 @@ NativeScaleTime( /* *---------------------------------------------------------------------- * + * IsPerfCounterAvailable -- + * + * Tests whether the performance counter is available, which is a gnarly + * problem on 32-bit systems. Also retrieves the nominal frequency of the + * performance counter. + * + * Results: + * 1 if the counter is available, 0 if not. + * + * Side effects: + * Updates fields of the timeInfo global. Make sure you hold the lock + * before calling this. + * + *---------------------------------------------------------------------- + */ + +static inline int +IsPerfCounterAvailable(void) +{ + timeInfo.perfCounterAvailable = + QueryPerformanceFrequency(&timeInfo.nominalFreq); + + /* + * Some hardware abstraction layers use the CPU clock in place of the + * real-time clock as a performance counter reference. This results in: + * - inconsistent results among the processors on multi-processor + * systems. + * - unpredictable changes in performance counter frequency on + * "gearshift" processors such as Transmeta and SpeedStep. + * + * There seems to be no way to test whether the performance counter is + * reliable, but a useful heuristic is that if its frequency is 1.193182 + * MHz or 3.579545 MHz, it's derived from a colorburst crystal and is + * therefore the RTC rather than the TSC. + * + * A sloppier but serviceable heuristic is that the RTC crystal is + * normally less than 15 MHz while the TSC crystal is virtually assured to + * be greater than 100 MHz. Since Win98SE appears to fiddle with the + * definition of the perf counter frequency (perhaps in an attempt to + * calibrate the clock?), we use the latter rule rather than an exact + * match. + * + * We also assume (perhaps questionably) that the vendors have gotten + * their act together on Win64, so bypass all this rubbish on that + * platform. + */ + +#if !defined(_WIN64) + if (timeInfo.perfCounterAvailable && + /* + * The following lines would do an exact match on crystal + * frequency: + * + * timeInfo.nominalFreq.QuadPart != (long long) 1193182 && + * timeInfo.nominalFreq.QuadPart != (long long) 3579545 && + */ + timeInfo.nominalFreq.QuadPart > (long long) 15000000) { + /* + * As an exception, if every logical processor on the system is on the + * same chip, we use the performance counter anyway, presuming that + * everyone's TSC is locked to the same oscillator. + */ + + SYSTEM_INFO systemInfo; + int regs[4]; + + GetSystemInfo(&systemInfo); + if (TclWinCPUID(0, regs) == TCL_OK + && regs[1] == 0x756E6547 /* "Genu" */ + && regs[3] == 0x49656E69 /* "ineI" */ + && regs[2] == 0x6C65746E /* "ntel" */ + && TclWinCPUID(1, regs) == TCL_OK + && ((regs[0]&0x00000F00) == 0x00000F00 /* Pentium 4 */ + || ((regs[0] & 0x00F00000) /* Extended family */ + && (regs[3] & 0x10000000))) /* Hyperthread */ + && (((regs[1]&0x00FF0000) >> 16)/* CPU count */ + == (int)sy stemInfo.dwNumberOfProcessors)) { + timeInfo.perfCounterAvailable = TRUE; + } else { + timeInfo.perfCounterAvailable = FALSE; + } + } +#endif /* above code is Win32 only */ + + return timeInfo.perfCounterAvailable; +} + +/* + *---------------------------------------------------------------------- + * * NativeGetMicroseconds -- * * Gets the current system time in microseconds since the beginning @@ -449,10 +563,10 @@ NativeCalc100NsTicks( ULONGLONG fileTimeLastCall, LONGLONG perfCounterLastCall, LONGLONG curCounterFreq, - LONGLONG curCounter -) { + LONGLONG curCounter) +{ return fileTimeLastCall + - ((curCounter - perfCounterLastCall) * 10000000 / curCounterFreq); + ((curCounter - perfCounterLastCall) * 10000000 / curCounterFreq); } static long long @@ -468,83 +582,15 @@ NativeGetMicroseconds(void) if (!timeInfo.initialized) { TclpInitLock(); if (!timeInfo.initialized) { - timeInfo.posixEpoch.LowPart = 0xD53E8000; timeInfo.posixEpoch.HighPart = 0x019DB1DE; - timeInfo.perfCounterAvailable = - QueryPerformanceFrequency(&timeInfo.nominalFreq); - - /* - * Some hardware abstraction layers use the CPU clock in place of - * the real-time clock as a performance counter reference. This - * results in: - * - inconsistent results among the processors on - * multi-processor systems. - * - unpredictable changes in performance counter frequency on - * "gearshift" processors such as Transmeta and SpeedStep. - * - * There seems to be no way to test whether the performance - * counter is reliable, but a useful heuristic is that if its - * frequency is 1.193182 MHz or 3.579545 MHz, it's derived from a - * colorburst crystal and is therefore the RTC rather than the - * TSC. - * - * A sloppier but serviceable heuristic is that the RTC crystal is - * normally less than 15 MHz while the TSC crystal is virtually - * assured to be greater than 100 MHz. Since Win98SE appears to - * fiddle with the definition of the perf counter frequency - * (perhaps in an attempt to calibrate the clock?), we use the - * latter rule rather than an exact match. - * - * We also assume (perhaps questionably) that the vendors have - * gotten their act together on Win64, so bypass all this rubbish - * on that platform. - */ - -#if !defined(_WIN64) - if (timeInfo.perfCounterAvailable - /* - * The following lines would do an exact match on crystal - * frequency: - * && timeInfo.nominalFreq.QuadPart != (long long)1193182 - * && timeInfo.nominalFreq.QuadPart != (long long)3579545 - */ - && timeInfo.nominalFreq.QuadPart > (long long) 15000000){ - /* - * As an exception, if every logical processor on the system - * is on the same chip, we use the performance counter anyway, - * presuming that everyone's TSC is locked to the same - * oscillator. - */ - - SYSTEM_INFO systemInfo; - int regs[4]; - - GetSystemInfo(&systemInfo); - if (TclWinCPUID(0, regs) == TCL_OK - && regs[1] == 0x756E6547 /* "Genu" */ - && regs[3] == 0x49656E69 /* "ineI" */ - && regs[2] == 0x6C65746E /* "ntel" */ - && TclWinCPUID(1, regs) == TCL_OK - && ((regs[0]&0x00000F00) == 0x00000F00 /* Pentium 4 */ - || ((regs[0] & 0x00F00000) /* Extended family */ - && (regs[3] & 0x10000000))) /* Hyperthread */ - && (((regs[1]&0x00FF0000) >> 16)/* CPU count */ - == (int)systemInfo.dwNumberOfProcessors)) { - timeInfo.perfCounterAvailable = TRUE; - } else { - timeInfo.perfCounterAvailable = FALSE; - } - } -#endif /* above code is Win32 only */ - /* * If the performance counter is available, start a thread to * calibrate it. */ - if (timeInfo.perfCounterAvailable) { + if (IsPerfCounterAvailable()) { DWORD id; InitializeCriticalSection(&timeInfo.cs); @@ -578,7 +624,8 @@ NativeGetMicroseconds(void) ULONGLONG fileTimeLastCall; LONGLONG perfCounterLastCall, curCounterFreq; - /* Copy with current data of calibration cycle */ + /* Copy with current data of calibration + * cycle. */ LARGE_INTEGER curCounter; /* Current performance counter. */ @@ -588,6 +635,7 @@ NativeGetMicroseconds(void) /* * Hold time section locked as short as possible */ + EnterCriticalSection(&timeInfo.cs); fileTimeLastCall = timeInfo.fileTimeLastCall.QuadPart; @@ -599,8 +647,12 @@ NativeGetMicroseconds(void) /* * If calibration cycle occurred after we get curCounter */ + if (curCounter.QuadPart <= perfCounterLastCall) { - /* Calibrated file-time is saved from posix in 100-ns ticks */ + /* + * Calibrated file-time is saved from posix in 100-ns ticks + */ + return fileTimeLastCall / 10; } @@ -615,11 +667,14 @@ NativeGetMicroseconds(void) */ if (curCounter.QuadPart - perfCounterLastCall < - 11 * curCounterFreq * timeInfo.calibrationInterv / 10 - ) { - /* Calibrated file-time is saved from posix in 100-ns ticks */ + 11 * curCounterFreq * timeInfo.calibrationInterv / 10) { + /* + * Calibrated file-time is saved from posix in 100-ns ticks. + */ + return NativeCalc100NsTicks(fileTimeLastCall, - perfCounterLastCall, curCounterFreq, curCounter.QuadPart) / 10; + perfCounterLastCall, curCounterFreq, + curCounter.QuadPart) / 10; } } @@ -656,18 +711,20 @@ NativeGetTime( /* * Try to use high resolution timer. */ - if ( (usecSincePosixEpoch = NativeGetMicroseconds()) ) { + + usecSincePosixEpoch = NativeGetMicroseconds(); + if (usecSincePosixEpoch) { timePtr->sec = (long) (usecSincePosixEpoch / 1000000); timePtr->usec = (unsigned long) (usecSincePosixEpoch % 1000000); } else { /* - * High resolution timer is not available. Just use ftime. - */ + * High resolution timer is not available. Just use ftime. + */ struct _timeb t; _ftime(&t); - timePtr->sec = (long)t.time; + timePtr->sec = (long) t.time; timePtr->usec = t.millitm * 1000; } } @@ -735,9 +792,9 @@ TclpGetDate( struct tm *tmPtr; time_t time; #if defined(_WIN64) || (defined(_USE_64BIT_TIME_T) || (defined(_MSC_VER) && _MSC_VER < 1400)) -# define t2 *t /* no need to cripple time to 32-bit */ +# define t2 *t /* no need to cripple time to 32-bit */ #else - time_t t2 = *(__time32_t *)t; + time_t t2 = *(__time32_t *) t; #endif if (!useGMT) { @@ -789,14 +846,14 @@ TclpGetDate( time -= 60; } - time = tmPtr->tm_min + time/60; + time = tmPtr->tm_min + time / 60; tmPtr->tm_min = (int)(time % 60); if (tmPtr->tm_min < 0) { tmPtr->tm_min += 60; time -= 60; } - time = tmPtr->tm_hour + time/60; + time = tmPtr->tm_hour + time / 60; tmPtr->tm_hour = (int)(time % 24); if (tmPtr->tm_hour < 0) { tmPtr->tm_hour += 24; @@ -804,9 +861,9 @@ TclpGetDate( } time /= 24; - tmPtr->tm_mday += (int)time; - tmPtr->tm_yday += (int)time; - tmPtr->tm_wday = (tmPtr->tm_wday + (int)time) % 7; + tmPtr->tm_mday += (int) time; + tmPtr->tm_yday += (int) time; + tmPtr->tm_wday = (tmPtr->tm_wday + (int) time) % 7; } } else { tmPtr = ComputeGMT(&t2); @@ -847,8 +904,8 @@ ComputeGMT( * Compute the 4 year span containing the specified time. */ - tmp = (long)(*tp / SECSPER4YEAR); - rem = (long)(*tp % SECSPER4YEAR); + tmp = (long) (*tp / SECSPER4YEAR); + rem = (long) (*tp % SECSPER4YEAR); /* * Correct for weird mod semantics so the remainder is always positive. @@ -915,7 +972,7 @@ ComputeGMT( * Compute day of week. Epoch started on a Thursday. */ - tmPtr->tm_wday = (long)(*tp / SECSPERDAY) + 4; + tmPtr->tm_wday = (long) (*tp / SECSPERDAY) + 4; if ((*tp % SECSPERDAY) < 0) { tmPtr->tm_wday--; } @@ -970,7 +1027,11 @@ CalibrationThread( QueryPerformanceFrequency(&timeInfo.curCounterFreq); timeInfo.fileTimeLastCall.LowPart = curFileTime.dwLowDateTime; timeInfo.fileTimeLastCall.HighPart = curFileTime.dwHighDateTime; - /* Calibrated file-time will be saved from posix in 100-ns ticks */ + + /* + * Calibrated file-time will be saved from posix in 100-ns ticks. + */ + timeInfo.fileTimeLastCall.QuadPart -= timeInfo.posixEpoch.QuadPart; ResetCounterSamples(timeInfo.fileTimeLastCall.QuadPart, @@ -1030,10 +1091,11 @@ UpdateTimeEachSecond(void) /* Current value returned from * QueryPerformanceCounter. */ FILETIME curSysTime; /* Current system time. */ - static LARGE_INTEGER lastFileTime; /* File time of the previous calibration */ + static LARGE_INTEGER lastFileTime; + /* File time of the previous calibration */ LARGE_INTEGER curFileTime; /* File time at the time this callback was * scheduled. */ - long long estFreq; /* Estimated perf counter frequency. */ + long long estFreq; /* Estimated perf counter frequency. */ long long vt0; /* Tcl time right now. */ long long vt1; /* Tcl time one second from now. */ long long tdiff; /* Difference between system clock and Tcl @@ -1049,12 +1111,17 @@ UpdateTimeEachSecond(void) curFileTime.LowPart = curSysTime.dwLowDateTime; curFileTime.HighPart = curSysTime.dwHighDateTime; curFileTime.QuadPart -= timeInfo.posixEpoch.QuadPart; - /* If calibration still not needed (check for possible time switch) */ - if ( curFileTime.QuadPart > lastFileTime.QuadPart - && curFileTime.QuadPart < lastFileTime.QuadPart + - (timeInfo.calibrationInterv * 10000000) - ) { - /* again in next one second */ + + /* + * If calibration still not needed (check for possible time switch) + */ + + if (curFileTime.QuadPart > lastFileTime.QuadPart && curFileTime.QuadPart < + lastFileTime.QuadPart + (timeInfo.calibrationInterv * 10000000)) { + /* + * Look again in next one second. + */ + return; } QueryPerformanceCounter(&curPerfCounter); @@ -1110,8 +1177,9 @@ UpdateTimeEachSecond(void) */ vt0 = NativeCalc100NsTicks(timeInfo.fileTimeLastCall.QuadPart, - timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart, - curPerfCounter.QuadPart); + timeInfo.perfCounterLastCall.QuadPart, + timeInfo.curCounterFreq.QuadPart, curPerfCounter.QuadPart); + /* * If we've gotten more than a second away from system time, then drifting * the clock is going to be pretty hopeless. Just let it jump. Otherwise, @@ -1120,17 +1188,25 @@ UpdateTimeEachSecond(void) tdiff = vt0 - curFileTime.QuadPart; if (tdiff > 10000000 || tdiff < -10000000) { - /* jump to current system time, use curent estimated frequency */ + /* + * Jump to current system time, use curent estimated frequency. + */ + vt0 = curFileTime.QuadPart; } else { - /* calculate new frequency and estimate drift to the next second */ + /* + * Calculate new frequency and estimate drift to the next second. + */ + vt1 = 20000000 + curFileTime.QuadPart; driftFreq = (estFreq * 20000000 / (vt1 - vt0)); + /* - * Avoid too large drifts (only half of the current difference), - * that allows also be more accurate (aspire to the smallest tdiff), - * so then we can prolong calibration interval by tdiff < 100000 + * Avoid too large drifts (only half of the current difference), that + * allows also be more accurate (aspire to the smallest tdiff), so + * then we can prolong calibration interval by tdiff < 100000 */ + driftFreq = timeInfo.curCounterFreq.QuadPart + (driftFreq - timeInfo.curCounterFreq.QuadPart) / 2; @@ -1138,50 +1214,78 @@ UpdateTimeEachSecond(void) * Average between estimated, 2 current and 5 drifted frequencies, * (do the soft drifting as possible) */ - estFreq = (estFreq + 2 * timeInfo.curCounterFreq.QuadPart + 5 * driftFreq) / 8; + + estFreq = (estFreq + 2 * timeInfo.curCounterFreq.QuadPart + + 5 * driftFreq) / 8; } - /* Avoid too large discrepancy from nominal frequency */ - if (estFreq > 1003*timeInfo.nominalFreq.QuadPart/1000) { - estFreq = 1003*timeInfo.nominalFreq.QuadPart/1000; + /* + * Avoid too large discrepancy from nominal frequency. + */ + + if (estFreq > 1003 * timeInfo.nominalFreq.QuadPart / 1000) { + estFreq = 1003 * timeInfo.nominalFreq.QuadPart / 1000; vt0 = curFileTime.QuadPart; - } else if (estFreq < 997*timeInfo.nominalFreq.QuadPart/1000) { - estFreq = 997*timeInfo.nominalFreq.QuadPart/1000; + } else if (estFreq < 997 * timeInfo.nominalFreq.QuadPart / 1000) { + estFreq = 997 * timeInfo.nominalFreq.QuadPart / 1000; vt0 = curFileTime.QuadPart; } else if (vt0 != curFileTime.QuadPart) { /* - * Be sure the clock ticks never backwards (avoid it by negative drifting) - * just compare native time (in 100-ns) before and hereafter using - * new calibrated values) and do a small adjustment (short time freeze) + * Be sure the clock ticks never backwards (avoid it by negative + * drifting). Just compare native time (in 100-ns) before and + * hereafter using new calibrated values) and do a small adjustment + * (short time freeze). */ + LARGE_INTEGER newPerfCounter; long long nt0, nt1; QueryPerformanceCounter(&newPerfCounter); nt0 = NativeCalc100NsTicks(timeInfo.fileTimeLastCall.QuadPart, - timeInfo.perfCounterLastCall.QuadPart, timeInfo.curCounterFreq.QuadPart, - newPerfCounter.QuadPart); + timeInfo.perfCounterLastCall.QuadPart, + timeInfo.curCounterFreq.QuadPart, newPerfCounter.QuadPart); nt1 = NativeCalc100NsTicks(vt0, - curPerfCounter.QuadPart, estFreq, - newPerfCounter.QuadPart); - if (nt0 > nt1) { /* drifted backwards, try to compensate with new base */ - /* first adjust with a micro jump (short frozen time is acceptable) */ + curPerfCounter.QuadPart, estFreq, newPerfCounter.QuadPart); + if (nt0 > nt1) { + /* + * Drifted backwards, try to compensate with new base. + * + * First adjust with a micro jump (short frozen time is + * acceptable). + */ vt0 += nt0 - nt1; - /* if drift unavoidable (e. g. we had a time switch), then reset it */ + + /* + * If drift unavoidable (e. g. we had a time switch), then reset + * it. + */ + vt1 = vt0 - curFileTime.QuadPart; if (vt1 > 10000000 || vt1 < -10000000) { - /* larger jump resp. shift relative new file-time */ + /* + * Larger jump resp. shift relative new file-time. + */ + vt0 = curFileTime.QuadPart; } } } - /* In lock commit new values to timeInfo (hold lock as short as possible) */ + /* + * In lock commit new values to timeInfo (hold lock as short as possible) + */ + EnterCriticalSection(&timeInfo.cs); - /* grow calibration interval up to 10 seconds (if still precise enough) */ + /* + * Grow calibration interval up to 10 seconds (if still precise enough) + */ + if (tdiff < -100000 || tdiff > 100000) { - /* too long drift - reset calibration interval to 1000 second */ + /* + * Too long drift. Reset calibration interval to 1000 second. + */ + timeInfo.calibrationInterv = 1; } else if (timeInfo.calibrationInterv < 10) { timeInfo.calibrationInterv++; @@ -1215,12 +1319,13 @@ UpdateTimeEachSecond(void) static void ResetCounterSamples( - unsigned long long fileTime, /* Current file time */ + unsigned long long fileTime,/* Current file time */ long long perfCounter, /* Current performance counter */ - long long perfFreq) /* Target performance frequency */ + long long perfFreq) /* Target performance frequency */ { int i; - for (i=SAMPLES-1 ; i>=0 ; --i) { + + for (i = SAMPLES - 1 ; i >= 0 ; --i) { timeInfo.perfCounterSample[i] = perfCounter; timeInfo.fileTimeSample[i] = fileTime; perfCounter -= perfFreq; @@ -1260,15 +1365,17 @@ AccumulateSample( long long perfCounter, unsigned long long fileTime) { - unsigned long long workFTSample; /* File time sample being removed from or + unsigned long long workFTSample; + /* File time sample being removed from or * added to the circular buffer. */ long long workPCSample; /* Performance counter sample being removed * from or added to the circular buffer. */ - unsigned long long lastFTSample; /* Last file time sample recorded */ + unsigned long long lastFTSample; + /* Last file time sample recorded */ long long lastPCSample; /* Last performance counter sample recorded */ long long FTdiff; /* Difference between last FT and current */ long long PCdiff; /* Difference between last PC and current */ - long long estFreq; /* Estimated performance counter frequency */ + long long estFreq; /* Estimated performance counter frequency */ /* * Test for jumps and reset the samples if we have one. @@ -1347,8 +1454,8 @@ TclpGmtime( #if defined(_WIN64) || defined(_USE_64BIT_TIME_T) || (defined(_MSC_VER) && _MSC_VER < 1400) return gmtime(timePtr); #else - return _gmtime32((const __time32_t *)timePtr); -#endif + return _gmtime32((const __time32_t *) timePtr); +#endif /* _WIN64 || _USE_64BIT_TIME_T || _MSC_VER < 1400 */ } /* @@ -1382,8 +1489,8 @@ TclpLocaltime( #if defined(_WIN64) || defined(_USE_64BIT_TIME_T) || (defined(_MSC_VER) && _MSC_VER < 1400) return localtime(timePtr); #else - return _localtime32((const __time32_t *)timePtr); -#endif + return _localtime32((const __time32_t *) timePtr); +#endif /* _WIN64 || _USE_64BIT_TIME_T || _MSC_VER < 1400 */ } #endif /* TCL_NO_DEPRECATED */ @@ -1449,6 +1556,33 @@ Tcl_QueryTimeProc( } /* + *---------------------------------------------------------------------- + * + * TclScaleTime -- + * + * TIP #233 (Virtualized Time): Wrapper around the time virutalisation + * rescale function. + * + * Results: + * None + * + * Side effects: + * Updates the time structure (given as an argument) with what the time + * should be after virtualisation. + * + *---------------------------------------------------------------------- + */ + +void +TclScaleTime( + Tcl_Time *timePtr) +{ + if (timePtr != NULL && tclScaleTimeProcPtr != NULL) { + tclScaleTimeProcPtr(timePtr, tclTimeClientData); + } +} + +/* * Local Variables: * mode: c * c-basic-offset: 4 |