summaryrefslogtreecommitdiffstats
path: root/generic/regcomp.c
diff options
context:
space:
mode:
Diffstat (limited to 'generic/regcomp.c')
-rw-r--r--generic/regcomp.c2124
1 files changed, 0 insertions, 2124 deletions
diff --git a/generic/regcomp.c b/generic/regcomp.c
deleted file mode 100644
index 8e1b61c..0000000
--- a/generic/regcomp.c
+++ /dev/null
@@ -1,2124 +0,0 @@
-/*
- * re_*comp and friends - compile REs
- * This file #includes several others (see the bottom).
- */
-
-#include "regguts.h"
-
-/*
- * forward declarations, up here so forward datatypes etc. are defined early
- */
-/* =====^!^===== begin forwards =====^!^===== */
-/* automatically gathered by fwd; do not hand-edit */
-/* === regcomp.c === */
-int compile _ANSI_ARGS_((regex_t *, CONST chr *, size_t, int));
-static VOID moresubs _ANSI_ARGS_((struct vars *, int));
-static int freev _ANSI_ARGS_((struct vars *, int));
-static VOID makescan _ANSI_ARGS_((struct vars *, struct nfa *));
-static struct subre *parse _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
-static struct subre *parsebranch _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, int));
-static VOID parseqatom _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, struct subre *));
-static VOID nonword _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
-static VOID word _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
-static int scannum _ANSI_ARGS_((struct vars *));
-static VOID repeat _ANSI_ARGS_((struct vars *, struct state *, struct state *, int, int));
-static VOID bracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
-static VOID cbracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
-static VOID brackpart _ANSI_ARGS_((struct vars *, struct state *, struct state *));
-static chr *scanplain _ANSI_ARGS_((struct vars *));
-static VOID leaders _ANSI_ARGS_((struct vars *, struct cvec *));
-static VOID onechr _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
-static VOID dovec _ANSI_ARGS_((struct vars *, struct cvec *, struct state *, struct state *));
-static celt nextleader _ANSI_ARGS_((struct vars *, pchr, pchr));
-static VOID wordchrs _ANSI_ARGS_((struct vars *));
-static struct subre *subre _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
-static VOID freesubre _ANSI_ARGS_((struct vars *, struct subre *));
-static VOID freesrnode _ANSI_ARGS_((struct vars *, struct subre *));
-static VOID optst _ANSI_ARGS_((struct vars *, struct subre *));
-static int numst _ANSI_ARGS_((struct subre *, int));
-static VOID markst _ANSI_ARGS_((struct subre *));
-static VOID cleanst _ANSI_ARGS_((struct vars *));
-static int nfatree _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
-static int nfanode _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
-static int newlacon _ANSI_ARGS_((struct vars *, struct state *, struct state *, int));
-static VOID freelacons _ANSI_ARGS_((struct subre *, int));
-static VOID rfree _ANSI_ARGS_((regex_t *));
-static VOID dump _ANSI_ARGS_((regex_t *, FILE *));
-static VOID dumpst _ANSI_ARGS_((struct subre *, FILE *, int));
-static VOID stdump _ANSI_ARGS_((struct subre *, FILE *, int, int));
-/* === regc_lex.c === */
-static VOID lexstart _ANSI_ARGS_((struct vars *));
-static VOID prefixes _ANSI_ARGS_((struct vars *));
-static VOID lexnest _ANSI_ARGS_((struct vars *, chr *, chr *));
-static VOID lexword _ANSI_ARGS_((struct vars *));
-static int next _ANSI_ARGS_((struct vars *));
-static int lexescape _ANSI_ARGS_((struct vars *));
-static chr lexdigits _ANSI_ARGS_((struct vars *, int, int, int));
-static int brenext _ANSI_ARGS_((struct vars *, pchr));
-static VOID skip _ANSI_ARGS_((struct vars *));
-static chr newline _ANSI_ARGS_((NOPARMS));
-static chr chrnamed _ANSI_ARGS_((struct vars *, chr *, chr *, pchr));
-/* === regc_color.c === */
-static VOID initcm _ANSI_ARGS_((struct vars *, struct colormap *));
-static VOID freecm _ANSI_ARGS_((struct colormap *));
-static VOID cmtreefree _ANSI_ARGS_((struct colormap *, union tree *, int));
-static color setcolor _ANSI_ARGS_((struct colormap *, pchr, pcolor));
-static color maxcolor _ANSI_ARGS_((struct colormap *));
-static color newcolor _ANSI_ARGS_((struct colormap *));
-static VOID freecolor _ANSI_ARGS_((struct colormap *, pcolor));
-static color pseudocolor _ANSI_ARGS_((struct colormap *));
-static color subcolor _ANSI_ARGS_((struct colormap *, pchr c));
-static color newsub _ANSI_ARGS_((struct colormap *, pcolor));
-static VOID subrange _ANSI_ARGS_((struct vars *, pchr, pchr, struct state *, struct state *));
-static VOID subblock _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
-static VOID okcolors _ANSI_ARGS_((struct nfa *, struct colormap *));
-static VOID colorchain _ANSI_ARGS_((struct colormap *, struct arc *));
-static VOID uncolorchain _ANSI_ARGS_((struct colormap *, struct arc *));
-#if 0
-static int singleton _ANSI_ARGS_((struct colormap *, pchr c));
-#endif
-static VOID rainbow _ANSI_ARGS_((struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *));
-static VOID colorcomplement _ANSI_ARGS_((struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *));
-#ifdef REG_DEBUG
-static VOID dumpcolors _ANSI_ARGS_((struct colormap *, FILE *));
-static VOID fillcheck _ANSI_ARGS_((struct colormap *, union tree *, int, FILE *));
-static VOID dumpchr _ANSI_ARGS_((pchr, FILE *));
-#endif
-/* === regc_nfa.c === */
-static struct nfa *newnfa _ANSI_ARGS_((struct vars *, struct colormap *, struct nfa *));
-static VOID freenfa _ANSI_ARGS_((struct nfa *));
-static struct state *newfstate _ANSI_ARGS_((struct nfa *, int flag));
-static struct state *newstate _ANSI_ARGS_((struct nfa *));
-static VOID dropstate _ANSI_ARGS_((struct nfa *, struct state *));
-static VOID freestate _ANSI_ARGS_((struct nfa *, struct state *));
-static VOID destroystate _ANSI_ARGS_((struct nfa *, struct state *));
-static VOID newarc _ANSI_ARGS_((struct nfa *, int, pcolor, struct state *, struct state *));
-static struct arc *allocarc _ANSI_ARGS_((struct nfa *, struct state *));
-static VOID freearc _ANSI_ARGS_((struct nfa *, struct arc *));
-static struct arc *findarc _ANSI_ARGS_((struct state *, int, pcolor));
-static VOID cparc _ANSI_ARGS_((struct nfa *, struct arc *, struct state *, struct state *));
-static VOID moveins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID copyins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID moveouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID copyouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID cloneouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, int));
-static VOID delsub _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID deltraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID dupnfa _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, struct state *));
-static VOID duptraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
-static VOID cleartraverse _ANSI_ARGS_((struct nfa *, struct state *));
-static VOID specialcolors _ANSI_ARGS_((struct nfa *));
-static int optimize _ANSI_ARGS_((struct nfa *, FILE *));
-static VOID pullback _ANSI_ARGS_((struct nfa *, FILE *));
-static int pull _ANSI_ARGS_((struct nfa *, struct arc *));
-static VOID pushfwd _ANSI_ARGS_((struct nfa *, FILE *));
-static int push _ANSI_ARGS_((struct nfa *, struct arc *));
-#define INCOMPATIBLE 1 /* destroys arc */
-#define SATISFIED 2 /* constraint satisfied */
-#define COMPATIBLE 3 /* compatible but not satisfied yet */
-static int combine _ANSI_ARGS_((struct arc *, struct arc *));
-static VOID fixempties _ANSI_ARGS_((struct nfa *, FILE *));
-static int unempty _ANSI_ARGS_((struct nfa *, struct arc *));
-static VOID cleanup _ANSI_ARGS_((struct nfa *));
-static VOID markreachable _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
-static VOID markcanreach _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
-static int analyze _ANSI_ARGS_((struct nfa *));
-static VOID compact _ANSI_ARGS_((struct nfa *, struct cnfa *));
-static VOID carcsort _ANSI_ARGS_((struct carc *, struct carc *));
-static VOID freecnfa _ANSI_ARGS_((struct cnfa *));
-static VOID dumpnfa _ANSI_ARGS_((struct nfa *, FILE *));
-#ifdef REG_DEBUG
-static VOID dumpstate _ANSI_ARGS_((struct state *, FILE *));
-static VOID dumparcs _ANSI_ARGS_((struct state *, FILE *));
-static int dumprarcs _ANSI_ARGS_((struct arc *, struct state *, FILE *, int));
-static VOID dumparc _ANSI_ARGS_((struct arc *, struct state *, FILE *));
-#endif
-static VOID dumpcnfa _ANSI_ARGS_((struct cnfa *, FILE *));
-#ifdef REG_DEBUG
-static VOID dumpcstate _ANSI_ARGS_((int, struct carc *, struct cnfa *, FILE *));
-#endif
-/* === regc_cvec.c === */
-static struct cvec *newcvec _ANSI_ARGS_((int, int, int));
-static struct cvec *clearcvec _ANSI_ARGS_((struct cvec *));
-static VOID addchr _ANSI_ARGS_((struct cvec *, pchr));
-static VOID addrange _ANSI_ARGS_((struct cvec *, pchr, pchr));
-#ifdef USE_MCCE
-static VOID addmcce _ANSI_ARGS_((struct cvec *, chr *, chr *));
-#endif
-static int haschr _ANSI_ARGS_((struct cvec *, pchr));
-static struct cvec *getcvec _ANSI_ARGS_((struct vars *, int, int, int));
-static VOID freecvec _ANSI_ARGS_((struct cvec *));
-/* === regc_locale.c === */
-static int nmcces _ANSI_ARGS_((struct vars *));
-static int nleaders _ANSI_ARGS_((struct vars *));
-static struct cvec *allmcces _ANSI_ARGS_((struct vars *, struct cvec *));
-static celt element _ANSI_ARGS_((struct vars *, chr *, chr *));
-static struct cvec *range _ANSI_ARGS_((struct vars *, celt, celt, int));
-static int before _ANSI_ARGS_((celt, celt));
-static struct cvec *eclass _ANSI_ARGS_((struct vars *, celt, int));
-static struct cvec *cclass _ANSI_ARGS_((struct vars *, chr *, chr *, int));
-static struct cvec *allcases _ANSI_ARGS_((struct vars *, pchr));
-static int cmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
-static int casecmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
-/* automatically gathered by fwd; do not hand-edit */
-/* =====^!^===== end forwards =====^!^===== */
-
-
-
-/* internal variables, bundled for easy passing around */
-struct vars {
- regex_t *re;
- chr *now; /* scan pointer into string */
- chr *stop; /* end of string */
- chr *savenow; /* saved now and stop for "subroutine call" */
- chr *savestop;
- int err; /* error code (0 if none) */
- int cflags; /* copy of compile flags */
- int lasttype; /* type of previous token */
- int nexttype; /* type of next token */
- chr nextvalue; /* value (if any) of next token */
- int lexcon; /* lexical context type (see lex.c) */
- int nsubexp; /* subexpression count */
- struct subre **subs; /* subRE pointer vector */
- size_t nsubs; /* length of vector */
- struct subre *sub10[10]; /* initial vector, enough for most */
- struct nfa *nfa; /* the NFA */
- struct colormap *cm; /* character color map */
- color nlcolor; /* color of newline */
- struct state *wordchrs; /* state in nfa holding word-char outarcs */
- struct subre *tree; /* subexpression tree */
- struct subre *treechain; /* all tree nodes allocated */
- struct subre *treefree; /* any free tree nodes */
- int ntree; /* number of tree nodes */
- struct cvec *cv; /* interface cvec */
- struct cvec *cv2; /* utility cvec */
- struct cvec *mcces; /* collating-element information */
-# define ISCELEADER(v,c) (v->mcces != NULL && haschr(v->mcces, (c)))
- struct state *mccepbegin; /* in nfa, start of MCCE prototypes */
- struct state *mccepend; /* in nfa, end of MCCE prototypes */
- struct subre *lacons; /* lookahead-constraint vector */
- int nlacons; /* size of lacons */
- int usedshorter; /* used short-preferring quantifiers */
- int unmatchable; /* can never match */
-};
-
-/* parsing macros; most know that `v' is the struct vars pointer */
-#define NEXT() (next(v)) /* advance by one token */
-#define SEE(t) (v->nexttype == (t)) /* is next token this? */
-#define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */
-#define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */
-#define ISERR() VISERR(v)
-#define VERR(vv,e) ((vv)->nexttype = EOS, ((vv)->err) ? (vv)->err :\
- ((vv)->err = (e)))
-#define ERR(e) VERR(v, e) /* record an error */
-#define NOERR() {if (ISERR()) return;} /* if error seen, return */
-#define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */
-#define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */
-#define INSIST(c, e) ((c) ? 0 : ERR(e)) /* if condition false, error */
-#define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */
-#define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y)
-
-/* token type codes, some also used as NFA arc types */
-#define EMPTY 'n' /* no token present */
-#define EOS 'e' /* end of string */
-#define PLAIN 'p' /* ordinary character */
-#define DIGIT 'd' /* digit (in bound) */
-#define BACKREF 'b' /* back reference */
-#define COLLEL 'I' /* start of [. */
-#define ECLASS 'E' /* start of [= */
-#define CCLASS 'C' /* start of [: */
-#define END 'X' /* end of [. [= [: */
-#define RANGE 'R' /* - within [] which might be range delim. */
-#define LACON 'L' /* lookahead constraint subRE */
-#define AHEAD 'a' /* color-lookahead arc */
-#define BEHIND 'r' /* color-lookbehind arc */
-#define WBDRY 'w' /* word boundary constraint */
-#define NWBDRY 'W' /* non-word-boundary constraint */
-#define SBEGIN 'A' /* beginning of string (even if not BOL) */
-#define SEND 'Z' /* end of string (even if not EOL) */
-#define PREFER 'P' /* length preference */
-
-/* is an arc colored, and hence on a color chain? */
-#define COLORED(a) ((a)->type == PLAIN || (a)->type == AHEAD || \
- (a)->type == BEHIND)
-
-
-
-/* static function list */
-static struct fns functions = {
- rfree, /* regfree insides */
-};
-
-
-
-/*
- - compile - compile regular expression
- ^ int compile(regex_t *, CONST chr *, size_t, int);
- */
-int
-compile(re, string, len, flags)
-regex_t *re;
-CONST chr *string;
-size_t len;
-int flags;
-{
- struct vars var;
- struct vars *v = &var;
- struct guts *g;
- int i;
- size_t j;
- FILE *debug = (flags&REG_PROGRESS) ? stdout : (FILE *)NULL;
-# define CNOERR() { if (ISERR()) return freev(v, v->err); }
-
- /* sanity checks */
-
- if (re == NULL || string == NULL)
- return REG_INVARG;
- if ((flags&REG_QUOTE) &&
- (flags&(REG_ADVANCED|REG_EXPANDED|REG_NEWLINE)))
- return REG_INVARG;
- if (!(flags&REG_EXTENDED) && (flags&REG_ADVF))
- return REG_INVARG;
-
- /* initial setup (after which freev() is callable) */
- v->re = re;
- v->now = (chr *)string;
- v->stop = v->now + len;
- v->savenow = v->savestop = NULL;
- v->err = 0;
- v->cflags = flags;
- v->nsubexp = 0;
- v->subs = v->sub10;
- v->nsubs = 10;
- for (j = 0; j < v->nsubs; j++)
- v->subs[j] = NULL;
- v->nfa = NULL;
- v->cm = NULL;
- v->nlcolor = COLORLESS;
- v->wordchrs = NULL;
- v->tree = NULL;
- v->treechain = NULL;
- v->treefree = NULL;
- v->cv = NULL;
- v->cv2 = NULL;
- v->mcces = NULL;
- v->lacons = NULL;
- v->nlacons = 0;
- re->re_magic = REMAGIC;
- re->re_info = 0; /* bits get set during parse */
- re->re_csize = sizeof(chr);
- re->re_guts = NULL;
- re->re_fns = VS(&functions);
-
- /* more complex setup, malloced things */
- re->re_guts = VS(MALLOC(sizeof(struct guts)));
- if (re->re_guts == NULL)
- return freev(v, REG_ESPACE);
- g = (struct guts *)re->re_guts;
- g->tree = NULL;
- initcm(v, &g->cmap);
- v->cm = &g->cmap;
- g->lacons = NULL;
- g->nlacons = 0;
- ZAPCNFA(g->search);
- v->nfa = newnfa(v, v->cm, (struct nfa *)NULL);
- CNOERR();
- v->cv = newcvec(100, 20, 10);
- if (v->cv == NULL)
- return freev(v, REG_ESPACE);
- i = nmcces(v);
- if (i > 0) {
- v->mcces = newcvec(nleaders(v), 0, i);
- CNOERR();
- v->mcces = allmcces(v, v->mcces);
- leaders(v, v->mcces);
- }
- CNOERR();
-
- /* parsing */
- lexstart(v); /* also handles prefixes */
- if ((v->cflags&REG_NLSTOP) || (v->cflags&REG_NLANCH)) {
- /* assign newline a unique color */
- v->nlcolor = subcolor(v->cm, newline());
- okcolors(v->nfa, v->cm);
- }
- CNOERR();
- v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final);
- assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */
- CNOERR();
- assert(v->tree != NULL);
-
- /* finish setup of nfa and its subre tree */
- specialcolors(v->nfa);
- CNOERR();
- if (debug != NULL) {
- dumpnfa(v->nfa, debug);
- dumpst(v->tree, debug, 1);
- }
- v->usedshorter = 0;
- v->unmatchable = 0;
- optst(v, v->tree);
- v->ntree = numst(v->tree, 1);
- markst(v->tree);
- cleanst(v);
- if (debug != NULL) {
- fprintf(debug, "-->\n");
- dumpst(v->tree, debug, 1);
- }
-
- /* build compacted NFAs for tree, lacons, fast search */
- re->re_info |= nfatree(v, v->tree, debug);
- if (debug != NULL) {
- fprintf(debug, "---->\n");
- dumpst(v->tree, debug, 1);
- }
- CNOERR();
- if (re->re_info&REG_UIMPOSSIBLE)
- v->unmatchable = 1;
- assert(v->nlacons == 0 || v->lacons != NULL);
- for (i = 1; i < v->nlacons; i++)
- nfanode(v, &v->lacons[i], debug);
- CNOERR();
- (DISCARD)optimize(v->nfa, debug);
- CNOERR();
- makescan(v, v->nfa);
- CNOERR();
- compact(v->nfa, &g->search);
- CNOERR();
-
- /* looks okay, package it up */
- re->re_nsub = v->nsubexp;
- v->re = NULL; /* freev no longer frees re */
- g->magic = GUTSMAGIC;
- g->cflags = v->cflags;
- g->info = re->re_info;
- g->nsub = re->re_nsub;
- g->tree = v->tree;
- v->tree = NULL;
- g->ntree = v->ntree;
- g->compare = (v->cflags&REG_ICASE) ? casecmp : cmp;
- g->lacons = v->lacons;
- v->lacons = NULL;
- g->nlacons = v->nlacons;
- g->usedshorter = v->usedshorter;
- g->unmatchable = v->unmatchable;
-
- if (flags&REG_DUMP)
- dump(re, stdout);
-
- assert(v->err == 0);
- return freev(v, 0);
-}
-
-/*
- - moresubs - enlarge subRE vector
- ^ static VOID moresubs(struct vars *, int);
- */
-static VOID
-moresubs(v, wanted)
-struct vars *v;
-int wanted; /* want enough room for this one */
-{
- struct subre **p;
- size_t n;
-
- assert(wanted > 0 && (size_t)wanted >= v->nsubs);
- n = (size_t)wanted * 3 / 2 + 1;
- if (v->subs == v->sub10) {
- p = (struct subre **)MALLOC(n * sizeof(struct subre *));
- if (p != NULL)
- memcpy(VS(p), VS(v->subs),
- v->nsubs * sizeof(struct subre *));
- } else
- p = (struct subre**)REALLOC(v->subs, n*sizeof(struct subre *));
- if (p == NULL) {
- ERR(REG_ESPACE);
- return;
- }
- v->subs = p;
- for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++)
- *p = NULL;
- assert(v->nsubs == n);
- assert((size_t)wanted < v->nsubs);
-}
-
-/*
- - freev - free vars struct's substructures where necessary
- * Optionally does error-number setting, and always returns error code
- * (if any), to make error-handling code terser.
- ^ static int freev(struct vars *, int);
- */
-static int
-freev(v, err)
-struct vars *v;
-int err;
-{
- if (v->re != NULL)
- rfree(v->re);
- if (v->subs != v->sub10)
- FREE(v->subs);
- if (v->nfa != NULL)
- freenfa(v->nfa);
- if (v->tree != NULL)
- freesubre(v, v->tree);
- if (v->treechain != NULL)
- cleanst(v);
- if (v->cv != NULL)
- freecvec(v->cv);
- if (v->cv2 != NULL)
- freecvec(v->cv2);
- if (v->mcces != NULL)
- freecvec(v->mcces);
- if (v->lacons != NULL)
- freelacons(v->lacons, v->nlacons);
- ERR(err); /* nop if err==0 */
-
- return v->err;
-}
-
-/*
- - makescan - turn an NFA into a fast-scan NFA (implicit prepend of .*?)
- * NFA must have been optimize()d already.
- ^ static VOID makescan(struct vars *, struct nfa *);
- */
-static VOID
-makescan(v, nfa)
-struct vars *v;
-struct nfa *nfa;
-{
- struct arc *a;
- struct arc *b;
- struct state *pre = nfa->pre;
- struct state *s;
- struct state *s2;
- struct state *slist;
-
- /* no loops are needed if it's anchored */
- for (a = pre->outs; a != NULL; a = a->outchain) {
- assert(a->type == PLAIN);
- if (a->co != nfa->bos[0] && a->co != nfa->bos[1])
- break;
- }
- if (a != NULL) {
- /* add implicit .* in front */
- rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre);
-
- /* and ^* and \Z* too -- not always necessary, but harmless */
- newarc(nfa, PLAIN, nfa->bos[0], pre, pre);
- newarc(nfa, PLAIN, nfa->bos[1], pre, pre);
- }
-
- /*
- * Now here's the subtle part. Because many REs have no lookback
- * constraints, often knowing when you were in the pre state tells
- * you little; it's the next state(s) that are informative. But
- * some of them may have other inarcs, i.e. it may be possible to
- * make actual progress and then return to one of them. We must
- * de-optimize such cases, splitting each such state into progress
- * and no-progress states.
- */
-
- /* first, make a list of the states */
- slist = NULL;
- for (a = pre->outs; a != NULL; a = a->outchain) {
- s = a->to;
- for (b = s->ins; b != NULL; b = b->inchain)
- if (b->from != pre)
- break;
- if (b != NULL) { /* must be split */
- s->tmp = slist;
- slist = s;
- }
- }
-
- /* do the splits */
- for (s = slist; s != NULL; s = s2) {
- s2 = newstate(nfa);
- copyouts(nfa, s, s2);
- for (a = s->ins; a != NULL; a = b) {
- b = a->inchain;
- if (a->from != pre) {
- cparc(nfa, a, a->from, s2);
- freearc(nfa, a);
- }
- }
- s2 = s->tmp;
- s->tmp = NULL; /* clean up while we're at it */
- }
-}
-
-/*
- - parse - parse an RE
- * This is actually just the top level, which parses a bunch of branches
- * tied together with '|'. They appear in the tree as the left children
- * of a chain of '|' subres.
- ^ static struct subre *parse(struct vars *, int, int, struct state *,
- ^ struct state *);
- */
-static struct subre *
-parse(v, stopper, type, init, final)
-struct vars *v;
-int stopper; /* EOS or ')' */
-int type; /* LACON (lookahead subRE) or PLAIN */
-struct state *init; /* initial state */
-struct state *final; /* final state */
-{
- struct state *left; /* scaffolding for branch */
- struct state *right;
- struct subre *branches; /* top level */
- struct subre *branch; /* current branch */
- struct subre *t; /* temporary */
- int firstbranch; /* is this the first branch? */
-
- assert(stopper == ')' || stopper == EOS);
-
- branches = subre(v, '|', LONGER, init, final);
- NOERRN();
- branch = branches;
- firstbranch = 1;
- do { /* a branch */
- if (!firstbranch) {
- /* need a place to hang it */
- branch->right = subre(v, '|', LONGER, init, final);
- NOERRN();
- branch = branch->right;
- }
- firstbranch = 0;
- left = newstate(v->nfa);
- right = newstate(v->nfa);
- NOERRN();
- EMPTYARC(init, left);
- EMPTYARC(right, final);
- NOERRN();
- branch->left = parsebranch(v, stopper, type, left, right, 0);
- NOERRN();
- branch->flags |= UP(branch->flags | branch->left->flags);
- if ((branch->flags &~ branches->flags) != 0) /* new flags */
- for (t = branches; t != branch; t = t->right)
- t->flags |= branch->flags;
- } while (EAT('|'));
- assert(SEE(stopper) || SEE(EOS));
-
- if (!SEE(stopper)) {
- assert(stopper == ')' && SEE(EOS));
- ERR(REG_EPAREN);
- }
-
- /* optimize out simple cases */
- if (branch == branches) { /* only one branch */
- assert(branch->right == NULL);
- t = branch->left;
- branch->left = NULL;
- freesubre(v, branches);
- branches = t;
- } else if (!MESSY(branches->flags)) { /* no interesting innards */
- freesubre(v, branches->left);
- branches->left = NULL;
- freesubre(v, branches->right);
- branches->right = NULL;
- branches->op = '=';
- }
-
- return branches;
-}
-
-/*
- - parsebranch - parse one branch of an RE
- * This mostly manages concatenation, working closely with parseqatom().
- * Concatenated things are bundled up as much as possible, with separate
- * ',' nodes introduced only when necessary due to substructure.
- ^ static struct subre *parsebranch(struct vars *, int, int, struct state *,
- ^ struct state *, int);
- */
-static struct subre *
-parsebranch(v, stopper, type, left, right, partial)
-struct vars *v;
-int stopper; /* EOS or ')' */
-int type; /* LACON (lookahead subRE) or PLAIN */
-struct state *left; /* leftmost state */
-struct state *right; /* rightmost state */
-int partial; /* is this only part of a branch? */
-{
- struct state *lp; /* left end of current construct */
- int seencontent; /* is there anything in this branch yet? */
- struct subre *t;
-
- lp = left;
- seencontent = 0;
- t = subre(v, '=', 0, left, right); /* op '=' is tentative */
- NOERRN();
- while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) {
- if (seencontent) { /* implicit concat operator */
- lp = newstate(v->nfa);
- NOERRN();
- moveins(v->nfa, right, lp);
- }
- seencontent = 1;
-
- /* NB, recursion in parseqatom() may swallow rest of branch */
- parseqatom(v, stopper, type, lp, right, t);
- }
-
- if (!seencontent) { /* empty branch */
- if (!partial)
- NOTE(REG_UUNSPEC);
- assert(lp == left);
- EMPTYARC(left, right);
- }
-
- return t;
-}
-
-/*
- - parseqatom - parse one quantified atom or constraint of an RE
- * The bookkeeping near the end cooperates very closely with parsebranch();
- * in particular, it contains a recursion that can involve parsing the rest
- * of the branch, making this function's name somewhat inaccurate.
- ^ static VOID parseqatom(struct vars *, int, int, struct state *,
- ^ struct state *, struct subre *);
- */
-static VOID
-parseqatom(v, stopper, type, lp, rp, top)
-struct vars *v;
-int stopper; /* EOS or ')' */
-int type; /* LACON (lookahead subRE) or PLAIN */
-struct state *lp; /* left state to hang it on */
-struct state *rp; /* right state to hang it on */
-struct subre *top; /* subtree top */
-{
- struct state *s; /* temporaries for new states */
- struct state *s2;
-# define ARCV(t, val) newarc(v->nfa, t, val, lp, rp)
- int m, n;
- struct subre *atom; /* atom's subtree */
- struct subre *t;
- int cap; /* capturing parens? */
- int pos; /* positive lookahead? */
- int subno; /* capturing-parens or backref number */
- int atomtype;
- int qprefer; /* quantifier short/long preference */
- int f;
- struct subre **atomp; /* where the pointer to atom is */
-
- /* initial bookkeeping */
- atom = NULL;
- assert(lp->nouts == 0); /* must string new code */
- assert(rp->nins == 0); /* between lp and rp */
- subno = 0; /* just to shut lint up */
-
- /* an atom or constraint... */
- atomtype = v->nexttype;
- switch (atomtype) {
- /* first, constraints, which end by returning */
- case '^':
- ARCV('^', 1);
- if (v->cflags&REG_NLANCH)
- ARCV(BEHIND, v->nlcolor);
- NEXT();
- return;
- break;
- case '$':
- ARCV('$', 1);
- if (v->cflags&REG_NLANCH)
- ARCV(AHEAD, v->nlcolor);
- NEXT();
- return;
- break;
- case SBEGIN:
- ARCV('^', 1); /* BOL */
- ARCV('^', 0); /* or BOS */
- NEXT();
- return;
- break;
- case SEND:
- ARCV('$', 1); /* EOL */
- ARCV('$', 0); /* or EOS */
- NEXT();
- return;
- break;
- case '<':
- wordchrs(v); /* does NEXT() */
- s = newstate(v->nfa);
- NOERR();
- nonword(v, BEHIND, lp, s);
- word(v, AHEAD, s, rp);
- return;
- break;
- case '>':
- wordchrs(v); /* does NEXT() */
- s = newstate(v->nfa);
- NOERR();
- word(v, BEHIND, lp, s);
- nonword(v, AHEAD, s, rp);
- return;
- break;
- case WBDRY:
- wordchrs(v); /* does NEXT() */
- s = newstate(v->nfa);
- NOERR();
- nonword(v, BEHIND, lp, s);
- word(v, AHEAD, s, rp);
- s = newstate(v->nfa);
- NOERR();
- word(v, BEHIND, lp, s);
- nonword(v, AHEAD, s, rp);
- return;
- break;
- case NWBDRY:
- wordchrs(v); /* does NEXT() */
- s = newstate(v->nfa);
- NOERR();
- word(v, BEHIND, lp, s);
- word(v, AHEAD, s, rp);
- s = newstate(v->nfa);
- NOERR();
- nonword(v, BEHIND, lp, s);
- nonword(v, AHEAD, s, rp);
- return;
- break;
- case LACON: /* lookahead constraint */
- pos = v->nextvalue;
- NEXT();
- s = newstate(v->nfa);
- s2 = newstate(v->nfa);
- NOERR();
- t = parse(v, ')', LACON, s, s2);
- freesubre(v, t); /* internal structure irrelevant */
- assert(SEE(')') || ISERR());
- NEXT();
- n = newlacon(v, s, s2, pos);
- NOERR();
- ARCV(LACON, n);
- return;
- break;
- /* then errors, to get them out of the way */
- case '*':
- case '+':
- case '?':
- case '{':
- ERR(REG_BADRPT);
- return;
- break;
- default:
- ERR(REG_ASSERT);
- return;
- break;
- /* then plain characters, and minor variants on that theme */
- case ')': /* unbalanced paren */
- if ((v->cflags&REG_ADVANCED) != REG_EXTENDED) {
- ERR(REG_EPAREN);
- return;
- }
- /* legal in EREs due to specification botch */
- NOTE(REG_UPBOTCH);
- /* fallthrough into case PLAIN */
- case PLAIN:
- onechr(v, v->nextvalue, lp, rp);
- okcolors(v->nfa, v->cm);
- NOERR();
- NEXT();
- break;
- case '[':
- if (v->nextvalue == 1)
- bracket(v, lp, rp);
- else
- cbracket(v, lp, rp);
- assert(SEE(']') || ISERR());
- NEXT();
- break;
- case '.':
- rainbow(v->nfa, v->cm, PLAIN,
- (v->cflags&REG_NLSTOP) ? v->nlcolor : COLORLESS,
- lp, rp);
- NEXT();
- break;
- /* and finally the ugly stuff */
- case '(': /* value flags as capturing or non */
- cap = (type == LACON) ? 0 : v->nextvalue;
- if (cap) {
- v->nsubexp++;
- subno = v->nsubexp;
- if ((size_t)subno >= v->nsubs)
- moresubs(v, subno);
- assert((size_t)subno < v->nsubs);
- } else
- atomtype = PLAIN; /* something that's not '(' */
- NEXT();
- /* need new endpoints because tree will contain pointers */
- s = newstate(v->nfa);
- s2 = newstate(v->nfa);
- NOERR();
- EMPTYARC(lp, s);
- EMPTYARC(s2, rp);
- NOERR();
- atom = parse(v, ')', PLAIN, s, s2);
- assert(SEE(')') || ISERR());
- NEXT();
- NOERR();
- if (cap) {
- v->subs[subno] = atom;
- t = subre(v, '(', atom->flags|CAP, lp, rp);
- NOERR();
- t->subno = subno;
- t->left = atom;
- atom = t;
- }
- /* postpone everything else pending possible {0} */
- break;
- case BACKREF: /* the Feature From The Black Lagoon */
- INSIST(type != LACON, REG_ESUBREG);
- INSIST(v->nextvalue < v->nsubs, REG_ESUBREG);
- INSIST(v->subs[v->nextvalue] != NULL, REG_ESUBREG);
- NOERR();
- assert(v->nextvalue > 0);
- atom = subre(v, 'b', BACKR, lp, rp);
- subno = v->nextvalue;
- atom->subno = subno;
- EMPTYARC(lp, rp); /* temporarily, so there's something */
- NEXT();
- break;
- }
-
- /* ...and an atom may be followed by a quantifier */
- switch (v->nexttype) {
- case '*':
- m = 0;
- n = INFINITY;
- qprefer = (v->nextvalue) ? LONGER : SHORTER;
- NEXT();
- break;
- case '+':
- m = 1;
- n = INFINITY;
- qprefer = (v->nextvalue) ? LONGER : SHORTER;
- NEXT();
- break;
- case '?':
- m = 0;
- n = 1;
- qprefer = (v->nextvalue) ? LONGER : SHORTER;
- NEXT();
- break;
- case '{':
- NEXT();
- m = scannum(v);
- if (EAT(',')) {
- if (SEE(DIGIT))
- n = scannum(v);
- else
- n = INFINITY;
- if (m > n) {
- ERR(REG_BADBR);
- return;
- }
- /* {m,n} exercises preference, even if it's {m,m} */
- qprefer = (v->nextvalue) ? LONGER : SHORTER;
- } else {
- n = m;
- /* {m} passes operand's preference through */
- qprefer = 0;
- }
- if (!SEE('}')) { /* catches errors too */
- ERR(REG_BADBR);
- return;
- }
- NEXT();
- break;
- default: /* no quantifier */
- m = n = 1;
- qprefer = 0;
- break;
- }
-
- /* annoying special case: {0} or {0,0} cancels everything */
- if (m == 0 && n == 0) {
- if (atom != NULL)
- freesubre(v, atom);
- if (atomtype == '(')
- v->subs[subno] = NULL;
- delsub(v->nfa, lp, rp);
- EMPTYARC(lp, rp);
- return;
- }
-
- /* if not a messy case, avoid hard part */
- assert(!MESSY(top->flags));
- f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0);
- if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) {
- if (!(m == 1 && n == 1))
- repeat(v, lp, rp, m, n);
- if (atom != NULL)
- freesubre(v, atom);
- top->flags = f;
- return;
- }
-
- /*
- * hard part: something messy
- * That is, capturing parens, back reference, short/long clash, or
- * an atom with substructure containing one of those.
- */
-
- /* now we'll need a subre for the contents even if they're boring */
- if (atom == NULL) {
- atom = subre(v, '=', 0, lp, rp);
- NOERR();
- }
-
- /*
- * prepare a general-purpose state skeleton
- *
- * ---> [s] ---prefix---> [begin] ---atom---> [end] ----rest---> [rp]
- * / /
- * [lp] ----> [s2] ----bypass---------------------
- *
- * where bypass is an empty, and prefix is some repetitions of atom
- */
- s = newstate(v->nfa); /* first, new endpoints for the atom */
- s2 = newstate(v->nfa);
- NOERR();
- moveouts(v->nfa, lp, s);
- moveins(v->nfa, rp, s2);
- NOERR();
- atom->begin = s;
- atom->end = s2;
- s = newstate(v->nfa); /* and spots for prefix and bypass */
- s2 = newstate(v->nfa);
- NOERR();
- EMPTYARC(lp, s);
- EMPTYARC(lp, s2);
- NOERR();
-
- /* break remaining subRE into x{...} and what follows */
- t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp);
- t->left = atom;
- atomp = &t->left;
- /* here we should recurse... but we must postpone that to the end */
-
- /* split top into prefix and remaining */
- assert(top->op == '=' && top->left == NULL && top->right == NULL);
- top->left = subre(v, '=', top->flags, top->begin, lp);
- top->op = '.';
- top->right = t;
-
- /* if it's a backref, now is the time to replicate the subNFA */
- if (atomtype == BACKREF) {
- assert(atom->begin->nouts == 1); /* just the EMPTY */
- delsub(v->nfa, atom->begin, atom->end);
- assert(v->subs[subno] != NULL);
- /* and here's why the recursion got postponed: it must */
- /* wait until the skeleton is filled in, because it may */
- /* hit a backref that wants to copy the filled-in skeleton */
- dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end,
- atom->begin, atom->end);
- NOERR();
- }
-
- /* it's quantifier time; first, turn x{0,...} into x{1,...}|empty */
- if (m == 0) {
- EMPTYARC(s2, atom->end); /* the bypass */
- assert(PREF(qprefer) != 0);
- f = COMBINE(qprefer, atom->flags);
- t = subre(v, '|', f, lp, atom->end);
- NOERR();
- t->left = atom;
- t->right = subre(v, '|', PREF(f), s2, atom->end);
- NOERR();
- t->right->left = subre(v, '=', 0, s2, atom->end);
- NOERR();
- *atomp = t;
- atomp = &t->left;
- m = 1;
- }
-
- /* deal with the rest of the quantifier */
- if (atomtype == BACKREF) {
- /* special case: backrefs have internal quantifiers */
- EMPTYARC(s, atom->begin); /* empty prefix */
- /* just stuff everything into atom */
- repeat(v, atom->begin, atom->end, m, n);
- atom->min = (short)m;
- atom->max = (short)n;
- atom->flags |= COMBINE(qprefer, atom->flags);
- } else if (m == 1 && n == 1) {
- /* no/vacuous quantifier: done */
- EMPTYARC(s, atom->begin); /* empty prefix */
- } else {
- /* turn x{m,n} into x{m-1,n-1}x, with capturing */
- /* parens in only second x */
- dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin);
- assert(m >= 1 && m != INFINITY && n >= 1);
- repeat(v, s, atom->begin, m-1, (n == INFINITY) ? n : n-1);
- f = COMBINE(qprefer, atom->flags);
- t = subre(v, '.', f, s, atom->end); /* prefix and atom */
- NOERR();
- t->left = subre(v, '=', PREF(f), s, atom->begin);
- NOERR();
- t->right = atom;
- *atomp = t;
- }
-
- /* and finally, look after that postponed recursion */
- t = top->right;
- if (!(SEE('|') || SEE(stopper) || SEE(EOS)))
- t->right = parsebranch(v, stopper, type, atom->end, rp, 1);
- else {
- EMPTYARC(atom->end, rp);
- t->right = subre(v, '=', 0, atom->end, rp);
- }
- assert(SEE('|') || SEE(stopper) || SEE(EOS));
- t->flags |= COMBINE(t->flags, t->right->flags);
- top->flags |= COMBINE(top->flags, t->flags);
-}
-
-/*
- - nonword - generate arcs for non-word-character ahead or behind
- ^ static VOID nonword(struct vars *, int, struct state *, struct state *);
- */
-static VOID
-nonword(v, dir, lp, rp)
-struct vars *v;
-int dir; /* AHEAD or BEHIND */
-struct state *lp;
-struct state *rp;
-{
- int anchor = (dir == AHEAD) ? '$' : '^';
-
- assert(dir == AHEAD || dir == BEHIND);
- newarc(v->nfa, anchor, 1, lp, rp);
- newarc(v->nfa, anchor, 0, lp, rp);
- colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp);
- /* (no need for special attention to \n) */
-}
-
-/*
- - word - generate arcs for word character ahead or behind
- ^ static VOID word(struct vars *, int, struct state *, struct state *);
- */
-static VOID
-word(v, dir, lp, rp)
-struct vars *v;
-int dir; /* AHEAD or BEHIND */
-struct state *lp;
-struct state *rp;
-{
- assert(dir == AHEAD || dir == BEHIND);
- cloneouts(v->nfa, v->wordchrs, lp, rp, dir);
- /* (no need for special attention to \n) */
-}
-
-/*
- - scannum - scan a number
- ^ static int scannum(struct vars *);
- */
-static int /* value, <= DUPMAX */
-scannum(v)
-struct vars *v;
-{
- int n = 0;
-
- while (SEE(DIGIT) && n < DUPMAX) {
- n = n*10 + v->nextvalue;
- NEXT();
- }
- if (SEE(DIGIT) || n > DUPMAX) {
- ERR(REG_BADBR);
- return 0;
- }
- return n;
-}
-
-/*
- - repeat - replicate subNFA for quantifiers
- * The duplication sequences used here are chosen carefully so that any
- * pointers starting out pointing into the subexpression end up pointing into
- * the last occurrence. (Note that it may not be strung between the same
- * left and right end states, however!) This used to be important for the
- * subRE tree, although the important bits are now handled by the in-line
- * code in parse(), and when this is called, it doesn't matter any more.
- ^ static VOID repeat(struct vars *, struct state *, struct state *, int, int);
- */
-static VOID
-repeat(v, lp, rp, m, n)
-struct vars *v;
-struct state *lp;
-struct state *rp;
-int m;
-int n;
-{
-# define SOME 2
-# define INF 3
-# define PAIR(x, y) ((x)*4 + (y))
-# define REDUCE(x) ( ((x) == INFINITY) ? INF : (((x) > 1) ? SOME : (x)) )
- CONST int rm = REDUCE(m);
- CONST int rn = REDUCE(n);
- struct state *s;
- struct state *s2;
-
- switch (PAIR(rm, rn)) {
- case PAIR(0, 0): /* empty string */
- delsub(v->nfa, lp, rp);
- EMPTYARC(lp, rp);
- break;
- case PAIR(0, 1): /* do as x| */
- EMPTYARC(lp, rp);
- break;
- case PAIR(0, SOME): /* do as x{1,n}| */
- repeat(v, lp, rp, 1, n);
- NOERR();
- EMPTYARC(lp, rp);
- break;
- case PAIR(0, INF): /* loop x around */
- s = newstate(v->nfa);
- NOERR();
- moveouts(v->nfa, lp, s);
- moveins(v->nfa, rp, s);
- EMPTYARC(lp, s);
- EMPTYARC(s, rp);
- break;
- case PAIR(1, 1): /* no action required */
- break;
- case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */
- s = newstate(v->nfa);
- NOERR();
- moveouts(v->nfa, lp, s);
- dupnfa(v->nfa, s, rp, lp, s);
- NOERR();
- repeat(v, lp, s, 1, n-1);
- NOERR();
- EMPTYARC(lp, s);
- break;
- case PAIR(1, INF): /* add loopback arc */
- s = newstate(v->nfa);
- s2 = newstate(v->nfa);
- NOERR();
- moveouts(v->nfa, lp, s);
- moveins(v->nfa, rp, s2);
- EMPTYARC(lp, s);
- EMPTYARC(s2, rp);
- EMPTYARC(s2, s);
- break;
- case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */
- s = newstate(v->nfa);
- NOERR();
- moveouts(v->nfa, lp, s);
- dupnfa(v->nfa, s, rp, lp, s);
- NOERR();
- repeat(v, lp, s, m-1, n-1);
- break;
- case PAIR(SOME, INF): /* do as x{m-1,}x */
- s = newstate(v->nfa);
- NOERR();
- moveouts(v->nfa, lp, s);
- dupnfa(v->nfa, s, rp, lp, s);
- NOERR();
- repeat(v, lp, s, m-1, n);
- break;
- default:
- ERR(REG_ASSERT);
- break;
- }
-}
-
-/*
- - bracket - handle non-complemented bracket expression
- * Also called from cbracket for complemented bracket expressions.
- ^ static VOID bracket(struct vars *, struct state *, struct state *);
- */
-static VOID
-bracket(v, lp, rp)
-struct vars *v;
-struct state *lp;
-struct state *rp;
-{
- assert(SEE('['));
- NEXT();
- while (!SEE(']') && !SEE(EOS))
- brackpart(v, lp, rp);
- assert(SEE(']') || ISERR());
- okcolors(v->nfa, v->cm);
-}
-
-/*
- - cbracket - handle complemented bracket expression
- * We do it by calling bracket() with dummy endpoints, and then complementing
- * the result. The alternative would be to invoke rainbow(), and then delete
- * arcs as the b.e. is seen... but that gets messy.
- ^ static VOID cbracket(struct vars *, struct state *, struct state *);
- */
-static VOID
-cbracket(v, lp, rp)
-struct vars *v;
-struct state *lp;
-struct state *rp;
-{
- struct state *left = newstate(v->nfa);
- struct state *right = newstate(v->nfa);
- struct state *s;
- struct arc *a; /* arc from lp */
- struct arc *ba; /* arc from left, from bracket() */
- struct arc *pa; /* MCCE-prototype arc */
- color co;
- chr *p;
- int i;
-
- NOERR();
- bracket(v, left, right);
- if (v->cflags&REG_NLSTOP)
- newarc(v->nfa, PLAIN, v->nlcolor, left, right);
- NOERR();
-
- assert(lp->nouts == 0); /* all outarcs will be ours */
-
- /* easy part of complementing */
- colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp);
- NOERR();
- if (v->mcces == NULL) { /* no MCCEs -- we're done */
- dropstate(v->nfa, left);
- assert(right->nins == 0);
- freestate(v->nfa, right);
- return;
- }
-
- /* but complementing gets messy in the presence of MCCEs... */
- NOTE(REG_ULOCALE);
- for (p = v->mcces->chrs, i = v->mcces->nchrs; i > 0; p++, i--) {
- co = GETCOLOR(v->cm, *p);
- a = findarc(lp, PLAIN, co);
- ba = findarc(left, PLAIN, co);
- if (ba == NULL) {
- assert(a != NULL);
- freearc(v->nfa, a);
- } else {
- assert(a == NULL);
- }
- s = newstate(v->nfa);
- NOERR();
- newarc(v->nfa, PLAIN, co, lp, s);
- NOERR();
- pa = findarc(v->mccepbegin, PLAIN, co);
- assert(pa != NULL);
- if (ba == NULL) { /* easy case, need all of them */
- cloneouts(v->nfa, pa->to, s, rp, PLAIN);
- newarc(v->nfa, '$', 1, s, rp);
- newarc(v->nfa, '$', 0, s, rp);
- colorcomplement(v->nfa, v->cm, AHEAD, pa->to, s, rp);
- } else { /* must be selective */
- if (findarc(ba->to, '$', 1) == NULL) {
- newarc(v->nfa, '$', 1, s, rp);
- newarc(v->nfa, '$', 0, s, rp);
- colorcomplement(v->nfa, v->cm, AHEAD, pa->to,
- s, rp);
- }
- for (pa = pa->to->outs; pa != NULL; pa = pa->outchain)
- if (findarc(ba->to, PLAIN, pa->co) == NULL)
- newarc(v->nfa, PLAIN, pa->co, s, rp);
- if (s->nouts == 0) /* limit of selectivity: none */
- dropstate(v->nfa, s); /* frees arc too */
- }
- NOERR();
- }
-
- delsub(v->nfa, left, right);
- assert(left->nouts == 0);
- freestate(v->nfa, left);
- assert(right->nins == 0);
- freestate(v->nfa, right);
-}
-
-/*
- - brackpart - handle one item (or range) within a bracket expression
- ^ static VOID brackpart(struct vars *, struct state *, struct state *);
- */
-static VOID
-brackpart(v, lp, rp)
-struct vars *v;
-struct state *lp;
-struct state *rp;
-{
- celt startc;
- celt endc;
- struct cvec *cv;
- chr *startp;
- chr *endp;
- chr c[1];
-
- /* parse something, get rid of special cases, take shortcuts */
- switch (v->nexttype) {
- case RANGE: /* a-b-c or other botch */
- ERR(REG_ERANGE);
- return;
- break;
- case PLAIN:
- c[0] = v->nextvalue;
- NEXT();
- /* shortcut for ordinary chr (not range, not MCCE leader) */
- if (!SEE(RANGE) && !ISCELEADER(v, c[0])) {
- onechr(v, c[0], lp, rp);
- return;
- }
- startc = element(v, c, c+1);
- NOERR();
- break;
- case COLLEL:
- startp = v->now;
- endp = scanplain(v);
- INSIST(startp < endp, REG_ECOLLATE);
- NOERR();
- startc = element(v, startp, endp);
- NOERR();
- break;
- case ECLASS:
- startp = v->now;
- endp = scanplain(v);
- INSIST(startp < endp, REG_ECOLLATE);
- NOERR();
- startc = element(v, startp, endp);
- NOERR();
- cv = eclass(v, startc, (v->cflags&REG_ICASE));
- NOERR();
- dovec(v, cv, lp, rp);
- return;
- break;
- case CCLASS:
- startp = v->now;
- endp = scanplain(v);
- INSIST(startp < endp, REG_ECTYPE);
- NOERR();
- cv = cclass(v, startp, endp, (v->cflags&REG_ICASE));
- NOERR();
- dovec(v, cv, lp, rp);
- return;
- break;
- default:
- ERR(REG_ASSERT);
- return;
- break;
- }
-
- if (SEE(RANGE)) {
- NEXT();
- switch (v->nexttype) {
- case PLAIN:
- case RANGE:
- c[0] = v->nextvalue;
- NEXT();
- endc = element(v, c, c+1);
- NOERR();
- break;
- case COLLEL:
- startp = v->now;
- endp = scanplain(v);
- INSIST(startp < endp, REG_ECOLLATE);
- NOERR();
- endc = element(v, startp, endp);
- NOERR();
- break;
- default:
- ERR(REG_ERANGE);
- return;
- break;
- }
- } else
- endc = startc;
-
- /*
- * Ranges are unportable. Actually, standard C does
- * guarantee that digits are contiguous, but making
- * that an exception is just too complicated.
- */
- if (startc != endc)
- NOTE(REG_UUNPORT);
- cv = range(v, startc, endc, (v->cflags&REG_ICASE));
- NOERR();
- dovec(v, cv, lp, rp);
-}
-
-/*
- - scanplain - scan PLAIN contents of [. etc.
- * Certain bits of trickery in lex.c know that this code does not try
- * to look past the final bracket of the [. etc.
- ^ static chr *scanplain(struct vars *);
- */
-static chr * /* just after end of sequence */
-scanplain(v)
-struct vars *v;
-{
- chr *endp;
-
- assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS));
- NEXT();
-
- endp = v->now;
- while (SEE(PLAIN)) {
- endp = v->now;
- NEXT();
- }
-
- assert(SEE(END) || ISERR());
- NEXT();
-
- return endp;
-}
-
-/*
- - leaders - process a cvec of collating elements to also include leaders
- * Also gives all characters involved their own colors, which is almost
- * certainly necessary, and sets up little disconnected subNFA.
- ^ static VOID leaders(struct vars *, struct cvec *);
- */
-static VOID
-leaders(v, cv)
-struct vars *v;
-struct cvec *cv;
-{
- int mcce;
- chr *p;
- chr leader;
- struct state *s;
- struct arc *a;
-
- v->mccepbegin = newstate(v->nfa);
- v->mccepend = newstate(v->nfa);
- NOERR();
-
- for (mcce = 0; mcce < cv->nmcces; mcce++) {
- p = cv->mcces[mcce];
- leader = *p;
- if (!haschr(cv, leader)) {
- addchr(cv, leader);
- s = newstate(v->nfa);
- newarc(v->nfa, PLAIN, subcolor(v->cm, leader),
- v->mccepbegin, s);
- okcolors(v->nfa, v->cm);
- } else {
- a = findarc(v->mccepbegin, PLAIN,
- GETCOLOR(v->cm, leader));
- assert(a != NULL);
- s = a->to;
- assert(s != v->mccepend);
- }
- p++;
- assert(*p != 0 && *(p+1) == 0); /* only 2-char MCCEs for now */
- newarc(v->nfa, PLAIN, subcolor(v->cm, *p), s, v->mccepend);
- okcolors(v->nfa, v->cm);
- }
-}
-
-/*
- - onechr - fill in arcs for a plain character, and possible case complements
- * This is mostly a shortcut for efficient handling of the common case.
- ^ static VOID onechr(struct vars *, pchr, struct state *, struct state *);
- */
-static VOID
-onechr(v, c, lp, rp)
-struct vars *v;
-pchr c;
-struct state *lp;
-struct state *rp;
-{
- if (!(v->cflags&REG_ICASE)) {
- newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp);
- return;
- }
-
- /* rats, need general case anyway... */
- dovec(v, allcases(v, c), lp, rp);
-}
-
-/*
- - dovec - fill in arcs for each element of a cvec
- * This one has to handle the messy cases, like MCCEs and MCCE leaders.
- ^ static VOID dovec(struct vars *, struct cvec *, struct state *,
- ^ struct state *);
- */
-static VOID
-dovec(v, cv, lp, rp)
-struct vars *v;
-struct cvec *cv;
-struct state *lp;
-struct state *rp;
-{
- chr ch, from, to;
- celt ce;
- chr *p;
- int i;
- color co;
- struct cvec *leads;
- struct arc *a;
- struct arc *pa; /* arc in prototype */
- struct state *s;
- struct state *ps; /* state in prototype */
-
- /* need a place to store leaders, if any */
- if (nmcces(v) > 0) {
- assert(v->mcces != NULL);
- if (v->cv2 == NULL || v->cv2->nchrs < v->mcces->nchrs) {
- if (v->cv2 != NULL)
- free(v->cv2);
- v->cv2 = newcvec(v->mcces->nchrs, 0, v->mcces->nmcces);
- NOERR();
- leads = v->cv2;
- } else
- leads = clearcvec(v->cv2);
- } else
- leads = NULL;
-
- /* first, get the ordinary characters out of the way */
- for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) {
- ch = *p;
- if (!ISCELEADER(v, ch))
- newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp);
- else {
- assert(singleton(v->cm, ch));
- assert(leads != NULL);
- if (!haschr(leads, ch))
- addchr(leads, ch);
- }
- }
-
- /* and the ranges */
- for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) {
- from = *p;
- to = *(p+1);
- while (from <= to && (ce = nextleader(v, from, to)) != NOCELT) {
- if (from < ce)
- subrange(v, from, ce - 1, lp, rp);
- assert(singleton(v->cm, ce));
- assert(leads != NULL);
- if (!haschr(leads, ce))
- addchr(leads, ce);
- from = ce + 1;
- }
- if (from <= to)
- subrange(v, from, to, lp, rp);
- }
-
- if ((leads == NULL || leads->nchrs == 0) && cv->nmcces == 0)
- return;
-
- /* deal with the MCCE leaders */
- NOTE(REG_ULOCALE);
- for (p = leads->chrs, i = leads->nchrs; i > 0; p++, i--) {
- co = GETCOLOR(v->cm, *p);
- a = findarc(lp, PLAIN, co);
- if (a != NULL)
- s = a->to;
- else {
- s = newstate(v->nfa);
- NOERR();
- newarc(v->nfa, PLAIN, co, lp, s);
- NOERR();
- }
- pa = findarc(v->mccepbegin, PLAIN, co);
- assert(pa != NULL);
- ps = pa->to;
- newarc(v->nfa, '$', 1, s, rp);
- newarc(v->nfa, '$', 0, s, rp);
- colorcomplement(v->nfa, v->cm, AHEAD, ps, s, rp);
- NOERR();
- }
-
- /* and the MCCEs */
- for (i = 0; i < cv->nmcces; i++) {
- p = cv->mcces[i];
- assert(singleton(v->cm, *p));
- ch = *p++;
- co = GETCOLOR(v->cm, ch);
- a = findarc(lp, PLAIN, co);
- if (a != NULL)
- s = a->to;
- else {
- s = newstate(v->nfa);
- NOERR();
- newarc(v->nfa, PLAIN, co, lp, s);
- NOERR();
- }
- assert(*p != 0); /* at least two chars */
- assert(singleton(v->cm, *p));
- ch = *p++;
- co = GETCOLOR(v->cm, ch);
- assert(*p == 0); /* and only two, for now */
- newarc(v->nfa, PLAIN, co, s, rp);
- NOERR();
- }
-}
-
-/*
- - nextleader - find next MCCE leader within range
- ^ static celt nextleader(struct vars *, pchr, pchr);
- */
-static celt /* NOCELT means none */
-nextleader(v, from, to)
-struct vars *v;
-pchr from;
-pchr to;
-{
- int i;
- chr *p;
- chr ch;
- celt it = NOCELT;
-
- if (v->mcces == NULL)
- return it;
-
- for (i = v->mcces->nchrs, p = v->mcces->chrs; i > 0; i--, p++) {
- ch = *p;
- if (from <= ch && ch <= to)
- if (it == NOCELT || ch < it)
- it = ch;
- }
- return it;
-}
-
-/*
- - wordchrs - set up word-chr list for word-boundary stuff, if needed
- * The list is kept as a bunch of arcs between two dummy states; it's
- * disposed of by the unreachable-states sweep in NFA optimization.
- * Does NEXT(). Must not be called from any unusual lexical context.
- * This should be reconciled with the \w etc. handling in lex.c, and
- * should be cleaned up to reduce dependencies on input scanning.
- ^ static VOID wordchrs(struct vars *);
- */
-static VOID
-wordchrs(v)
-struct vars *v;
-{
- struct state *left;
- struct state *right;
-
- if (v->wordchrs != NULL) {
- NEXT(); /* for consistency */
- return;
- }
-
- left = newstate(v->nfa);
- right = newstate(v->nfa);
- NOERR();
- /* fine point: implemented with [::], and lexer will set REG_ULOCALE */
- lexword(v);
- NEXT();
- assert(v->savenow != NULL && SEE('['));
- bracket(v, left, right);
- assert((v->savenow != NULL && SEE(']')) || ISERR());
- NEXT();
- NOERR();
- v->wordchrs = left;
-}
-
-/*
- - subre - allocate a subre
- ^ static struct subre *subre(struct vars *, int, int, struct state *,
- ^ struct state *);
- */
-static struct subre *
-subre(v, op, flags, begin, end)
-struct vars *v;
-int op;
-int flags;
-struct state *begin;
-struct state *end;
-{
- struct subre *ret;
-
- ret = v->treefree;
- if (ret != NULL)
- v->treefree = ret->left;
- else {
- ret = (struct subre *)MALLOC(sizeof(struct subre));
- if (ret == NULL) {
- ERR(REG_ESPACE);
- return NULL;
- }
- ret->chain = v->treechain;
- v->treechain = ret;
- }
-
- assert(strchr("|.b(=", op) != NULL);
-
- ret->op = op;
- ret->flags = flags;
- ret->retry = 0;
- ret->subno = 0;
- ret->min = ret->max = 1;
- ret->left = NULL;
- ret->right = NULL;
- ret->begin = begin;
- ret->end = end;
- ZAPCNFA(ret->cnfa);
-
- return ret;
-}
-
-/*
- - freesubre - free a subRE subtree
- ^ static VOID freesubre(struct vars *, struct subre *);
- */
-static VOID
-freesubre(v, sr)
-struct vars *v; /* might be NULL */
-struct subre *sr;
-{
- if (sr == NULL)
- return;
-
- if (sr->left != NULL)
- freesubre(v, sr->left);
- if (sr->right != NULL)
- freesubre(v, sr->right);
-
- freesrnode(v, sr);
-}
-
-/*
- - freesrnode - free one node in a subRE subtree
- ^ static VOID freesrnode(struct vars *, struct subre *);
- */
-static VOID
-freesrnode(v, sr)
-struct vars *v; /* might be NULL */
-struct subre *sr;
-{
- if (sr == NULL)
- return;
-
- if (!NULLCNFA(sr->cnfa))
- freecnfa(&sr->cnfa);
- sr->flags = 0;
-
- if (v != NULL) {
- sr->left = v->treefree;
- v->treefree = sr;
- } else
- FREE(sr);
-}
-
-/*
- - optst - optimize a subRE subtree
- ^ static VOID optst(struct vars *, struct subre *);
- */
-static VOID
-optst(v, t)
-struct vars *v;
-struct subre *t;
-{
- if (t == NULL)
- return;
-
- /* preference cleanup and analysis */
- if (t->flags&SHORTER)
- v->usedshorter = 1;
-
- /* recurse through children */
- if (t->left != NULL)
- optst(v, t->left);
- if (t->right != NULL)
- optst(v, t->right);
-}
-
-/*
- - numst - number tree nodes (assigning retry indexes)
- ^ static int numst(struct subre *, int);
- */
-static int /* next number */
-numst(t, start)
-struct subre *t;
-int start; /* starting point for subtree numbers */
-{
- int i;
-
- assert(t != NULL);
-
- i = start;
- t->retry = (short)i++;
- if (t->left != NULL)
- i = numst(t->left, i);
- if (t->right != NULL)
- i = numst(t->right, i);
- return i;
-}
-
-/*
- - markst - mark tree nodes as INUSE
- ^ static VOID markst(struct subre *);
- */
-static VOID
-markst(t)
-struct subre *t;
-{
- assert(t != NULL);
-
- t->flags |= INUSE;
- if (t->left != NULL)
- markst(t->left);
- if (t->right != NULL)
- markst(t->right);
-}
-
-/*
- - cleanst - free any tree nodes not marked INUSE
- ^ static VOID cleanst(struct vars *);
- */
-static VOID
-cleanst(v)
-struct vars *v;
-{
- struct subre *t;
- struct subre *next;
-
- for (t = v->treechain; t != NULL; t = next) {
- next = t->chain;
- if (!(t->flags&INUSE))
- FREE(t);
- }
- v->treechain = NULL;
- v->treefree = NULL; /* just on general principles */
-}
-
-/*
- - nfatree - turn a subRE subtree into a tree of compacted NFAs
- ^ static int nfatree(struct vars *, struct subre *, FILE *);
- */
-static int /* optimize results from top node */
-nfatree(v, t, f)
-struct vars *v;
-struct subre *t;
-FILE *f; /* for debug output */
-{
- assert(t != NULL && t->begin != NULL);
-
- if (t->left != NULL)
- (DISCARD)nfatree(v, t->left, f);
- if (t->right != NULL)
- (DISCARD)nfatree(v, t->right, f);
-
- return nfanode(v, t, f);
-}
-
-/*
- - nfanode - do one NFA for nfatree
- ^ static int nfanode(struct vars *, struct subre *, FILE *);
- */
-static int /* optimize results */
-nfanode(v, t, f)
-struct vars *v;
-struct subre *t;
-FILE *f; /* for debug output */
-{
- struct nfa *nfa;
- int ret = 0;
-
- assert(t->begin != NULL);
-
- nfa = newnfa(v, v->cm, v->nfa);
- NOERRZ();
- dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final);
- if (!ISERR()) {
- specialcolors(nfa);
- ret = optimize(nfa, f);
- }
- if (!ISERR())
- compact(nfa, &t->cnfa);
-
- freenfa(nfa);
- return ret;
-}
-
-/*
- - newlacon - allocate a lookahead-constraint subRE
- ^ static int newlacon(struct vars *, struct state *, struct state *, int);
- */
-static int /* lacon number */
-newlacon(v, begin, end, pos)
-struct vars *v;
-struct state *begin;
-struct state *end;
-int pos;
-{
- int n;
- struct subre *sub;
-
- if (v->nlacons == 0) {
- v->lacons = (struct subre *)MALLOC(2 * sizeof(struct subre));
- n = 1; /* skip 0th */
- v->nlacons = 2;
- } else {
- v->lacons = (struct subre *)REALLOC(v->lacons,
- (v->nlacons+1)*sizeof(struct subre));
- n = v->nlacons++;
- }
- if (v->lacons == NULL) {
- ERR(REG_ESPACE);
- return 0;
- }
- sub = &v->lacons[n];
- sub->begin = begin;
- sub->end = end;
- sub->subno = pos;
- ZAPCNFA(sub->cnfa);
- return n;
-}
-
-/*
- - freelacons - free lookahead-constraint subRE vector
- ^ static VOID freelacons(struct subre *, int);
- */
-static VOID
-freelacons(subs, n)
-struct subre *subs;
-int n;
-{
- struct subre *sub;
- int i;
-
- assert(n > 0);
- for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */
- if (!NULLCNFA(sub->cnfa))
- freecnfa(&sub->cnfa);
- FREE(subs);
-}
-
-/*
- - rfree - free a whole RE (insides of regfree)
- ^ static VOID rfree(regex_t *);
- */
-static VOID
-rfree(re)
-regex_t *re;
-{
- struct guts *g;
-
- if (re == NULL || re->re_magic != REMAGIC)
- return;
-
- re->re_magic = 0; /* invalidate RE */
- g = (struct guts *)re->re_guts;
- re->re_guts = NULL;
- re->re_fns = NULL;
- g->magic = 0;
- freecm(&g->cmap);
- if (g->tree != NULL)
- freesubre((struct vars *)NULL, g->tree);
- if (g->lacons != NULL)
- freelacons(g->lacons, g->nlacons);
- if (!NULLCNFA(g->search))
- freecnfa(&g->search);
- FREE(g);
-}
-
-/*
- - dump - dump an RE in human-readable form
- ^ static VOID dump(regex_t *, FILE *);
- */
-static VOID
-dump(re, f)
-regex_t *re;
-FILE *f;
-{
-#ifdef REG_DEBUG
- struct guts *g;
- int i;
-
- if (re->re_magic != REMAGIC)
- fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic,
- REMAGIC);
- if (re->re_guts == NULL) {
- fprintf(f, "NULL guts!!!\n");
- return;
- }
- g = (struct guts *)re->re_guts;
- if (g->magic != GUTSMAGIC)
- fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic,
- GUTSMAGIC);
-
- fprintf(f, "nsub %d, info 0%o, csize %d, ntree %d, usedshort %d\n",
- re->re_nsub, re->re_info, re->re_csize, g->ntree,
- g->usedshorter);
-
- dumpcolors(&g->cmap, f);
- if (!NULLCNFA(g->search)) {
- printf("search:\n");
- dumpcnfa(&g->search, f);
- }
- for (i = 1; i < g->nlacons; i++) {
- fprintf(f, "la%d (%s):\n", i,
- (g->lacons[i].subno) ? "positive" : "negative");
- dumpcnfa(&g->lacons[i].cnfa, f);
- }
- dumpst(g->tree, f, 0);
-#endif
-}
-
-/*
- - dumpst - dump a subRE tree
- ^ static VOID dumpst(struct subre *, FILE *, int);
- */
-static VOID
-dumpst(t, f, nfapresent)
-struct subre *t;
-FILE *f;
-int nfapresent; /* is the original NFA still around? */
-{
- if (t == NULL)
- fprintf(f, "null tree\n");
- else
- stdump(t, f, nfapresent, 0);
- fflush(f);
-}
-
-/*
- - stdump - recursive guts of dumpst
- ^ static VOID stdump(struct subre *, FILE *, int, int);
- */
-static VOID
-stdump(t, f, nfapresent, level)
-struct subre *t;
-FILE *f;
-int nfapresent; /* is the original NFA still around? */
-int level;
-{
- int i;
-# define RTSEP " "
-
- for (i = 0; i < level; i++)
- fprintf(f, RTSEP);
- fprintf(f, "%c (", t->op);
- if (t->flags&LONGER)
- fprintf(f, "L");
- if (t->flags&SHORTER)
- fprintf(f, "S");
- if (t->flags&MIXED)
- fprintf(f, "M");
- if (t->flags&CAP)
- fprintf(f, "c");
- if (t->flags&BACKR)
- fprintf(f, "b");
- if (!(t->flags&INUSE))
- fprintf(f, "!u");
- fprintf(f, ") r%d", t->retry);
- if (t->subno != 0)
- fprintf(f, " #%d", t->subno);
- if (t->min != 1 || t->max != 1) {
- fprintf(f, "{%d,", t->min);
- if (t->max != INFINITY)
- fprintf(f, "%d", t->max);
- fprintf(f, "}");
- }
- if (nfapresent)
- fprintf(f, " %ld-%ld", (long)t->begin->no, (long)t->end->no);
- if (!NULLCNFA(t->cnfa))
- fprintf(f, ":");
- fprintf(f, "\n");
- if (t->left != NULL)
- stdump(t->left, f, nfapresent, level+1);
- if (!NULLCNFA(t->cnfa))
- dumpcnfa(&t->cnfa, f);
- if (t->right != NULL)
- stdump(t->right, f, nfapresent, level+1);
-}
-
-#include "regc_lex.c"
-#include "regc_color.c"
-#include "regc_nfa.c"
-#include "regc_cvec.c"
-#include "regc_locale.c"