summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_div.c
diff options
context:
space:
mode:
Diffstat (limited to 'libtommath/bn_mp_div.c')
-rw-r--r--libtommath/bn_mp_div.c483
1 files changed, 246 insertions, 237 deletions
diff --git a/libtommath/bn_mp_div.c b/libtommath/bn_mp_div.c
index de4ca04..44e3cb9 100644
--- a/libtommath/bn_mp_div.c
+++ b/libtommath/bn_mp_div.c
@@ -1,4 +1,4 @@
-#include <tommath.h>
+#include "tommath_private.h"
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -9,77 +9,74 @@
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
+ * SPDX-License-Identifier: Unlicense
*/
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
-int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int res, n, n2;
- /* is divisor zero ? */
- if (mp_iszero (b) == 1) {
- return MP_VAL;
- }
-
- /* if a < b then q=0, r = a */
- if (mp_cmp_mag (a, b) == MP_LT) {
- if (d != NULL) {
- res = mp_copy (a, d);
- } else {
- res = MP_OKAY;
- }
- if (c != NULL) {
- mp_zero (c);
- }
- return res;
- }
-
- /* init our temps */
- if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
- return res;
- }
-
-
- mp_set(&tq, 1);
- n = mp_count_bits(a) - mp_count_bits(b);
- if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
- ((res = mp_abs(b, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
- ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
+ /* is divisor zero ? */
+ if (mp_iszero(b) == MP_YES) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag(a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy(a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero(c);
+ }
+ return res;
+ }
+
+ /* init our temps */
+ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+
+ mp_set(&tq, 1uL);
+ n = mp_count_bits(a) - mp_count_bits(b);
+ if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
+ ((res = mp_abs(b, &tb)) != MP_OKAY) ||
+ ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
+ ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto LBL_ERR;
- }
-
- while (n-- >= 0) {
- if (mp_cmp(&tb, &ta) != MP_GT) {
- if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
- ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- }
- if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
- ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
- goto LBL_ERR;
- }
- }
-
- /* now q == quotient and ta == remainder */
- n = a->sign;
- n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
- if (c != NULL) {
- mp_exch(c, &q);
- c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
- }
- if (d != NULL) {
- mp_exch(d, &ta);
- d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
- }
+ }
+
+ while (n-- >= 0) {
+ if (mp_cmp(&tb, &ta) != MP_GT) {
+ if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
+ ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+ }
+ if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
+ ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* now q == quotient and ta == remainder */
+ n = a->sign;
+ n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ if (c != NULL) {
+ mp_exch(c, &q);
+ c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
+ }
+ if (d != NULL) {
+ mp_exch(d, &ta);
+ d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
+ }
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res;
@@ -87,202 +84,214 @@ LBL_ERR:
#else
-/* integer signed division.
+/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
- * Note that the description in HAC is horribly
- * incomplete. For example, it doesn't consider
- * the case where digits are removed from 'x' in
- * the inner loop. It also doesn't consider the
+ * Note that the description in HAC is horribly
+ * incomplete. For example, it doesn't consider
+ * the case where digits are removed from 'x' in
+ * the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
- * The overall algorithm is as described as
+ * The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
-int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
- mp_int q, x, y, t1, t2;
- int res, n, t, i, norm, neg;
-
- /* is divisor zero ? */
- if (mp_iszero (b) == 1) {
- return MP_VAL;
- }
-
- /* if a < b then q=0, r = a */
- if (mp_cmp_mag (a, b) == MP_LT) {
- if (d != NULL) {
- res = mp_copy (a, d);
- } else {
- res = MP_OKAY;
- }
- if (c != NULL) {
- mp_zero (c);
- }
- return res;
- }
-
- if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
- return res;
- }
- q.used = a->used + 2;
-
- if ((res = mp_init (&t1)) != MP_OKAY) {
- goto LBL_Q;
- }
-
- if ((res = mp_init (&t2)) != MP_OKAY) {
- goto LBL_T1;
- }
-
- if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
- goto LBL_T2;
- }
-
- if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
- goto LBL_X;
- }
-
- /* fix the sign */
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
- x.sign = y.sign = MP_ZPOS;
-
- /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
- norm = mp_count_bits(&y) % DIGIT_BIT;
- if (norm < (int)(DIGIT_BIT-1)) {
- norm = (DIGIT_BIT-1) - norm;
- if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
- } else {
- norm = 0;
- }
-
- /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
- n = x.used - 1;
- t = y.used - 1;
-
- /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
- if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
- goto LBL_Y;
- }
-
- while (mp_cmp (&x, &y) != MP_LT) {
- ++(q.dp[n - t]);
- if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
- }
-
- /* reset y by shifting it back down */
- mp_rshd (&y, n - t);
-
- /* step 3. for i from n down to (t + 1) */
- for (i = n; i >= (t + 1); i--) {
- if (i > x.used) {
- continue;
- }
-
- /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
- * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
- if (x.dp[i] == y.dp[t]) {
- q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
- } else {
- mp_word tmp;
- tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
- tmp |= ((mp_word) x.dp[i - 1]);
- tmp /= ((mp_word) y.dp[t]);
- if (tmp > (mp_word) MP_MASK)
- tmp = MP_MASK;
- q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
- }
-
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
- xi * b**2 + xi-1 * b + xi-2
-
- do q{i-t-1} -= 1;
- */
- q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
- do {
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
-
- /* find left hand */
- mp_zero (&t1);
- t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
- t1.dp[1] = y.dp[t];
- t1.used = 2;
- if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
- goto LBL_Y;
+ mp_int q, x, y, t1, t2;
+ int res, n, t, i, norm, neg;
+
+ /* is divisor zero ? */
+ if (mp_iszero(b) == MP_YES) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (mp_cmp_mag(a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy(a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero(c);
+ }
+ return res;
+ }
+
+ if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
+ return res;
+ }
+ q.used = a->used + 2;
+
+ if ((res = mp_init(&t1)) != MP_OKAY) {
+ goto LBL_Q;
+ }
+
+ if ((res = mp_init(&t2)) != MP_OKAY) {
+ goto LBL_T1;
+ }
+
+ if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
+ goto LBL_T2;
+ }
+
+ if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
+ goto LBL_X;
+ }
+
+ /* fix the sign */
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ x.sign = y.sign = MP_ZPOS;
+
+ /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+ norm = mp_count_bits(&y) % DIGIT_BIT;
+ if (norm < (DIGIT_BIT - 1)) {
+ norm = (DIGIT_BIT - 1) - norm;
+ if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
+ goto LBL_Y;
}
+ if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ } else {
+ norm = 0;
+ }
- /* find right hand */
- t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
- t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
- t2.dp[2] = x.dp[i];
- t2.used = 3;
- } while (mp_cmp_mag(&t1, &t2) == MP_GT);
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+ n = x.used - 1;
+ t = y.used - 1;
- /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
- if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
+ if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto LBL_Y;
- }
+ }
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
- goto LBL_Y;
- }
+ while (mp_cmp(&x, &y) != MP_LT) {
+ ++(q.dp[n - t]);
+ if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ }
- if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
+ /* reset y by shifting it back down */
+ mp_rshd(&y, n - t);
- /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
- if (x.sign == MP_NEG) {
- if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
- goto LBL_Y;
+ /* step 3. for i from n down to (t + 1) */
+ for (i = n; i >= (t + 1); i--) {
+ if (i > x.used) {
+ continue;
}
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
- goto LBL_Y;
+
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
+ * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
+ if (x.dp[i] == y.dp[t]) {
+ q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1;
+ } else {
+ mp_word tmp;
+ tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT;
+ tmp |= (mp_word)x.dp[i - 1];
+ tmp /= (mp_word)y.dp[t];
+ if (tmp > (mp_word)MP_MASK) {
+ tmp = MP_MASK;
+ }
+ q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
+ }
+
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
+ xi * b**2 + xi-1 * b + xi-2
+
+ do q{i-t-1} -= 1;
+ */
+ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
+ do {
+ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;
+
+ /* find left hand */
+ mp_zero(&t1);
+ t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
+ t1.dp[1] = y.dp[t];
+ t1.used = 2;
+ if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* find right hand */
+ t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
+ t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1];
+ t2.dp[2] = x.dp[i];
+ t2.used = 3;
+ } while (mp_cmp_mag(&t1, &t2) == MP_GT);
+
+ /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
+ if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
}
- if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
- goto LBL_Y;
+
+ /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
+ if (x.sign == MP_NEG) {
+ if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
}
+ }
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
- }
- }
-
- /* now q is the quotient and x is the remainder
- * [which we have to normalize]
- */
-
- /* get sign before writing to c */
- x.sign = x.used == 0 ? MP_ZPOS : a->sign;
-
- if (c != NULL) {
- mp_clamp (&q);
- mp_exch (&q, c);
- c->sign = neg;
- }
-
- if (d != NULL) {
- mp_div_2d (&x, norm, &x, NULL);
- mp_exch (&x, d);
- }
-
- res = MP_OKAY;
-
-LBL_Y:mp_clear (&y);
-LBL_X:mp_clear (&x);
-LBL_T2:mp_clear (&t2);
-LBL_T1:mp_clear (&t1);
-LBL_Q:mp_clear (&q);
- return res;
+ /* now q is the quotient and x is the remainder
+ * [which we have to normalize]
+ */
+
+ /* get sign before writing to c */
+ x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ c->sign = neg;
+ }
+
+ if (d != NULL) {
+ if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ mp_exch(&x, d);
+ }
+
+ res = MP_OKAY;
+
+LBL_Y:
+ mp_clear(&y);
+LBL_X:
+ mp_clear(&x);
+LBL_T2:
+ mp_clear(&t2);
+LBL_T1:
+ mp_clear(&t1);
+LBL_Q:
+ mp_clear(&q);
+ return res;
}
#endif
#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */