summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_exptmod.c
blob: 95a1dcb62ce71a1b36f18d1c4d61156d106961f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
   int dr;

   /* modulus P must be positive */
   if (P->sign == MP_NEG) {
      return MP_VAL;
   }

   /* if exponent X is negative we have to recurse */
   if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
      mp_int tmpG, tmpX;
      mp_err err;

      /* first compute 1/G mod P */
      if ((err = mp_init(&tmpG)) != MP_OKAY) {
         return err;
      }
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }

      /* now get |X| */
      if ((err = mp_init(&tmpX)) != MP_OKAY) {
         mp_clear(&tmpG);
         return err;
      }
      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
         mp_clear_multi(&tmpG, &tmpX, NULL);
         return err;
      }

      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
      err = mp_exptmod(&tmpG, &tmpX, P, Y);
      mp_clear_multi(&tmpG, &tmpX, NULL);
      return err;
#else
      /* no invmod */
      return MP_VAL;
#endif
   }

   /* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
   if (mp_reduce_is_2k_l(P) == MP_YES) {
      return s_mp_exptmod(G, X, P, Y, 1);
   }
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
   /* is it a DR modulus? */
   dr = (mp_dr_is_modulus(P) == MP_YES) ? 1 : 0;
#else
   /* default to no */
   dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
   /* if not, is it a unrestricted DR modulus? */
   if (dr == 0) {
      dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
   }
#endif

   /* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_S_MP_EXPTMOD_FAST_C
   if (MP_IS_ODD(P) || (dr !=  0)) {
      return s_mp_exptmod_fast(G, X, P, Y, dr);
   } else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
      /* otherwise use the generic Barrett reduction technique */
      return s_mp_exptmod(G, X, P, Y, 0);
#else
      /* no exptmod for evens */
      return MP_VAL;
#endif
#ifdef BN_S_MP_EXPTMOD_FAST_C
   }
#endif
}

#endif