summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_kronecker.c
blob: 525a82034593bb79a69d6bf7a6b829b39d5ceab2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include "tommath_private.h"
#ifdef BN_MP_KRONECKER_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/*
   Kronecker symbol (a|p)
   Straightforward implementation of algorithm 1.4.10 in
   Henri Cohen: "A Course in Computational Algebraic Number Theory"

   @book{cohen2013course,
     title={A course in computational algebraic number theory},
     author={Cohen, Henri},
     volume={138},
     year={2013},
     publisher={Springer Science \& Business Media}
    }
 */
mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c)
{
   mp_int a1, p1, r;
   mp_err err;
   int v, k;

   static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};

   if (MP_IS_ZERO(p)) {
      if ((a->used == 1) && (a->dp[0] == 1u)) {
         *c = 1;
      } else {
         *c = 0;
      }
      return MP_OKAY;
   }

   if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) {
      *c = 0;
      return MP_OKAY;
   }

   if ((err = mp_init_copy(&a1, a)) != MP_OKAY) {
      return err;
   }
   if ((err = mp_init_copy(&p1, p)) != MP_OKAY) {
      goto LBL_KRON_0;
   }

   v = mp_cnt_lsb(&p1);
   if ((err = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
      goto LBL_KRON_1;
   }

   if ((v & 1) == 0) {
      k = 1;
   } else {
      k = table[a->dp[0] & 7u];
   }

   if (p1.sign == MP_NEG) {
      p1.sign = MP_ZPOS;
      if (a1.sign == MP_NEG) {
         k = -k;
      }
   }

   if ((err = mp_init(&r)) != MP_OKAY) {
      goto LBL_KRON_1;
   }

   for (;;) {
      if (MP_IS_ZERO(&a1)) {
         if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
            *c = k;
            goto LBL_KRON;
         } else {
            *c = 0;
            goto LBL_KRON;
         }
      }

      v = mp_cnt_lsb(&a1);
      if ((err = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
         goto LBL_KRON;
      }

      if ((v & 1) == 1) {
         k = k * table[p1.dp[0] & 7u];
      }

      if (a1.sign == MP_NEG) {
         /*
          * Compute k = (-1)^((a1)*(p1-1)/4) * k
          * a1.dp[0] + 1 cannot overflow because the MSB
          * of the type mp_digit is not set by definition
          */
         if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
            k = -k;
         }
      } else {
         /* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
         if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
            k = -k;
         }
      }

      if ((err = mp_copy(&a1, &r)) != MP_OKAY) {
         goto LBL_KRON;
      }
      r.sign = MP_ZPOS;
      if ((err = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
         goto LBL_KRON;
      }
      if ((err = mp_copy(&r, &p1)) != MP_OKAY) {
         goto LBL_KRON;
      }
   }

LBL_KRON:
   mp_clear(&r);
LBL_KRON_1:
   mp_clear(&p1);
LBL_KRON_0:
   mp_clear(&a1);

   return err;
}

#endif