1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
#include <tommath_private.h>
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* performs a variable number of rounds of Miller-Rabin
*
* Probability of error after t rounds is no more than
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime(const mp_int *a, int t, int *result)
{
mp_int b;
int ix, err, res;
/* default to no */
*result = MP_NO;
/* valid value of t? */
if ((t <= 0) || (t > PRIME_SIZE)) {
return MP_VAL;
}
/* is the input equal to one of the primes in the table? */
for (ix = 0; ix < PRIME_SIZE; ix++) {
if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
*result = 1;
return MP_OKAY;
}
}
/* first perform trial division */
if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
return err;
}
/* return if it was trivially divisible */
if (res == MP_YES) {
return MP_OKAY;
}
/* now perform the miller-rabin rounds */
if ((err = mp_init(&b)) != MP_OKAY) {
return err;
}
for (ix = 0; ix < t; ix++) {
/* set the prime */
mp_set(&b, ltm_prime_tab[ix]);
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
}
/* passed the test */
*result = MP_YES;
LBL_B:
mp_clear(&b);
return err;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */
|