1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
|
/*
* tclWinTime.c --
*
* Contains Windows specific versions of Tcl functions that
* obtain time values from the operating system.
*
* Copyright 1995-1998 by Sun Microsystems, Inc.
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* RCS: @(#) $Id: tclWinTime.c,v 1.9 2001/11/21 02:36:21 hobbs Exp $
*/
#include "tclWinInt.h"
#define SECSPERDAY (60L * 60L * 24L)
#define SECSPERYEAR (SECSPERDAY * 365L)
#define SECSPER4YEAR (SECSPERYEAR * 4L + SECSPERDAY)
/*
* The following arrays contain the day of year for the last day of
* each month, where index 1 is January.
*/
static int normalDays[] = {
-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364
};
static int leapDays[] = {
-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365
};
typedef struct ThreadSpecificData {
char tzName[64]; /* Time zone name */
struct tm tm; /* time information */
} ThreadSpecificData;
static Tcl_ThreadDataKey dataKey;
/*
* Calibration interval for the high-resolution timer, in msec
*/
static CONST unsigned long clockCalibrateWakeupInterval = 10000;
/* FIXME: 10 s -- should be about 10 min! */
/*
* Data for managing high-resolution timers.
*/
typedef struct TimeInfo {
CRITICAL_SECTION cs; /* Mutex guarding this structure */
int initialized; /* Flag == 1 if this structure is
* initialized. */
int perfCounterAvailable; /* Flag == 1 if the hardware has a
* performance counter */
HANDLE calibrationThread; /* Handle to the thread that keeps the
* virtual clock calibrated. */
HANDLE readyEvent; /* System event used to
* trigger the requesting thread
* when the clock calibration procedure
* is initialized for the first time */
/*
* The following values are used for calculating virtual time.
* Virtual time is always equal to:
* lastFileTime + (current perf counter - lastCounter)
* * 10000000 / curCounterFreq
* and lastFileTime and lastCounter are updated any time that
* virtual time is returned to a caller.
*/
ULARGE_INTEGER lastFileTime;
LARGE_INTEGER lastCounter;
LARGE_INTEGER curCounterFreq;
/*
* The next two values are used only in the calibration thread, to track
* the frequency of the performance counter.
*/
LONGLONG lastPerfCounter; /* Performance counter the last time
* that UpdateClockEachSecond was called */
LONGLONG lastSysTime; /* System clock at the last time
* that UpdateClockEachSecond was called */
LONGLONG estPerfCounterFreq;
/* Current estimate of the counter frequency
* using the system clock as the standard */
} TimeInfo;
static TimeInfo timeInfo = {
NULL, 0, 0, NULL, NULL, 0, 0, 0, 0, 0
};
CONST static FILETIME posixEpoch = { 0xD53E8000, 0x019DB1DE };
/*
* Declarations for functions defined later in this file.
*/
static struct tm * ComputeGMT _ANSI_ARGS_((const time_t *tp));
static DWORD WINAPI CalibrationThread _ANSI_ARGS_(( LPVOID arg ));
static void UpdateTimeEachSecond _ANSI_ARGS_(( void ));
/*
*----------------------------------------------------------------------
*
* TclpGetSeconds --
*
* This procedure returns the number of seconds from the epoch.
* On most Unix systems the epoch is Midnight Jan 1, 1970 GMT.
*
* Results:
* Number of seconds from the epoch.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
unsigned long
TclpGetSeconds()
{
Tcl_Time t;
Tcl_GetTime( &t );
return t.sec;
}
/*
*----------------------------------------------------------------------
*
* TclpGetClicks --
*
* This procedure returns a value that represents the highest
* resolution clock available on the system. There are no
* guarantees on what the resolution will be. In Tcl we will
* call this value a "click". The start time is also system
* dependant.
*
* Results:
* Number of clicks from some start time.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
unsigned long
TclpGetClicks()
{
/*
* Use the Tcl_GetTime abstraction to get the time in microseconds,
* as nearly as we can, and return it.
*/
Tcl_Time now; /* Current Tcl time */
unsigned long retval; /* Value to return */
Tcl_GetTime( &now );
retval = ( now.sec * 1000000 ) + now.usec;
return retval;
}
/*
*----------------------------------------------------------------------
*
* TclpGetTimeZone --
*
* Determines the current timezone. The method varies wildly
* between different Platform implementations, so its hidden in
* this function.
*
* Results:
* Minutes west of GMT.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
int
TclpGetTimeZone (currentTime)
unsigned long currentTime;
{
int timeZone;
tzset();
timeZone = _timezone / 60;
return timeZone;
}
/*
*----------------------------------------------------------------------
*
* Tcl_GetTime --
*
* Gets the current system time in seconds and microseconds
* since the beginning of the epoch: 00:00 UCT, January 1, 1970.
*
* Results:
* Returns the current time in timePtr.
*
* Side effects:
* On the first call, initializes a set of static variables to
* keep track of the base value of the performance counter, the
* corresponding wall clock (obtained through ftime) and the
* frequency of the performance counter. Also spins a thread
* whose function is to wake up periodically and monitor these
* values, adjusting them as necessary to correct for drift
* in the performance counter's oscillator.
*
*----------------------------------------------------------------------
*/
void
Tcl_GetTime(timePtr)
Tcl_Time *timePtr; /* Location to store time information. */
{
struct timeb t;
/* Initialize static storage on the first trip through. */
/*
* Note: Outer check for 'initialized' is a performance win
* since it avoids an extra mutex lock in the common case.
*/
if ( !timeInfo.initialized ) {
TclpInitLock();
if ( !timeInfo.initialized ) {
timeInfo.perfCounterAvailable
= QueryPerformanceFrequency( &timeInfo.curCounterFreq );
/*
* Some hardware abstraction layers use the CPU clock
* in place of the real-time clock as a performance counter
* reference. This results in:
* - inconsistent results among the processors on
* multi-processor systems.
* - unpredictable changes in performance counter frequency
* on "gearshift" processors such as Transmeta and
* SpeedStep.
* There seems to be no way to test whether the performance
* counter is reliable, but a useful heuristic is that
* if its frequency is 1.193182 MHz or 3.579545 MHz, it's
* derived from a colorburst crystal and is therefore
* the RTC rather than the TSC. If it's anything else, we
* presume that the performance counter is unreliable.
*/
if ( timeInfo.perfCounterAvailable
&& timeInfo.curCounterFreq.QuadPart != (LONGLONG) 1193182
&& timeInfo.curCounterFreq.QuadPart != (LONGLONG) 3579545 ) {
timeInfo.perfCounterAvailable = FALSE;
}
/*
* If the performance counter is available, start a thread to
* calibrate it.
*/
if ( timeInfo.perfCounterAvailable ) {
DWORD id;
InitializeCriticalSection( &timeInfo.cs );
timeInfo.readyEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
timeInfo.calibrationThread = CreateThread( NULL,
8192,
CalibrationThread,
(LPVOID) NULL,
0,
&id );
SetThreadPriority( timeInfo.calibrationThread,
THREAD_PRIORITY_HIGHEST );
WaitForSingleObject( timeInfo.readyEvent, INFINITE );
CloseHandle( timeInfo.readyEvent );
}
timeInfo.initialized = TRUE;
}
TclpInitUnlock();
}
if ( timeInfo.perfCounterAvailable ) {
/*
* Query the performance counter and use it to calculate the
* current time.
*/
LARGE_INTEGER curCounter;
/* Current performance counter */
LONGLONG curFileTime;
/* Current estimated time, expressed
* as 100-ns ticks since the Windows epoch */
static LARGE_INTEGER posixEpoch;
/* Posix epoch expressed as 100-ns ticks
* since the windows epoch */
LONGLONG usecSincePosixEpoch;
/* Current microseconds since Posix epoch */
posixEpoch.LowPart = 0xD53E8000;
posixEpoch.HighPart = 0x019DB1DE;
EnterCriticalSection( &timeInfo.cs );
QueryPerformanceCounter( &curCounter );
curFileTime = timeInfo.lastFileTime.QuadPart
+ ( ( curCounter.QuadPart - timeInfo.lastCounter.QuadPart )
* 10000000 / timeInfo.curCounterFreq.QuadPart );
timeInfo.lastFileTime.QuadPart = curFileTime;
timeInfo.lastCounter.QuadPart = curCounter.QuadPart;
usecSincePosixEpoch = ( curFileTime - posixEpoch.QuadPart ) / 10;
timePtr->sec = (time_t) ( usecSincePosixEpoch / 1000000 );
timePtr->usec = (unsigned long ) ( usecSincePosixEpoch % 1000000 );
LeaveCriticalSection( &timeInfo.cs );
} else {
/* High resolution timer is not available. Just use ftime */
ftime(&t);
timePtr->sec = t.time;
timePtr->usec = t.millitm * 1000;
}
}
/*
*----------------------------------------------------------------------
*
* TclpGetTZName --
*
* Gets the current timezone string.
*
* Results:
* Returns a pointer to a static string, or NULL on failure.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
char *
TclpGetTZName(int dst)
{
int len;
char *zone, *p;
TIME_ZONE_INFORMATION tz;
Tcl_Encoding encoding;
ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey);
char *name = tsdPtr->tzName;
/*
* tzset() under Borland doesn't seem to set up tzname[] at all.
* tzset() under MSVC has the following weird observed behavior:
* First time we call "clock format [clock seconds] -format %Z -gmt 1"
* we get "GMT", but on all subsequent calls we get the current time
* zone string, even though env(TZ) is GMT and the variable _timezone
* is 0.
*/
name[0] = '\0';
zone = getenv("TZ");
if (zone != NULL) {
/*
* TZ is of form "NST-4:30NDT", where "NST" would be the
* name of the standard time zone for this area, "-4:30" is
* the offset from GMT in hours, and "NDT is the name of
* the daylight savings time zone in this area. The offset
* and DST strings are optional.
*/
len = strlen(zone);
if (len > 3) {
len = 3;
}
if (dst != 0) {
/*
* Skip the offset string and get the DST string.
*/
p = zone + len;
p += strspn(p, "+-:0123456789");
if (*p != '\0') {
zone = p;
len = strlen(zone);
if (len > 3) {
len = 3;
}
}
}
Tcl_ExternalToUtf(NULL, NULL, zone, len, 0, NULL, name,
sizeof(tsdPtr->tzName), NULL, NULL, NULL);
}
if (name[0] == '\0') {
if (GetTimeZoneInformation(&tz) == TIME_ZONE_ID_UNKNOWN) {
/*
* MSDN: On NT this is returned if DST is not used in
* the current TZ
*/
dst = 0;
}
encoding = Tcl_GetEncoding(NULL, "unicode");
Tcl_ExternalToUtf(NULL, encoding,
(char *) ((dst) ? tz.DaylightName : tz.StandardName), -1,
0, NULL, name, sizeof(tsdPtr->tzName), NULL, NULL, NULL);
Tcl_FreeEncoding(encoding);
}
return name;
}
/*
*----------------------------------------------------------------------
*
* TclpGetDate --
*
* This function converts between seconds and struct tm. If
* useGMT is true, then the returned date will be in Greenwich
* Mean Time (GMT). Otherwise, it will be in the local time zone.
*
* Results:
* Returns a static tm structure.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
struct tm *
TclpGetDate(t, useGMT)
TclpTime_t t;
int useGMT;
{
const time_t *tp = (const time_t *) t;
struct tm *tmPtr;
long time;
if (!useGMT) {
tzset();
/*
* If we are in the valid range, let the C run-time library
* handle it. Otherwise we need to fake it. Note that this
* algorithm ignores daylight savings time before the epoch.
*/
if (*tp >= 0) {
return localtime(tp);
}
time = *tp - _timezone;
/*
* If we aren't near to overflowing the long, just add the bias and
* use the normal calculation. Otherwise we will need to adjust
* the result at the end.
*/
if (*tp < (LONG_MAX - 2 * SECSPERDAY)
&& *tp > (LONG_MIN + 2 * SECSPERDAY)) {
tmPtr = ComputeGMT(&time);
} else {
tmPtr = ComputeGMT(tp);
tzset();
/*
* Add the bias directly to the tm structure to avoid overflow.
* Propagate seconds overflow into minutes, hours and days.
*/
time = tmPtr->tm_sec - _timezone;
tmPtr->tm_sec = (int)(time % 60);
if (tmPtr->tm_sec < 0) {
tmPtr->tm_sec += 60;
time -= 60;
}
time = tmPtr->tm_min + time/60;
tmPtr->tm_min = (int)(time % 60);
if (tmPtr->tm_min < 0) {
tmPtr->tm_min += 60;
time -= 60;
}
time = tmPtr->tm_hour + time/60;
tmPtr->tm_hour = (int)(time % 24);
if (tmPtr->tm_hour < 0) {
tmPtr->tm_hour += 24;
time -= 24;
}
time /= 24;
tmPtr->tm_mday += time;
tmPtr->tm_yday += time;
tmPtr->tm_wday = (tmPtr->tm_wday + time) % 7;
}
} else {
tmPtr = ComputeGMT(tp);
}
return tmPtr;
}
/*
*----------------------------------------------------------------------
*
* ComputeGMT --
*
* This function computes GMT given the number of seconds since
* the epoch (midnight Jan 1 1970).
*
* Results:
* Returns a (per thread) statically allocated struct tm.
*
* Side effects:
* Updates the values of the static struct tm.
*
*----------------------------------------------------------------------
*/
static struct tm *
ComputeGMT(tp)
const time_t *tp;
{
struct tm *tmPtr;
long tmp, rem;
int isLeap;
int *days;
ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey);
tmPtr = &tsdPtr->tm;
/*
* Compute the 4 year span containing the specified time.
*/
tmp = *tp / SECSPER4YEAR;
rem = *tp % SECSPER4YEAR;
/*
* Correct for weird mod semantics so the remainder is always positive.
*/
if (rem < 0) {
tmp--;
rem += SECSPER4YEAR;
}
/*
* Compute the year after 1900 by taking the 4 year span and adjusting
* for the remainder. This works because 2000 is a leap year, and
* 1900/2100 are out of the range.
*/
tmp = (tmp * 4) + 70;
isLeap = 0;
if (rem >= SECSPERYEAR) { /* 1971, etc. */
tmp++;
rem -= SECSPERYEAR;
if (rem >= SECSPERYEAR) { /* 1972, etc. */
tmp++;
rem -= SECSPERYEAR;
if (rem >= SECSPERYEAR + SECSPERDAY) { /* 1973, etc. */
tmp++;
rem -= SECSPERYEAR + SECSPERDAY;
} else {
isLeap = 1;
}
}
}
tmPtr->tm_year = tmp;
/*
* Compute the day of year and leave the seconds in the current day in
* the remainder.
*/
tmPtr->tm_yday = rem / SECSPERDAY;
rem %= SECSPERDAY;
/*
* Compute the time of day.
*/
tmPtr->tm_hour = rem / 3600;
rem %= 3600;
tmPtr->tm_min = rem / 60;
tmPtr->tm_sec = rem % 60;
/*
* Compute the month and day of month.
*/
days = (isLeap) ? leapDays : normalDays;
for (tmp = 1; days[tmp] < tmPtr->tm_yday; tmp++) {
}
tmPtr->tm_mon = --tmp;
tmPtr->tm_mday = tmPtr->tm_yday - days[tmp];
/*
* Compute day of week. Epoch started on a Thursday.
*/
tmPtr->tm_wday = (*tp / SECSPERDAY) + 4;
if ((*tp % SECSPERDAY) < 0) {
tmPtr->tm_wday--;
}
tmPtr->tm_wday %= 7;
if (tmPtr->tm_wday < 0) {
tmPtr->tm_wday += 7;
}
return tmPtr;
}
/*
*----------------------------------------------------------------------
*
* CalibrationThread --
*
* Thread that manages calibration of the hi-resolution time
* derived from the performance counter, to keep it synchronized
* with the system clock.
*
* Parameters:
* arg -- Client data from the CreateThread call. This parameter
* points to the static TimeInfo structure.
*
* Return value:
* None. This thread embeds an infinite loop.
*
* Side effects:
* At an interval of clockCalibrateWakeupInterval ms, this thread
* performs virtual time discipline.
*
* Note: When this thread is entered, TclpInitLock has been called
* to safeguard the static storage. There is therefore no synchronization
* in the body of this procedure.
*
*----------------------------------------------------------------------
*/
static DWORD WINAPI
CalibrationThread( LPVOID arg )
{
FILETIME curFileTime;
/* Get initial system time and performance counter */
GetSystemTimeAsFileTime( &curFileTime );
QueryPerformanceCounter( &timeInfo.lastCounter );
QueryPerformanceFrequency( &timeInfo.curCounterFreq );
timeInfo.lastFileTime.LowPart = curFileTime.dwLowDateTime;
timeInfo.lastFileTime.HighPart = curFileTime.dwHighDateTime;
/* Initialize the working storage for the calibration callback */
timeInfo.lastPerfCounter = timeInfo.lastCounter.QuadPart;
timeInfo.estPerfCounterFreq = timeInfo.curCounterFreq.QuadPart;
/*
* Wake up the calling thread. When it wakes up, it will release the
* initialization lock.
*/
SetEvent( timeInfo.readyEvent );
/* Run the calibration once a second */
for ( ; ; ) {
Sleep( 1000 );
UpdateTimeEachSecond();
}
/* lint */
return (DWORD) 0;
}
/*
*----------------------------------------------------------------------
*
* UpdateTimeEachSecond --
*
* Callback from the waitable timer in the clock calibration thread
* that updates system time.
*
* Parameters:
* info -- Pointer to the static TimeInfo structure
*
* Results:
* None.
*
* Side effects:
* Performs virtual time calibration discipline.
*
*----------------------------------------------------------------------
*/
static void
UpdateTimeEachSecond()
{
LARGE_INTEGER curPerfCounter;
/* Current value returned from
* QueryPerformanceCounter */
LONGLONG perfCounterDiff; /* Difference between the current value
* and the value of 1 second ago */
FILETIME curSysTime; /* Current system time */
LARGE_INTEGER curFileTime; /* File time at the time this callback
* was scheduled. */
LONGLONG fileTimeDiff; /* Elapsed time on the system clock
* since the last time this procedure
* was called */
LONGLONG instantFreq; /* Instantaneous estimate of the
* performance counter frequency */
LONGLONG delta; /* Increment to add to the estimated
* performance counter frequency in the
* loop filter */
LONGLONG fuzz; /* Tolerance for the perf counter frequency */
LONGLONG lowBound; /* Lower bound for the frequency assuming
* 1000 ppm tolerance */
LONGLONG hiBound; /* Upper bound for the frequency */
/*
* Get current performance counter and system time.
*/
QueryPerformanceCounter( &curPerfCounter );
GetSystemTimeAsFileTime( &curSysTime );
curFileTime.LowPart = curSysTime.dwLowDateTime;
curFileTime.HighPart = curSysTime.dwHighDateTime;
EnterCriticalSection( &timeInfo.cs );
/*
* Find out how many ticks of the performance counter and the
* system clock have elapsed since we got into this procedure.
* Estimate the current frequency.
*/
perfCounterDiff = curPerfCounter.QuadPart - timeInfo.lastPerfCounter;
timeInfo.lastPerfCounter = curPerfCounter.QuadPart;
fileTimeDiff = curFileTime.QuadPart - timeInfo.lastSysTime;
timeInfo.lastSysTime = curFileTime.QuadPart;
instantFreq = ( 10000000 * perfCounterDiff / fileTimeDiff );
/*
* Consider this a timing glitch if instant frequency varies
* significantly from the current estimate.
*/
fuzz = timeInfo.estPerfCounterFreq >> 10;
lowBound = timeInfo.estPerfCounterFreq - fuzz;
hiBound = timeInfo.estPerfCounterFreq + fuzz;
if ( instantFreq < lowBound || instantFreq > hiBound ) {
LeaveCriticalSection( &timeInfo.cs );
return;
}
/*
* Update the current estimate of performance counter frequency.
* This code is equivalent to the loop filter of a phase locked
* loop.
*/
delta = ( instantFreq - timeInfo.estPerfCounterFreq ) >> 6;
timeInfo.estPerfCounterFreq += delta;
/*
* Update the current virtual time.
*/
timeInfo.lastFileTime.QuadPart
+= ( ( curPerfCounter.QuadPart - timeInfo.lastCounter.QuadPart )
* 10000000 / timeInfo.curCounterFreq.QuadPart );
timeInfo.lastCounter.QuadPart = curPerfCounter.QuadPart;
delta = curFileTime.QuadPart - timeInfo.lastFileTime.QuadPart;
if ( delta > 10000000 || delta < -10000000 ) {
/*
* If the virtual time slip exceeds one second, then adjusting
* the counter frequency is hopeless (it'll take over fifteen
* minutes to line up with the system clock). The most likely
* cause of this large a slip is a sudden change to the system
* clock, perhaps because it was being corrected by wristwatch
* and eyeball. Accept the system time, and set the performance
* counter frequency to the current estimate.
*/
timeInfo.lastFileTime.QuadPart = curFileTime.QuadPart;
timeInfo.curCounterFreq.QuadPart = timeInfo.estPerfCounterFreq;
} else {
/*
* Compute a counter frequency that will cause virtual time to line
* up with system time one second from now, assuming that the
* performance counter continues to tick at timeInfo.estPerfCounterFreq.
*/
timeInfo.curCounterFreq.QuadPart
= 10000000 * timeInfo.estPerfCounterFreq / ( delta + 10000000 );
/*
* Limit frequency excursions to 1000 ppm from estimate
*/
if ( timeInfo.curCounterFreq.QuadPart < lowBound ) {
timeInfo.curCounterFreq.QuadPart = lowBound;
} else if ( timeInfo.curCounterFreq.QuadPart > hiBound ) {
timeInfo.curCounterFreq.QuadPart = hiBound;
}
}
LeaveCriticalSection( &timeInfo.cs );
}
|