summaryrefslogtreecommitdiffstats
path: root/generic/ttk
ModeNameSize
-rw-r--r--ttk.decls3464logstatsplain
-rw-r--r--ttkBlink.c4397logstatsplain
-rw-r--r--ttkButton.c23636logstatsplain
-rw-r--r--ttkCache.c9513logstatsplain
-rw-r--r--ttkClamTheme.c30024logstatsplain
-rw-r--r--ttkClassicTheme.c16118logstatsplain
-rw-r--r--ttkDecls.h9904logstatsplain
-rw-r--r--ttkDefaultTheme.c36743logstatsplain
-rw-r--r--ttkElements.c40598logstatsplain
-rw-r--r--ttkEntry.c59481logstatsplain
-rw-r--r--ttkFrame.c18464logstatsplain
-rw-r--r--ttkGenStubs.tcl21394logstatsplain
-rw-r--r--ttkImage.c11446logstatsplain
-rw-r--r--ttkInit.c7978logstatsplain
-rw-r--r--ttkLabel.c18616logstatsplain
-rw-r--r--ttkLayout.c30254logstatsplain
-rw-r--r--ttkManager.c14702logstatsplain
-rw-r--r--ttkManager.h3038logstatsplain
-rw-r--r--ttkNotebook.c38441logstatsplain
-rw-r--r--ttkPanedwindow.c27162logstatsplain
-rw-r--r--ttkProgress.c14708logstatsplain
-rw-r--r--ttkScale.c13658logstatsplain
-rw-r--r--ttkScroll.c6572logstatsplain
-rw-r--r--ttkScrollbar.c9097logstatsplain
-rw-r--r--ttkSeparator.c3478logstatsplain
-rw-r--r--ttkSquare.c10289logstatsplain
-rw-r--r--ttkState.c7048logstatsplain
-rw-r--r--ttkStubInit.c1613logstatsplain
-rw-r--r--ttkStubLib.c1867logstatsplain
-rw-r--r--ttkTagSet.c8097logstatsplain
-rw-r--r--ttkTheme.c47605logstatsplain
-rw-r--r--ttkTheme.h15379logstatsplain
-rw-r--r--ttkThemeInt.h1576logstatsplain
-rw-r--r--ttkTrace.c3795logstatsplain
-rw-r--r--ttkTrack.c4746logstatsplain
-rw-r--r--ttkTreeview.c91304logstatsplain
-rw-r--r--ttkWidget.c20630logstatsplain
-rw-r--r--ttkWidget.h8665logstatsplain
/a> 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
import unittest
from test import support

import sys

import random
import math
import array

# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = sys.int_info.bits_per_digit
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 70   # from longobject.c

# Max number of base BASE digits to use in test cases.  Doubling
# this will more than double the runtime.
MAXDIGITS = 15

# build some special values
special = [0, 1, 2, BASE, BASE >> 1, 0x5555555555555555, 0xaaaaaaaaaaaaaaaa]
#  some solid strings of one bits
p2 = 4  # 0 and 1 already added
for i in range(2*SHIFT):
    special.append(p2 - 1)
    p2 = p2 << 1
del p2
# add complements & negations
special += [~x for x in special] + [-x for x in special]

DBL_MAX = sys.float_info.max
DBL_MAX_EXP = sys.float_info.max_exp
DBL_MIN_EXP = sys.float_info.min_exp
DBL_MANT_DIG = sys.float_info.mant_dig
DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1)


# Pure Python version of correctly-rounded integer-to-float conversion.
def int_to_float(n):
    """
    Correctly-rounded integer-to-float conversion.

    """
    # Constants, depending only on the floating-point format in use.
    # We use an extra 2 bits of precision for rounding purposes.
    PRECISION = sys.float_info.mant_dig + 2
    SHIFT_MAX = sys.float_info.max_exp - PRECISION
    Q_MAX = 1 << PRECISION
    ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1]

    # Reduce to the case where n is positive.
    if n == 0:
        return 0.0
    elif n < 0:
        return -int_to_float(-n)

    # Convert n to a 'floating-point' number q * 2**shift, where q is an
    # integer with 'PRECISION' significant bits.  When shifting n to create q,
    # the least significant bit of q is treated as 'sticky'.  That is, the
    # least significant bit of q is set if either the corresponding bit of n
    # was already set, or any one of the bits of n lost in the shift was set.
    shift = n.bit_length() - PRECISION
    q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift))

    # Round half to even (actually rounds to the nearest multiple of 4,
    # rounding ties to a multiple of 8).
    q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7]

    # Detect overflow.
    if shift + (q == Q_MAX) > SHIFT_MAX:
        raise OverflowError("integer too large to convert to float")

    # Checks: q is exactly representable, and q**2**shift doesn't overflow.
    assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig)
    assert q * 2**shift <= sys.float_info.max

    # Some circularity here, since float(q) is doing an int-to-float
    # conversion.  But here q is of bounded size, and is exactly representable
    # as a float.  In a low-level C-like language, this operation would be a
    # simple cast (e.g., from unsigned long long to double).
    return math.ldexp(float(q), shift)


# pure Python version of correctly-rounded true division
def truediv(a, b):
    """Correctly-rounded true division for integers."""
    negative = a^b < 0
    a, b = abs(a), abs(b)

    # exceptions:  division by zero, overflow
    if not b:
        raise ZeroDivisionError("division by zero")
    if a >= DBL_MIN_OVERFLOW * b:
        raise OverflowError("int/int too large to represent as a float")

   # find integer d satisfying 2**(d - 1) <= a/b < 2**d
    d = a.bit_length() - b.bit_length()
    if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
        d += 1

    # compute 2**-exp * a / b for suitable exp
    exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
    a, b = a << max(-exp, 0), b << max(exp, 0)
    q, r = divmod(a, b)

    # round-half-to-even: fractional part is r/b, which is > 0.5 iff
    # 2*r > b, and == 0.5 iff 2*r == b.
    if 2*r > b or 2*r == b and q % 2 == 1:
        q += 1

    result = math.ldexp(q, exp)
    return -result if negative else result


class LongTest(unittest.TestCase):

    # Get quasi-random long consisting of ndigits digits (in base BASE).
    # quasi == the most-significant digit will not be 0, and the number
    # is constructed to contain long strings of 0 and 1 bits.  These are
    # more likely than random bits to provoke digit-boundary errors.
    # The sign of the number is also random.

    def getran(self, ndigits):
        self.assertGreater(ndigits, 0)
        nbits_hi = ndigits * SHIFT
        nbits_lo = nbits_hi - SHIFT + 1
        answer = 0
        nbits = 0
        r = int(random.random() * (SHIFT * 2)) | 1  # force 1 bits to start
        while nbits < nbits_lo:
            bits = (r >> 1) + 1
            bits = min(bits, nbits_hi - nbits)
            self.assertTrue(1 <= bits <= SHIFT)
            nbits = nbits + bits
            answer = answer << bits
            if r & 1:
                answer = answer | ((1 << bits) - 1)
            r = int(random.random() * (SHIFT * 2))
        self.assertTrue(nbits_lo <= nbits <= nbits_hi)
        if random.random() < 0.5:
            answer = -answer
        return answer

    # Get random long consisting of ndigits random digits (relative to base
    # BASE).  The sign bit is also random.

    def getran2(ndigits):
        answer = 0
        for i in range(ndigits):
            answer = (answer << SHIFT) | random.randint(0, MASK)
        if random.random() < 0.5:
            answer = -answer
        return answer

    def check_division(self, x, y):
        eq = self.assertEqual
        with self.subTest(x=x, y=y):
            q, r = divmod(x, y)
            q2, r2 = x//y, x%y
            pab, pba = x*y, y*x
            eq(pab, pba, "multiplication does not commute")
            eq(q, q2, "divmod returns different quotient than /")
            eq(r, r2, "divmod returns different mod than %")
            eq(x, q*y + r, "x != q*y + r after divmod")
            if y > 0:
                self.assertTrue(0 <= r < y, "bad mod from divmod")
            else:
                self.assertTrue(y < r <= 0, "bad mod from divmod")

    def test_division(self):
        digits = list(range(1, MAXDIGITS+1)) + list(range(KARATSUBA_CUTOFF,
                                                      KARATSUBA_CUTOFF + 14))
        digits.append(KARATSUBA_CUTOFF * 3)
        for lenx in digits:
            x = self.getran(lenx)
            for leny in digits:
                y = self.getran(leny) or 1
                self.check_division(x, y)

        # specific numbers chosen to exercise corner cases of the
        # current long division implementation

        # 30-bit cases involving a quotient digit estimate of BASE+1
        self.check_division(1231948412290879395966702881,
                            1147341367131428698)
        self.check_division(815427756481275430342312021515587883,
                       707270836069027745)
        self.check_division(627976073697012820849443363563599041,
                       643588798496057020)
        self.check_division(1115141373653752303710932756325578065,
                       1038556335171453937726882627)
        # 30-bit cases that require the post-subtraction correction step
        self.check_division(922498905405436751940989320930368494,
                       949985870686786135626943396)
        self.check_division(768235853328091167204009652174031844,
                       1091555541180371554426545266)

        # 15-bit cases involving a quotient digit estimate of BASE+1
        self.check_division(20172188947443, 615611397)
        self.check_division(1020908530270155025, 950795710)
        self.check_division(128589565723112408, 736393718)
        self.check_division(609919780285761575, 18613274546784)
        # 15-bit cases that require the post-subtraction correction step
        self.check_division(710031681576388032, 26769404391308)
        self.check_division(1933622614268221, 30212853348836)



    def test_karatsuba(self):
        digits = list(range(1, 5)) + list(range(KARATSUBA_CUTOFF,
                                                KARATSUBA_CUTOFF + 10))
        digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])

        bits = [digit * SHIFT for digit in digits]

        # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
        # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
        for abits in bits:
            a = (1 << abits) - 1
            for bbits in bits:
                if bbits < abits:
                    continue
                with self.subTest(abits=abits, bbits=bbits):
                    b = (1 << bbits) - 1
                    x = a * b
                    y = ((1 << (abits + bbits)) -
                         (1 << abits) -
                         (1 << bbits) +
                         1)
                    self.assertEqual(x, y)

    def check_bitop_identities_1(self, x):
        eq = self.assertEqual
        with self.subTest(x=x):
            eq(x & 0, 0)
            eq(x | 0, x)
            eq(x ^ 0, x)
            eq(x & -1, x)
            eq(x | -1, -1)
            eq(x ^ -1, ~x)
            eq(x, ~~x)
            eq(x & x, x)
            eq(x | x, x)
            eq(x ^ x, 0)
            eq(x & ~x, 0)
            eq(x | ~x, -1)
            eq(x ^ ~x, -1)
            eq(-x, 1 + ~x)
            eq(-x, ~(x-1))
        for n in range(2*SHIFT):
            p2 = 2 ** n
            with self.subTest(x=x, n=n, p2=p2):
                eq(x << n >> n, x)
                eq(x // p2, x >> n)
                eq(x * p2, x << n)
                eq(x & -p2, x >> n << n)
                eq(x & -p2, x & ~(p2 - 1))

    def check_bitop_identities_2(self, x, y):
        eq = self.assertEqual
        with self.subTest(x=x, y=y):
            eq(x & y, y & x)
            eq(x | y, y | x)
            eq(x ^ y, y ^ x)
            eq(x ^ y ^ x, y)
            eq(x & y, ~(~x | ~y))
            eq(x | y, ~(~x & ~y))
            eq(x ^ y, (x | y) & ~(x & y))
            eq(x ^ y, (x & ~y) | (~x & y))
            eq(x ^ y, (x | y) & (~x | ~y))

    def check_bitop_identities_3(self, x, y, z):
        eq = self.assertEqual
        with self.subTest(x=x, y=y, z=z):
            eq((x & y) & z, x & (y & z))
            eq((x | y) | z, x | (y | z))
            eq((x ^ y) ^ z, x ^ (y ^ z))
            eq(x & (y | z), (x & y) | (x & z))
            eq(x | (y & z), (x | y) & (x | z))

    def test_bitop_identities(self):
        for x in special:
            self.check_bitop_identities_1(x)
        digits = range(1, MAXDIGITS+1)
        for lenx in digits:
            x = self.getran(lenx)
            self.check_bitop_identities_1(x)
            for leny in digits:
                y = self.getran(leny)
                self.check_bitop_identities_2(x, y)
                self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2))

    def slow_format(self, x, base):
        digits = []
        sign = 0
        if x < 0:
            sign, x = 1, -x
        while x:
            x, r = divmod(x, base)
            digits.append(int(r))
        digits.reverse()
        digits = digits or [0]
        return '-'[:sign] + \
               {2: '0b', 8: '0o', 10: '', 16: '0x'}[base] + \
               "".join("0123456789abcdef"[i] for i in digits)

    def check_format_1(self, x):
        for base, mapper in (2, bin), (8, oct), (10, str), (10, repr), (16, hex):
            got = mapper(x)
            with self.subTest(x=x, mapper=mapper.__name__):
                expected = self.slow_format(x, base)
                self.assertEqual(got, expected)
            with self.subTest(got=got):
                self.assertEqual(int(got, 0), x)

    def test_format(self):
        for x in special:
            self.check_format_1(x)
        for i in range(10):
            for lenx in range(1, MAXDIGITS+1):
                x = self.getran(lenx)
                self.check_format_1(x)

    def test_long(self):
        # Check conversions from string
        LL = [
                ('1' + '0'*20, 10**20),
                ('1' + '0'*100, 10**100)
        ]
        for s, v in LL:
            for sign in "", "+", "-":
                for prefix in "", " ", "\t", "  \t\t  ":
                    ss = prefix + sign + s
                    vv = v
                    if sign == "-" and v is not ValueError:
                        vv = -v
                    try:
                        self.assertEqual(int(ss), vv)
                    except ValueError:
                        pass

        # trailing L should no longer be accepted...
        self.assertRaises(ValueError, int, '123L')
        self.assertRaises(ValueError, int, '123l')
        self.assertRaises(ValueError, int, '0L')
        self.assertRaises(ValueError, int, '-37L')
        self.assertRaises(ValueError, int, '0x32L', 16)
        self.assertRaises(ValueError, int, '1L', 21)
        # ... but it's just a normal digit if base >= 22
        self.assertEqual(int('1L', 22), 43)

        # tests with base 0
        self.assertEqual(int('000', 0), 0)
        self.assertEqual(int('0o123', 0), 83)
        self.assertEqual(int('0x123', 0), 291)
        self.assertEqual(int('0b100', 0), 4)
        self.assertEqual(int(' 0O123   ', 0), 83)
        self.assertEqual(int(' 0X123  ', 0), 291)
        self.assertEqual(int(' 0B100 ', 0), 4)
        self.assertEqual(int('0', 0), 0)
        self.assertEqual(int('+0', 0), 0)
        self.assertEqual(int('-0', 0), 0)
        self.assertEqual(int('00', 0), 0)
        self.assertRaises(ValueError, int, '08', 0)
        self.assertRaises(ValueError, int, '-012395', 0)

        # invalid bases
        invalid_bases = [-909,
                          2**31-1, 2**31, -2**31, -2**31-1,
                          2**63-1, 2**63, -2**63, -2**63-1,
                          2**100, -2**100,
                          ]
        for base in invalid_bases:
            self.assertRaises(ValueError, int, '42', base)

        # Invalid unicode string
        # See bpo-34087
        self.assertRaises(ValueError, int, '\u3053\u3093\u306b\u3061\u306f')


    def test_conversion(self):

        class JustLong:
            # test that __long__ no longer used in 3.x
            def __long__(self):
                return 42
        self.assertRaises(TypeError, int, JustLong())

        class LongTrunc:
            # __long__ should be ignored in 3.x
            def __long__(self):
                return 42
            def __trunc__(self):
                return 1729
        self.assertEqual(int(LongTrunc()), 1729)

    def check_float_conversion(self, n):
        # Check that int -> float conversion behaviour matches
        # that of the pure Python version above.
        try:
            actual = float(n)
        except OverflowError:
            actual = 'overflow'

        try:
            expected = int_to_float(n)
        except OverflowError:
            expected = 'overflow'

        msg = ("Error in conversion of integer {} to float.  "
               "Got {}, expected {}.".format(n, actual, expected))
        self.assertEqual(actual, expected, msg)

    @support.requires_IEEE_754
    def test_float_conversion(self):

        exact_values = [0, 1, 2,
                         2**53-3,
                         2**53-2,
                         2**53-1,
                         2**53,
                         2**53+2,
                         2**54-4,
                         2**54-2,
                         2**54,
                         2**54+4]
        for x in exact_values:
            self.assertEqual(float(x), x)
            self.assertEqual(float(-x), -x)

        # test round-half-even
        for x, y in [(1, 0), (2, 2), (3, 4), (4, 4), (5, 4), (6, 6), (7, 8)]:
            for p in range(15):
                self.assertEqual(int(float(2**p*(2**53+x))), 2**p*(2**53+y))

        for x, y in [(0, 0), (1, 0), (2, 0), (3, 4), (4, 4), (5, 4), (6, 8),
                     (7, 8), (8, 8), (9, 8), (10, 8), (11, 12), (12, 12),
                     (13, 12), (14, 16), (15, 16)]:
            for p in range(15):
                self.assertEqual(int(float(2**p*(2**54+x))), 2**p*(2**54+y))

        # behaviour near extremes of floating-point range
        int_dbl_max = int(DBL_MAX)
        top_power = 2**DBL_MAX_EXP
        halfway = (int_dbl_max + top_power)//2
        self.assertEqual(float(int_dbl_max), DBL_MAX)
        self.assertEqual(float(int_dbl_max+1), DBL_MAX)
        self.assertEqual(float(halfway-1), DBL_MAX)
        self.assertRaises(OverflowError, float, halfway)
        self.assertEqual(float(1-halfway), -DBL_MAX)
        self.assertRaises(OverflowError, float, -halfway)
        self.assertRaises(OverflowError, float, top_power-1)
        self.assertRaises(OverflowError, float, top_power)
        self.assertRaises(OverflowError, float, top_power+1)
        self.assertRaises(OverflowError, float, 2*top_power-1)
        self.assertRaises(OverflowError, float, 2*top_power)
        self.assertRaises(OverflowError, float, top_power*top_power)

        for p in range(100):
            x = 2**p * (2**53 + 1) + 1
            y = 2**p * (2**53 + 2)
            self.assertEqual(int(float(x)), y)

            x = 2**p * (2**53 + 1)
            y = 2**p * 2**53
            self.assertEqual(int(float(x)), y)

        # Compare builtin float conversion with pure Python int_to_float
        # function above.
        test_values = [
            int_dbl_max-1, int_dbl_max, int_dbl_max+1,
            halfway-1, halfway, halfway + 1,
            top_power-1, top_power, top_power+1,
            2*top_power-1, 2*top_power, top_power*top_power,
        ]
        test_values.extend(exact_values)
        for p in range(-4, 8):
            for x in range(-128, 128):
                test_values.append(2**(p+53) + x)
        for value in test_values:
            self.check_float_conversion(value)
            self.check_float_conversion(-value)

    def test_float_overflow(self):
        for x in -2.0, -1.0, 0.0, 1.0, 2.0:
            self.assertEqual(float(int(x)), x)

        shuge = '12345' * 120
        huge = 1 << 30000
        mhuge = -huge
        namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
        for test in ["float(huge)", "float(mhuge)",
                     "complex(huge)", "complex(mhuge)",
                     "complex(huge, 1)", "complex(mhuge, 1)",
                     "complex(1, huge)", "complex(1, mhuge)",
                     "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
                     "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
                     "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
                     "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
                     "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
                     "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
                     "math.sin(huge)", "math.sin(mhuge)",
                     "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
                     # math.floor() of an int returns an int now
                     ##"math.floor(huge)", "math.floor(mhuge)",
                     ]:

            self.assertRaises(OverflowError, eval, test, namespace)

        # XXX Perhaps float(shuge) can raise OverflowError on some box?
        # The comparison should not.
        self.assertNotEqual(float(shuge), int(shuge),
            "float(shuge) should not equal int(shuge)")

    def test_logs(self):
        LOG10E = math.log10(math.e)

        for exp in list(range(10)) + [100, 1000, 10000]:
            value = 10 ** exp
            log10 = math.log10(value)
            self.assertAlmostEqual(log10, exp)

            # log10(value) == exp, so log(value) == log10(value)/log10(e) ==
            # exp/LOG10E
            expected = exp / LOG10E
            log = math.log(value)
            self.assertAlmostEqual(log, expected)

        for bad in -(1 << 10000), -2, 0:
            self.assertRaises(ValueError, math.log, bad)
            self.assertRaises(ValueError, math.log10, bad)

    def test_mixed_compares(self):
        eq = self.assertEqual

        # We're mostly concerned with that mixing floats and ints does the
        # right stuff, even when ints are too large to fit in a float.
        # The safest way to check the results is to use an entirely different
        # method, which we do here via a skeletal rational class (which
        # represents all Python ints and floats exactly).
        class Rat:
            def __init__(self, value):
                if isinstance(value, int):
                    self.n = value
                    self.d = 1
                elif isinstance(value, float):
                    # Convert to exact rational equivalent.
                    f, e = math.frexp(abs(value))
                    assert f == 0 or 0.5 <= f < 1.0
                    # |value| = f * 2**e exactly

                    # Suck up CHUNK bits at a time; 28 is enough so that we suck
                    # up all bits in 2 iterations for all known binary double-
                    # precision formats, and small enough to fit in an int.
                    CHUNK = 28
                    top = 0
                    # invariant: |value| = (top + f) * 2**e exactly
                    while f:
                        f = math.ldexp(f, CHUNK)
                        digit = int(f)
                        assert digit >> CHUNK == 0
                        top = (top << CHUNK) | digit
                        f -= digit
                        assert 0.0 <= f < 1.0
                        e -= CHUNK

                    # Now |value| = top * 2**e exactly.
                    if e >= 0:
                        n = top << e
                        d = 1
                    else:
                        n = top
                        d = 1 << -e
                    if value < 0:
                        n = -n
                    self.n = n
                    self.d = d
                    assert float(n) / float(d) == value
                else:
                    raise TypeError("can't deal with %r" % value)

            def _cmp__(self, other):
                if not isinstance(other, Rat):
                    other = Rat(other)
                x, y = self.n * other.d, self.d * other.n
                return (x > y) - (x < y)
            def __eq__(self, other):
                return self._cmp__(other) == 0
            def __ge__(self, other):
                return self._cmp__(other) >= 0
            def __gt__(self, other):
                return self._cmp__(other) > 0
            def __le__(self, other):
                return self._cmp__(other) <= 0
            def __lt__(self, other):
                return self._cmp__(other) < 0

        cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
        # 2**48 is an important boundary in the internals.  2**53 is an
        # important boundary for IEEE double precision.
        for t in 2.0**48, 2.0**50, 2.0**53:
            cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
                          int(t-1), int(t), int(t+1)])
        cases.extend([0, 1, 2, sys.maxsize, float(sys.maxsize)])
        # 1 << 20000 should exceed all double formats.  int(1e200) is to
        # check that we get equality with 1e200 above.
        t = int(1e200)
        cases.extend([0, 1, 2, 1 << 20000, t-1, t, t+1])
        cases.extend([-x for x in cases])
        for x in cases:
            Rx = Rat(x)
            for y in cases:
                Ry = Rat(y)
                Rcmp = (Rx > Ry) - (Rx < Ry)
                with self.subTest(x=x, y=y, Rcmp=Rcmp):
                    xycmp = (x > y) - (x < y)
                    eq(Rcmp, xycmp)
                    eq(x == y, Rcmp == 0)
                    eq(x != y, Rcmp != 0)
                    eq(x < y, Rcmp < 0)
                    eq(x <= y, Rcmp <= 0)
                    eq(x > y, Rcmp > 0)
                    eq(x >= y, Rcmp >= 0)

    def test__format__(self):
        self.assertEqual(format(123456789, 'd'), '123456789')
        self.assertEqual(format(123456789, 'd'), '123456789')
        self.assertEqual(format(123456789, ','), '123,456,789')
        self.assertEqual(format(123456789, '_'), '123_456_789')

        # sign and aligning are interdependent
        self.assertEqual(format(1, "-"), '1')
        self.assertEqual(format(-1, "-"), '-1')
        self.assertEqual(format(1, "-3"), '  1')
        self.assertEqual(format(-1, "-3"), ' -1')
        self.assertEqual(format(1, "+3"), ' +1')
        self.assertEqual(format(-1, "+3"), ' -1')
        self.assertEqual(format(1, " 3"), '  1')
        self.assertEqual(format(-1, " 3"), ' -1')
        self.assertEqual(format(1, " "), ' 1')
        self.assertEqual(format(-1, " "), '-1')

        # hex
        self.assertEqual(format(3, "x"), "3")
        self.assertEqual(format(3, "X"), "3")
        self.assertEqual(format(1234, "x"), "4d2")
        self.assertEqual(format(-1234, "x"), "-4d2")
        self.assertEqual(format(1234, "8x"), "     4d2")
        self.assertEqual(format(-1234, "8x"), "    -4d2")
        self.assertEqual(format(1234, "x"), "4d2")
        self.assertEqual(format(-1234, "x"), "-4d2")
        self.assertEqual(format(-3, "x"), "-3")
        self.assertEqual(format(-3, "X"), "-3")
        self.assertEqual(format(int('be', 16), "x"), "be")
        self.assertEqual(format(int('be', 16), "X"), "BE")
        self.assertEqual(format(-int('be', 16), "x"), "-be")
        self.assertEqual(format(-int('be', 16), "X"), "-BE")
        self.assertRaises(ValueError, format, 1234567890, ',x')
        self.assertEqual(format(1234567890, '_x'), '4996_02d2')
        self.assertEqual(format(1234567890, '_X'), '4996_02D2')

        # octal
        self.assertEqual(format(3, "o"), "3")
        self.assertEqual(format(-3, "o"), "-3")
        self.assertEqual(format(1234, "o"), "2322")
        self.assertEqual(format(-1234, "o"), "-2322")
        self.assertEqual(format(1234, "-o"), "2322")
        self.assertEqual(format(-1234, "-o"), "-2322")
        self.assertEqual(format(1234, " o"), " 2322")
        self.assertEqual(format(-1234, " o"), "-2322")
        self.assertEqual(format(1234, "+o"), "+2322")
        self.assertEqual(format(-1234, "+o"), "-2322")
        self.assertRaises(ValueError, format, 1234567890, ',o')
        self.assertEqual(format(1234567890, '_o'), '111_4540_1322')

        # binary
        self.assertEqual(format(3, "b"), "11")
        self.assertEqual(format(-3, "b"), "-11")
        self.assertEqual(format(1234, "b"), "10011010010")
        self.assertEqual(format(-1234, "b"), "-10011010010")
        self.assertEqual(format(1234, "-b"), "10011010010")
        self.assertEqual(format(-1234, "-b"), "-10011010010")
        self.assertEqual(format(1234, " b"), " 10011010010")
        self.assertEqual(format(-1234, " b"), "-10011010010")
        self.assertEqual(format(1234, "+b"), "+10011010010")
        self.assertEqual(format(-1234, "+b"), "-10011010010")
        self.assertRaises(ValueError, format, 1234567890, ',b')
        self.assertEqual(format(12345, '_b'), '11_0000_0011_1001')

        # make sure these are errors
        self.assertRaises(ValueError, format, 3, "1.3")  # precision disallowed
        self.assertRaises(ValueError, format, 3, "_c")   # underscore,
        self.assertRaises(ValueError, format, 3, ",c")   # comma, and
        self.assertRaises(ValueError, format, 3, "+c")   # sign not allowed
                                                         # with 'c'

        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,')
        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_')
        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, '_,d')
        self.assertRaisesRegex(ValueError, 'Cannot specify both', format, 3, ',_d')

        self.assertRaisesRegex(ValueError, "Cannot specify ',' with 's'", format, 3, ',s')
        self.assertRaisesRegex(ValueError, "Cannot specify '_' with 's'", format, 3, '_s')

        # ensure that only int and float type specifiers work
        for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
                            [chr(x) for x in range(ord('A'), ord('Z')+1)]):
            if not format_spec in 'bcdoxXeEfFgGn%':
                self.assertRaises(ValueError, format, 0, format_spec)
                self.assertRaises(ValueError, format, 1, format_spec)
                self.assertRaises(ValueError, format, -1, format_spec)
                self.assertRaises(ValueError, format, 2**100, format_spec)
                self.assertRaises(ValueError, format, -(2**100), format_spec)

        # ensure that float type specifiers work; format converts
        #  the int to a float
        for format_spec in 'eEfFgG%':
            for value in [0, 1, -1, 100, -100, 1234567890, -1234567890]:
                self.assertEqual(format(value, format_spec),
                                 format(float(value), format_spec))

    def test_nan_inf(self):
        self.assertRaises(OverflowError, int, float('inf'))
        self.assertRaises(OverflowError, int, float('-inf'))
        self.assertRaises(ValueError, int, float('nan'))

    def test_mod_division(self):
        with self.assertRaises(ZeroDivisionError):
            _ = 1 % 0

        self.assertEqual(13 % 10, 3)
        self.assertEqual(-13 % 10, 7)
        self.assertEqual(13 % -10, -7)
        self.assertEqual(-13 % -10, -3)

        self.assertEqual(12 % 4, 0)
        self.assertEqual(-12 % 4, 0)
        self.assertEqual(12 % -4, 0)
        self.assertEqual(-12 % -4, 0)

    def test_true_division(self):
        huge = 1 << 40000
        mhuge = -huge
        self.assertEqual(huge / huge, 1.0)
        self.assertEqual(mhuge / mhuge, 1.0)
        self.assertEqual(huge / mhuge, -1.0)
        self.assertEqual(mhuge / huge, -1.0)
        self.assertEqual(1 / huge, 0.0)
        self.assertEqual(1 / huge, 0.0)
        self.assertEqual(1 / mhuge, 0.0)
        self.assertEqual(1 / mhuge, 0.0)
        self.assertEqual((666 * huge + (huge >> 1)) / huge, 666.5)
        self.assertEqual((666 * mhuge + (mhuge >> 1)) / mhuge, 666.5)
        self.assertEqual((666 * huge + (huge >> 1)) / mhuge, -666.5)
        self.assertEqual((666 * mhuge + (mhuge >> 1)) / huge, -666.5)
        self.assertEqual(huge / (huge << 1), 0.5)
        self.assertEqual((1000000 * huge) / huge, 1000000)

        namespace = {'huge': huge, 'mhuge': mhuge}

        for overflow in ["float(huge)", "float(mhuge)",
                         "huge / 1", "huge / 2", "huge / -1", "huge / -2",
                         "mhuge / 100", "mhuge / 200"]:
            self.assertRaises(OverflowError, eval, overflow, namespace)

        for underflow in ["1 / huge", "2 / huge", "-1 / huge", "-2 / huge",
                         "100 / mhuge", "200 / mhuge"]:
            result = eval(underflow, namespace)
            self.assertEqual(result, 0.0,
                             "expected underflow to 0 from %r" % underflow)

        for zero in ["huge / 0", "mhuge / 0"]:
            self.assertRaises(ZeroDivisionError, eval, zero, namespace)

    def test_floordiv(self):
        with self.assertRaises(ZeroDivisionError):
            _ = 1 // 0

        self.assertEqual(2 // 3, 0)
        self.assertEqual(2 // -3, -1)
        self.assertEqual(-2 // 3, -1)
        self.assertEqual(-2 // -3, 0)

        self.assertEqual(-11 // -3, 3)
        self.assertEqual(-11 // 3, -4)
        self.assertEqual(11 // -3, -4)
        self.assertEqual(11 // 3, 3)

        self.assertEqual(-12 // -3, 4)
        self.assertEqual(-12 // 3, -4)
        self.assertEqual(12 // -3, -4)
        self.assertEqual(12 // 3, 4)

    def check_truediv(self, a, b, skip_small=True):
        """Verify that the result of a/b is correctly rounded, by
        comparing it with a pure Python implementation of correctly
        rounded division.  b should be nonzero."""

        # skip check for small a and b: in this case, the current
        # implementation converts the arguments to float directly and
        # then applies a float division.  This can give doubly-rounded
        # results on x87-using machines (particularly 32-bit Linux).
        if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG:
            return

        try:
            # use repr so that we can distinguish between -0.0 and 0.0
            expected = repr(truediv(a, b))
        except OverflowError:
            expected = 'overflow'
        except ZeroDivisionError:
            expected = 'zerodivision'

        try:
            got = repr(a / b)
        except OverflowError:
            got = 'overflow'
        except ZeroDivisionError:
            got = 'zerodivision'

        self.assertEqual(expected, got, "Incorrectly rounded division {}/{}: "
                         "expected {}, got {}".format(a, b, expected, got))

    @support.requires_IEEE_754
    def test_correctly_rounded_true_division(self):
        # more stringent tests than those above, checking that the
        # result of true division of ints is always correctly rounded.
        # This test should probably be considered CPython-specific.

        # Exercise all the code paths not involving Gb-sized ints.
        # ... divisions involving zero
        self.check_truediv(123, 0)
        self.check_truediv(-456, 0)
        self.check_truediv(0, 3)
        self.check_truediv(0, -3)
        self.check_truediv(0, 0)
        # ... overflow or underflow by large margin
        self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345)
        self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP))
        # ... a much larger or smaller than b
        self.check_truediv(12345*2**100, 98765)
        self.check_truediv(12345*2**30, 98765*7**81)
        # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP,
        #                 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG)
        bases = (0, DBL_MANT_DIG, DBL_MIN_EXP,
                 DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG)
        for base in bases:
            for exp in range(base - 15, base + 15):
                self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0))
                self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0))

        # overflow corner case
        for m in [1, 2, 7, 17, 12345, 7**100,
                  -1, -2, -5, -23, -67891, -41**50]:
            for n in range(-10, 10):
                self.check_truediv(m*DBL_MIN_OVERFLOW + n, m)
                self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m)

        # check detection of inexactness in shifting stage
        for n in range(250):
            # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway
            # between two representable floats, and would usually be
            # rounded down under round-half-to-even.  The tiniest of
            # additions to the numerator should cause it to be rounded
            # up instead.
            self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n,
                           2**DBL_MANT_DIG*12345)

        # 1/2731 is one of the smallest division cases that's subject
        # to double rounding on IEEE 754 machines working internally with
        # 64-bit precision.  On such machines, the next check would fail,
        # were it not explicitly skipped in check_truediv.
        self.check_truediv(1, 2731)

        # a particularly bad case for the old algorithm:  gives an
        # error of close to 3.5 ulps.
        self.check_truediv(295147931372582273023, 295147932265116303360)
        for i in range(1000):
            self.check_truediv(10**(i+1), 10**i)
            self.check_truediv(10**i, 10**(i+1))

        # test round-half-to-even behaviour, normal result
        for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100,
                  -1, -2, -5, -23, -67891, -41**50]:
            for n in range(-10, 10):
                self.check_truediv(2**DBL_MANT_DIG*m + n, m)

        # test round-half-to-even, subnormal result
        for n in range(-20, 20):
            self.check_truediv(n, 2**1076)

        # largeish random divisions: a/b where |a| <= |b| <=
        # 2*|a|; |ans| is between 0.5 and 1.0, so error should
        # always be bounded by 2**-54 with equality possible only
        # if the least significant bit of q=ans*2**53 is zero.
        for M in [10**10, 10**100, 10**1000]:
            for i in range(1000):
                a = random.randrange(1, M)
                b = random.randrange(a, 2*a+1)
                self.check_truediv(a, b)
                self.check_truediv(-a, b)
                self.check_truediv(a, -b)
                self.check_truediv(-a, -b)

        # and some (genuinely) random tests
        for _ in range(10000):
            a_bits = random.randrange(1000)
            b_bits = random.randrange(1, 1000)
            x = random.randrange(2**a_bits)
            y = random.randrange(1, 2**b_bits)
            self.check_truediv(x, y)
            self.check_truediv(x, -y)
            self.check_truediv(-x, y)
            self.check_truediv(-x, -y)

    def test_negative_shift_count(self):
        with self.assertRaises(ValueError):
            42 << -3
        with self.assertRaises(ValueError):
            42 << -(1 << 1000)
        with self.assertRaises(ValueError):
            42 >> -3
        with self.assertRaises(ValueError):
            42 >> -(1 << 1000)

    def test_lshift_of_zero(self):
        self.assertEqual(0 << 0, 0)
        self.assertEqual(0 << 10, 0)
        with self.assertRaises(ValueError):
            0 << -1
        self.assertEqual(0 << (1 << 1000), 0)
        with self.assertRaises(ValueError):
            0 << -(1 << 1000)

    @support.cpython_only
    def test_huge_lshift_of_zero(self):
        # Shouldn't try to allocate memory for a huge shift. See issue #27870.
        # Other implementations may have a different boundary for overflow,
        # or not raise at all.
        self.assertEqual(0 << sys.maxsize, 0)
        self.assertEqual(0 << (sys.maxsize + 1), 0)

    @support.cpython_only
    @support.bigmemtest(sys.maxsize + 1000, memuse=2/15 * 2, dry_run=False)
    def test_huge_lshift(self, size):
        self.assertEqual(1 << (sys.maxsize + 1000), 1 << 1000 << sys.maxsize)

    def test_huge_rshift(self):
        self.assertEqual(42 >> (1 << 1000), 0)
        self.assertEqual((-42) >> (1 << 1000), -1)

    @support.cpython_only
    @support.bigmemtest(sys.maxsize + 500, memuse=2/15, dry_run=False)
    def test_huge_rshift_of_huge(self, size):
        huge = ((1 << 500) + 11) << sys.maxsize
        self.assertEqual(huge >> (sys.maxsize + 1), (1 << 499) + 5)
        self.assertEqual(huge >> (sys.maxsize + 1000), 0)

    @support.cpython_only
    def test_small_ints_in_huge_calculation(self):
        a = 2 ** 100
        b = -a + 1
        c = a + 1
        self.assertIs(a + b, 1)
        self.assertIs(c - a, 1)

    def test_small_ints(self):
        for i in range(-5, 257):
            self.assertIs(i, i + 0)
            self.assertIs(i, i * 1)
            self.assertIs(i, i - 0)
            self.assertIs(i, i // 1)
            self.assertIs(i, i & -1)
            self.assertIs(i, i | 0)
            self.assertIs(i, i ^ 0)
            self.assertIs(i, ~~i)
            self.assertIs(i, i**1)
            self.assertIs(i, int(str(i)))
            self.assertIs(i, i<<2>>2, str(i))
        # corner cases
        i = 1 << 70
        self.assertIs(i - i, 0)
        self.assertIs(0 * i, 0)

    def test_bit_length(self):
        tiny = 1e-10
        for x in range(-65000, 65000):
            k = x.bit_length()
            # Check equivalence with Python version
            self.assertEqual(k, len(bin(x).lstrip('-0b')))
            # Behaviour as specified in the docs
            if x != 0:
                self.assertTrue(2**(k-1) <= abs(x) < 2**k)
            else:
                self.assertEqual(k, 0)
            # Alternative definition: x.bit_length() == 1 + floor(log_2(x))
            if x != 0:
                # When x is an exact power of 2, numeric errors can
                # cause floor(log(x)/log(2)) to be one too small; for
                # small x this can be fixed by adding a small quantity
                # to the quotient before taking the floor.
                self.assertEqual(k, 1 + math.floor(
                        math.log(abs(x))/math.log(2) + tiny))

        self.assertEqual((0).bit_length(), 0)
        self.assertEqual((1).bit_length(), 1)
        self.assertEqual((-1).bit_length(), 1)
        self.assertEqual((2).bit_length(), 2)
        self.assertEqual((-2).bit_length(), 2)
        for i in [2, 3, 15, 16, 17, 31, 32, 33, 63, 64, 234]:
            a = 2**i
            self.assertEqual((a-1).bit_length(), i)
            self.assertEqual((1-a).bit_length(), i)
            self.assertEqual((a).bit_length(), i+1)
            self.assertEqual((-a).bit_length(), i+1)
            self.assertEqual((a+1).bit_length(), i+1)
            self.assertEqual((-a-1).bit_length(), i+1)

    def test_bit_count(self):
        for a in range(-1000, 1000):
            self.assertEqual(a.bit_count(), bin(a).count("1"))

        for exp in [10, 17, 63, 64, 65, 1009, 70234, 1234567]:
            a = 2**exp
            self.assertEqual(a.bit_count(), 1)
            self.assertEqual((a - 1).bit_count(), exp)
            self.assertEqual((a ^ 63).bit_count(), 7)
            self.assertEqual(((a - 1) ^ 510).bit_count(), exp - 8)

    def test_round(self):
        # check round-half-even algorithm. For round to nearest ten;
        # rounding map is invariant under adding multiples of 20
        test_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0,
                     6:10, 7:10, 8:10, 9:10, 10:10, 11:10, 12:10, 13:10, 14:10,
                     15:20, 16:20, 17:20, 18:20, 19:20}
        for offset in range(-520, 520, 20):
            for k, v in test_dict.items():
                got = round(k+offset, -1)
                expected = v+offset
                self.assertEqual(got, expected)
                self.assertIs(type(got), int)

        # larger second argument
        self.assertEqual(round(-150, -2), -200)
        self.assertEqual(round(-149, -2), -100)
        self.assertEqual(round(-51, -2), -100)
        self.assertEqual(round(-50, -2), 0)
        self.assertEqual(round(-49, -2), 0)
        self.assertEqual(round(-1, -2), 0)
        self.assertEqual(round(0, -2), 0)
        self.assertEqual(round(1, -2), 0)
        self.assertEqual(round(49, -2), 0)
        self.assertEqual(round(50, -2), 0)
        self.assertEqual(round(51, -2), 100)
        self.assertEqual(round(149, -2), 100)
        self.assertEqual(round(150, -2), 200)
        self.assertEqual(round(250, -2), 200)
        self.assertEqual(round(251, -2), 300)
        self.assertEqual(round(172500, -3), 172000)
        self.assertEqual(round(173500, -3), 174000)
        self.assertEqual(round(31415926535, -1), 31415926540)
        self.assertEqual(round(31415926535, -2), 31415926500)
        self.assertEqual(round(31415926535, -3), 31415927000)
        self.assertEqual(round(31415926535, -4), 31415930000)
        self.assertEqual(round(31415926535, -5), 31415900000)
        self.assertEqual(round(31415926535, -6), 31416000000)
        self.assertEqual(round(31415926535, -7), 31420000000)
        self.assertEqual(round(31415926535, -8), 31400000000)
        self.assertEqual(round(31415926535, -9), 31000000000)
        self.assertEqual(round(31415926535, -10), 30000000000)
        self.assertEqual(round(31415926535, -11), 0)
        self.assertEqual(round(31415926535, -12), 0)
        self.assertEqual(round(31415926535, -999), 0)

        # should get correct results even for huge inputs
        for k in range(10, 100):
            got = round(10**k + 324678, -3)
            expect = 10**k + 325000
            self.assertEqual(got, expect)
            self.assertIs(type(got), int)

        # nonnegative second argument: round(x, n) should just return x
        for n in range(5):
            for i in range(100):
                x = random.randrange(-10000, 10000)
                got = round(x, n)
                self.assertEqual(got, x)
                self.assertIs(type(got), int)
        for huge_n in 2**31-1, 2**31, 2**63-1, 2**63, 2**100, 10**100:
            self.assertEqual(round(8979323, huge_n), 8979323)

        # omitted second argument
        for i in range(100):
            x = random.randrange(-10000, 10000)
            got = round(x)
            self.assertEqual(got, x)
            self.assertIs(type(got), int)

        # bad second argument
        bad_exponents = ('brian', 2.0, 0j)
        for e in bad_exponents:
            self.assertRaises(TypeError, round, 3, e)

    def test_to_bytes(self):
        def check(tests, byteorder, signed=False):
            for test, expected in tests.items():
                try:
                    self.assertEqual(
                        test.to_bytes(len(expected), byteorder, signed=signed),
                        expected)
                except Exception as err:
                    raise AssertionError(
                        "failed to convert {0} with byteorder={1} and signed={2}"
                        .format(test, byteorder, signed)) from err

        # Convert integers to signed big-endian byte arrays.
        tests1 = {
            0: b'\x00',
            1: b'\x01',
            -1: b'\xff',
            -127: b'\x81',
            -128: b'\x80',
            -129: b'\xff\x7f',
            127: b'\x7f',
            129: b'\x00\x81',
            -255: b'\xff\x01',
            -256: b'\xff\x00',
            255: b'\x00\xff',
            256: b'\x01\x00',
            32767: b'\x7f\xff',
            -32768: b'\xff\x80\x00',
            65535: b'\x00\xff\xff',
            -65536: b'\xff\x00\x00',
            -8388608: b'\x80\x00\x00'
        }
        check(tests1, 'big', signed=True)

        # Convert integers to signed little-endian byte arrays.
        tests2 = {
            0: b'\x00',
            1: b'\x01',
            -1: b'\xff',
            -127: b'\x81',
            -128: b'\x80',
            -129: b'\x7f\xff',
            127: b'\x7f',
            129: b'\x81\x00',
            -255: b'\x01\xff',
            -256: b'\x00\xff',
            255: b'\xff\x00',
            256: b'\x00\x01',
            32767: b'\xff\x7f',
            -32768: b'\x00\x80',
            65535: b'\xff\xff\x00',
            -65536: b'\x00\x00\xff',
            -8388608: b'\x00\x00\x80'
        }
        check(tests2, 'little', signed=True)

        # Convert integers to unsigned big-endian byte arrays.
        tests3 = {
            0: b'\x00',
            1: b'\x01',
            127: b'\x7f',
            128: b'\x80',
            255: b'\xff',
            256: b'\x01\x00',
            32767: b'\x7f\xff',
            32768: b'\x80\x00',
            65535: b'\xff\xff',
            65536: b'\x01\x00\x00'
        }
        check(tests3, 'big', signed=False)

        # Convert integers to unsigned little-endian byte arrays.
        tests4 = {
            0: b'\x00',
            1: b'\x01',
            127: b'\x7f',
            128: b'\x80',
            255: b'\xff',
            256: b'\x00\x01',
            32767: b'\xff\x7f',
            32768: b'\x00\x80',
            65535: b'\xff\xff',
            65536: b'\x00\x00\x01'
        }
        check(tests4, 'little', signed=False)

        self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=False)
        self.assertRaises(OverflowError, (256).to_bytes, 1, 'big', signed=True)
        self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=False)
        self.assertRaises(OverflowError, (256).to_bytes, 1, 'little', signed=True)
        self.assertRaises(OverflowError, (-1).to_bytes, 2, 'big', signed=False)
        self.assertRaises(OverflowError, (-1).to_bytes, 2, 'little', signed=False)
        self.assertEqual((0).to_bytes(0, 'big'), b'')
        self.assertEqual((1).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x01')
        self.assertEqual((0).to_bytes(5, 'big'), b'\x00\x00\x00\x00\x00')
        self.assertEqual((-1).to_bytes(5, 'big', signed=True),
                         b'\xff\xff\xff\xff\xff')
        self.assertRaises(OverflowError, (1).to_bytes, 0, 'big')

    def test_from_bytes(self):
        def check(tests, byteorder, signed=False):
            for test, expected in tests.items():
                try:
                    self.assertEqual(
                        int.from_bytes(test, byteorder, signed=signed),
                        expected)
                except Exception as err:
                    raise AssertionError(
                        "failed to convert {0} with byteorder={1!r} and signed={2}"
                        .format(test, byteorder, signed)) from err

        # Convert signed big-endian byte arrays to integers.
        tests1 = {
            b'': 0,
            b'\x00': 0,
            b'\x00\x00': 0,
            b'\x01': 1,
            b'\x00\x01': 1,
            b'\xff': -1,
            b'\xff\xff': -1,
            b'\x81': -127,
            b'\x80': -128,
            b'\xff\x7f': -129,
            b'\x7f': 127,
            b'\x00\x81': 129,
            b'\xff\x01': -255,
            b'\xff\x00': -256,
            b'\x00\xff': 255,
            b'\x01\x00': 256,
            b'\x7f\xff': 32767,
            b'\x80\x00': -32768,
            b'\x00\xff\xff': 65535,
            b'\xff\x00\x00': -65536,
            b'\x80\x00\x00': -8388608
        }
        check(tests1, 'big', signed=True)

        # Convert signed little-endian byte arrays to integers.
        tests2 = {
            b'': 0,
            b'\x00': 0,
            b'\x00\x00': 0,
            b'\x01': 1,
            b'\x00\x01': 256,
            b'\xff': -1,
            b'\xff\xff': -1,
            b'\x81': -127,
            b'\x80': -128,
            b'\x7f\xff': -129,
            b'\x7f': 127,
            b'\x81\x00': 129,
            b'\x01\xff': -255,
            b'\x00\xff': -256,
            b'\xff\x00': 255,
            b'\x00\x01': 256,
            b'\xff\x7f': 32767,
            b'\x00\x80': -32768,
            b'\xff\xff\x00': 65535,
            b'\x00\x00\xff': -65536,
            b'\x00\x00\x80': -8388608
        }
        check(tests2, 'little', signed=True)

        # Convert unsigned big-endian byte arrays to integers.
        tests3 = {
            b'': 0,
            b'\x00': 0,
            b'\x01': 1,
            b'\x7f': 127,
            b'\x80': 128,
            b'\xff': 255,
            b'\x01\x00': 256,
            b'\x7f\xff': 32767,
            b'\x80\x00': 32768,
            b'\xff\xff': 65535,
            b'\x01\x00\x00': 65536,
        }
        check(tests3, 'big', signed=False)

        # Convert integers to unsigned little-endian byte arrays.
        tests4 = {
            b'': 0,
            b'\x00': 0,
            b'\x01': 1,
            b'\x7f': 127,
            b'\x80': 128,
            b'\xff': 255,
            b'\x00\x01': 256,
            b'\xff\x7f': 32767,
            b'\x00\x80': 32768,
            b'\xff\xff': 65535,
            b'\x00\x00\x01': 65536,
        }
        check(tests4, 'little', signed=False)

        class myint(int):
            pass

        self.assertIs(type(myint.from_bytes(b'\x00', 'big')), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'big'), 1)
        self.assertIs(
            type(myint.from_bytes(b'\x00', 'big', signed=False)), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'big', signed=False), 1)
        self.assertIs(type(myint.from_bytes(b'\x00', 'little')), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'little'), 1)
        self.assertIs(type(myint.from_bytes(
            b'\x00', 'little', signed=False)), myint)
        self.assertEqual(myint.from_bytes(b'\x01', 'little', signed=False), 1)
        self.assertEqual(
            int.from_bytes([255, 0, 0], 'big', signed=True), -65536)
        self.assertEqual(
            int.from_bytes((255, 0, 0), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            bytearray(b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            array.array('B', b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertEqual(int.from_bytes(
            memoryview(b'\xff\x00\x00'), 'big', signed=True), -65536)
        self.assertRaises(ValueError, int.from_bytes, [256], 'big')
        self.assertRaises(ValueError, int.from_bytes, [0], 'big\x00')
        self.assertRaises(ValueError, int.from_bytes, [0], 'little\x00')
        self.assertRaises(TypeError, int.from_bytes, "", 'big')
        self.assertRaises(TypeError, int.from_bytes, "\x00", 'big')
        self.assertRaises(TypeError, int.from_bytes, 0, 'big')
        self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)
        self.assertRaises(TypeError, myint.from_bytes, "", 'big')
        self.assertRaises(TypeError, myint.from_bytes, "\x00", 'big')
        self.assertRaises(TypeError, myint.from_bytes, 0, 'big')
        self.assertRaises(TypeError, int.from_bytes, 0, 'big', True)

        class myint2(int):
            def __new__(cls, value):
                return int.__new__(cls, value + 1)

        i = myint2.from_bytes(b'\x01', 'big')
        self.assertIs(type(i), myint2)
        self.assertEqual(i, 2)

        class myint3(int):
            def __init__(self, value):
                self.foo = 'bar'

        i = myint3.from_bytes(b'\x01', 'big')
        self.assertIs(type(i), myint3)
        self.assertEqual(i, 1)
        self.assertEqual(getattr(i, 'foo', 'none'), 'bar')

    def test_access_to_nonexistent_digit_0(self):
        # http://bugs.python.org/issue14630: A bug in _PyLong_Copy meant that
        # ob_digit[0] was being incorrectly accessed for instances of a
        # subclass of int, with value 0.
        class Integer(int):
            def __new__(cls, value=0):
                self = int.__new__(cls, value)
                self.foo = 'foo'
                return self

        integers = [Integer(0) for i in range(1000)]
        for n in map(int, integers):
            self.assertEqual(n, 0)

    def test_shift_bool(self):
        # Issue #21422: ensure that bool << int and bool >> int return int
        for value in (True, False):
            for shift in (0, 2):
                self.assertEqual(type(value << shift), int)
                self.assertEqual(type(value >> shift), int)

    def test_as_integer_ratio(self):
        class myint(int):
            pass
        tests = [10, 0, -10, 1, sys.maxsize + 1, True, False, myint(42)]
        for value in tests:
            numerator, denominator = value.as_integer_ratio()
            self.assertEqual((numerator, denominator), (int(value), 1))
            self.assertEqual(type(numerator), int)
            self.assertEqual(type(denominator), int)


if __name__ == "__main__":
    unittest.main()