diff options
author | Lars Knoll <lars.knoll@nokia.com> | 2009-03-23 09:34:13 (GMT) |
---|---|---|
committer | Simon Hausmann <simon.hausmann@nokia.com> | 2009-03-23 09:34:13 (GMT) |
commit | 67ad0519fd165acee4a4d2a94fa502e9e4847bd0 (patch) | |
tree | 1dbf50b3dff8d5ca7e9344733968c72704eb15ff /src/3rdparty/webkit/JavaScriptCore/assembler/MacroAssembler.h | |
download | Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.zip Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.tar.gz Qt-67ad0519fd165acee4a4d2a94fa502e9e4847bd0.tar.bz2 |
Long live Qt!
Diffstat (limited to 'src/3rdparty/webkit/JavaScriptCore/assembler/MacroAssembler.h')
-rw-r--r-- | src/3rdparty/webkit/JavaScriptCore/assembler/MacroAssembler.h | 1929 |
1 files changed, 1929 insertions, 0 deletions
diff --git a/src/3rdparty/webkit/JavaScriptCore/assembler/MacroAssembler.h b/src/3rdparty/webkit/JavaScriptCore/assembler/MacroAssembler.h new file mode 100644 index 0000000..9f8d474 --- /dev/null +++ b/src/3rdparty/webkit/JavaScriptCore/assembler/MacroAssembler.h @@ -0,0 +1,1929 @@ +/* + * Copyright (C) 2008 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef MacroAssembler_h +#define MacroAssembler_h + +#include <wtf/Platform.h> + +#if ENABLE(ASSEMBLER) + +#include "X86Assembler.h" + +namespace JSC { + +class MacroAssembler { +protected: + X86Assembler m_assembler; + +#if PLATFORM(X86_64) + static const X86::RegisterID scratchRegister = X86::r11; +#endif + +public: + typedef X86::RegisterID RegisterID; + + // Note: do not rely on values in this enum, these will change (to 0..3). + enum Scale { + TimesOne = 1, + TimesTwo = 2, + TimesFour = 4, + TimesEight = 8, +#if PLATFORM(X86) + ScalePtr = TimesFour +#endif +#if PLATFORM(X86_64) + ScalePtr = TimesEight +#endif + }; + + MacroAssembler() + { + } + + size_t size() { return m_assembler.size(); } + void* copyCode(ExecutablePool* allocator) + { + return m_assembler.executableCopy(allocator); + } + + + // Address: + // + // Describes a simple base-offset address. + struct Address { + explicit Address(RegisterID base, int32_t offset = 0) + : base(base) + , offset(offset) + { + } + + RegisterID base; + int32_t offset; + }; + + // ImplicitAddress: + // + // This class is used for explicit 'load' and 'store' operations + // (as opposed to situations in which a memory operand is provided + // to a generic operation, such as an integer arithmetic instruction). + // + // In the case of a load (or store) operation we want to permit + // addresses to be implicitly constructed, e.g. the two calls: + // + // load32(Address(addrReg), destReg); + // load32(addrReg, destReg); + // + // Are equivalent, and the explicit wrapping of the Address in the former + // is unnecessary. + struct ImplicitAddress { + ImplicitAddress(RegisterID base) + : base(base) + , offset(0) + { + } + + ImplicitAddress(Address address) + : base(address.base) + , offset(address.offset) + { + } + + RegisterID base; + int32_t offset; + }; + + // BaseIndex: + // + // Describes a complex addressing mode. + struct BaseIndex { + BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) + : base(base) + , index(index) + , scale(scale) + , offset(offset) + { + } + + RegisterID base; + RegisterID index; + Scale scale; + int32_t offset; + }; + + // AbsoluteAddress: + // + // Describes an memory operand given by a pointer. For regular load & store + // operations an unwrapped void* will be used, rather than using this. + struct AbsoluteAddress { + explicit AbsoluteAddress(void* ptr) + : m_ptr(ptr) + { + } + + void* m_ptr; + }; + + + class Jump; + class PatchBuffer; + + // DataLabelPtr: + // + // A DataLabelPtr is used to refer to a location in the code containing a pointer to be + // patched after the code has been generated. + class DataLabelPtr { + friend class MacroAssembler; + friend class PatchBuffer; + + public: + DataLabelPtr() + { + } + + DataLabelPtr(MacroAssembler* masm) + : m_label(masm->m_assembler.label()) + { + } + + static void patch(void* address, void* value) + { + X86Assembler::patchPointer(reinterpret_cast<intptr_t>(address), reinterpret_cast<intptr_t>(value)); + } + + private: + X86Assembler::JmpDst m_label; + }; + + // DataLabel32: + // + // A DataLabelPtr is used to refer to a location in the code containing a pointer to be + // patched after the code has been generated. + class DataLabel32 { + friend class MacroAssembler; + friend class PatchBuffer; + + public: + DataLabel32() + { + } + + DataLabel32(MacroAssembler* masm) + : m_label(masm->m_assembler.label()) + { + } + + static void patch(void* address, int32_t value) + { + X86Assembler::patchImmediate(reinterpret_cast<intptr_t>(address), value); + } + + private: + X86Assembler::JmpDst m_label; + }; + + // Label: + // + // A Label records a point in the generated instruction stream, typically such that + // it may be used as a destination for a jump. + class Label { + friend class Jump; + friend class MacroAssembler; + friend class PatchBuffer; + + public: + Label() + { + } + + Label(MacroAssembler* masm) + : m_label(masm->m_assembler.label()) + { + } + + // FIXME: transitionary method, while we replace JmpSrces with Jumps. + operator X86Assembler::JmpDst() + { + return m_label; + } + + private: + X86Assembler::JmpDst m_label; + }; + + + // Jump: + // + // A jump object is a reference to a jump instruction that has been planted + // into the code buffer - it is typically used to link the jump, setting the + // relative offset such that when executed it will jump to the desired + // destination. + // + // Jump objects retain a pointer to the assembler for syntactic purposes - + // to allow the jump object to be able to link itself, e.g.: + // + // Jump forwardsBranch = jne32(Imm32(0), reg1); + // // ... + // forwardsBranch.link(); + // + // Jumps may also be linked to a Label. + class Jump { + friend class PatchBuffer; + friend class MacroAssembler; + + public: + Jump() + { + } + + // FIXME: transitionary method, while we replace JmpSrces with Jumps. + Jump(X86Assembler::JmpSrc jmp) + : m_jmp(jmp) + { + } + + void link(MacroAssembler* masm) + { + masm->m_assembler.link(m_jmp, masm->m_assembler.label()); + } + + void linkTo(Label label, MacroAssembler* masm) + { + masm->m_assembler.link(m_jmp, label.m_label); + } + + // FIXME: transitionary method, while we replace JmpSrces with Jumps. + operator X86Assembler::JmpSrc() + { + return m_jmp; + } + + static void patch(void* address, void* destination) + { + X86Assembler::patchBranchOffset(reinterpret_cast<intptr_t>(address), destination); + } + + private: + X86Assembler::JmpSrc m_jmp; + }; + + // JumpList: + // + // A JumpList is a set of Jump objects. + // All jumps in the set will be linked to the same destination. + class JumpList { + friend class PatchBuffer; + + public: + void link(MacroAssembler* masm) + { + size_t size = m_jumps.size(); + for (size_t i = 0; i < size; ++i) + m_jumps[i].link(masm); + m_jumps.clear(); + } + + void linkTo(Label label, MacroAssembler* masm) + { + size_t size = m_jumps.size(); + for (size_t i = 0; i < size; ++i) + m_jumps[i].linkTo(label, masm); + m_jumps.clear(); + } + + void append(Jump jump) + { + m_jumps.append(jump); + } + + void append(JumpList& other) + { + m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); + } + + bool empty() + { + return !m_jumps.size(); + } + + private: + Vector<Jump, 16> m_jumps; + }; + + + // PatchBuffer: + // + // This class assists in linking code generated by the macro assembler, once code generation + // has been completed, and the code has been copied to is final location in memory. At this + // time pointers to labels within the code may be resolved, and relative offsets to external + // addresses may be fixed. + // + // Specifically: + // * Jump objects may be linked to external targets, + // * The address of Jump objects may taken, such that it can later be relinked. + // * The return address of a Jump object representing a call may be acquired. + // * The address of a Label pointing into the code may be resolved. + // * The value referenced by a DataLabel may be fixed. + // + // FIXME: distinguish between Calls & Jumps (make a specific call to obtain the return + // address of calls, as opposed to a point that can be used to later relink a Jump - + // possibly wrap the later up in an object that can do just that). + class PatchBuffer { + public: + PatchBuffer(void* code) + : m_code(code) + { + } + + void link(Jump jump, void* target) + { + X86Assembler::link(m_code, jump.m_jmp, target); + } + + void link(JumpList list, void* target) + { + for (unsigned i = 0; i < list.m_jumps.size(); ++i) + X86Assembler::link(m_code, list.m_jumps[i], target); + } + + void* addressOf(Jump jump) + { + return X86Assembler::getRelocatedAddress(m_code, jump.m_jmp); + } + + void* addressOf(Label label) + { + return X86Assembler::getRelocatedAddress(m_code, label.m_label); + } + + void* addressOf(DataLabelPtr label) + { + return X86Assembler::getRelocatedAddress(m_code, label.m_label); + } + + void* addressOf(DataLabel32 label) + { + return X86Assembler::getRelocatedAddress(m_code, label.m_label); + } + + void setPtr(DataLabelPtr label, void* value) + { + X86Assembler::patchAddress(m_code, label.m_label, value); + } + + private: + void* m_code; + }; + + + // ImmPtr: + // + // A pointer sized immediate operand to an instruction - this is wrapped + // in a class requiring explicit construction in order to differentiate + // from pointers used as absolute addresses to memory operations + struct ImmPtr { + explicit ImmPtr(void* value) + : m_value(value) + { + } + + intptr_t asIntptr() + { + return reinterpret_cast<intptr_t>(m_value); + } + + void* m_value; + }; + + + // Imm32: + // + // A 32bit immediate operand to an instruction - this is wrapped in a + // class requiring explicit construction in order to prevent RegisterIDs + // (which are implemented as an enum) from accidentally being passed as + // immediate values. + struct Imm32 { + explicit Imm32(int32_t value) + : m_value(value) + { + } + +#if PLATFORM(X86) + explicit Imm32(ImmPtr ptr) + : m_value(ptr.asIntptr()) + { + } +#endif + + int32_t m_value; + }; + + // Integer arithmetic operations: + // + // Operations are typically two operand - operation(source, srcDst) + // For many operations the source may be an Imm32, the srcDst operand + // may often be a memory location (explictly described using an Address + // object). + + void addPtr(RegisterID src, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.addq_rr(src, dest); +#else + add32(src, dest); +#endif + } + + void addPtr(Imm32 imm, RegisterID srcDest) + { +#if PLATFORM(X86_64) + m_assembler.addq_ir(imm.m_value, srcDest); +#else + add32(imm, srcDest); +#endif + } + + void addPtr(Imm32 imm, RegisterID src, RegisterID dest) + { + m_assembler.leal_mr(imm.m_value, src, dest); + } + + void add32(RegisterID src, RegisterID dest) + { + m_assembler.addl_rr(src, dest); + } + + void add32(Imm32 imm, Address address) + { + m_assembler.addl_im(imm.m_value, address.offset, address.base); + } + + void add32(Imm32 imm, RegisterID dest) + { + m_assembler.addl_ir(imm.m_value, dest); + } + + void add32(Imm32 imm, AbsoluteAddress address) + { +#if PLATFORM(X86_64) + move(ImmPtr(address.m_ptr), scratchRegister); + add32(imm, Address(scratchRegister)); +#else + m_assembler.addl_im(imm.m_value, address.m_ptr); +#endif + } + + void add32(Address src, RegisterID dest) + { + m_assembler.addl_mr(src.offset, src.base, dest); + } + + void andPtr(RegisterID src, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.andq_rr(src, dest); +#else + and32(src, dest); +#endif + } + + void andPtr(Imm32 imm, RegisterID srcDest) + { +#if PLATFORM(X86_64) + m_assembler.andq_ir(imm.m_value, srcDest); +#else + and32(imm, srcDest); +#endif + } + + void and32(RegisterID src, RegisterID dest) + { + m_assembler.andl_rr(src, dest); + } + + void and32(Imm32 imm, RegisterID dest) + { + m_assembler.andl_ir(imm.m_value, dest); + } + + void lshift32(Imm32 imm, RegisterID dest) + { + m_assembler.shll_i8r(imm.m_value, dest); + } + + void lshift32(RegisterID shift_amount, RegisterID dest) + { + // On x86 we can only shift by ecx; if asked to shift by another register we'll + // need rejig the shift amount into ecx first, and restore the registers afterwards. + if (shift_amount != X86::ecx) { + swap(shift_amount, X86::ecx); + + // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" + if (dest == shift_amount) + m_assembler.shll_CLr(X86::ecx); + // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" + else if (dest == X86::ecx) + m_assembler.shll_CLr(shift_amount); + // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" + else + m_assembler.shll_CLr(dest); + + swap(shift_amount, X86::ecx); + } else + m_assembler.shll_CLr(dest); + } + + // Take the value from dividend, divide it by divisor, and put the remainder in remainder. + // For now, this operation has specific register requirements, and the three register must + // be unique. It is unfortunate to expose this in the MacroAssembler interface, however + // given the complexity to fix, the fact that it is not uncommmon for processors to have + // specific register requirements on this operation (e.g. Mips result in 'hi'), or to not + // support a hardware divide at all, it may not be + void mod32(RegisterID divisor, RegisterID dividend, RegisterID remainder) + { +#ifdef NDEBUG +#pragma unused(dividend,remainder) +#else + ASSERT((dividend == X86::eax) && (remainder == X86::edx)); + ASSERT((dividend != divisor) && (remainder != divisor)); +#endif + + m_assembler.cdq(); + m_assembler.idivl_r(divisor); + } + + void mul32(Imm32 imm, RegisterID src, RegisterID dest) + { + m_assembler.imull_i32r(src, imm.m_value, dest); + } + + void not32(RegisterID srcDest) + { + m_assembler.notl_r(srcDest); + } + + void orPtr(RegisterID src, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.orq_rr(src, dest); +#else + or32(src, dest); +#endif + } + + void orPtr(ImmPtr imm, RegisterID dest) + { +#if PLATFORM(X86_64) + move(imm, scratchRegister); + m_assembler.orq_rr(scratchRegister, dest); +#else + or32(Imm32(imm), dest); +#endif + } + + void orPtr(Imm32 imm, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.orq_ir(imm.m_value, dest); +#else + or32(imm, dest); +#endif + } + + void or32(RegisterID src, RegisterID dest) + { + m_assembler.orl_rr(src, dest); + } + + void or32(Imm32 imm, RegisterID dest) + { + m_assembler.orl_ir(imm.m_value, dest); + } + + void rshiftPtr(RegisterID shift_amount, RegisterID dest) + { +#if PLATFORM(X86_64) + // On x86 we can only shift by ecx; if asked to shift by another register we'll + // need rejig the shift amount into ecx first, and restore the registers afterwards. + if (shift_amount != X86::ecx) { + swap(shift_amount, X86::ecx); + + // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" + if (dest == shift_amount) + m_assembler.sarq_CLr(X86::ecx); + // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" + else if (dest == X86::ecx) + m_assembler.sarq_CLr(shift_amount); + // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" + else + m_assembler.sarq_CLr(dest); + + swap(shift_amount, X86::ecx); + } else + m_assembler.sarq_CLr(dest); +#else + rshift32(shift_amount, dest); +#endif + } + + void rshiftPtr(Imm32 imm, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.sarq_i8r(imm.m_value, dest); +#else + rshift32(imm, dest); +#endif + } + + void rshift32(RegisterID shift_amount, RegisterID dest) + { + // On x86 we can only shift by ecx; if asked to shift by another register we'll + // need rejig the shift amount into ecx first, and restore the registers afterwards. + if (shift_amount != X86::ecx) { + swap(shift_amount, X86::ecx); + + // E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx" + if (dest == shift_amount) + m_assembler.sarl_CLr(X86::ecx); + // E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx" + else if (dest == X86::ecx) + m_assembler.sarl_CLr(shift_amount); + // E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx" + else + m_assembler.sarl_CLr(dest); + + swap(shift_amount, X86::ecx); + } else + m_assembler.sarl_CLr(dest); + } + + void rshift32(Imm32 imm, RegisterID dest) + { + m_assembler.sarl_i8r(imm.m_value, dest); + } + + void subPtr(Imm32 imm, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.subq_ir(imm.m_value, dest); +#else + sub32(imm, dest); +#endif + } + + void sub32(Imm32 imm, RegisterID dest) + { + m_assembler.subl_ir(imm.m_value, dest); + } + + void sub32(Imm32 imm, Address address) + { + m_assembler.subl_im(imm.m_value, address.offset, address.base); + } + + void sub32(Imm32 imm, AbsoluteAddress address) + { +#if PLATFORM(X86_64) + move(ImmPtr(address.m_ptr), scratchRegister); + sub32(imm, Address(scratchRegister)); +#else + m_assembler.subl_im(imm.m_value, address.m_ptr); +#endif + } + + void sub32(Address src, RegisterID dest) + { + m_assembler.subl_mr(src.offset, src.base, dest); + } + + void xorPtr(RegisterID src, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.xorq_rr(src, dest); +#else + xor32(src, dest); +#endif + } + + void xorPtr(Imm32 imm, RegisterID srcDest) + { +#if PLATFORM(X86_64) + m_assembler.xorq_ir(imm.m_value, srcDest); +#else + xor32(imm, srcDest); +#endif + } + + void xor32(RegisterID src, RegisterID dest) + { + m_assembler.xorl_rr(src, dest); + } + + void xor32(Imm32 imm, RegisterID srcDest) + { + m_assembler.xorl_ir(imm.m_value, srcDest); + } + + + // Memory access operations: + // + // Loads are of the form load(address, destination) and stores of the form + // store(source, address). The source for a store may be an Imm32. Address + // operand objects to loads and store will be implicitly constructed if a + // register is passed. + + void loadPtr(ImplicitAddress address, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.movq_mr(address.offset, address.base, dest); +#else + load32(address, dest); +#endif + } + + DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.movq_mr_disp32(address.offset, address.base, dest); + return DataLabel32(this); +#else + m_assembler.movl_mr_disp32(address.offset, address.base, dest); + return DataLabel32(this); +#endif + } + + void loadPtr(BaseIndex address, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest); +#else + load32(address, dest); +#endif + } + + void loadPtr(void* address, RegisterID dest) + { +#if PLATFORM(X86_64) + if (dest == X86::eax) + m_assembler.movq_mEAX(address); + else { + move(X86::eax, dest); + m_assembler.movq_mEAX(address); + swap(X86::eax, dest); + } +#else + load32(address, dest); +#endif + } + + void load32(ImplicitAddress address, RegisterID dest) + { + m_assembler.movl_mr(address.offset, address.base, dest); + } + + void load32(BaseIndex address, RegisterID dest) + { + m_assembler.movl_mr(address.offset, address.base, address.index, address.scale, dest); + } + + void load32(void* address, RegisterID dest) + { +#if PLATFORM(X86_64) + if (dest == X86::eax) + m_assembler.movl_mEAX(address); + else { + move(X86::eax, dest); + m_assembler.movl_mEAX(address); + swap(X86::eax, dest); + } +#else + m_assembler.movl_mr(address, dest); +#endif + } + + void load16(BaseIndex address, RegisterID dest) + { + m_assembler.movzwl_mr(address.offset, address.base, address.index, address.scale, dest); + } + + void storePtr(RegisterID src, ImplicitAddress address) + { +#if PLATFORM(X86_64) + m_assembler.movq_rm(src, address.offset, address.base); +#else + store32(src, address); +#endif + } + + DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) + { +#if PLATFORM(X86_64) + m_assembler.movq_rm_disp32(src, address.offset, address.base); + return DataLabel32(this); +#else + m_assembler.movl_rm_disp32(src, address.offset, address.base); + return DataLabel32(this); +#endif + } + + void storePtr(RegisterID src, BaseIndex address) + { +#if PLATFORM(X86_64) + m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale); +#else + store32(src, address); +#endif + } + + void storePtr(ImmPtr imm, ImplicitAddress address) + { +#if PLATFORM(X86_64) + move(imm, scratchRegister); + storePtr(scratchRegister, address); +#else + m_assembler.movl_i32m(imm.asIntptr(), address.offset, address.base); +#endif + } + + DataLabelPtr storePtrWithPatch(Address address) + { +#if PLATFORM(X86_64) + m_assembler.movq_i64r(0, scratchRegister); + DataLabelPtr label(this); + storePtr(scratchRegister, address); + return label; +#else + m_assembler.movl_i32m(0, address.offset, address.base); + return DataLabelPtr(this); +#endif + } + + void store32(RegisterID src, ImplicitAddress address) + { + m_assembler.movl_rm(src, address.offset, address.base); + } + + void store32(RegisterID src, BaseIndex address) + { + m_assembler.movl_rm(src, address.offset, address.base, address.index, address.scale); + } + + void store32(Imm32 imm, ImplicitAddress address) + { + m_assembler.movl_i32m(imm.m_value, address.offset, address.base); + } + + void store32(Imm32 imm, void* address) + { +#if PLATFORM(X86_64) + move(X86::eax, scratchRegister); + move(imm, X86::eax); + m_assembler.movl_EAXm(address); + move(scratchRegister, X86::eax); +#else + m_assembler.movl_i32m(imm.m_value, address); +#endif + } + + + // Stack manipulation operations: + // + // The ABI is assumed to provide a stack abstraction to memory, + // containing machine word sized units of data. Push and pop + // operations add and remove a single register sized unit of data + // to or from the stack. Peek and poke operations read or write + // values on the stack, without moving the current stack position. + + void pop(RegisterID dest) + { + m_assembler.pop_r(dest); + } + + void push(RegisterID src) + { + m_assembler.push_r(src); + } + + void push(Address address) + { + m_assembler.push_m(address.offset, address.base); + } + + void push(Imm32 imm) + { + m_assembler.push_i32(imm.m_value); + } + + void pop() + { + addPtr(Imm32(sizeof(void*)), X86::esp); + } + + void peek(RegisterID dest, int index = 0) + { + loadPtr(Address(X86::esp, (index * sizeof(void *))), dest); + } + + void poke(RegisterID src, int index = 0) + { + storePtr(src, Address(X86::esp, (index * sizeof(void *)))); + } + + void poke(Imm32 value, int index = 0) + { + store32(value, Address(X86::esp, (index * sizeof(void *)))); + } + + void poke(ImmPtr imm, int index = 0) + { + storePtr(imm, Address(X86::esp, (index * sizeof(void *)))); + } + + // Register move operations: + // + // Move values in registers. + + void move(Imm32 imm, RegisterID dest) + { + // Note: on 64-bit the Imm32 value is zero extended into the register, it + // may be useful to have a separate version that sign extends the value? + if (!imm.m_value) + m_assembler.xorl_rr(dest, dest); + else + m_assembler.movl_i32r(imm.m_value, dest); + } + + void move(RegisterID src, RegisterID dest) + { + // Note: on 64-bit this is is a full register move; perhaps it would be + // useful to have separate move32 & movePtr, with move32 zero extending? +#if PLATFORM(X86_64) + m_assembler.movq_rr(src, dest); +#else + m_assembler.movl_rr(src, dest); +#endif + } + + void move(ImmPtr imm, RegisterID dest) + { +#if PLATFORM(X86_64) + if (CAN_SIGN_EXTEND_U32_64(imm.asIntptr())) + m_assembler.movl_i32r(static_cast<int32_t>(imm.asIntptr()), dest); + else + m_assembler.movq_i64r(imm.asIntptr(), dest); +#else + m_assembler.movl_i32r(imm.asIntptr(), dest); +#endif + } + + void swap(RegisterID reg1, RegisterID reg2) + { +#if PLATFORM(X86_64) + m_assembler.xchgq_rr(reg1, reg2); +#else + m_assembler.xchgl_rr(reg1, reg2); +#endif + } + + void signExtend32ToPtr(RegisterID src, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.movsxd_rr(src, dest); +#else + if (src != dest) + move(src, dest); +#endif + } + + void zeroExtend32ToPtr(RegisterID src, RegisterID dest) + { +#if PLATFORM(X86_64) + m_assembler.movl_rr(src, dest); +#else + if (src != dest) + move(src, dest); +#endif + } + + + // Forwards / external control flow operations: + // + // This set of jump and conditional branch operations return a Jump + // object which may linked at a later point, allow forwards jump, + // or jumps that will require external linkage (after the code has been + // relocated). + // + // For branches, signed <, >, <= and >= are denoted as l, g, le, and ge + // respecitvely, for unsigned comparisons the names b, a, be, and ae are + // used (representing the names 'below' and 'above'). + // + // Operands to the comparision are provided in the expected order, e.g. + // jle32(reg1, Imm32(5)) will branch if the value held in reg1, when + // treated as a signed 32bit value, is less than or equal to 5. + // + // jz and jnz test whether the first operand is equal to zero, and take + // an optional second operand of a mask under which to perform the test. + +private: + void compareImm32ForBranch(RegisterID left, int32_t right) + { + m_assembler.cmpl_ir(right, left); + } + + void compareImm32ForBranchEquality(RegisterID reg, int32_t imm) + { + if (!imm) + m_assembler.testl_rr(reg, reg); + else + m_assembler.cmpl_ir(imm, reg); + } + + void compareImm32ForBranchEquality(Address address, int32_t imm) + { + m_assembler.cmpl_im(imm, address.offset, address.base); + } + + void testImm32(RegisterID reg, Imm32 mask) + { + // if we are only interested in the low seven bits, this can be tested with a testb + if (mask.m_value == -1) + m_assembler.testl_rr(reg, reg); + else if ((mask.m_value & ~0x7f) == 0) + m_assembler.testb_i8r(mask.m_value, reg); + else + m_assembler.testl_i32r(mask.m_value, reg); + } + + void testImm32(Address address, Imm32 mask) + { + if (mask.m_value == -1) + m_assembler.cmpl_im(0, address.offset, address.base); + else + m_assembler.testl_i32m(mask.m_value, address.offset, address.base); + } + + void testImm32(BaseIndex address, Imm32 mask) + { + if (mask.m_value == -1) + m_assembler.cmpl_im(0, address.offset, address.base, address.index, address.scale); + else + m_assembler.testl_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); + } + +#if PLATFORM(X86_64) + void compareImm64ForBranch(RegisterID left, int32_t right) + { + m_assembler.cmpq_ir(right, left); + } + + void compareImm64ForBranchEquality(RegisterID reg, int32_t imm) + { + if (!imm) + m_assembler.testq_rr(reg, reg); + else + m_assembler.cmpq_ir(imm, reg); + } + + void testImm64(RegisterID reg, Imm32 mask) + { + // if we are only interested in the low seven bits, this can be tested with a testb + if (mask.m_value == -1) + m_assembler.testq_rr(reg, reg); + else if ((mask.m_value & ~0x7f) == 0) + m_assembler.testb_i8r(mask.m_value, reg); + else + m_assembler.testq_i32r(mask.m_value, reg); + } + + void testImm64(Address address, Imm32 mask) + { + if (mask.m_value == -1) + m_assembler.cmpq_im(0, address.offset, address.base); + else + m_assembler.testq_i32m(mask.m_value, address.offset, address.base); + } + + void testImm64(BaseIndex address, Imm32 mask) + { + if (mask.m_value == -1) + m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale); + else + m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale); + } +#endif + +public: + Jump ja32(RegisterID left, Imm32 right) + { + compareImm32ForBranch(left, right.m_value); + return Jump(m_assembler.ja()); + } + + Jump jaePtr(RegisterID left, RegisterID right) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(right, left); + return Jump(m_assembler.jae()); +#else + return jae32(left, right); +#endif + } + + Jump jaePtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranch(reg, imm); + return Jump(m_assembler.jae()); + } else { + move(ptr, scratchRegister); + return jaePtr(reg, scratchRegister); + } +#else + return jae32(reg, Imm32(ptr)); +#endif + } + + Jump jae32(RegisterID left, RegisterID right) + { + m_assembler.cmpl_rr(right, left); + return Jump(m_assembler.jae()); + } + + Jump jae32(RegisterID left, Imm32 right) + { + compareImm32ForBranch(left, right.m_value); + return Jump(m_assembler.jae()); + } + + Jump jae32(RegisterID left, Address right) + { + m_assembler.cmpl_mr(right.offset, right.base, left); + return Jump(m_assembler.jae()); + } + + Jump jae32(Address left, RegisterID right) + { + m_assembler.cmpl_rm(right, left.offset, left.base); + return Jump(m_assembler.jae()); + } + + Jump jbPtr(RegisterID left, RegisterID right) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(right, left); + return Jump(m_assembler.jb()); +#else + return jb32(left, right); +#endif + } + + Jump jbPtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranch(reg, imm); + return Jump(m_assembler.jb()); + } else { + move(ptr, scratchRegister); + return jbPtr(reg, scratchRegister); + } +#else + return jb32(reg, Imm32(ptr)); +#endif + } + + Jump jb32(RegisterID left, RegisterID right) + { + m_assembler.cmpl_rr(right, left); + return Jump(m_assembler.jb()); + } + + Jump jb32(RegisterID left, Imm32 right) + { + compareImm32ForBranch(left, right.m_value); + return Jump(m_assembler.jb()); + } + + Jump jb32(RegisterID left, Address right) + { + m_assembler.cmpl_mr(right.offset, right.base, left); + return Jump(m_assembler.jb()); + } + + Jump jePtr(RegisterID op1, RegisterID op2) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(op1, op2); + return Jump(m_assembler.je()); +#else + return je32(op1, op2); +#endif + } + + Jump jePtr(RegisterID reg, Address address) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rm(reg, address.offset, address.base); +#else + m_assembler.cmpl_rm(reg, address.offset, address.base); +#endif + return Jump(m_assembler.je()); + } + + Jump jePtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranchEquality(reg, imm); + return Jump(m_assembler.je()); + } else { + move(ptr, scratchRegister); + return jePtr(scratchRegister, reg); + } +#else + return je32(reg, Imm32(ptr)); +#endif + } + + Jump jePtr(Address address, ImmPtr imm) + { +#if PLATFORM(X86_64) + move(imm, scratchRegister); + return jePtr(scratchRegister, address); +#else + return je32(address, Imm32(imm)); +#endif + } + + Jump je32(RegisterID op1, RegisterID op2) + { + m_assembler.cmpl_rr(op1, op2); + return Jump(m_assembler.je()); + } + + Jump je32(Address op1, RegisterID op2) + { + m_assembler.cmpl_mr(op1.offset, op1.base, op2); + return Jump(m_assembler.je()); + } + + Jump je32(RegisterID reg, Imm32 imm) + { + compareImm32ForBranchEquality(reg, imm.m_value); + return Jump(m_assembler.je()); + } + + Jump je32(Address address, Imm32 imm) + { + compareImm32ForBranchEquality(address, imm.m_value); + return Jump(m_assembler.je()); + } + + Jump je16(RegisterID op1, BaseIndex op2) + { + m_assembler.cmpw_rm(op1, op2.offset, op2.base, op2.index, op2.scale); + return Jump(m_assembler.je()); + } + + Jump jg32(RegisterID left, RegisterID right) + { + m_assembler.cmpl_rr(right, left); + return Jump(m_assembler.jg()); + } + + Jump jg32(RegisterID reg, Address address) + { + m_assembler.cmpl_mr(address.offset, address.base, reg); + return Jump(m_assembler.jg()); + } + + Jump jgePtr(RegisterID left, RegisterID right) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(right, left); + return Jump(m_assembler.jge()); +#else + return jge32(left, right); +#endif + } + + Jump jgePtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranch(reg, imm); + return Jump(m_assembler.jge()); + } else { + move(ptr, scratchRegister); + return jgePtr(reg, scratchRegister); + } +#else + return jge32(reg, Imm32(ptr)); +#endif + } + + Jump jge32(RegisterID left, RegisterID right) + { + m_assembler.cmpl_rr(right, left); + return Jump(m_assembler.jge()); + } + + Jump jge32(RegisterID left, Imm32 right) + { + compareImm32ForBranch(left, right.m_value); + return Jump(m_assembler.jge()); + } + + Jump jlPtr(RegisterID left, RegisterID right) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(right, left); + return Jump(m_assembler.jl()); +#else + return jl32(left, right); +#endif + } + + Jump jlPtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranch(reg, imm); + return Jump(m_assembler.jl()); + } else { + move(ptr, scratchRegister); + return jlPtr(reg, scratchRegister); + } +#else + return jl32(reg, Imm32(ptr)); +#endif + } + + Jump jl32(RegisterID left, RegisterID right) + { + m_assembler.cmpl_rr(right, left); + return Jump(m_assembler.jl()); + } + + Jump jl32(RegisterID left, Imm32 right) + { + compareImm32ForBranch(left, right.m_value); + return Jump(m_assembler.jl()); + } + + Jump jlePtr(RegisterID left, RegisterID right) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(right, left); + return Jump(m_assembler.jle()); +#else + return jle32(left, right); +#endif + } + + Jump jlePtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranch(reg, imm); + return Jump(m_assembler.jle()); + } else { + move(ptr, scratchRegister); + return jlePtr(reg, scratchRegister); + } +#else + return jle32(reg, Imm32(ptr)); +#endif + } + + Jump jle32(RegisterID left, RegisterID right) + { + m_assembler.cmpl_rr(right, left); + return Jump(m_assembler.jle()); + } + + Jump jle32(RegisterID left, Imm32 right) + { + compareImm32ForBranch(left, right.m_value); + return Jump(m_assembler.jle()); + } + + Jump jnePtr(RegisterID op1, RegisterID op2) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rr(op1, op2); + return Jump(m_assembler.jne()); +#else + return jne32(op1, op2); +#endif + } + + Jump jnePtr(RegisterID reg, Address address) + { +#if PLATFORM(X86_64) + m_assembler.cmpq_rm(reg, address.offset, address.base); +#else + m_assembler.cmpl_rm(reg, address.offset, address.base); +#endif + return Jump(m_assembler.jne()); + } + + Jump jnePtr(RegisterID reg, AbsoluteAddress address) + { +#if PLATFORM(X86_64) + move(ImmPtr(address.m_ptr), scratchRegister); + return jnePtr(reg, Address(scratchRegister)); +#else + m_assembler.cmpl_rm(reg, address.m_ptr); + return Jump(m_assembler.jne()); +#endif + } + + Jump jnePtr(RegisterID reg, ImmPtr ptr) + { +#if PLATFORM(X86_64) + intptr_t imm = ptr.asIntptr(); + if (CAN_SIGN_EXTEND_32_64(imm)) { + compareImm64ForBranchEquality(reg, imm); + return Jump(m_assembler.jne()); + } else { + move(ptr, scratchRegister); + return jnePtr(scratchRegister, reg); + } +#else + return jne32(reg, Imm32(ptr)); +#endif + } + + Jump jnePtr(Address address, ImmPtr imm) + { +#if PLATFORM(X86_64) + move(imm, scratchRegister); + return jnePtr(scratchRegister, address); +#else + return jne32(address, Imm32(imm)); +#endif + } + +#if !PLATFORM(X86_64) + Jump jnePtr(AbsoluteAddress address, ImmPtr imm) + { + m_assembler.cmpl_im(imm.asIntptr(), address.m_ptr); + return Jump(m_assembler.jne()); + } +#endif + + Jump jnePtrWithPatch(RegisterID reg, DataLabelPtr& dataLabel, ImmPtr initialValue = ImmPtr(0)) + { +#if PLATFORM(X86_64) + m_assembler.movq_i64r(initialValue.asIntptr(), scratchRegister); + dataLabel = DataLabelPtr(this); + return jnePtr(scratchRegister, reg); +#else + m_assembler.cmpl_ir_force32(initialValue.asIntptr(), reg); + dataLabel = DataLabelPtr(this); + return Jump(m_assembler.jne()); +#endif + } + + Jump jnePtrWithPatch(Address address, DataLabelPtr& dataLabel, ImmPtr initialValue = ImmPtr(0)) + { +#if PLATFORM(X86_64) + m_assembler.movq_i64r(initialValue.asIntptr(), scratchRegister); + dataLabel = DataLabelPtr(this); + return jnePtr(scratchRegister, address); +#else + m_assembler.cmpl_im_force32(initialValue.asIntptr(), address.offset, address.base); + dataLabel = DataLabelPtr(this); + return Jump(m_assembler.jne()); +#endif + } + + Jump jne32(RegisterID op1, RegisterID op2) + { + m_assembler.cmpl_rr(op1, op2); + return Jump(m_assembler.jne()); + } + + Jump jne32(RegisterID reg, Imm32 imm) + { + compareImm32ForBranchEquality(reg, imm.m_value); + return Jump(m_assembler.jne()); + } + + Jump jne32(Address address, Imm32 imm) + { + compareImm32ForBranchEquality(address, imm.m_value); + return Jump(m_assembler.jne()); + } + + Jump jne32(Address address, RegisterID reg) + { + m_assembler.cmpl_rm(reg, address.offset, address.base); + return Jump(m_assembler.jne()); + } + + Jump jnzPtr(RegisterID reg, Imm32 mask = Imm32(-1)) + { +#if PLATFORM(X86_64) + testImm64(reg, mask); + return Jump(m_assembler.jne()); +#else + return jnz32(reg, mask); +#endif + } + + Jump jnzPtr(RegisterID reg, ImmPtr mask) + { +#if PLATFORM(X86_64) + move(mask, scratchRegister); + m_assembler.testq_rr(scratchRegister, reg); + return Jump(m_assembler.jne()); +#else + return jnz32(reg, Imm32(mask)); +#endif + } + + Jump jnzPtr(Address address, Imm32 mask = Imm32(-1)) + { +#if PLATFORM(X86_64) + testImm64(address, mask); + return Jump(m_assembler.jne()); +#else + return jnz32(address, mask); +#endif + } + + Jump jnz32(RegisterID reg, Imm32 mask = Imm32(-1)) + { + testImm32(reg, mask); + return Jump(m_assembler.jne()); + } + + Jump jnz32(Address address, Imm32 mask = Imm32(-1)) + { + testImm32(address, mask); + return Jump(m_assembler.jne()); + } + + Jump jzPtr(RegisterID reg, Imm32 mask = Imm32(-1)) + { +#if PLATFORM(X86_64) + testImm64(reg, mask); + return Jump(m_assembler.je()); +#else + return jz32(reg, mask); +#endif + } + + Jump jzPtr(RegisterID reg, ImmPtr mask) + { +#if PLATFORM(X86_64) + move(mask, scratchRegister); + m_assembler.testq_rr(scratchRegister, reg); + return Jump(m_assembler.je()); +#else + return jz32(reg, Imm32(mask)); +#endif + } + + Jump jzPtr(Address address, Imm32 mask = Imm32(-1)) + { +#if PLATFORM(X86_64) + testImm64(address, mask); + return Jump(m_assembler.je()); +#else + return jz32(address, mask); +#endif + } + + Jump jzPtr(BaseIndex address, Imm32 mask = Imm32(-1)) + { +#if PLATFORM(X86_64) + testImm64(address, mask); + return Jump(m_assembler.je()); +#else + return jz32(address, mask); +#endif + } + + Jump jz32(RegisterID reg, Imm32 mask = Imm32(-1)) + { + testImm32(reg, mask); + return Jump(m_assembler.je()); + } + + Jump jz32(Address address, Imm32 mask = Imm32(-1)) + { + testImm32(address, mask); + return Jump(m_assembler.je()); + } + + Jump jz32(BaseIndex address, Imm32 mask = Imm32(-1)) + { + testImm32(address, mask); + return Jump(m_assembler.je()); + } + + Jump jump() + { + return Jump(m_assembler.jmp()); + } + + + // Backwards, local control flow operations: + // + // These operations provide a shorter notation for local + // backwards branches, which may be both more convenient + // for the user, and for the programmer, and for the + // assembler (allowing shorter values to be used in + // relative offsets). + // + // The code sequence: + // + // Label topOfLoop(this); + // // ... + // jne32(reg1, reg2, topOfLoop); + // + // Is equivalent to the longer, potentially less efficient form: + // + // Label topOfLoop(this); + // // ... + // jne32(reg1, reg2).linkTo(topOfLoop); + + void jae32(RegisterID left, Address right, Label target) + { + jae32(left, right).linkTo(target, this); + } + + void je32(RegisterID op1, Imm32 imm, Label target) + { + je32(op1, imm).linkTo(target, this); + } + + void je16(RegisterID op1, BaseIndex op2, Label target) + { + je16(op1, op2).linkTo(target, this); + } + + void jl32(RegisterID left, Imm32 right, Label target) + { + jl32(left, right).linkTo(target, this); + } + + void jle32(RegisterID left, RegisterID right, Label target) + { + jle32(left, right).linkTo(target, this); + } + + void jnePtr(RegisterID op1, ImmPtr imm, Label target) + { + jnePtr(op1, imm).linkTo(target, this); + } + + void jne32(RegisterID op1, RegisterID op2, Label target) + { + jne32(op1, op2).linkTo(target, this); + } + + void jne32(RegisterID op1, Imm32 imm, Label target) + { + jne32(op1, imm).linkTo(target, this); + } + + void jzPtr(RegisterID reg, Label target) + { + jzPtr(reg).linkTo(target, this); + } + + void jump(Label target) + { + m_assembler.link(m_assembler.jmp(), target.m_label); + } + + void jump(RegisterID target) + { + m_assembler.jmp_r(target); + } + + // Address is a memory location containing the address to jump to + void jump(Address address) + { + m_assembler.jmp_m(address.offset, address.base); + } + + + // Arithmetic control flow operations: + // + // This set of conditional branch operations branch based + // on the result of an arithmetic operation. The operation + // is performed as normal, storing the result. + // + // * jz operations branch if the result is zero. + // * jo operations branch if the (signed) arithmetic + // operation caused an overflow to occur. + + Jump jnzSubPtr(Imm32 imm, RegisterID dest) + { + subPtr(imm, dest); + return Jump(m_assembler.jne()); + } + + Jump jnzSub32(Imm32 imm, RegisterID dest) + { + sub32(imm, dest); + return Jump(m_assembler.jne()); + } + + Jump joAddPtr(RegisterID src, RegisterID dest) + { + addPtr(src, dest); + return Jump(m_assembler.jo()); + } + + Jump joAdd32(RegisterID src, RegisterID dest) + { + add32(src, dest); + return Jump(m_assembler.jo()); + } + + Jump joAdd32(Imm32 imm, RegisterID dest) + { + add32(imm, dest); + return Jump(m_assembler.jo()); + } + + Jump joMul32(Imm32 imm, RegisterID src, RegisterID dest) + { + mul32(imm, src, dest); + return Jump(m_assembler.jo()); + } + + Jump joSub32(Imm32 imm, RegisterID dest) + { + sub32(imm, dest); + return Jump(m_assembler.jo()); + } + + Jump jzSubPtr(Imm32 imm, RegisterID dest) + { + subPtr(imm, dest); + return Jump(m_assembler.je()); + } + + Jump jzSub32(Imm32 imm, RegisterID dest) + { + sub32(imm, dest); + return Jump(m_assembler.je()); + } + + + // Miscellaneous operations: + + void breakpoint() + { + m_assembler.int3(); + } + + Jump call() + { + return Jump(m_assembler.call()); + } + + // FIXME: why does this return a Jump object? - it can't be linked. + // This may be to get a reference to the return address of the call. + // + // This should probably be handled by a separate label type to a regular + // jump. Todo: add a CallLabel type, for the regular call - can be linked + // like a jump (possibly a subclass of jump?, or possibly casts to a Jump). + // Also add a CallReturnLabel type for this to return (just a more JmpDsty + // form of label, can get the void* after the code has been linked, but can't + // try to link it like a Jump object), and let the CallLabel be cast into a + // CallReturnLabel. + Jump call(RegisterID target) + { + return Jump(m_assembler.call(target)); + } + + Label label() + { + return Label(this); + } + + Label align() + { + m_assembler.align(16); + return Label(this); + } + + ptrdiff_t differenceBetween(Label from, Jump to) + { + return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_jmp); + } + + ptrdiff_t differenceBetween(Label from, Label to) + { + return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label); + } + + ptrdiff_t differenceBetween(Label from, DataLabelPtr to) + { + return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label); + } + + ptrdiff_t differenceBetween(Label from, DataLabel32 to) + { + return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label); + } + + ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) + { + return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_jmp); + } + + void ret() + { + m_assembler.ret(); + } + + void sete32(RegisterID src, RegisterID srcDest) + { + m_assembler.cmpl_rr(srcDest, src); + m_assembler.sete_r(srcDest); + m_assembler.movzbl_rr(srcDest, srcDest); + } + + void sete32(Imm32 imm, RegisterID srcDest) + { + compareImm32ForBranchEquality(srcDest, imm.m_value); + m_assembler.sete_r(srcDest); + m_assembler.movzbl_rr(srcDest, srcDest); + } + + void setne32(RegisterID src, RegisterID srcDest) + { + m_assembler.cmpl_rr(srcDest, src); + m_assembler.setne_r(srcDest); + m_assembler.movzbl_rr(srcDest, srcDest); + } + + void setne32(Imm32 imm, RegisterID srcDest) + { + compareImm32ForBranchEquality(srcDest, imm.m_value); + m_assembler.setne_r(srcDest); + m_assembler.movzbl_rr(srcDest, srcDest); + } + + // FIXME: + // The mask should be optional... paerhaps the argument order should be + // dest-src, operations always have a dest? ... possibly not true, considering + // asm ops like test, or pseudo ops like pop(). + void setnz32(Address address, Imm32 mask, RegisterID dest) + { + testImm32(address, mask); + m_assembler.setnz_r(dest); + m_assembler.movzbl_rr(dest, dest); + } + + void setz32(Address address, Imm32 mask, RegisterID dest) + { + testImm32(address, mask); + m_assembler.setz_r(dest); + m_assembler.movzbl_rr(dest, dest); + } +}; + +} // namespace JSC + +#endif // ENABLE(ASSEMBLER) + +#endif // MacroAssembler_h |