1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
|
/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssembler_h
#define MacroAssembler_h
#include <wtf/Platform.h>
#if ENABLE(ASSEMBLER)
#include "X86Assembler.h"
namespace JSC {
class MacroAssembler {
protected:
X86Assembler m_assembler;
#if PLATFORM(X86_64)
static const X86::RegisterID scratchRegister = X86::r11;
#endif
public:
typedef X86::RegisterID RegisterID;
// Note: do not rely on values in this enum, these will change (to 0..3).
enum Scale {
TimesOne = 1,
TimesTwo = 2,
TimesFour = 4,
TimesEight = 8,
#if PLATFORM(X86)
ScalePtr = TimesFour
#endif
#if PLATFORM(X86_64)
ScalePtr = TimesEight
#endif
};
MacroAssembler()
{
}
size_t size() { return m_assembler.size(); }
void* copyCode(ExecutablePool* allocator)
{
return m_assembler.executableCopy(allocator);
}
// Address:
//
// Describes a simple base-offset address.
struct Address {
explicit Address(RegisterID base, int32_t offset = 0)
: base(base)
, offset(offset)
{
}
RegisterID base;
int32_t offset;
};
// ImplicitAddress:
//
// This class is used for explicit 'load' and 'store' operations
// (as opposed to situations in which a memory operand is provided
// to a generic operation, such as an integer arithmetic instruction).
//
// In the case of a load (or store) operation we want to permit
// addresses to be implicitly constructed, e.g. the two calls:
//
// load32(Address(addrReg), destReg);
// load32(addrReg, destReg);
//
// Are equivalent, and the explicit wrapping of the Address in the former
// is unnecessary.
struct ImplicitAddress {
ImplicitAddress(RegisterID base)
: base(base)
, offset(0)
{
}
ImplicitAddress(Address address)
: base(address.base)
, offset(address.offset)
{
}
RegisterID base;
int32_t offset;
};
// BaseIndex:
//
// Describes a complex addressing mode.
struct BaseIndex {
BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0)
: base(base)
, index(index)
, scale(scale)
, offset(offset)
{
}
RegisterID base;
RegisterID index;
Scale scale;
int32_t offset;
};
// AbsoluteAddress:
//
// Describes an memory operand given by a pointer. For regular load & store
// operations an unwrapped void* will be used, rather than using this.
struct AbsoluteAddress {
explicit AbsoluteAddress(void* ptr)
: m_ptr(ptr)
{
}
void* m_ptr;
};
class Jump;
class PatchBuffer;
// DataLabelPtr:
//
// A DataLabelPtr is used to refer to a location in the code containing a pointer to be
// patched after the code has been generated.
class DataLabelPtr {
friend class MacroAssembler;
friend class PatchBuffer;
public:
DataLabelPtr()
{
}
DataLabelPtr(MacroAssembler* masm)
: m_label(masm->m_assembler.label())
{
}
static void patch(void* address, void* value)
{
X86Assembler::patchPointer(reinterpret_cast<intptr_t>(address), reinterpret_cast<intptr_t>(value));
}
private:
X86Assembler::JmpDst m_label;
};
// DataLabel32:
//
// A DataLabelPtr is used to refer to a location in the code containing a pointer to be
// patched after the code has been generated.
class DataLabel32 {
friend class MacroAssembler;
friend class PatchBuffer;
public:
DataLabel32()
{
}
DataLabel32(MacroAssembler* masm)
: m_label(masm->m_assembler.label())
{
}
static void patch(void* address, int32_t value)
{
X86Assembler::patchImmediate(reinterpret_cast<intptr_t>(address), value);
}
private:
X86Assembler::JmpDst m_label;
};
// Label:
//
// A Label records a point in the generated instruction stream, typically such that
// it may be used as a destination for a jump.
class Label {
friend class Jump;
friend class MacroAssembler;
friend class PatchBuffer;
public:
Label()
{
}
Label(MacroAssembler* masm)
: m_label(masm->m_assembler.label())
{
}
// FIXME: transitionary method, while we replace JmpSrces with Jumps.
operator X86Assembler::JmpDst()
{
return m_label;
}
private:
X86Assembler::JmpDst m_label;
};
// Jump:
//
// A jump object is a reference to a jump instruction that has been planted
// into the code buffer - it is typically used to link the jump, setting the
// relative offset such that when executed it will jump to the desired
// destination.
//
// Jump objects retain a pointer to the assembler for syntactic purposes -
// to allow the jump object to be able to link itself, e.g.:
//
// Jump forwardsBranch = jne32(Imm32(0), reg1);
// // ...
// forwardsBranch.link();
//
// Jumps may also be linked to a Label.
class Jump {
friend class PatchBuffer;
friend class MacroAssembler;
public:
Jump()
{
}
// FIXME: transitionary method, while we replace JmpSrces with Jumps.
Jump(X86Assembler::JmpSrc jmp)
: m_jmp(jmp)
{
}
void link(MacroAssembler* masm)
{
masm->m_assembler.link(m_jmp, masm->m_assembler.label());
}
void linkTo(Label label, MacroAssembler* masm)
{
masm->m_assembler.link(m_jmp, label.m_label);
}
// FIXME: transitionary method, while we replace JmpSrces with Jumps.
operator X86Assembler::JmpSrc()
{
return m_jmp;
}
static void patch(void* address, void* destination)
{
X86Assembler::patchBranchOffset(reinterpret_cast<intptr_t>(address), destination);
}
private:
X86Assembler::JmpSrc m_jmp;
};
// JumpList:
//
// A JumpList is a set of Jump objects.
// All jumps in the set will be linked to the same destination.
class JumpList {
friend class PatchBuffer;
public:
void link(MacroAssembler* masm)
{
size_t size = m_jumps.size();
for (size_t i = 0; i < size; ++i)
m_jumps[i].link(masm);
m_jumps.clear();
}
void linkTo(Label label, MacroAssembler* masm)
{
size_t size = m_jumps.size();
for (size_t i = 0; i < size; ++i)
m_jumps[i].linkTo(label, masm);
m_jumps.clear();
}
void append(Jump jump)
{
m_jumps.append(jump);
}
void append(JumpList& other)
{
m_jumps.append(other.m_jumps.begin(), other.m_jumps.size());
}
bool empty()
{
return !m_jumps.size();
}
private:
Vector<Jump, 16> m_jumps;
};
// PatchBuffer:
//
// This class assists in linking code generated by the macro assembler, once code generation
// has been completed, and the code has been copied to is final location in memory. At this
// time pointers to labels within the code may be resolved, and relative offsets to external
// addresses may be fixed.
//
// Specifically:
// * Jump objects may be linked to external targets,
// * The address of Jump objects may taken, such that it can later be relinked.
// * The return address of a Jump object representing a call may be acquired.
// * The address of a Label pointing into the code may be resolved.
// * The value referenced by a DataLabel may be fixed.
//
// FIXME: distinguish between Calls & Jumps (make a specific call to obtain the return
// address of calls, as opposed to a point that can be used to later relink a Jump -
// possibly wrap the later up in an object that can do just that).
class PatchBuffer {
public:
PatchBuffer(void* code)
: m_code(code)
{
}
void link(Jump jump, void* target)
{
X86Assembler::link(m_code, jump.m_jmp, target);
}
void link(JumpList list, void* target)
{
for (unsigned i = 0; i < list.m_jumps.size(); ++i)
X86Assembler::link(m_code, list.m_jumps[i], target);
}
void* addressOf(Jump jump)
{
return X86Assembler::getRelocatedAddress(m_code, jump.m_jmp);
}
void* addressOf(Label label)
{
return X86Assembler::getRelocatedAddress(m_code, label.m_label);
}
void* addressOf(DataLabelPtr label)
{
return X86Assembler::getRelocatedAddress(m_code, label.m_label);
}
void* addressOf(DataLabel32 label)
{
return X86Assembler::getRelocatedAddress(m_code, label.m_label);
}
void setPtr(DataLabelPtr label, void* value)
{
X86Assembler::patchAddress(m_code, label.m_label, value);
}
private:
void* m_code;
};
// ImmPtr:
//
// A pointer sized immediate operand to an instruction - this is wrapped
// in a class requiring explicit construction in order to differentiate
// from pointers used as absolute addresses to memory operations
struct ImmPtr {
explicit ImmPtr(void* value)
: m_value(value)
{
}
intptr_t asIntptr()
{
return reinterpret_cast<intptr_t>(m_value);
}
void* m_value;
};
// Imm32:
//
// A 32bit immediate operand to an instruction - this is wrapped in a
// class requiring explicit construction in order to prevent RegisterIDs
// (which are implemented as an enum) from accidentally being passed as
// immediate values.
struct Imm32 {
explicit Imm32(int32_t value)
: m_value(value)
{
}
#if PLATFORM(X86)
explicit Imm32(ImmPtr ptr)
: m_value(ptr.asIntptr())
{
}
#endif
int32_t m_value;
};
// Integer arithmetic operations:
//
// Operations are typically two operand - operation(source, srcDst)
// For many operations the source may be an Imm32, the srcDst operand
// may often be a memory location (explictly described using an Address
// object).
void addPtr(RegisterID src, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.addq_rr(src, dest);
#else
add32(src, dest);
#endif
}
void addPtr(Imm32 imm, RegisterID srcDest)
{
#if PLATFORM(X86_64)
m_assembler.addq_ir(imm.m_value, srcDest);
#else
add32(imm, srcDest);
#endif
}
void addPtr(Imm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.leal_mr(imm.m_value, src, dest);
}
void add32(RegisterID src, RegisterID dest)
{
m_assembler.addl_rr(src, dest);
}
void add32(Imm32 imm, Address address)
{
m_assembler.addl_im(imm.m_value, address.offset, address.base);
}
void add32(Imm32 imm, RegisterID dest)
{
m_assembler.addl_ir(imm.m_value, dest);
}
void add32(Imm32 imm, AbsoluteAddress address)
{
#if PLATFORM(X86_64)
move(ImmPtr(address.m_ptr), scratchRegister);
add32(imm, Address(scratchRegister));
#else
m_assembler.addl_im(imm.m_value, address.m_ptr);
#endif
}
void add32(Address src, RegisterID dest)
{
m_assembler.addl_mr(src.offset, src.base, dest);
}
void andPtr(RegisterID src, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.andq_rr(src, dest);
#else
and32(src, dest);
#endif
}
void andPtr(Imm32 imm, RegisterID srcDest)
{
#if PLATFORM(X86_64)
m_assembler.andq_ir(imm.m_value, srcDest);
#else
and32(imm, srcDest);
#endif
}
void and32(RegisterID src, RegisterID dest)
{
m_assembler.andl_rr(src, dest);
}
void and32(Imm32 imm, RegisterID dest)
{
m_assembler.andl_ir(imm.m_value, dest);
}
void lshift32(Imm32 imm, RegisterID dest)
{
m_assembler.shll_i8r(imm.m_value, dest);
}
void lshift32(RegisterID shift_amount, RegisterID dest)
{
// On x86 we can only shift by ecx; if asked to shift by another register we'll
// need rejig the shift amount into ecx first, and restore the registers afterwards.
if (shift_amount != X86::ecx) {
swap(shift_amount, X86::ecx);
// E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx"
if (dest == shift_amount)
m_assembler.shll_CLr(X86::ecx);
// E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx"
else if (dest == X86::ecx)
m_assembler.shll_CLr(shift_amount);
// E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx"
else
m_assembler.shll_CLr(dest);
swap(shift_amount, X86::ecx);
} else
m_assembler.shll_CLr(dest);
}
// Take the value from dividend, divide it by divisor, and put the remainder in remainder.
// For now, this operation has specific register requirements, and the three register must
// be unique. It is unfortunate to expose this in the MacroAssembler interface, however
// given the complexity to fix, the fact that it is not uncommmon for processors to have
// specific register requirements on this operation (e.g. Mips result in 'hi'), or to not
// support a hardware divide at all, it may not be
void mod32(RegisterID divisor, RegisterID dividend, RegisterID remainder)
{
#ifdef NDEBUG
#pragma unused(dividend,remainder)
#else
ASSERT((dividend == X86::eax) && (remainder == X86::edx));
ASSERT((dividend != divisor) && (remainder != divisor));
#endif
m_assembler.cdq();
m_assembler.idivl_r(divisor);
}
void mul32(Imm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.imull_i32r(src, imm.m_value, dest);
}
void not32(RegisterID srcDest)
{
m_assembler.notl_r(srcDest);
}
void orPtr(RegisterID src, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.orq_rr(src, dest);
#else
or32(src, dest);
#endif
}
void orPtr(ImmPtr imm, RegisterID dest)
{
#if PLATFORM(X86_64)
move(imm, scratchRegister);
m_assembler.orq_rr(scratchRegister, dest);
#else
or32(Imm32(imm), dest);
#endif
}
void orPtr(Imm32 imm, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.orq_ir(imm.m_value, dest);
#else
or32(imm, dest);
#endif
}
void or32(RegisterID src, RegisterID dest)
{
m_assembler.orl_rr(src, dest);
}
void or32(Imm32 imm, RegisterID dest)
{
m_assembler.orl_ir(imm.m_value, dest);
}
void rshiftPtr(RegisterID shift_amount, RegisterID dest)
{
#if PLATFORM(X86_64)
// On x86 we can only shift by ecx; if asked to shift by another register we'll
// need rejig the shift amount into ecx first, and restore the registers afterwards.
if (shift_amount != X86::ecx) {
swap(shift_amount, X86::ecx);
// E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx"
if (dest == shift_amount)
m_assembler.sarq_CLr(X86::ecx);
// E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx"
else if (dest == X86::ecx)
m_assembler.sarq_CLr(shift_amount);
// E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx"
else
m_assembler.sarq_CLr(dest);
swap(shift_amount, X86::ecx);
} else
m_assembler.sarq_CLr(dest);
#else
rshift32(shift_amount, dest);
#endif
}
void rshiftPtr(Imm32 imm, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.sarq_i8r(imm.m_value, dest);
#else
rshift32(imm, dest);
#endif
}
void rshift32(RegisterID shift_amount, RegisterID dest)
{
// On x86 we can only shift by ecx; if asked to shift by another register we'll
// need rejig the shift amount into ecx first, and restore the registers afterwards.
if (shift_amount != X86::ecx) {
swap(shift_amount, X86::ecx);
// E.g. transform "shll %eax, %eax" -> "xchgl %eax, %ecx; shll %ecx, %ecx; xchgl %eax, %ecx"
if (dest == shift_amount)
m_assembler.sarl_CLr(X86::ecx);
// E.g. transform "shll %eax, %ecx" -> "xchgl %eax, %ecx; shll %ecx, %eax; xchgl %eax, %ecx"
else if (dest == X86::ecx)
m_assembler.sarl_CLr(shift_amount);
// E.g. transform "shll %eax, %ebx" -> "xchgl %eax, %ecx; shll %ecx, %ebx; xchgl %eax, %ecx"
else
m_assembler.sarl_CLr(dest);
swap(shift_amount, X86::ecx);
} else
m_assembler.sarl_CLr(dest);
}
void rshift32(Imm32 imm, RegisterID dest)
{
m_assembler.sarl_i8r(imm.m_value, dest);
}
void subPtr(Imm32 imm, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.subq_ir(imm.m_value, dest);
#else
sub32(imm, dest);
#endif
}
void sub32(Imm32 imm, RegisterID dest)
{
m_assembler.subl_ir(imm.m_value, dest);
}
void sub32(Imm32 imm, Address address)
{
m_assembler.subl_im(imm.m_value, address.offset, address.base);
}
void sub32(Imm32 imm, AbsoluteAddress address)
{
#if PLATFORM(X86_64)
move(ImmPtr(address.m_ptr), scratchRegister);
sub32(imm, Address(scratchRegister));
#else
m_assembler.subl_im(imm.m_value, address.m_ptr);
#endif
}
void sub32(Address src, RegisterID dest)
{
m_assembler.subl_mr(src.offset, src.base, dest);
}
void xorPtr(RegisterID src, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.xorq_rr(src, dest);
#else
xor32(src, dest);
#endif
}
void xorPtr(Imm32 imm, RegisterID srcDest)
{
#if PLATFORM(X86_64)
m_assembler.xorq_ir(imm.m_value, srcDest);
#else
xor32(imm, srcDest);
#endif
}
void xor32(RegisterID src, RegisterID dest)
{
m_assembler.xorl_rr(src, dest);
}
void xor32(Imm32 imm, RegisterID srcDest)
{
m_assembler.xorl_ir(imm.m_value, srcDest);
}
// Memory access operations:
//
// Loads are of the form load(address, destination) and stores of the form
// store(source, address). The source for a store may be an Imm32. Address
// operand objects to loads and store will be implicitly constructed if a
// register is passed.
void loadPtr(ImplicitAddress address, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.movq_mr(address.offset, address.base, dest);
#else
load32(address, dest);
#endif
}
DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.movq_mr_disp32(address.offset, address.base, dest);
return DataLabel32(this);
#else
m_assembler.movl_mr_disp32(address.offset, address.base, dest);
return DataLabel32(this);
#endif
}
void loadPtr(BaseIndex address, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.movq_mr(address.offset, address.base, address.index, address.scale, dest);
#else
load32(address, dest);
#endif
}
void loadPtr(void* address, RegisterID dest)
{
#if PLATFORM(X86_64)
if (dest == X86::eax)
m_assembler.movq_mEAX(address);
else {
move(X86::eax, dest);
m_assembler.movq_mEAX(address);
swap(X86::eax, dest);
}
#else
load32(address, dest);
#endif
}
void load32(ImplicitAddress address, RegisterID dest)
{
m_assembler.movl_mr(address.offset, address.base, dest);
}
void load32(BaseIndex address, RegisterID dest)
{
m_assembler.movl_mr(address.offset, address.base, address.index, address.scale, dest);
}
void load32(void* address, RegisterID dest)
{
#if PLATFORM(X86_64)
if (dest == X86::eax)
m_assembler.movl_mEAX(address);
else {
move(X86::eax, dest);
m_assembler.movl_mEAX(address);
swap(X86::eax, dest);
}
#else
m_assembler.movl_mr(address, dest);
#endif
}
void load16(BaseIndex address, RegisterID dest)
{
m_assembler.movzwl_mr(address.offset, address.base, address.index, address.scale, dest);
}
void storePtr(RegisterID src, ImplicitAddress address)
{
#if PLATFORM(X86_64)
m_assembler.movq_rm(src, address.offset, address.base);
#else
store32(src, address);
#endif
}
DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address)
{
#if PLATFORM(X86_64)
m_assembler.movq_rm_disp32(src, address.offset, address.base);
return DataLabel32(this);
#else
m_assembler.movl_rm_disp32(src, address.offset, address.base);
return DataLabel32(this);
#endif
}
void storePtr(RegisterID src, BaseIndex address)
{
#if PLATFORM(X86_64)
m_assembler.movq_rm(src, address.offset, address.base, address.index, address.scale);
#else
store32(src, address);
#endif
}
void storePtr(ImmPtr imm, ImplicitAddress address)
{
#if PLATFORM(X86_64)
move(imm, scratchRegister);
storePtr(scratchRegister, address);
#else
m_assembler.movl_i32m(imm.asIntptr(), address.offset, address.base);
#endif
}
DataLabelPtr storePtrWithPatch(Address address)
{
#if PLATFORM(X86_64)
m_assembler.movq_i64r(0, scratchRegister);
DataLabelPtr label(this);
storePtr(scratchRegister, address);
return label;
#else
m_assembler.movl_i32m(0, address.offset, address.base);
return DataLabelPtr(this);
#endif
}
void store32(RegisterID src, ImplicitAddress address)
{
m_assembler.movl_rm(src, address.offset, address.base);
}
void store32(RegisterID src, BaseIndex address)
{
m_assembler.movl_rm(src, address.offset, address.base, address.index, address.scale);
}
void store32(Imm32 imm, ImplicitAddress address)
{
m_assembler.movl_i32m(imm.m_value, address.offset, address.base);
}
void store32(Imm32 imm, void* address)
{
#if PLATFORM(X86_64)
move(X86::eax, scratchRegister);
move(imm, X86::eax);
m_assembler.movl_EAXm(address);
move(scratchRegister, X86::eax);
#else
m_assembler.movl_i32m(imm.m_value, address);
#endif
}
// Stack manipulation operations:
//
// The ABI is assumed to provide a stack abstraction to memory,
// containing machine word sized units of data. Push and pop
// operations add and remove a single register sized unit of data
// to or from the stack. Peek and poke operations read or write
// values on the stack, without moving the current stack position.
void pop(RegisterID dest)
{
m_assembler.pop_r(dest);
}
void push(RegisterID src)
{
m_assembler.push_r(src);
}
void push(Address address)
{
m_assembler.push_m(address.offset, address.base);
}
void push(Imm32 imm)
{
m_assembler.push_i32(imm.m_value);
}
void pop()
{
addPtr(Imm32(sizeof(void*)), X86::esp);
}
void peek(RegisterID dest, int index = 0)
{
loadPtr(Address(X86::esp, (index * sizeof(void *))), dest);
}
void poke(RegisterID src, int index = 0)
{
storePtr(src, Address(X86::esp, (index * sizeof(void *))));
}
void poke(Imm32 value, int index = 0)
{
store32(value, Address(X86::esp, (index * sizeof(void *))));
}
void poke(ImmPtr imm, int index = 0)
{
storePtr(imm, Address(X86::esp, (index * sizeof(void *))));
}
// Register move operations:
//
// Move values in registers.
void move(Imm32 imm, RegisterID dest)
{
// Note: on 64-bit the Imm32 value is zero extended into the register, it
// may be useful to have a separate version that sign extends the value?
if (!imm.m_value)
m_assembler.xorl_rr(dest, dest);
else
m_assembler.movl_i32r(imm.m_value, dest);
}
void move(RegisterID src, RegisterID dest)
{
// Note: on 64-bit this is is a full register move; perhaps it would be
// useful to have separate move32 & movePtr, with move32 zero extending?
#if PLATFORM(X86_64)
m_assembler.movq_rr(src, dest);
#else
m_assembler.movl_rr(src, dest);
#endif
}
void move(ImmPtr imm, RegisterID dest)
{
#if PLATFORM(X86_64)
if (CAN_SIGN_EXTEND_U32_64(imm.asIntptr()))
m_assembler.movl_i32r(static_cast<int32_t>(imm.asIntptr()), dest);
else
m_assembler.movq_i64r(imm.asIntptr(), dest);
#else
m_assembler.movl_i32r(imm.asIntptr(), dest);
#endif
}
void swap(RegisterID reg1, RegisterID reg2)
{
#if PLATFORM(X86_64)
m_assembler.xchgq_rr(reg1, reg2);
#else
m_assembler.xchgl_rr(reg1, reg2);
#endif
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.movsxd_rr(src, dest);
#else
if (src != dest)
move(src, dest);
#endif
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
#if PLATFORM(X86_64)
m_assembler.movl_rr(src, dest);
#else
if (src != dest)
move(src, dest);
#endif
}
// Forwards / external control flow operations:
//
// This set of jump and conditional branch operations return a Jump
// object which may linked at a later point, allow forwards jump,
// or jumps that will require external linkage (after the code has been
// relocated).
//
// For branches, signed <, >, <= and >= are denoted as l, g, le, and ge
// respecitvely, for unsigned comparisons the names b, a, be, and ae are
// used (representing the names 'below' and 'above').
//
// Operands to the comparision are provided in the expected order, e.g.
// jle32(reg1, Imm32(5)) will branch if the value held in reg1, when
// treated as a signed 32bit value, is less than or equal to 5.
//
// jz and jnz test whether the first operand is equal to zero, and take
// an optional second operand of a mask under which to perform the test.
private:
void compareImm32ForBranch(RegisterID left, int32_t right)
{
m_assembler.cmpl_ir(right, left);
}
void compareImm32ForBranchEquality(RegisterID reg, int32_t imm)
{
if (!imm)
m_assembler.testl_rr(reg, reg);
else
m_assembler.cmpl_ir(imm, reg);
}
void compareImm32ForBranchEquality(Address address, int32_t imm)
{
m_assembler.cmpl_im(imm, address.offset, address.base);
}
void testImm32(RegisterID reg, Imm32 mask)
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testl_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testl_i32r(mask.m_value, reg);
}
void testImm32(Address address, Imm32 mask)
{
if (mask.m_value == -1)
m_assembler.cmpl_im(0, address.offset, address.base);
else
m_assembler.testl_i32m(mask.m_value, address.offset, address.base);
}
void testImm32(BaseIndex address, Imm32 mask)
{
if (mask.m_value == -1)
m_assembler.cmpl_im(0, address.offset, address.base, address.index, address.scale);
else
m_assembler.testl_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
}
#if PLATFORM(X86_64)
void compareImm64ForBranch(RegisterID left, int32_t right)
{
m_assembler.cmpq_ir(right, left);
}
void compareImm64ForBranchEquality(RegisterID reg, int32_t imm)
{
if (!imm)
m_assembler.testq_rr(reg, reg);
else
m_assembler.cmpq_ir(imm, reg);
}
void testImm64(RegisterID reg, Imm32 mask)
{
// if we are only interested in the low seven bits, this can be tested with a testb
if (mask.m_value == -1)
m_assembler.testq_rr(reg, reg);
else if ((mask.m_value & ~0x7f) == 0)
m_assembler.testb_i8r(mask.m_value, reg);
else
m_assembler.testq_i32r(mask.m_value, reg);
}
void testImm64(Address address, Imm32 mask)
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base);
}
void testImm64(BaseIndex address, Imm32 mask)
{
if (mask.m_value == -1)
m_assembler.cmpq_im(0, address.offset, address.base, address.index, address.scale);
else
m_assembler.testq_i32m(mask.m_value, address.offset, address.base, address.index, address.scale);
}
#endif
public:
Jump ja32(RegisterID left, Imm32 right)
{
compareImm32ForBranch(left, right.m_value);
return Jump(m_assembler.ja());
}
Jump jaePtr(RegisterID left, RegisterID right)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jae());
#else
return jae32(left, right);
#endif
}
Jump jaePtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranch(reg, imm);
return Jump(m_assembler.jae());
} else {
move(ptr, scratchRegister);
return jaePtr(reg, scratchRegister);
}
#else
return jae32(reg, Imm32(ptr));
#endif
}
Jump jae32(RegisterID left, RegisterID right)
{
m_assembler.cmpl_rr(right, left);
return Jump(m_assembler.jae());
}
Jump jae32(RegisterID left, Imm32 right)
{
compareImm32ForBranch(left, right.m_value);
return Jump(m_assembler.jae());
}
Jump jae32(RegisterID left, Address right)
{
m_assembler.cmpl_mr(right.offset, right.base, left);
return Jump(m_assembler.jae());
}
Jump jae32(Address left, RegisterID right)
{
m_assembler.cmpl_rm(right, left.offset, left.base);
return Jump(m_assembler.jae());
}
Jump jbPtr(RegisterID left, RegisterID right)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jb());
#else
return jb32(left, right);
#endif
}
Jump jbPtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranch(reg, imm);
return Jump(m_assembler.jb());
} else {
move(ptr, scratchRegister);
return jbPtr(reg, scratchRegister);
}
#else
return jb32(reg, Imm32(ptr));
#endif
}
Jump jb32(RegisterID left, RegisterID right)
{
m_assembler.cmpl_rr(right, left);
return Jump(m_assembler.jb());
}
Jump jb32(RegisterID left, Imm32 right)
{
compareImm32ForBranch(left, right.m_value);
return Jump(m_assembler.jb());
}
Jump jb32(RegisterID left, Address right)
{
m_assembler.cmpl_mr(right.offset, right.base, left);
return Jump(m_assembler.jb());
}
Jump jePtr(RegisterID op1, RegisterID op2)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(op1, op2);
return Jump(m_assembler.je());
#else
return je32(op1, op2);
#endif
}
Jump jePtr(RegisterID reg, Address address)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rm(reg, address.offset, address.base);
#else
m_assembler.cmpl_rm(reg, address.offset, address.base);
#endif
return Jump(m_assembler.je());
}
Jump jePtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranchEquality(reg, imm);
return Jump(m_assembler.je());
} else {
move(ptr, scratchRegister);
return jePtr(scratchRegister, reg);
}
#else
return je32(reg, Imm32(ptr));
#endif
}
Jump jePtr(Address address, ImmPtr imm)
{
#if PLATFORM(X86_64)
move(imm, scratchRegister);
return jePtr(scratchRegister, address);
#else
return je32(address, Imm32(imm));
#endif
}
Jump je32(RegisterID op1, RegisterID op2)
{
m_assembler.cmpl_rr(op1, op2);
return Jump(m_assembler.je());
}
Jump je32(Address op1, RegisterID op2)
{
m_assembler.cmpl_mr(op1.offset, op1.base, op2);
return Jump(m_assembler.je());
}
Jump je32(RegisterID reg, Imm32 imm)
{
compareImm32ForBranchEquality(reg, imm.m_value);
return Jump(m_assembler.je());
}
Jump je32(Address address, Imm32 imm)
{
compareImm32ForBranchEquality(address, imm.m_value);
return Jump(m_assembler.je());
}
Jump je16(RegisterID op1, BaseIndex op2)
{
m_assembler.cmpw_rm(op1, op2.offset, op2.base, op2.index, op2.scale);
return Jump(m_assembler.je());
}
Jump jg32(RegisterID left, RegisterID right)
{
m_assembler.cmpl_rr(right, left);
return Jump(m_assembler.jg());
}
Jump jg32(RegisterID reg, Address address)
{
m_assembler.cmpl_mr(address.offset, address.base, reg);
return Jump(m_assembler.jg());
}
Jump jgePtr(RegisterID left, RegisterID right)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jge());
#else
return jge32(left, right);
#endif
}
Jump jgePtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranch(reg, imm);
return Jump(m_assembler.jge());
} else {
move(ptr, scratchRegister);
return jgePtr(reg, scratchRegister);
}
#else
return jge32(reg, Imm32(ptr));
#endif
}
Jump jge32(RegisterID left, RegisterID right)
{
m_assembler.cmpl_rr(right, left);
return Jump(m_assembler.jge());
}
Jump jge32(RegisterID left, Imm32 right)
{
compareImm32ForBranch(left, right.m_value);
return Jump(m_assembler.jge());
}
Jump jlPtr(RegisterID left, RegisterID right)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jl());
#else
return jl32(left, right);
#endif
}
Jump jlPtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranch(reg, imm);
return Jump(m_assembler.jl());
} else {
move(ptr, scratchRegister);
return jlPtr(reg, scratchRegister);
}
#else
return jl32(reg, Imm32(ptr));
#endif
}
Jump jl32(RegisterID left, RegisterID right)
{
m_assembler.cmpl_rr(right, left);
return Jump(m_assembler.jl());
}
Jump jl32(RegisterID left, Imm32 right)
{
compareImm32ForBranch(left, right.m_value);
return Jump(m_assembler.jl());
}
Jump jlePtr(RegisterID left, RegisterID right)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(right, left);
return Jump(m_assembler.jle());
#else
return jle32(left, right);
#endif
}
Jump jlePtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranch(reg, imm);
return Jump(m_assembler.jle());
} else {
move(ptr, scratchRegister);
return jlePtr(reg, scratchRegister);
}
#else
return jle32(reg, Imm32(ptr));
#endif
}
Jump jle32(RegisterID left, RegisterID right)
{
m_assembler.cmpl_rr(right, left);
return Jump(m_assembler.jle());
}
Jump jle32(RegisterID left, Imm32 right)
{
compareImm32ForBranch(left, right.m_value);
return Jump(m_assembler.jle());
}
Jump jnePtr(RegisterID op1, RegisterID op2)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rr(op1, op2);
return Jump(m_assembler.jne());
#else
return jne32(op1, op2);
#endif
}
Jump jnePtr(RegisterID reg, Address address)
{
#if PLATFORM(X86_64)
m_assembler.cmpq_rm(reg, address.offset, address.base);
#else
m_assembler.cmpl_rm(reg, address.offset, address.base);
#endif
return Jump(m_assembler.jne());
}
Jump jnePtr(RegisterID reg, AbsoluteAddress address)
{
#if PLATFORM(X86_64)
move(ImmPtr(address.m_ptr), scratchRegister);
return jnePtr(reg, Address(scratchRegister));
#else
m_assembler.cmpl_rm(reg, address.m_ptr);
return Jump(m_assembler.jne());
#endif
}
Jump jnePtr(RegisterID reg, ImmPtr ptr)
{
#if PLATFORM(X86_64)
intptr_t imm = ptr.asIntptr();
if (CAN_SIGN_EXTEND_32_64(imm)) {
compareImm64ForBranchEquality(reg, imm);
return Jump(m_assembler.jne());
} else {
move(ptr, scratchRegister);
return jnePtr(scratchRegister, reg);
}
#else
return jne32(reg, Imm32(ptr));
#endif
}
Jump jnePtr(Address address, ImmPtr imm)
{
#if PLATFORM(X86_64)
move(imm, scratchRegister);
return jnePtr(scratchRegister, address);
#else
return jne32(address, Imm32(imm));
#endif
}
#if !PLATFORM(X86_64)
Jump jnePtr(AbsoluteAddress address, ImmPtr imm)
{
m_assembler.cmpl_im(imm.asIntptr(), address.m_ptr);
return Jump(m_assembler.jne());
}
#endif
Jump jnePtrWithPatch(RegisterID reg, DataLabelPtr& dataLabel, ImmPtr initialValue = ImmPtr(0))
{
#if PLATFORM(X86_64)
m_assembler.movq_i64r(initialValue.asIntptr(), scratchRegister);
dataLabel = DataLabelPtr(this);
return jnePtr(scratchRegister, reg);
#else
m_assembler.cmpl_ir_force32(initialValue.asIntptr(), reg);
dataLabel = DataLabelPtr(this);
return Jump(m_assembler.jne());
#endif
}
Jump jnePtrWithPatch(Address address, DataLabelPtr& dataLabel, ImmPtr initialValue = ImmPtr(0))
{
#if PLATFORM(X86_64)
m_assembler.movq_i64r(initialValue.asIntptr(), scratchRegister);
dataLabel = DataLabelPtr(this);
return jnePtr(scratchRegister, address);
#else
m_assembler.cmpl_im_force32(initialValue.asIntptr(), address.offset, address.base);
dataLabel = DataLabelPtr(this);
return Jump(m_assembler.jne());
#endif
}
Jump jne32(RegisterID op1, RegisterID op2)
{
m_assembler.cmpl_rr(op1, op2);
return Jump(m_assembler.jne());
}
Jump jne32(RegisterID reg, Imm32 imm)
{
compareImm32ForBranchEquality(reg, imm.m_value);
return Jump(m_assembler.jne());
}
Jump jne32(Address address, Imm32 imm)
{
compareImm32ForBranchEquality(address, imm.m_value);
return Jump(m_assembler.jne());
}
Jump jne32(Address address, RegisterID reg)
{
m_assembler.cmpl_rm(reg, address.offset, address.base);
return Jump(m_assembler.jne());
}
Jump jnzPtr(RegisterID reg, Imm32 mask = Imm32(-1))
{
#if PLATFORM(X86_64)
testImm64(reg, mask);
return Jump(m_assembler.jne());
#else
return jnz32(reg, mask);
#endif
}
Jump jnzPtr(RegisterID reg, ImmPtr mask)
{
#if PLATFORM(X86_64)
move(mask, scratchRegister);
m_assembler.testq_rr(scratchRegister, reg);
return Jump(m_assembler.jne());
#else
return jnz32(reg, Imm32(mask));
#endif
}
Jump jnzPtr(Address address, Imm32 mask = Imm32(-1))
{
#if PLATFORM(X86_64)
testImm64(address, mask);
return Jump(m_assembler.jne());
#else
return jnz32(address, mask);
#endif
}
Jump jnz32(RegisterID reg, Imm32 mask = Imm32(-1))
{
testImm32(reg, mask);
return Jump(m_assembler.jne());
}
Jump jnz32(Address address, Imm32 mask = Imm32(-1))
{
testImm32(address, mask);
return Jump(m_assembler.jne());
}
Jump jzPtr(RegisterID reg, Imm32 mask = Imm32(-1))
{
#if PLATFORM(X86_64)
testImm64(reg, mask);
return Jump(m_assembler.je());
#else
return jz32(reg, mask);
#endif
}
Jump jzPtr(RegisterID reg, ImmPtr mask)
{
#if PLATFORM(X86_64)
move(mask, scratchRegister);
m_assembler.testq_rr(scratchRegister, reg);
return Jump(m_assembler.je());
#else
return jz32(reg, Imm32(mask));
#endif
}
Jump jzPtr(Address address, Imm32 mask = Imm32(-1))
{
#if PLATFORM(X86_64)
testImm64(address, mask);
return Jump(m_assembler.je());
#else
return jz32(address, mask);
#endif
}
Jump jzPtr(BaseIndex address, Imm32 mask = Imm32(-1))
{
#if PLATFORM(X86_64)
testImm64(address, mask);
return Jump(m_assembler.je());
#else
return jz32(address, mask);
#endif
}
Jump jz32(RegisterID reg, Imm32 mask = Imm32(-1))
{
testImm32(reg, mask);
return Jump(m_assembler.je());
}
Jump jz32(Address address, Imm32 mask = Imm32(-1))
{
testImm32(address, mask);
return Jump(m_assembler.je());
}
Jump jz32(BaseIndex address, Imm32 mask = Imm32(-1))
{
testImm32(address, mask);
return Jump(m_assembler.je());
}
Jump jump()
{
return Jump(m_assembler.jmp());
}
// Backwards, local control flow operations:
//
// These operations provide a shorter notation for local
// backwards branches, which may be both more convenient
// for the user, and for the programmer, and for the
// assembler (allowing shorter values to be used in
// relative offsets).
//
// The code sequence:
//
// Label topOfLoop(this);
// // ...
// jne32(reg1, reg2, topOfLoop);
//
// Is equivalent to the longer, potentially less efficient form:
//
// Label topOfLoop(this);
// // ...
// jne32(reg1, reg2).linkTo(topOfLoop);
void jae32(RegisterID left, Address right, Label target)
{
jae32(left, right).linkTo(target, this);
}
void je32(RegisterID op1, Imm32 imm, Label target)
{
je32(op1, imm).linkTo(target, this);
}
void je16(RegisterID op1, BaseIndex op2, Label target)
{
je16(op1, op2).linkTo(target, this);
}
void jl32(RegisterID left, Imm32 right, Label target)
{
jl32(left, right).linkTo(target, this);
}
void jle32(RegisterID left, RegisterID right, Label target)
{
jle32(left, right).linkTo(target, this);
}
void jnePtr(RegisterID op1, ImmPtr imm, Label target)
{
jnePtr(op1, imm).linkTo(target, this);
}
void jne32(RegisterID op1, RegisterID op2, Label target)
{
jne32(op1, op2).linkTo(target, this);
}
void jne32(RegisterID op1, Imm32 imm, Label target)
{
jne32(op1, imm).linkTo(target, this);
}
void jzPtr(RegisterID reg, Label target)
{
jzPtr(reg).linkTo(target, this);
}
void jump(Label target)
{
m_assembler.link(m_assembler.jmp(), target.m_label);
}
void jump(RegisterID target)
{
m_assembler.jmp_r(target);
}
// Address is a memory location containing the address to jump to
void jump(Address address)
{
m_assembler.jmp_m(address.offset, address.base);
}
// Arithmetic control flow operations:
//
// This set of conditional branch operations branch based
// on the result of an arithmetic operation. The operation
// is performed as normal, storing the result.
//
// * jz operations branch if the result is zero.
// * jo operations branch if the (signed) arithmetic
// operation caused an overflow to occur.
Jump jnzSubPtr(Imm32 imm, RegisterID dest)
{
subPtr(imm, dest);
return Jump(m_assembler.jne());
}
Jump jnzSub32(Imm32 imm, RegisterID dest)
{
sub32(imm, dest);
return Jump(m_assembler.jne());
}
Jump joAddPtr(RegisterID src, RegisterID dest)
{
addPtr(src, dest);
return Jump(m_assembler.jo());
}
Jump joAdd32(RegisterID src, RegisterID dest)
{
add32(src, dest);
return Jump(m_assembler.jo());
}
Jump joAdd32(Imm32 imm, RegisterID dest)
{
add32(imm, dest);
return Jump(m_assembler.jo());
}
Jump joMul32(Imm32 imm, RegisterID src, RegisterID dest)
{
mul32(imm, src, dest);
return Jump(m_assembler.jo());
}
Jump joSub32(Imm32 imm, RegisterID dest)
{
sub32(imm, dest);
return Jump(m_assembler.jo());
}
Jump jzSubPtr(Imm32 imm, RegisterID dest)
{
subPtr(imm, dest);
return Jump(m_assembler.je());
}
Jump jzSub32(Imm32 imm, RegisterID dest)
{
sub32(imm, dest);
return Jump(m_assembler.je());
}
// Miscellaneous operations:
void breakpoint()
{
m_assembler.int3();
}
Jump call()
{
return Jump(m_assembler.call());
}
// FIXME: why does this return a Jump object? - it can't be linked.
// This may be to get a reference to the return address of the call.
//
// This should probably be handled by a separate label type to a regular
// jump. Todo: add a CallLabel type, for the regular call - can be linked
// like a jump (possibly a subclass of jump?, or possibly casts to a Jump).
// Also add a CallReturnLabel type for this to return (just a more JmpDsty
// form of label, can get the void* after the code has been linked, but can't
// try to link it like a Jump object), and let the CallLabel be cast into a
// CallReturnLabel.
Jump call(RegisterID target)
{
return Jump(m_assembler.call(target));
}
Label label()
{
return Label(this);
}
Label align()
{
m_assembler.align(16);
return Label(this);
}
ptrdiff_t differenceBetween(Label from, Jump to)
{
return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
}
ptrdiff_t differenceBetween(Label from, Label to)
{
return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(Label from, DataLabelPtr to)
{
return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(Label from, DataLabel32 to)
{
return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(DataLabelPtr from, Jump to)
{
return X86Assembler::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
}
void ret()
{
m_assembler.ret();
}
void sete32(RegisterID src, RegisterID srcDest)
{
m_assembler.cmpl_rr(srcDest, src);
m_assembler.sete_r(srcDest);
m_assembler.movzbl_rr(srcDest, srcDest);
}
void sete32(Imm32 imm, RegisterID srcDest)
{
compareImm32ForBranchEquality(srcDest, imm.m_value);
m_assembler.sete_r(srcDest);
m_assembler.movzbl_rr(srcDest, srcDest);
}
void setne32(RegisterID src, RegisterID srcDest)
{
m_assembler.cmpl_rr(srcDest, src);
m_assembler.setne_r(srcDest);
m_assembler.movzbl_rr(srcDest, srcDest);
}
void setne32(Imm32 imm, RegisterID srcDest)
{
compareImm32ForBranchEquality(srcDest, imm.m_value);
m_assembler.setne_r(srcDest);
m_assembler.movzbl_rr(srcDest, srcDest);
}
// FIXME:
// The mask should be optional... paerhaps the argument order should be
// dest-src, operations always have a dest? ... possibly not true, considering
// asm ops like test, or pseudo ops like pop().
void setnz32(Address address, Imm32 mask, RegisterID dest)
{
testImm32(address, mask);
m_assembler.setnz_r(dest);
m_assembler.movzbl_rr(dest, dest);
}
void setz32(Address address, Imm32 mask, RegisterID dest)
{
testImm32(address, mask);
m_assembler.setz_r(dest);
m_assembler.movzbl_rr(dest, dest);
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // MacroAssembler_h
|