summaryrefslogtreecommitdiffstats
path: root/funtools/doc/pod
diff options
context:
space:
mode:
authorWilliam Joye <wjoye@cfa.harvard.edu>2016-10-27 17:38:41 (GMT)
committerWilliam Joye <wjoye@cfa.harvard.edu>2016-10-27 17:38:41 (GMT)
commit5b44fb0d6530c4ff66a446afb69933aa8ffd014f (patch)
treee059f66d1f612e21fe9d83f9620c8715530353ec /funtools/doc/pod
parentda2e3d212171bbe64c1af39114fd067308656990 (diff)
parent23c7930d27fe11c4655e1291a07a821dbbaba78d (diff)
downloadblt-5b44fb0d6530c4ff66a446afb69933aa8ffd014f.zip
blt-5b44fb0d6530c4ff66a446afb69933aa8ffd014f.tar.gz
blt-5b44fb0d6530c4ff66a446afb69933aa8ffd014f.tar.bz2
Merge commit '23c7930d27fe11c4655e1291a07a821dbbaba78d' as 'funtools'
Diffstat (limited to 'funtools/doc/pod')
-rw-r--r--funtools/doc/pod/funcalc.pod572
-rw-r--r--funtools/doc/pod/funcen.pod145
-rw-r--r--funtools/doc/pod/funclose.pod53
-rw-r--r--funtools/doc/pod/funcnts.pod657
-rw-r--r--funtools/doc/pod/funcolumnactivate.pod239
-rw-r--r--funtools/doc/pod/funcolumnlookup.pod188
-rw-r--r--funtools/doc/pod/funcolumnselect.pod686
-rw-r--r--funtools/doc/pod/funcombine.pod157
-rw-r--r--funtools/doc/pod/funcone.pod191
-rw-r--r--funtools/doc/pod/fundisp.pod484
-rw-r--r--funtools/doc/pod/funds9.pod113
-rw-r--r--funtools/doc/pod/funenv.pod349
-rw-r--r--funtools/doc/pod/funfiles.pod1019
-rw-r--r--funtools/doc/pod/funfilters.pod521
-rw-r--r--funtools/doc/pod/funflush.pod107
-rw-r--r--funtools/doc/pod/funhead.pod218
-rw-r--r--funtools/doc/pod/funhist.pod252
-rw-r--r--funtools/doc/pod/funidx.pod224
-rw-r--r--funtools/doc/pod/funimage.pod314
-rw-r--r--funtools/doc/pod/funimageget.pod237
-rw-r--r--funtools/doc/pod/funimageput.pod145
-rw-r--r--funtools/doc/pod/funimagerowget.pod137
-rw-r--r--funtools/doc/pod/funimagerowput.pod122
-rw-r--r--funtools/doc/pod/funindex.pod83
-rw-r--r--funtools/doc/pod/funindexes.pod215
-rw-r--r--funtools/doc/pod/funinfoget.pod226
-rw-r--r--funtools/doc/pod/funinfoput.pod180
-rw-r--r--funtools/doc/pod/funjoin.pod233
-rw-r--r--funtools/doc/pod/funlib.pod542
-rw-r--r--funtools/doc/pod/funmerge.pod122
-rw-r--r--funtools/doc/pod/funopen.pod166
-rw-r--r--funtools/doc/pod/funparamget.pod153
-rw-r--r--funtools/doc/pod/funparamput.pod147
-rw-r--r--funtools/doc/pod/funref.pod170
-rw-r--r--funtools/doc/pod/funregions.pod571
-rw-r--r--funtools/doc/pod/funsky.pod260
-rw-r--r--funtools/doc/pod/funtable.pod296
-rw-r--r--funtools/doc/pod/funtablerowget.pod111
-rw-r--r--funtools/doc/pod/funtablerowput.pod200
-rw-r--r--funtools/doc/pod/funtbl.pod137
-rw-r--r--funtools/doc/pod/funtext.pod718
-rw-r--r--funtools/doc/pod/funtools.pod542
-rw-r--r--funtools/doc/pod/funview.pod407
-rw-r--r--funtools/doc/pod/funvu.pod404
-rw-r--r--funtools/doc/pod/regalgebra.pod286
-rw-r--r--funtools/doc/pod/regbounds.pod203
-rw-r--r--funtools/doc/pod/regcoords.pod247
-rw-r--r--funtools/doc/pod/regdiff.pod99
-rw-r--r--funtools/doc/pod/reggeometry.pod1156
49 files changed, 15004 insertions, 0 deletions
diff --git a/funtools/doc/pod/funcalc.pod b/funtools/doc/pod/funcalc.pod
new file mode 100644
index 0000000..f63cfc8
--- /dev/null
+++ b/funtools/doc/pod/funcalc.pod
@@ -0,0 +1,572 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funcalc - Funtools calculator (for binary tables)>
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funcalc [-n] [-a argstr] [-e expr] [-f file] [-l link] [-p prog] <iname> [oname [columns]]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -a argstr # user arguments to pass to the compiled program
+ -e expr # funcalc expression
+ -f file # file containing funcalc expression
+ -l libs # libs to add to link command
+ -n # output generated code instead of compiling and executing
+ -p prog # generate named program, no execution
+ -u # die if any variable is undeclared (don't auto-declare)
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funcalc> is a calculator program that allows arbitrary
+expressions to be constructed, compiled, and executed on columns in a
+Funtools table (FITS binary table or raw event file). It works by
+integrating user-supplied expression(s) into a template C program,
+then compiling and executing the program. B<funcalc> expressions
+are C statements, although some important simplifications (such
+as automatic declaration of variables) are supported.
+
+
+B<funcalc> expressions can be specified in three ways: on the
+command line using the B<-e [expression]> switch, in a file using
+the B<-f [file]> switch, or from stdin (if neither B<-e> nor
+B<-f> is specified). Of course a file containing B<funcalc>
+expressions can be read from stdin.
+
+
+Each invocation of B<funcalc> requires an input Funtools table
+file to be specified as the first command line argument. The output
+Funtools table file is the second optional argument. It is needed only
+if an output FITS file is being created (i.e., in cases where the
+B<funcalc> expression only prints values, no output file is
+needed). If input and output file are both specified, a third optional
+argument can specify the list of columns to activate (using
+FunColumnActivate()). Note
+that B<funcalc> determines whether or not to generate code for
+writing an output file based on the presence or absence of an
+output file argument.
+
+
+A B<funcalc> expression executes on each row of a table and
+consists of one or more C statements that operate on the columns of
+that row (possibly using temporary variables). Within an expression,
+reference is made to a column of the B<current> row using the C
+struct syntax B<cur->[colname]>, e.g. cur->x, cur->pha, etc.
+Local scalar variables can be defined using C declarations at very the
+beginning of the expression, or else they can be defined automatically
+by B<funcalc> (to be of type double). Thus, for example, a swap of
+columns x and y in a table can be performed using either of the
+following equivalent B<funcalc> expressions:
+
+
+ double temp;
+ temp = cur->x;
+ cur->x = cur->y;
+ cur->y = temp;
+
+
+or:
+
+
+ temp = cur->x;
+ cur->x = cur->y;
+ cur->y = temp;
+
+
+When this expression is executed using a command such as:
+
+ funcalc -f swap.expr itest.ev otest.ev
+
+the resulting file will have values of the x and y columns swapped.
+
+
+By default, the data type of the variable for a column is the same as
+the data type of the column as stored in the file. This can be changed
+by appending ":[dtype]" to the first reference to that column. In the
+example above, to force x and y to be output as doubles, specify the
+type 'D' explicitly:
+
+ temp = cur->x:D;
+ cur->x = cur->y:D;
+ cur->y = temp;
+
+
+Data type specifiers follow standard FITS table syntax for defining
+columns using TFORM:
+
+
+=over 4
+
+
+
+
+=item *
+
+A: ASCII characters
+
+
+=item *
+
+B: unsigned 8-bit char
+
+
+=item *
+
+I: signed 16-bit int
+
+
+=item *
+
+U: unsigned 16-bit int (not standard FITS)
+
+
+=item *
+
+J: signed 32-bit int
+
+
+=item *
+
+V: unsigned 32-bit int (not standard FITS)
+
+
+=item *
+
+E: 32-bit float
+
+
+=item *
+
+D: 64-bit float
+
+
+=item *
+
+X: bits (treated as an array of chars)
+
+
+=back
+
+
+Note that only the first reference to a column should contain the
+explicit data type specifier.
+
+
+Of course, it is important to handle the data type of the columns
+correctly. One of the most frequent cause of error in B<funcalc>
+programming is the implicit use of the wrong data type for a column in
+expression. For example, the calculation:
+
+ dx = (cur->x - cur->y)/(cur->x + cur->y);
+
+usually needs to be performed using floating point arithmetic. In
+cases where the x and y columns are integers, this can be done by
+reading the columns as doubles using an explicit type specification:
+
+ dx = (cur->x:D - cur->y:D)/(cur->x + cur->y);
+
+
+Alternatively, it can be done using C type-casting in the expression:
+
+ dx = ((double)cur->x - (double)cur->y)/((double)cur->x + (double)cur->y);
+
+
+
+In addition to accessing columns in the current row, reference also
+can be made to the B<previous> row using B<prev->[colname]>,
+and to the B<next> row using B<next->[colname]>. Note that if
+B<prev->[colname]> is specified in the B<funcalc>
+expression, the very first row is not processed. If
+B<next->[colname]> is specified in the B<funcalc>
+expression, the very last row is not processed. In this way,
+B<prev> and B<next> are guaranteed always to point to valid
+rows. For example, to print out the values of the current x column
+and the previous y column, use the C fprintf function in a
+B<funcalc> expression:
+
+ fprintf(stdout, "%d %d\n", cur->x, prev->y);
+
+
+
+New columns can be specified using the same B<cur->[colname]>
+syntax by appending the column type (and optional tlmin/tlmax/binsiz
+specifiers), separated by colons. For example, cur->avg:D will define
+a new column of type double. Type specifiers are the same those
+used above to specify new data types for existing columns.
+
+
+For example, to create and output a new column that is the average value of the
+x and y columns, a new "avg" column can be defined:
+
+ cur->avg:D = (cur->x + cur->y)/2.0
+
+Note that the final ';' is not required for single-line expressions.
+
+
+As with FITS TFORM data type specification, the column data type
+specifier can be preceded by a numeric count to define an array, e.g.,
+"10I" means a vector of 10 short ints, "2E" means two single precision
+floats, etc. A new column only needs to be defined once in a
+B<funcalc> expression, after which it can be used without
+re-specifying the type. This includes reference to elements of a
+column array:
+
+
+ cur->avg[0]:2D = (cur->x + cur->y)/2.0;
+ cur->avg[1] = (cur->x - cur->y)/2.0;
+
+
+
+The 'X' (bits) data type is treated as a char array of dimension
+(numeric_count/8), i.e., 16X is processed as a 2-byte char array. Each
+8-bit array element is accessed separately:
+
+ cur->stat[0]:16X = 1;
+ cur->stat[1] = 2;
+
+Here, a 16-bit column is created with the MSB is set to 1 and the LSB set to 2.
+
+
+By default, all processed rows are written to the specified output
+file. If you want to skip writing certain rows, simply execute the C
+"continue" statement at the end of the B<funcalc> expression,
+since the writing of the row is performed immediately after the
+expression is executed. For example, to skip writing rows whose
+average is the same as the current x value:
+
+
+ cur->avg[0]:2D = (cur->x + cur->y)/2.0;
+ cur->avg[1] = (cur->x - cur->y)/2.0;
+ if( cur->avg[0] == cur->x )
+ continue;
+
+
+
+If no output file argument is specified on the B<funcalc> command
+line, no output file is opened and no rows are written. This is useful
+in expressions that simply print output results instead of generating
+a new file:
+
+ fpv = (cur->av3:D-cur->av1:D)/(cur->av1+cur->av2:D+cur->av3);
+ fbv = cur->av2/(cur->av1+cur->av2+cur->av3);
+ fpu = ((double)cur->au3-cur->au1)/((double)cur->au1+cur->au2+cur->au3);
+ fbu = cur->au2/(double)(cur->au1+cur->au2+cur->au3);
+ fprintf(stdout, "%f\t%f\t%f\t%f\n", fpv, fbv, fpu, fbu);
+
+In the above example, we use both explicit type specification
+(for "av" columns) and type casting (for "au" columns) to ensure that
+all operations are performed in double precision.
+
+
+When an output file is specified, the selected input table is
+processed and output rows are copied to the output file. Note that
+the output file can be specified as "stdout" in order to write the
+output rows to the standard output. If the output file argument is
+passed, an optional third argument also can be passed to specify which
+columns to process.
+
+
+In a FITS binary table, it sometimes is desirable to copy all of the
+other FITS extensions to the output file as well. This can be done by
+appending a '+' sign to the name of the extension in the input file
+name. See B<funtable> for a related example.
+
+
+B<funcalc> works by integrating the user-specified expression
+into a template C program called tabcalc.c.
+The completed program then is compiled and executed. Variable
+declarations that begin the B<funcalc> expression are placed in
+the local declaration section of the template main program. All other
+lines are placed in the template main program's inner processing
+loop. Other details of program generation are handled
+automatically. For example, column specifiers are analyzed to build a
+C struct for processing rows, which is passed to
+FunColumnSelect() and used
+in FunTableRowGet(). If
+an unknown variable is used in the expression, resulting in a
+compilation error, the program build is retried after defining the
+unknown variable to be of type double.
+
+
+Normally, B<funcalc> expression code is added to
+B<funcalc> row processing loop. It is possible to add code
+to other parts of the program by placing this code inside
+special directives of the form:
+
+ [directive name]
+ ... code goes here ...
+ end
+
+
+The directives are:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<global> add code and declarations in global space, before the main routine.
+
+
+
+=item *
+
+B<local> add declarations (and code) just after the local declarations in
+main
+
+
+
+=item *
+
+B<before> add code just before entering the main row processing loop
+
+
+
+=item *
+
+B<after> add code just after exiting the main row processing loop
+
+
+=back
+
+
+
+Thus, the following B<funcalc> expression will declare global
+variables and make subroutine calls just before and just after the
+main processing loop:
+
+ global
+ double v1, v2;
+ double init(void);
+ double finish(double v);
+ end
+ before
+ v1 = init();
+ end
+ ... process rows, with calculations using v1 ...
+ after
+ v2 = finish(v1);
+ if( v2 < 0.0 ){
+ fprintf(stderr, "processing failed %g -> %g\n", v1, v2);
+ exit(1);
+ }
+ end
+
+Routines such as init() and finish() above are passed to the generated
+program for linking using the B<-l [link directives ...]>
+switch. The string specified by this switch will be added to the link
+line used to build the program (before the funtools library). For
+example, assuming that init() and finish() are in the library
+libmysubs.a in the /opt/special/lib directory, use:
+
+ funcalc -l "-L/opt/special/lib -lmysubs" ...
+
+
+
+User arguments can be passed to a compiled funcalc program using a string
+argument to the "-a" switch. The string should contain all of the
+user arguments. For example, to pass the integers 1 and 2, use:
+
+ funcalc -a "1 2" ...
+
+The arguments are stored in an internal array and are accessed as
+strings via the ARGV(n) macro. For example, consider the following
+expression:
+
+ local
+ int pmin, pmax;
+ end
+
+ before
+ pmin=atoi(ARGV(0));
+ pmax=atoi(ARGV(1));
+ end
+
+ if( (cur->pha >= pmin) && (cur->pha <= pmax) )
+ fprintf(stderr, "%d %d %d\n", cur->x, cur->y, cur->pha);
+
+This expression will print out x, y, and pha values for all rows in which
+the pha value is between the two user-input values:
+
+ funcalc -a '1 12' -f foo snr.ev'[cir 512 512 .1]'
+ 512 512 6
+ 512 512 8
+ 512 512 5
+ 512 512 5
+ 512 512 8
+
+ funcalc -a '5 6' -f foo snr.ev'[cir 512 512 .1]'
+ 512 512 6
+ 512 512 5
+ 512 512 5
+
+
+
+Note that it is the user's responsibility to ensure that the correct
+number of arguments are passed. The ARGV(n) macro returns a NULL if a
+requested argument is outside the limits of the actual number of args,
+usually resulting in a SEGV if processed blindly. To check the
+argument count, use the ARGC macro:
+
+ local
+ long int seed=1;
+ double limit=0.8;
+ end
+
+ before
+ if( ARGC >= 1 ) seed = atol(ARGV(0));
+ if( ARGC >= 2 ) limit = atof(ARGV(1));
+ srand48(seed);
+ end
+
+ if ( drand48() > limit ) continue;
+
+
+
+The macro WRITE_ROW expands to the FunTableRowPut() call that writes
+the current row. It can be used to write the row more than once. In
+addition, the macro NROW expands to the row number currently being
+processed. Use of these two macros is shown in the following example:
+
+ if( cur->pha:I == cur->pi:I ) continue;
+ a = cur->pha;
+ cur->pha = cur->pi;
+ cur->pi = a;
+ cur->AVG:E = (cur->pha+cur->pi)/2.0;
+ cur->NR:I = NROW;
+ if( NROW < 10 ) WRITE_ROW;
+
+
+
+If the B<-p [prog]> switch is specified, the expression is not
+executed. Rather, the generated executable is saved with the specified
+program name for later use.
+
+
+If the B<-n> switch is specified, the expression is not
+executed. Rather, the generated code is written to stdout. This is
+especially useful if you want to generate a skeleton file and add your
+own code, or if you need to check compilation errors. Note that the
+comment at the start of the output gives the compiler command needed
+to build the program on that platform. (The command can change from
+platform to platform because of the use of different libraries,
+compiler switches, etc.)
+
+
+As mentioned previously, B<funcalc> will declare a scalar
+variable automatically (as a double) if that variable has been used
+but not declared. This facility is implemented using a sed script
+named funcalc.sed, which processes the
+compiler output to sense an undeclared variable error. This script
+has been seeded with the appropriate error information for gcc, and for
+cc on Solaris, DecAlpha, and SGI platforms. If you find that automatic
+declaration of scalars is not working on your platform, check this sed
+script; it might be necessary to add to or edit some of the error
+messages it senses.
+
+
+In order to keep the lexical analysis of B<funcalc> expressions
+(reasonably) simple, we chose to accept some limitations on how
+accurately C comments, spaces, and new-lines are placed in the
+generated program. In particular, comments associated with local
+variables declared at the beginning of an expression (i.e., not in a
+B<local...end> block) will usually end up in the inner loop, not
+with the local declarations:
+
+ /* this comment will end up in the wrong place (i.e, inner loop) */
+ double a; /* also in wrong place */
+ /* this will be in the the right place (inner loop) */
+ if( cur->x:D == cur->y:D ) continue; /* also in right place */
+ a = cur->x;
+ cur->x = cur->y;
+ cur->y = a;
+ cur->avg:E = (cur->x+cur->y)/2.0;
+
+Similarly, spaces and new-lines sometimes are omitted or added in a
+seemingly arbitrary manner. Of course, none of these stylistic
+blemishes affect the correctness of the generated code.
+
+
+Because B<funcalc> must analyze the user expression using the data
+file(s) passed on the command line, the input file(s) must be opened
+and read twice: once during program generation and once during
+execution. As a result, it is not possible to use stdin for the
+input file: B<funcalc> cannot be used as a filter. We will
+consider removing this restriction at a later time.
+
+
+Along with C comments, B<funcalc> expressions can have one-line
+internal comments that are not passed on to the generated C
+program. These internal comment start with the B<#> character and
+continue up to the new-line:
+
+ double a; # this is not passed to the generated C file
+ # nor is this
+ a = cur->x;
+ cur->x = cur->y;
+ cur->y = a;
+ /* this comment is passed to the C file */
+ cur->avg:E = (cur->x+cur->y)/2.0;
+
+
+
+As previously mentioned, input columns normally are identified by
+their being used within the inner event loop. There are rare cases
+where you might want to read a column and process it outside the main
+loop. For example, qsort might use a column in its sort comparison
+routine that is not processed inside the inner loop (and therefore not
+implicitly specified as a column to be read). To ensure that such a
+column is read by the event loop, use the B<explicit> keyword.
+The arguments to this keyword specify columns that should be read into
+the input record structure even though they are not mentioned in the
+inner loop. For example:
+
+ explicit pi pha
+
+will ensure that the pi and pha columns are read for each row,
+even if they are not processed in the inner event loop. The B<explicit>
+statement can be placed anywhere.
+
+
+Finally, note that B<funcalc> currently works on expressions
+involving FITS binary tables and raw event files. We will consider
+adding support for image expressions at a later point, if there is
+demand for such support from the community.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funcen.pod b/funtools/doc/pod/funcen.pod
new file mode 100644
index 0000000..3f10795
--- /dev/null
+++ b/funtools/doc/pod/funcen.pod
@@ -0,0 +1,145 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funcen - find centroid (for binary tables)>
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funcen [-i] [-n iter] [-t tol] [-v lev] <iname> <region>
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -i # use image filtering (default: event filtering)
+ -n iter # max number of iterations (default: 0)
+ -t tol # pixel tolerance distance (default: 1.0)
+ -v [0,1,2,3] # output verbosity level (default: 0)
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funcen> iteratively calculates the centroid position within one
+or more regions of a Funtools table (FITS binary table or raw event
+file). Starting with an input table, an initial region specification,
+and an iteration count, the program calculates the average x and y
+position within the region and then uses this new position as the
+region center for the next iteration. Iteration terminates when the
+maximum number of iterations is reached or when the input tolerance
+distance is met for that region. A count of events in the final region
+is then output, along with the pixel position value (and, where
+available, WCS position).
+
+
+The first argument to the program specifies the Funtools table file to
+process. Since the file must be read repeatedly, a value of "stdin"
+is not permitted when the number of iterations is non-zero. Use
+Funtools Bracket Notation to specify FITS
+extensions and filters.
+
+
+The second required argument is the initial region descriptor. Multiple
+regions are permitted. However, compound regions (accelerators,
+variable argument regions and regions connected via boolean algebra)
+are not permitted. Points and polygons also are illegal. These
+restrictions might be lifted in a future version, if warranted.
+
+
+The B<-n> (iteration number) switch specifies the maximum number of
+iterations to perform. The default is 0, which means that the program will
+simply count and display the number of events in the initial region(s).
+Note that when iterations is 0, the data can be input via stdin.
+
+
+The B<-t> (tolerance) switch specifies a floating point tolerance
+value. If the distance between the current centroid position value and
+the last position values is less than this value, iteration terminates.
+The default value is 1 pixel.
+
+
+The B<-v> (verbosity) switch specifies the verbosity level of the
+output. The default is 0, which results in a single line of output for
+each input region consisting of the following values:
+
+ counts x y [ra dec coordsys]
+
+The last 3 WCS values are output if WCS information is available in the
+data file header. Thus, for example:
+
+ [sh] funcen -n 0 snr.ev "cir 505 508 5"
+ 915 505.00 508.00 345.284038 58.870920 j2000
+
+ [sh] funcen -n 3 snr.ev "cir 505 508 5"
+ 1120 504.43 509.65 345.286480 58.874587 j2000
+
+The first example simply counts the number of events in the initial region.
+The second example iterates the centroid calculation three times to determine
+a final "best" position.
+
+
+Higher levels of verbosity obviously imply more verbose output. At
+level 1, the output essentially contains the same information as level
+0, but with keyword formatting:
+
+ [sh] funcen -v 1 -n 3 snr.ev "cir 505 508 5"
+ event_file: snr.ev
+ initial_region: cir 505 508 5
+ tolerance: 1.0000
+ iterations: 1
+
+ events: 1120
+ x,y(physical): 504.43 509.65
+ ra,dec(j2000): 345.286480 58.874587
+ final_region1: cir 504.43 509.65 5
+
+Level 2 outputs results from intermediate calculations as well.
+
+
+Ordinarily, region filtering is performed using analytic (event)
+filtering, i.e. that same style of filtering as is performed by
+B<fundisp> and B<funtable>. Use the B<-i> switch to specify image
+filtering, i.e. the same style filtering as is performed by B<funcnts>.
+Thus, you can perform a quick calculation of counts in regions, using
+either the analytic or image filtering method, by specifying the
+ B<-n 0> and optional B<-i> switches. These two method often
+give different results because of how boundary events are processed:
+
+ [sh] funcen snr.ev "cir 505 508 5"
+ 915 505.00 508.00 345.284038 58.870920 j2000
+
+ [sh] funcen -i snr.ev "cir 505 508 5"
+ 798 505.00 508.00 345.284038 58.870920 j2000
+
+See Region Boundaries for more information
+about how boundaries are calculated using these two methods.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funclose.pod b/funtools/doc/pod/funclose.pod
new file mode 100644
index 0000000..48357a3
--- /dev/null
+++ b/funtools/doc/pod/funclose.pod
@@ -0,0 +1,53 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunClose - close a Funtools data file>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void FunClose(Fun fun)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunClose()> routine closes a previously-opened Funtools data
+file, freeing control structures. If a
+Funtools reference handle
+was passed to
+the FunOpen() call for this file,
+and if copy mode also was specified for that file, then
+FunClose() also will copy the
+remaining extensions from the input file to the output file (if the
+input file still is open). Thus, we recommend always closing the
+output Funtools file B<before> the input file. (Alternatively,
+you can call FunFlush()
+explicitly).
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funcnts.pod b/funtools/doc/pod/funcnts.pod
new file mode 100644
index 0000000..7d5dfe5
--- /dev/null
+++ b/funtools/doc/pod/funcnts.pod
@@ -0,0 +1,657 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funcnts - count photons in specified regions, with bkgd subtraction>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funcnts [switches] <source_file> [source_region] [bkgd_file] [bkgd_region|bkgd_value]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -e "source_exposure[;bkgd_exposure]"
+ # source (bkgd) FITS exposure image using matching files
+ -w "source_exposure[;bkgd_exposure]"
+ # source (bkgd) FITS exposure image using WCS transform
+ -t "source_timecorr[;bkgd_timecorr]"
+ # source (bkgd) time correction value or header parameter name
+ -g # output using nice g format
+ -G # output using %.14g format (maximum precision)
+ -i "[column;]int1;int2..." # column-based intervals
+ -m # match individual source and bkgd regions
+ -p # output in pixels, even if wcs is present
+ -r # output inner/outer radii (and angles) for annuli (and pandas)
+ -s # output summed values
+ -v "scol[;bcol]" # src and bkgd value columns for tables
+ -T # output in starbase/rdb format
+ -z # output regions with zero area
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funcnts> counts photons in the specified source regions and
+reports the results for each region. Regions are specified using the
+Spatial Region Filtering mechanism.
+Photons are also counted in the specified bkgd regions applied to the
+same data file or a different data file. (Alternatively, a constant
+background value in counts/pixel**2 can be specified.) The bkgd regions
+are either paired one-to-one with source regions or pooled and
+normalized by area, and then subtracted from the source counts in each
+region. Displayed results include the bkgd-subtracted counts in each
+region, as well as the error on the counts, the area in
+each region, and the surface brightness (cnts/area**2) calculated for
+each region.
+
+
+The first argument to the program specifies the FITS input image, array, or
+raw event file to process. If "stdin" is specified, data are read from
+the standard input. Use Funtools Bracket
+Notation to specify FITS extensions, image sections, and filters.
+
+
+The optional second argument is the source region descriptor. If no
+region is specified, the entire field is used.
+
+
+The background arguments can take one of two forms, depending on
+whether a separate background file is specified. If the source
+file is to be used for background as well, the third argument can be
+either the background region, or a constant value denoting background
+cnts/pixel. Alternatively, the third argument can be a background
+data file, in which case the fourth argument is the background region.
+If no third argument is specified, a constant value of 0 is used
+(i.e., no background).
+
+
+In summary, the following command arguments are valid:
+
+ [sh] funcnts sfile # counts in source file
+ [sh] funcnts sfile sregion # counts in source region
+ [sh] funcnts sfile sregion bregion # bkgd reg. is from source file
+ [sh] funcnts sfile sregion bvalue # bkgd reg. is constant
+ [sh] funcnts sfile sregion bfile bregion # bkgd reg. is from separate file
+
+
+
+NB: unlike other Funtools programs, source and background regions are
+specified as separate arguments on the command line, rather than being
+placed inside brackets as part of the source and background filenames.
+This is because regions in funcnts are not simply used as data
+filters, but also are used to calculate areas, exposure, etc. If you
+put the source region inside the brackets (i.e. use it simply as a
+filter) rather than specifying it as argument two, the program still
+will only count photons that pass the region filter. However, the area
+calculation will be performed on the whole field, since field() is the
+default source region. This rarely is the desired behavior. On the
+other hand, with FITS binary tables, it often is useful to put a column
+filter in the filename brackets, so that only events matching the
+column filter are counted inside the region.
+
+
+For example, to extract the counts within a radius of 22 pixels from the
+center of the FITS binary table snr.ev and subtract the background determined
+from the same image within an annulus of radii 50-100 pixels:
+
+ [sh] funcnts snr.ev "circle(502,512,22)" "annulus(502,512,50,100)"
+ # source
+ # data file: snr.ev
+ # degrees/pix: 0.00222222
+ # background
+ # data file: snr.ev
+ # column units
+ # area: arcsec**2
+ # surf_bri: cnts/arcsec**2
+ # surf_err: cnts/arcsec**2
+
+ # background-subtracted results
+ reg net_counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 3826.403 66.465 555.597 5.972 96831.98 0.040 0.001
+
+
+ # the following source and background components were used:
+ source region(s)
+ ----------------
+ circle(502,512,22)
+
+ reg counts pixels
+ ---- ------------ ---------
+ 1 4382.000 1513
+
+ background region(s)
+ --------------------
+ annulus(502,512,50,100)
+
+ reg counts pixels
+ ---- ------------ ---------
+ all 8656.000 23572
+
+The area units for the output columns labeled "area", "surf_bri"
+(surface brightness) and "surf_err" will be given either in
+arc-seconds (if appropriate WCS information is in the data file
+header(s)) or in pixels. If the data file has WCS info, but you do not
+want arc-second units, use the B<-p> switch to force output in
+pixels. Also, regions having zero area are not normally included in
+the primary (background-subtracted) table, but are included in the
+secondary source and bkgd tables. If you want these regions to be
+included in the primary table, use the B<-z> switch.
+
+
+Note that a simple sed command will extract the background-subtracted results
+for further analysis:
+
+ [sh] cat funcnts.sed
+ 1,/---- .*/d
+ /^$/,$d
+
+ [sh] sed -f funcnts.sed funcnts.out
+ 1 3826.403 66.465 555.597 5.972 96831.98 0.040 0.001
+
+
+
+If separate source and background files are specified, B<funcnts> will
+attempt to normalize the the background area so that the background
+pixel size is the same as the source pixel size. This normalization
+can only take place if the appropriate WCS information is contained in
+both files (e.g. degrees/pixel values in CDELT). If either
+file does not contain the requisite size information, the normalization
+is not performed. In this case, it is the user's responsibility to
+ensure that the pixel sizes are the same for the two files.
+
+
+Normally, if more than one background region is specified, B<funcnts>
+will combine them all into a single region and use this background
+region to produce the background-subtracted results for each source
+region. The B<-m> (match multiple backgrounds) switch tells
+B<funcnts> to make a one to one correspondence between background and
+source regions, instead of using a single combined background region.
+For example, the default case is to combine 2 background
+regions into a single region and then apply that region to each of the
+source regions:
+
+
+ [sh] funcnts snr.ev "annulus(502,512,0,22,n=2)" "annulus(502,512,50,100,n=2)"
+ # source
+ # data file: snr.ev
+ # degrees/pix: 0.00222222
+ # background
+ # data file: snr.ev
+ # column units
+ # area: arcsec**2
+ # surf_bri: cnts/arcsec**2
+ # surf_err: cnts/arcsec**2
+
+ # background-subtracted results
+ reg net_counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 3101.029 56.922 136.971 1.472 23872.00 0.130 0.002
+ 2 725.375 34.121 418.625 4.500 72959.99 0.010 0.000
+
+
+ # the following source and background components were used:
+ source region(s)
+ ----------------
+ annulus(502,512,0,22,n=2)
+
+ reg counts pixels
+ ---- ------------ ---------
+ 1 3238.000 373
+ 2 1144.000 1140
+
+ background region(s)
+ --------------------
+ annulus(502,512,50,100,n=2)
+
+ reg counts pixels
+ ---- ------------ ---------
+ all 8656.000 23572
+
+Note that the basic region filter rule "each photon is counted once
+and no photon is counted more than once" still applies when using The
+B<-m> to match background regions. That is, if two background
+regions overlap, the overlapping pixels will be counted in only one of
+them. In a worst-case scenario, if two background regions are the same
+region, the first will get all the counts and area and the second
+will get none.
+
+
+Using the B<-m> switch causes B<funcnts> to use each of the two
+background regions independently with each of the two source regions:
+
+
+ [sh] funcnts -m snr.ev "annulus(502,512,0,22,n=2)" "ann(502,512,50,100,n=2)"
+ # source
+ # data file: snr.ev
+ # degrees/pix: 0.00222222
+ # background
+ # data file: snr.ev
+ # column units
+ # area: arcsec**2
+ # surf_bri: cnts/arcsec**2
+ # surf_err: cnts/arcsec**2
+
+ # background-subtracted results
+ reg net_counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 3087.015 56.954 150.985 2.395 23872.00 0.129 0.002
+ 2 755.959 34.295 388.041 5.672 72959.99 0.010 0.000
+
+
+ # the following source and background components were used:
+ source region(s)
+ ----------------
+ annulus(502,512,0,22,n=2)
+
+ reg counts pixels
+ ---- ------------ ---------
+ 1 3238.000 373
+ 2 1144.000 1140
+
+ background region(s)
+ --------------------
+ ann(502,512,50,100,n=2)
+
+ reg counts pixels
+ ---- ------------ ---------
+ 1 3975.000 9820
+ 2 4681.000 13752
+
+
+
+Note that most floating point quantities are displayed using "f"
+format. You can change this to "g" format using the B<-g>
+switch. This can be useful when the counts in each pixel is very
+small or very large. If you want maximum precision and don't care
+about the columns lining up nicely, use B<-G>, which outputs
+all floating values as %.14g.
+
+
+When counting photons using the annulus and panda (pie and annuli)
+shapes, it often is useful to have access to the radii (and panda
+angles) for each separate region. The B<-r> switch will add radii
+and angle columns to the output table:
+
+
+ [sh] funcnts -r snr.ev "annulus(502,512,0,22,n=2)" "ann(502,512,50,100,n=2)"
+ # source
+ # data file: snr.ev
+ # degrees/pix: 0.00222222
+ # background
+ # data file: snr.ev
+ # column units
+ # area: arcsec**2
+ # surf_bri: cnts/arcsec**2
+ # surf_err: cnts/arcsec**2
+ # radii: arcsecs
+ # angles: degrees
+
+ # background-subtracted results
+ reg net_counts error background berror area surf_bri surf_err radius1 radius2 angle1 angle2
+ ---- ------------ --------- ------------ --------- --------- --------- --------- --------- --------- --------- ---------
+ 1 3101.029 56.922 136.971 1.472 23872.00 0.130 0.002 0.00 88.00 NA NA
+ 2 725.375 34.121 418.625 4.500 72959.99 0.010 0.000 88.00 176.00 NA NA
+
+
+ # the following source and background components were used:
+ source region(s)
+ ----------------
+ annulus(502,512,0,22,n=2)
+
+ reg counts pixels
+ ---- ------------ ---------
+ 1 3238.000 373
+ 2 1144.000 1140
+
+ background region(s)
+ --------------------
+ ann(502,512,50,100,n=2)
+
+ reg counts pixels
+ ---- ------------ ---------
+ all 8656.000 23572
+
+
+
+Radii are given in units of pixels or arc-seconds (depending on the
+presence of WCS info), while the angle values (when present) are in
+degrees. These columns can be used to plot radial profiles. For
+example, the script B<funcnts.plot> in the funtools
+distribution) will plot a radial profile using gnuplot (version 3.7 or
+above). A simplified version of this script is shown below:
+
+
+ #!/bin/sh
+
+ if [ x"$1" = xgnuplot ]; then
+ if [ x`which gnuplot 2>/dev/null` = x ]; then
+ echo "ERROR: gnuplot not available"
+ exit 1
+ fi
+ awk '
+ BEGIN{HEADER=1; DATA=0; FILES=""; XLABEL="unknown"; YLABEL="unknown"}
+ HEADER==1{
+ if( $1 == "#" && $2 == "data" && $3 == "file:" ){
+ if( FILES != "" ) FILES = FILES ","
+ FILES = FILES $4
+ }
+ else if( $1 == "#" && $2 == "radii:" ){
+ XLABEL = $3
+ }
+ else if( $1 == "#" && $2 == "surf_bri:" ){
+ YLABEL = $3
+ }
+ else if( $1 == "----" ){
+ printf "set nokey; set title \"funcnts(%s)\"\n", FILES
+ printf "set xlabel \" radius(%s)\"\n", XLABEL
+ printf "set ylabel \"surf_bri(%s)\"\n", YLABEL
+ print "plot \"-\" using 3:4:6:7:8 with boxerrorbars"
+ HEADER = 0
+ DATA = 1
+ next
+ }
+ }
+ DATA==1{
+ if( NF == 12 ){
+ print $9, $10, ($9+$10)/2, $7, $8, $7-$8, $7+$8, $10-$9
+ }
+ else{
+ exit
+ }
+ }
+ ' | gnuplot -persist - 1>/dev/null 2>&1
+
+ elif [ x"$1" = xds9 ]; then
+ awk '
+ BEGIN{HEADER=1; DATA=0; XLABEL="unknown"; YLABEL="unknown"}
+ HEADER==1{
+ if( $1 == "#" && $2 == "data" && $3 == "file:" ){
+ if( FILES != "" ) FILES = FILES ","
+ FILES = FILES $4
+ }
+ else if( $1 == "#" && $2 == "radii:" ){
+ XLABEL = $3
+ }
+ else if( $1 == "#" && $2 == "surf_bri:" ){
+ YLABEL = $3
+ }
+ else if( $1 == "----" ){
+ printf "funcnts(%s) radius(%s) surf_bri(%s) 3\n", FILES, XLABEL, YLABEL
+ HEADER = 0
+ DATA = 1
+ next
+ }
+ }
+ DATA==1{
+ if( NF == 12 ){
+ print $9, $7, $8
+ }
+ else{
+ exit
+ }
+ }
+ '
+ else
+ echo "funcnts -r ... | funcnts.plot [ds9|gnuplot]"
+ exit 1
+ fi
+
+
+Thus, to run B<funcnts> and plot the results using gnuplot (version 3.7
+or above), use:
+
+ funcnts -r snr.ev "annulus(502,512,0,50,n=5)" ... | funcnts.plot gnuplot
+
+
+
+The B<-s> (sum) switch causes B<funcnts> to produce an
+additional table of summed (integrated) background subtracted values,
+along with the default table of individual values:
+
+
+ [sh] funcnts -s snr.ev "annulus(502,512,0,50,n=5)" "annulus(502,512,50,100)"
+ # source
+ # data file: snr.ev
+ # degrees/pix: 0.00222222
+ # background
+ # data file: snr.ev
+ # column units
+ # area: arcsec**2
+ # surf_bri: cnts/arcsec**2
+ # surf_err: cnts/arcsec**2
+
+ # summed background-subtracted results
+ upto net_counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 2880.999 54.722 112.001 1.204 19520.00 0.148 0.003
+ 2 3776.817 65.254 457.183 4.914 79679.98 0.047 0.001
+ 3 4025.492 71.972 1031.508 11.087 179775.96 0.022 0.000
+ 4 4185.149 80.109 1840.851 19.786 320831.94 0.013 0.000
+ 5 4415.540 90.790 2873.460 30.885 500799.90 0.009 0.000
+
+
+ # background-subtracted results
+ reg counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 2880.999 54.722 112.001 1.204 19520.00 0.148 0.003
+ 2 895.818 35.423 345.182 3.710 60159.99 0.015 0.001
+ 3 248.675 29.345 574.325 6.173 100095.98 0.002 0.000
+ 4 159.657 32.321 809.343 8.699 141055.97 0.001 0.000
+ 5 230.390 37.231 1032.610 11.099 179967.96 0.001 0.000
+
+
+ # the following source and background components were used:
+ source region(s)
+ ----------------
+ annulus(502,512,0,50,n=5)
+
+ reg counts pixels sumcnts sumpix
+ ---- ------------ --------- ------------ ---------
+ 1 2993.000 305 2993.000 305
+ 2 1241.000 940 4234.000 1245
+ 3 823.000 1564 5057.000 2809
+ 4 969.000 2204 6026.000 5013
+ 5 1263.000 2812 7289.000 7825
+
+ background region(s)
+ --------------------
+ annulus(502,512,50,100)
+
+ reg counts pixels
+ ---- ------------ ---------
+ all 8656.000 23572
+
+
+
+The B<-t> and B<-e> switches can be used to apply timing and
+exposure corrections, respectively, to the data. Please note that
+these corrections are meant to be used qualitatively, since
+application of more accurate correction factors is a complex and
+mission-dependent effort. The algorithm for applying these simple
+corrections is as follows:
+
+ C = Raw Counts in Source Region
+ Ac= Area of Source Region
+ Tc= Exposure time for Source Data
+ Ec= Average exposure in Source Region, from exposure map
+
+ B= Raw Counts in Background Region
+ Ab= Area of Background Region
+ Tb= (Exposure) time for Background Data
+ Eb= Average exposure in Background Region, from exposure map
+
+Then, Net Counts in Source region is
+
+ Net= C - B * (Ac*Tc*Ec)/(Ab*Tb*Eb)
+
+with the standard propagation of errors for the Error on Net.
+The net rate would then be
+
+ Net Rate = Net/(Ac*Tc*Ec)
+
+The average exposure in each region is calculated by summing up the
+pixel values in the exposure map for the given region and then
+dividing by the number of pixels in that region. Exposure maps often
+are generated at a block factor > 1 (e.g., block 4 means that each
+exposure pixel contains 4x4 pixels at full resolution) and
+B<funcnts> will deal with the blocking automatically. Using the
+B<-e> switch, you can supply both source and background exposure
+files (separated by ";"), if you have separate source and background
+data files. If you do not supply a background exposure file to go with
+a separate background data file, B<funcnts> assumes that exposure
+already has been applied to the background data file. In addition, it
+assumes that the error on the pixels in the background data file is
+zero.
+
+
+NB: The B<-e> switch assumes that the exposure map overlays the
+image file B<exactly>, except for the block factor. Each pixel in
+the image is scaled by the block factor to access the corresponding
+pixel in the exposure map. If your exposure map does not line up
+exactly with the image, B<do not use> the B<-e> exposure
+correction. In this case, it still is possible to perform exposure
+correction B<if> both the image and the exposure map have valid
+WCS information: use the B<-w> switch so that the transformation
+from image pixel to exposure pixel uses the WCS information. That is,
+each pixel in the image region will be transformed first from image
+coordinates to sky coordinates, then from sky coordinates to exposure
+coordinates. Please note that using B<-w> can increase the time
+required to process the exposure correction considerably.
+
+
+A time correction can be applied to both source and
+background data using the B<-t> switch. The value for the correction can
+either be a numeric constant or the name of a header parameter in
+the source (or background) file:
+
+ [sh] funcnts -t 23.4 ... # number for source
+ [sh] funcnts -t "LIVETIME;23.4" ... # param for source, numeric for bkgd
+
+When a time correction is specified, it is applied to the net counts
+as well (see algorithm above), so that the units of surface brightness
+become cnts/area**2/sec.
+
+
+The B<-i> (interval) switch is used to run B<funcnts> on multiple
+column-based intervals with only a single pass through the data. It is
+equivalent to running B<funcnts> several times with a different column
+filter added to the source and background data each time. For each
+interval, the full B<funcnts> output is generated, with a linefeed
+character (^L) inserted between each run. In addition, the output for
+each interval will contain the interval specification in its header.
+Intervals are very useful for generating X-ray hardness ratios
+efficiently. Of course, they are only supported when the input data
+are contained in a table.
+
+
+Two formats are supported for interval specification. The most general
+format is semi-colon-delimited list of filters to be used as intervals:
+
+ funcnts -i "pha=1:5;pha=6:10;pha=11:15" snr.ev "circle(502,512,22)" ...
+
+Conceptually, this will be equivalent to running B<funcnts> three times:
+
+ funcnts snr.ev'[pha=1:5]' "circle(502,512,22)"
+ funcnts snr.ev'[pha=6:10]' "circle(502,512,22)"
+ funcnts snr.ev'[pha=11:15]' "circle(502,512,22)"
+
+However, using the B<-i> switch will require only one pass through
+the data.
+
+
+Note that complex filters can be used to specify intervals:
+
+ funcnts -i "pha=1:5&&pi=4;pha=6:10&&pi=5;pha=11:15&&pi=6" snr.ev ...
+
+The program simply runs the data through each filter in turn and generates
+three B<funcnts> outputs, separated by the line-feed character.
+
+
+In fact, although the intent is to support intervals for hardness ratios,
+the specified filters do not have to be intervals at all. Nor does one
+"interval" filter have to be related to another. For example:
+
+ funcnts -i "pha=1:5;pi=6:10;energy=11:15" snr.ev "circle(502,512,22)" ...
+
+is equivalent to running B<funcnts> three times with unrelated filter
+specifications.
+
+
+A second interval format is supported for the simple case in which a
+single column is used to specify multiple homogeneous intervals for
+that column. In this format, a column name is specified first,
+followed by intervals:
+
+ funcnts -i "pha;1:5;6:10;11:15" snr.ev "circle(502,512,22)" ...
+
+This is equivalent to the first example, but requires less typing. The
+B<funcnts> program will simply prepend "pha=" before each of the specified
+intervals. (Note that this format does not contain the "=" character in
+the column argument.)
+
+
+Ordinarily, when B<funcnts> is run on a FITS binary table (or a
+raw event table), one integral count is accumulated for each row
+(event) contained within a given region. The B<-v "scol[;bcol]">
+(value column) switch will accumulate counts using the value from the
+specified column for the given event. If only a single column is
+specified, it is used for both the source and background regions. Two
+separate columns, separated by a semi-colon, can be specified for source
+and background. The special token '$none' can be used to specify that
+a value column is to be used for one but not the other. For example,
+'pha;$none' will use the pha column for the source but use integral
+counts for the background, while '$none;pha' will do the converse.
+If the value column is of type logical, then the value used will be 1
+for T and 0 for F. Value columns are used, for example, to integrate
+probabilities instead of integral counts.
+
+
+If the B<-T> (rdb table) switch is used, the output will conform
+to starbase/rdb data base format: tabs will be inserted between
+columns rather than spaces and line-feed will be inserted between
+tables.
+
+
+Finally, note that B<funcnts> is an image program, even though it
+can be run directly on FITS binary tables. This means that image
+filtering is applied to the rows in order to ensure that the same
+results are obtained regardless of whether a table or the equivalent
+binned image is used. Because of this, however, the number of counts
+found using B<funcnts> can differ from the number of events found
+using row-filter programs such as B<fundisp> or B<funtable>
+For more information about these difference, see the discussion of
+Region Boundaries.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funcolumnactivate.pod b/funtools/doc/pod/funcolumnactivate.pod
new file mode 100644
index 0000000..d5f6e3a
--- /dev/null
+++ b/funtools/doc/pod/funcolumnactivate.pod
@@ -0,0 +1,239 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunColumnActivate - activate Funtools columns>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void FunColumnActivate(Fun fun, char *s, char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunColumnActivate()> routine determines which columns (set up
+by FunColumnSelect())
+ultimately will be read and/or written. By default, all columns that
+are selected using
+FunColumnSelect()
+are activated. The
+FunColumnActivate()
+routine can be used to turn off/off activation of specific columns.
+
+
+The first argument is the Fun handle associated with this set of
+columns. The second argument is a space-delimited list of columns to
+activate or de-activate. Columns preceded by "+" are activated and
+columns preceded by a "-" are de-activated. If a column is named
+without "+" or "-", it is activated. The reserved strings "$region"
+and '$n' are used to activate a special columns containing the filter
+region value and row value, respectively, associated with
+this row. For example, if a filter containing two circular regions is
+specified as part of the Funtools file name, this column will contain
+a value of 1 or 2, depending on which region that row was in. The
+reserved strings "$x" and "$y" are used to activate the current
+binning columns. Thus, if the columns DX and DY are specified as
+binning columns:
+
+ [sh $] fundisp foo.fits[bincols=(DX,DY)]
+
+then "$x" and "$y" will refer to these columns in a call to
+FunColumnActivate().
+
+
+In addition, if the activation string contains only columns to be
+activated, then the routine will de-activate all other columns.
+Similarly, if the activation string contains only
+columns to de-activate, then the routine will activate all other columns
+before activating the list. This makes it simple to change the
+activation state of all columns without having to know all of the
+column names. For example:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<"pi pha time"> # only these three columns will be active
+
+
+=item *
+
+B<"-pi -pha -time"> # all but these columns will be active
+
+
+=item *
+
+B<"pi -pha"> # only pi is active, pha is not, others are not
+
+
+=item *
+
+B<"+pi -pha"> # same as above
+
+
+=item *
+
+B<"pi -pha -time"> # only pi is active, all others are not
+
+
+=item *
+
+B<"pi pha"> # pha and pi are active, all others are not
+
+
+=item *
+
+B<"pi pha -x -y"> # pha and pi are active, all others are not
+
+
+=back
+
+
+
+
+You can use the column activation list to reorder columns, since
+columns are output in the order specified. For example:
+
+ # default output order
+ fundisp snr.ev'[cir 512 512 .1]'
+ X Y PHA PI TIME DX DY
+ -------- -------- -------- -------- --------------------- -------- --------
+ 512 512 6 7 79493997.45854475 578 574
+ 512 512 8 9 79494575.58943175 579 573
+ 512 512 5 6 79493631.03866175 578 575
+ 512 512 5 5 79493290.86521725 578 575
+ 512 512 8 9 79493432.00990875 579 573
+
+ # re-order the output by specifying explicit order
+ fundisp snr.ev'[cir 512 512 .1]' "time x y dy dx pi pha"
+ TIME X Y DY DX PI PHA
+ --------------------- -------- -------- -------- -------- -------- --------
+ 79493997.45854475 512 512 574 578 7 6
+ 79494575.58943175 512 512 573 579 9 8
+ 79493631.03866175 512 512 575 578 6 5
+ 79493290.86521725 512 512 575 578 5 5
+ 79493432.00990875 512 512 573 579 9 8
+
+
+
+A "+" sign by itself means to activate all columns, so that you can reorder
+just a few columns without specifying all of them:
+
+ # reorder 3 columns and then output the rest
+ fundisp snr.ev'[cir 512 512 .1]' "time pi pha +"
+ TIME PI PHA Y X DX DY
+ --------------------- -------- -------- -------- -------- -------- --------
+ 79493997.45854475 7 6 512 512 578 574
+ 79494575.58943175 9 8 512 512 579 573
+ 79493631.03866175 6 5 512 512 578 575
+ 79493290.86521725 5 5 512 512 578 575
+ 79493432.00990875 9 8 512 512 579 573
+
+The column activation/deactivation is performed in the order of the
+specified column arguments. This means you can mix "+", "-" (which
+de-activates all columns) and specific column names to reorder and
+select columns in one command. For example, consider the following:
+
+ # reorder and de-activate
+ fundisp snr.ev'[cir 512 512 .1]' "time pi pha + -x -y"
+ TIME PI PHA DX DY
+ --------------------- -------- -------- -------- --------
+ 79493997.45854475 7 6 578 574
+ 79494575.58943175 9 8 579 573
+ 79493631.03866175 6 5 578 575
+ 79493290.86521725 5 5 578 575
+ 79493432.00990875 9 8 579 573
+
+We first activate "time", "pi", and "pha" so that they are output first.
+We then activate all of the other columns, and then de-activate "x" and "y".
+Note that this is different from:
+
+ # probably not what you want ...
+ fundisp snr.ev'[cir 512 512 .1]' "time pi pha -x -y +"
+ TIME PI PHA Y X DX DY
+ --------------------- -------- -------- -------- -------- -------- --------
+ 79493997.45854475 7 6 512 512 578 574
+ 79494575.58943175 9 8 512 512 579 573
+ 79493631.03866175 6 5 512 512 578 575
+ 79493290.86521725 5 5 512 512 578 575
+ 79493432.00990875 9 8 512 512 579 573
+
+Here, "x" and "y" are de-activated, but then all columns including "x" and
+"y" are again re-activated.
+
+
+Typically,
+FunColumnActivate() uses a
+list of columns that are passed into the program from the command line. For
+example, the code for funtable contains the following:
+
+ char *cols=NULL;
+
+ /* open the input FITS file */
+ if( !(fun = FunOpen(argv[1], "rc", NULL)) )
+ gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
+
+ /* set active flag for specified columns */
+ if( argc >= 4 ) cols = argv[3];
+ FunColumnActivate(fun, cols, NULL);
+
+
+The FunOpen() call sets the
+default columns to be all columns in the input file. The
+FunColumnActivate() call
+then allows the user to control which columns ultimately will be
+activated (i.e., in this case, written to the new file). For example:
+
+ funtable test.ev foo.ev "pi pha time"
+
+will process only the three columns mentioned, while:
+
+ funtable test.ev foo.ev "-time"
+
+will process all columns except "time".
+
+
+If FunColumnActivate()
+is called with a null string, then the environment variable
+B<FUN_COLUMNS> will be used to provide a global value, if present.
+This is the reason why we call the routine even if no columns
+are specified on the command line (see example above), instead
+of calling it this way:
+
+ /* set active flag for specified columns */
+ if( argc >= 4 ){
+ FunColumnActivate(fun, argv[3], NULL);
+ }
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funcolumnlookup.pod b/funtools/doc/pod/funcolumnlookup.pod
new file mode 100644
index 0000000..bfdf5c0
--- /dev/null
+++ b/funtools/doc/pod/funcolumnlookup.pod
@@ -0,0 +1,188 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunColumnLookup - lookup a Funtools column>
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunColumnLookup(Fun fun, char *s, int which,
+ char **name, int *type, int *mode,
+ int *offset, int *n, int *width)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunColumnLookup()> routine returns information about a named
+(or indexed) column. The first argument is the Fun handle associated
+with this set of columns. The second argument is the name of the
+column to look up. If the name argument is NULL, the argument that
+follows is the zero-based index into the column array of the column
+for which information should be returned. The next argument is a
+pointer to a char *, which will contain the name of the column. The
+arguments that follow are the addresses of int values into which
+the following information will be returned:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<type>: data type of column:
+
+
+=over 4
+
+
+
+
+=item *
+
+A: ASCII characters
+
+
+=item *
+
+B: unsigned 8-bit char
+
+
+=item *
+
+I: signed 16-bit int
+
+
+=item *
+
+U: unsigned 16-bit int (not standard FITS)
+
+
+=item *
+
+J: signed 32-bit int
+
+
+=item *
+
+V: unsigned 32-bit int (not standard FITS)
+
+
+=item *
+
+E: 32-bit float
+
+
+=item *
+
+D: 64-bit float
+
+
+=back
+
+
+
+
+=item *
+
+B<mode>: bit flag status of column, including:
+
+
+=over 4
+
+
+
+
+=item *
+
+COL_ACTIVE 1 is column activated?
+
+
+=item *
+
+COL_IBUF 2 is column in the raw input data?
+
+
+=item *
+
+COL_PTR 4 is column a pointer to an array?
+
+
+=item *
+
+COL_READ 010 is read mode selected?
+
+
+=item *
+
+COL_WRITE 020 is write mode selected?
+
+
+=item *
+
+COL_REPLACEME 040 is this column being replaced by user data?
+
+
+=back
+
+
+
+
+=item *
+
+B<offset>: byte offset in struct
+
+
+=item *
+
+B<n>: number of elements (i.e. size of vector) in this column
+
+
+=item *
+
+B<width>: size in bytes of this column
+
+
+=back
+
+
+If the named column exists, the routine returns a positive integer,
+otherwise zero is returned. (The positive integer is the index+1 into
+the column array where this column was located.)
+
+If NULL is passed as the return address of one (or more) of these
+values, no data is passed back for that information. For
+example:
+
+ if( !FunColumnLookup(fun, "phas", 0, NULL NULL, NULL, NULL, &npha, NULL) )
+ gerror(stderr, "can't find phas column\n");
+
+only returns information about the size of the phas vector.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funcolumnselect.pod b/funtools/doc/pod/funcolumnselect.pod
new file mode 100644
index 0000000..ce65d38
--- /dev/null
+++ b/funtools/doc/pod/funcolumnselect.pod
@@ -0,0 +1,686 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunColumnSelect - select Funtools columns>
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunColumnSelect(Fun fun, int size, char *plist,
+ char *name1, char *type1, char *mode1, int offset1,
+ char *name2, char *type2, char *mode2, int offset2,
+ ...,
+ NULL)
+
+ int FunColumnSelectArr(Fun fun, int size, char *plist,
+ char **names, char **types, char **modes,
+ int *offsets, int nargs);
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+The B<FunColumnSelect()> routine is used to select the columns
+from a Funtools binary table extension or raw event file for
+processing. This routine allows you to specify how columns in a file
+are to be read into a user record structure or written from a user
+record structure to an output FITS file.
+
+
+The first argument is the Fun handle associated with this set of
+columns. The second argument specifies the size of the user record
+structure into which columns will be read. Typically, the sizeof()
+macro is used to specify the size of a record structure. The third
+argument allows you to specify keyword directives for the selection
+and is described in more detail below.
+
+
+Following the first three required arguments is a variable length list of
+column specifications. Each column specification will consist of four
+arguments:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<name>: the name of the column
+
+
+
+=item *
+
+B<type>: the data type of the column as it will be stored in
+the user record struct (not the data type of the input file). The
+following basic data types are recognized:
+
+
+=over 4
+
+
+
+
+=item *
+
+A: ASCII characters
+
+
+=item *
+
+B: unsigned 8-bit char
+
+
+=item *
+
+I: signed 16-bit int
+
+
+=item *
+
+U: unsigned 16-bit int (not standard FITS)
+
+
+=item *
+
+J: signed 32-bit int
+
+
+=item *
+
+V: unsigned 32-bit int (not standard FITS)
+
+
+=item *
+
+E: 32-bit float
+
+
+=item *
+
+D: 64-bit float
+
+
+=back
+
+
+The syntax used is similar to that which defines the TFORM parameter
+in FITS binary tables. That is, a numeric repeat value can precede
+the type character, so that "10I" means a vector of 10 short ints, "E"
+means a single precision float, etc. Note that the column value from
+the input file will be converted to the specified data type as the
+data is read by
+FunTableRowGet().
+
+
+[ A short digression regarding bit-fields: Special attention is
+required when reading or writing the FITS bit-field type
+("X"). Bit-fields almost always have a numeric repeat character
+preceding the 'X' specification. Usually this value is a multiple of 8
+so that bit-fields fit into an integral number of bytes. For all
+cases, the byte size of the bit-field B is (N+7)/8, where N is the
+numeric repeat character.
+
+
+A bit-field is most easily declared in the user struct as an array of
+type char of size B as defined above. In this case, bytes are simply
+moved from the file to the user space. If, instead, a short or int
+scalar or array is used, then the algorithm for reading the bit-field
+into the user space depends on the size of the data type used along
+with the value of the repeat character. That is, if the user data
+size is equal to the byte size of the bit-field, then the data is
+simply moved (possibly with endian-based byte-swapping) from one to
+the other. If, on the other hand, the data storage is larger than the
+bit-field size, then a data type cast conversion is performed to move
+parts of the bit-field into elements of the array. Examples will help
+make this clear:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+If the file contains a 16X bit-field and user space specifies a 2B
+char array[2], then the bit-field is moved directly into the char array.
+
+
+
+=item *
+
+If the file contains a 16X bit-field and user space specifies a 1I
+scalar short int, then the bit-field is moved directly into the short int.
+
+
+
+=item *
+
+If the file contains a 16X bit-field and user space specifies a 1J
+scalar int, then the bit-field is type-cast to unsigned int before
+being moved (use of unsigned avoids possible sign extension).
+
+
+
+=item *
+
+If the file contains a 16X bit-field and user space specifies a 2J
+int array[2], then the bit-field is handled as 2 chars, each of which
+are type-cast to unsigned int before being moved (use of unsigned
+avoids possible sign extension).
+
+
+
+=item *
+
+If the file contains a 16X bit-field and user space specifies a 1B
+char, then the bit-field is treated as a char, i.e., truncation will
+occur.
+
+
+
+=item *
+
+If the file contains a 16X bit-field and user space specifies a 4J
+int array[4], then the results are undetermined.
+
+
+
+=back
+
+
+For all user data types larger than char, the bit-field is byte-swapped
+as necessary to convert to native format, so that bits in the
+resulting data in user space can be tested, masked, etc. in the same
+way regardless of platform.]
+
+
+In addition to setting data type and size, the B<type>
+specification allows a few ancillary parameters to be set, using the
+full syntax for B<type>:
+
+ [@][n]<type>[[['B']poff]][:[tlmin[:tlmax[:binsiz]]]]
+
+
+
+The special character "@" can be prepended to this specification to
+indicated that the data element is a pointer in the user record,
+rather than an array stored within the record.
+
+
+The [n] value is an integer that specifies the
+number of elements that are in this column (default is 1). TLMIN,
+TLMAX, and BINSIZ values also can be specified for this column after
+the type, separated by colons. If only one such number is specified,
+it is assumed to be TLMAX, and TLMIN and BINSIZ are set to 1.
+
+
+The [poff] value can be used to specify the offset into an
+array. By default, this offset value is set to zero and the data
+specified starts at the beginning of the array. The offset usually
+is specified in terms of the data type of the column. Thus an offset
+specification of [5] means a 20-byte offset if the data type is a
+32-bit integer, and a 40-byte offset for a double. If you want to
+specify a byte offset instead of an offset tied to the column data type,
+precede the offset value with 'B', e.g. [B6] means a 6-bye offset,
+regardless of the column data type.
+
+The [poff] is especially useful in conjunction with the pointer @
+specification, since it allows the data element to anywhere stored
+anywhere in the allocated array. For example, a specification such as
+"@I[2]" specifies the third (i.e., starting from 0) element in the
+array pointed to by the pointer value. A value of "@2I[4]" specifies
+the fifth and sixth values in the array. For example, consider the
+following specification:
+
+ typedef struct EvStruct{
+ short x[4], *atp;
+ } *Event, EventRec;
+ /* set up the (hardwired) columns */
+ FunColumnSelect( fun, sizeof(EventRec), NULL,
+ "2i", "2I ", "w", FUN_OFFSET(Event, x),
+ "2i2", "2I[2]", "w", FUN_OFFSET(Event, x),
+ "at2p", "@2I", "w", FUN_OFFSET(Event, atp),
+ "at2p4", "@2I[4]", "w", FUN_OFFSET(Event, atp),
+ "atp9", "@I[9]", "w", FUN_OFFSET(Event, atp),
+ "atb20", "@I[B20]", "w", FUN_OFFSET(Event, atb),
+ NULL);
+
+Here we have specified the following columns:
+
+
+=over 4
+
+
+
+
+=item *
+
+2i: two short ints in an array which is stored as part the
+record
+
+
+=item *
+
+2i2: the 3rd and 4th elements of an array which is stored
+as part of the record
+
+
+=item *
+
+an array of at least 10 elements, not stored in the record but
+allocated elsewhere, and used by three different columns:
+
+
+=over 4
+
+
+
+
+=item *
+
+at2p: 2 short ints which are the first 2 elements of the allocated array
+
+
+=item *
+
+at2p4: 2 short ints which are the 5th and 6th elements of
+the allocated array
+
+
+=item *
+
+atp9: a short int which is the 10th element of the allocated array
+
+
+=back
+
+
+
+
+=item *
+
+atb20: a short int which is at byte offset 20 of another allocated array
+
+
+=back
+
+
+In this way, several columns can be specified, all of which are in a
+single array. B<NB>: it is the programmer's responsibility to
+ensure that specification of a positive value for poff does not point
+past the end of valid data.
+
+
+
+=item *
+
+B<read/write mode>: "r" means that the column is read from an
+input file into user space by
+FunTableRowGet(), "w" means that
+the column is written to an output file. Both can specified at the same
+time.
+
+
+
+=item *
+
+B<offset>: the offset into the user data to store
+this column. Typically, the macro FUN_OFFSET(recname, colname) is used
+to define the offset into a record structure.
+
+
+=back
+
+
+
+
+When all column arguments have been specified, a final NULL argument
+must added to signal the column selection list.
+
+
+As an alternative to the varargs
+FunColumnSelect()
+routine, a non-varargs routine called
+FunColumnSelectArr()
+also is available. The first three arguments (fun, size, plist) of this
+routine are the same as in
+FunColumnSelect().
+Instead of a variable
+argument list, however,
+FunColumnSelectArr()
+takes 5 additional arguments. The first 4 arrays arguments contain the
+names, types, modes, and offsets, respectively, of the columns being
+selected. The final argument is the number of columns that are
+contained in these arrays. It is the user's responsibility to free
+string space allocated in these arrays.
+
+
+Consider the following example:
+
+ typedef struct evstruct{
+ int status;
+ float pi, pha, *phas;
+ double energy;
+ } *Ev, EvRec;
+
+ FunColumnSelect(fun, sizeof(EvRec), NULL,
+ "status", "J", "r", FUN_OFFSET(Ev, status),
+ "pi", "E", "r", FUN_OFFSET(Ev, pi),
+ "pha", "E", "r", FUN_OFFSET(Ev, pha),
+ "phas", "@9E", "r", FUN_OFFSET(Ev, phas),
+ NULL);
+
+
+Each time a row is read into the Ev struct, the "status" column is
+converted to an int data type (regardless of its data type in the
+file) and stored in the status value of the struct. Similarly, "pi"
+and "pha", and the phas vector are all stored as floats. Note that the
+"@" sign indicates that the "phas" vector is a pointer to a 9 element
+array, rather than an array allocated in the struct itself. The row
+record can then be processed as required:
+
+ /* get rows -- let routine allocate the row array */
+ while( (ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* process all rows */
+ for(i=0; i<got; i++){
+ /* point to the i'th row */
+ ev = ebuf+i;
+ ev->pi = (ev->pi+.5);
+ ev->pha = (ev->pi-.5);
+ }
+
+
+
+FunColumnSelect()
+can also be called to define "writable" columns in order to generate a FITS
+Binary Table, without reference to any input columns. For
+example, the following will generate a 4-column FITS binary table when
+FunTableRowPut() is used to
+write Ev records:
+
+
+ typedef struct evstruct{
+ int status;
+ float pi, pha
+ double energy;
+ } *Ev, EvRec;
+
+ FunColumnSelect(fun, sizeof(EvRec), NULL,
+ "status", "J", "w", FUN_OFFSET(Ev, status),
+ "pi", "E", "w", FUN_OFFSET(Ev, pi),
+ "pha", "E", "w", FUN_OFFSET(Ev, pha),
+ "energy", "D", "w", FUN_OFFSET(Ev, energy),
+ NULL);
+
+All columns are declared to be write-only, so presumably the column
+data is being generated or read from some other source.
+
+
+In addition,
+FunColumnSelect()
+can be called to define B<both> "readable" and "writable" columns.
+In this case, the "read" columns
+are associated with an input file, while the "write" columns are
+associated with the output file. Of course, columns can be specified as both
+"readable" and "writable", in which case they are read from input
+and (possibly modified data values are) written to the output.
+The
+FunColumnSelect()
+call itself is made by passing the input Funtools handle, and it is
+assumed that the output file has been opened using this input handle
+as its
+Funtools reference handle.
+
+
+Consider the following example:
+
+ typedef struct evstruct{
+ int status;
+ float pi, pha, *phas;
+ double energy;
+ } *Ev, EvRec;
+
+ FunColumnSelect(fun, sizeof(EvRec), NULL,
+ "status", "J", "r", FUN_OFFSET(Ev, status),
+ "pi", "E", "rw", FUN_OFFSET(Ev, pi),
+ "pha", "E", "rw", FUN_OFFSET(Ev, pha),
+ "phas", "@9E", "rw", FUN_OFFSET(Ev, phas),
+ "energy", "D", "w", FUN_OFFSET(Ev, energy),
+ NULL);
+
+As in the "read" example above, each time an row is read into the Ev
+struct, the "status" column is converted to an int data type
+(regardless of its data type in the file) and stored in the status
+value of the struct. Similarly, "pi" and "pha", and the phas vector
+are all stored as floats. Since the "pi", "pha", and "phas" variables
+are declared as "writable" as well as "readable", they also will be
+written to the output file. Note, however, that the "status" variable
+is declared as "readable" only, and hence it will not be written to
+an output file. Finally, the "energy" column is declared as
+"writable" only, meaning it will not be read from the input file. In
+this case, it can be assumed that "energy" will be calculated in the
+program before being output along with the other values.
+
+
+In these simple cases, only the columns specified as "writable" will
+be output using
+FunTableRowPut(). However,
+it often is the case that you want to merge the user columns back in
+with the input columns, even in cases where not all of the input
+column names are explicitly read or even known. For this important
+case, the B<merge=[type]> keyword is provided in the plist string.
+
+
+The B<merge=[type]> keyword tells Funtools to merge the columns from
+the input file with user columns on output. It is normally used when
+an input and output file are opened and the input file provides the
+Funtools reference handle
+for the output file. In this case, each time
+FunTableRowGet() is called, the
+raw input rows are saved in a special buffer. If
+FunTableRowPut() then is called
+(before another call to
+FunTableRowGet()), the contents
+of the raw input rows are merged with the user rows according to the
+value of B<type> as follows:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+B<update>: add new user columns, and update value of existing ones (maintaining the input data type)
+
+
+
+=item *
+
+B<replace>: add new user columns, and replace the data type
+and value of existing ones. (Note that if tlmin/tlmax values are not
+specified in the replacing column, but are specified in the original
+column being replaced, then the original tlmin/tlmax values are used
+in the replacing column.)
+
+
+
+=item *
+
+B<append>: only add new columns, do not "replace" or "update" existing ones
+
+
+=back
+
+
+
+
+Consider the example above. If B<merge=update> is specified in the
+plist string, then "energy" will be added to the input columns, and
+the values of "pi", "pha", and "phas" will be taken from the user
+space (i.e., the values will be updated from the original values, if
+they were changed by the program). The data type for "pi", "pha", and
+"phas" will be the same as in the original file. If
+B<merge=replace> is specified, both the data type and value of
+these three input columns will be changed to the data type and value
+in the user structure. If B<merge=append> is specified, none of
+these three columns will be updated, and only the "energy" column will
+be added. Note that in all cases, "status" will be written from the
+input data, not from the user record, since it was specified as read-only.
+
+
+Standard applications will call
+FunColumnSelect()
+to define user columns. However, if this routine is not called, the
+default behavior is to transfer all input columns into user space. For
+this purpose a default record structure is defined such that each data
+element is properly aligned on a valid data type boundary. This
+mechanism is used by programs such as fundisp and funtable to process
+columns without needing to know the specific names of those columns.
+It is not anticipated that users will need such capabilities (contact
+us if you do!)
+
+
+By default, FunColumnSelect()
+reads/writes rows to/from an "array of structs", where each struct contains
+the column values for a single row of the table. This means that the
+returned values for a given column are not contiguous. You can
+set up the IO to return a "struct of arrays" so that each of the
+returned columns are contiguous by specifying B<org=structofarrays>
+(abbreviation: B<org=soa>) in the plist.
+(The default case is B<org=arrayofstructs> or B<org=aos>.)
+
+
+For example, the default setup to retrieve rows from a table would be
+to define a record structure for a single event and then call
+ FunColumnSelect()
+as follows:
+
+ typedef struct evstruct{
+ short region;
+ double x, y;
+ int pi, pha;
+ double time;
+ } *Ev, EvRec;
+
+ got = FunColumnSelect(fun, sizeof(EvRec), NULL,
+ "x", "D:10:10", mode, FUN_OFFSET(Ev, x),
+ "y", "D:10:10", mode, FUN_OFFSET(Ev, y),
+ "pi", "J", mode, FUN_OFFSET(Ev, pi),
+ "pha", "J", mode, FUN_OFFSET(Ev, pha),
+ "time", "1D", mode, FUN_OFFSET(Ev, time),
+ NULL);
+
+Subsequently, each call to
+FunTableRowGet()
+will return an array of structs, one for each returned row. If instead you
+wanted to read columns into contiguous arrays, you specify B<org=soa>:
+
+ typedef struct aevstruct{
+ short region[MAXROW];
+ double x[MAXROW], y[MAXROW];
+ int pi[MAXROW], pha[MAXROW];
+ double time[MAXROW];
+ } *AEv, AEvRec;
+
+ got = FunColumnSelect(fun, sizeof(AEvRec), "org=soa",
+ "x", "D:10:10", mode, FUN_OFFSET(AEv, x),
+ "y", "D:10:10", mode, FUN_OFFSET(AEv, y),
+ "pi", "J", mode, FUN_OFFSET(AEv, pi),
+ "pha", "J", mode, FUN_OFFSET(AEv, pha),
+ "time", "1D", mode, FUN_OFFSET(AEv, time),
+ NULL);
+
+Note that the only modification to the call is in the plist string.
+
+
+Of course, instead of using staticly allocated arrays, you also can specify
+dynamically allocated pointers:
+
+ /* pointers to arrays of columns (used in struct of arrays) */
+ typedef struct pevstruct{
+ short *region;
+ double *x, *y;
+ int *pi, *pha;
+ double *time;
+ } *PEv, PEvRec;
+
+ got = FunColumnSelect(fun, sizeof(PEvRec), "org=structofarrays",
+ "$region", "@I", mode, FUN_OFFSET(PEv, region),
+ "x", "@D:10:10", mode, FUN_OFFSET(PEv, x),
+ "y", "@D:10:10", mode, FUN_OFFSET(PEv, y),
+ "pi", "@J", mode, FUN_OFFSET(PEv, pi),
+ "pha", "@J", mode, FUN_OFFSET(PEv, pha),
+ "time", "@1D", mode, FUN_OFFSET(PEv, time),
+ NULL);
+
+Here, the actual storage space is either allocated by the user or by the
+FunColumnSelect() call).
+
+
+In all of the above cases, the same call is made to retrieve rows, e.g.:
+
+ buf = (void *)FunTableRowGet(fun, NULL, MAXROW, NULL, &got);
+
+However, the individual data elements are accessed differently.
+For the default case of an "array of structs", the
+individual row records are accessed using:
+
+ for(i=0; i<got; i++){
+ ev = (Ev)buf+i;
+ fprintf(stdout, "%.2f\t%.2f\t%d\t%d\t%.4f\t%.4f\t%21.8f\n",
+ ev->x, ev->y, ev->pi, ev->pha, ev->dx, ev->dy, ev->time);
+ }
+
+For a struct of arrays or a struct of array pointers, we have a single struct
+through which we access individual columns and rows using:
+
+ aev = (AEv)buf;
+ for(i=0; i<got; i++){
+ fprintf(stdout, "%.2f\t%.2f\t%d\t%d\t%.4f\t%.4f\t%21.8f\n",
+ aev->x[i], aev->y[i], aev->pi[i], aev->pha[i],
+ aev->dx[i], aev->dy[i], aev->time[i]);
+ }
+
+Support for struct of arrays in the
+FunTableRowPut()
+call is handled analogously.
+
+
+See the evread example code
+and
+evmerge example code
+for working examples of how
+FunColumnSelect() is used.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funcombine.pod b/funtools/doc/pod/funcombine.pod
new file mode 100644
index 0000000..946d304
--- /dev/null
+++ b/funtools/doc/pod/funcombine.pod
@@ -0,0 +1,157 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunCombine: Combining Region and Table Filters>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document discusses the conventions for combining region and table
+filters, especially with regards to the comma operator.
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+B<Comma Conventions>
+
+Filter specifications consist of a series of boolean expressions,
+separated by commas. These expressions can be table filters,
+spatial region filters, or combinations thereof. Unfortunately,
+common usage requires that the comma operator must act differently
+in different situations. Therefore, while its use is intuitive in
+most cases, commas can be a source of confusion.
+
+
+According to long-standing usage in IRAF, when a comma separates two
+table filters, it takes on the meaning of a boolean B<and>. Thus:
+
+ foo.fits[pha==1,pi==2]
+
+is equivalent to:
+
+ foo.fits[pha==1 && pi==2]
+
+
+When a comma separates two spatial region filters, however, it has
+traditionally taken on the meaning of a boolean B<or>. Thus:
+
+ foo.fits[circle(10,10,3),ellipse(20,20,8,5)]
+
+is equivalent to:
+
+ foo.fits[circle(10,10,3) || ellipse(20,20,8,5)]
+
+(except that in the former case, each region is given a unique id
+in programs such as funcnts).
+
+
+Region and table filters can be combined:
+
+ foo.fits[circle(10,10,3),pi=1:5]
+
+or even:
+
+ foo.fits[pha==1&&circle(10,10,3),pi==2&&ellipse(20,20,8,5)]
+
+In these cases, it is not obvious whether the command should utilize an
+B<or> or B<and> operator. We therefore arbitrarily chose to
+implement the following rule:
+
+
+=over 4
+
+
+
+
+=item *
+
+if both expressions contain a region, the operator used is B<or>.
+
+
+=item *
+
+if one (or both) expression(s) does not contain a region, the operator
+used is B<and>.
+
+
+=back
+
+
+This rule handles the cases of pure regions and pure column filters properly.
+It unambiguously assigns the boolean B<and> to all mixed cases. Thus:
+
+ foo.fits[circle(10,10,3),pi=1:5]
+
+and
+
+ foo.fits[pi=1:5,circle(10,10,3)]
+
+both are equivalent to:
+
+ foo.fits[circle(10,10,3) && pi=1:5]
+
+
+
+[NB: This arbitrary rule B<replaces the previous arbitrary rule>
+(pre-funtools 1.2.3) which stated:
+
+
+=over 4
+
+
+
+
+=item *
+
+if the 2nd expression contains a region, the operator used is B<or>.
+
+
+=item *
+
+if the 2nd expression does not contain a region, the operator
+used is B<and>.
+
+
+=back
+
+
+In that scenario, the B<or> operator was implied by:
+
+ pha==4,circle 5 5 1
+
+while the B<and> operator was implied by
+
+ circle 5 5 1,pha==4
+
+Experience showed that this non-commutative treatment of the comma
+operator was confusing and led to unexpected results.]
+
+
+The comma rule must be considered provisional: comments and complaints
+are welcome to help clarify the matter. Better still, we recommend
+that the comma operator be avoided in such cases in favor of an
+explicit boolean operator.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funcone.pod b/funtools/doc/pod/funcone.pod
new file mode 100644
index 0000000..a766ca6
--- /dev/null
+++ b/funtools/doc/pod/funcone.pod
@@ -0,0 +1,191 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funcone - cone search of a binary table containing RA, Dec columns>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funcone <switches> <iname> <oname> <ra[hdr]> <dec[hdr]> <radius[dr'"]> [columns]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -d deccol:[hdr] # Dec column name, units (def: DEC:d)
+ -j # join columns from list file
+ -J # join columns from list file, output all rows
+ -l listfile # read centers and radii from a list
+ -L listfile # read centers and radii from a list, output list rows
+ -n # don't use cone limits as a filter
+ -r racol:[hdr] # RA column name, units (def: RA:h)
+ -x # append RA_CEN, DEC_CEN, RAD_CEN, CONE_KEY cols
+ -X # append RA_CEN, DEC_CEN, RAD_CEN, CONE_KEY cols, output all rows
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+Funcone performs a cone search on the RA and Dec columns of a FITS
+binary table. The distance from the center RA, Dec position to the RA,
+Dec in each row in the table is calculated. Rows whose distance is
+less than the specified radius are output.
+
+
+The first argument to the program specifies the FITS file, raw event
+file, or raw array file. If "stdin" is specified, data are read from
+the standard input. Use Funtools Bracket
+Notation to specify FITS extensions, and filters. The second
+argument is the output FITS file. If "stdout" is specified, the FITS
+binary table is written to the standard output.
+
+
+The third and fourth required arguments are the RA and Dec center
+position. By default, RA is specified in hours while Dec is specified
+in degrees. You can change the units of either of these by appending
+the character "d" (degrees), "h" (hours) or "r" (radians). Sexagesimal
+notation is supported, with colons or spaces separating hms and dms.
+(When using spaces, please ensure that the entire string is quoted.)
+
+
+The fifth required argument is the radius of the cone search. By default,
+the radius value is given in degrees. The units can be changed by appending
+the character "d" (degrees), "r" (radians), "'" (arc minutes) or
+'"' (arc seconds).
+
+
+By default, all
+columns of the input file are copied to the output file. Selected
+columns can be output using an optional sixth argument in the form:
+
+ "column1 column1 ... columnN"
+
+A seventh argument allows you to output selected columns from the list
+file when B<-j> switch is used. Note that the RA and Dec columns
+used in the cone calculation must not be de-selected.
+
+
+Also by default, the RA and Dec column names are named "RA" and "Dec",
+and are given in units of hours and degrees respectively. You can
+change both the name and the units using the -r [RA] and/or -d [Dec]
+switches. Once again, one of "h", "d", or "r" is appended to the
+column name to specify units but in this case, there must be a colon ":"
+between the name and the unit specification.
+
+
+If the B<-l [listfile]> switch is used, then one or more of the
+center RA, center Dec, and radius can be taken from a list file (which
+can be a FITS table or an ASCII column text file). In this case, the
+third (center RA), fourth (center Dec), and fifth (radius) command
+line arguments can either be a column name in the list file (if that
+parameter varies) or else a numeric value (if that parameter is
+static). When a column name is specified for the RA, Dec, or radius,
+you can append a colon followed by "h", "d", or "r" to specify units
+(also ' and " for radius). The cone search algorithm is run once for
+each row in the list, taking RA, Dec, and radius values from the
+specified columns or from static numeric values specified on the
+command line.
+
+
+When using a list, all valid rows from each iteration are written to a
+single output file. Use the B<-x> switch to help delineate which
+line of the list file was used to produce the given output row(s).
+This switch causes the values for the center RA, Dec, radius, and row
+number to be appended to the output file, in columns called RA_CEN,
+DEC_CEN, RAD_CEN and CONE_KEY, respectively. Alternatively, the
+B<-j> (join) switch will append all columns from the list row to
+the output row (essentially a join of the list row and input row),
+along with the CONE_KEY row number. These two switches are mutually
+exclusive.
+
+
+The B<-X> and B<-J> switches write out the same data as their
+lower case counterparts for each row satisfying a cone search. In
+addition, these switches also write out rows from the event file that
+do not satisfy any cone search. In such cases, that CONE_KEY column
+will be given a value of -1 and the center and list position information
+will be set to zero for the given row. Thus, all rows of the input
+event file are guaranteed to be output, with rows satisfying at least
+one cone search having additional search information.
+
+
+The B<-L> switch acts similarly to the B<-l> switch in that it
+takes centers from a list file. However, it also implicitly sets the
+-j switch, so that output rows are the join of the input event row and
+the center position row. In addition, this switch also writes out all
+center position rows for which no event satisfies the cone search
+criteria of that row. The CONE_KEY column will be given a value of -2
+for center rows that were not close to any data row and the event
+columns will be zeroed out for such rows. In this way, all centers
+rows are guaranteed to be output at least once.
+
+
+If any of "all row" switches (B<-X>, B<-J>, or B<-L>) are
+specified, then a new column named JSTAT is added to the output table.
+The positive values in this column indicate the center position row number
+(starting from 1) in the list file that this data row successful matched
+in a cone search. A value of -1 means that the data row did not match
+any center position. A value of -2 means that the center position was
+not matched by any data row.
+
+
+Given a center position and radius, the cone search algorithm
+calculates limit parameters for a box enclosing the specified cone,
+and only tests rows whose positions values lie within those limits.
+For small files, the overhead associated with this cone limit
+filtering can cause the program to run more slowly than if all events
+were tested. You can turn off cone limit filtering using the B<-n>
+switch to see if this speeds up the processing (especially useful when
+processing a large list of positions).
+
+
+For example, the default cone search uses columns "RA" and "Dec" in hours
+and degrees (respectively) and RA position in hours, Dec and radius in degrees:
+
+ funone in.fits out.fits 23.45 34.56 0.01
+
+To specify the RA position in degrees:
+
+ funcone in.fits out.fits 23.45d 34.56 0.01
+
+To get RA and Dec from a list but use a static value for radius (and
+also write identifying info for each row in the list):
+
+ funcone -x -l list.txt in.fits out.fits MYRA MYDec 0.01
+
+User specified columns in degrees, RA position in hours (sexagesimal
+notation), Dec position in degrees (sexagesimal notation) and radius
+in arc minutes:
+
+ funcone -r myRa:d -d myDec in.fits out.fits 12:30:15.5 30:12 15'
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/fundisp.pod b/funtools/doc/pod/fundisp.pod
new file mode 100644
index 0000000..8f36d86
--- /dev/null
+++ b/funtools/doc/pod/fundisp.pod
@@ -0,0 +1,484 @@
+=pod
+
+=head1 NAME
+
+
+
+B<fundisp - display data in a Funtools data file>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+fundisp [-f format] [-l] [-n] [-T] <iname> [columns|bitpix=n]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -f # format string for display
+ -l # display image as a list containing the columns X, Y, VAL
+ -n # don't output header
+ -F [c] # use specified character as column separator (def: space)
+ -T # output in rdb/starbase format (tab separators)
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<fundisp> displays the data in the specified
+FITS Extension
+and/or
+Image Section
+of a FITS file, or in a
+Section
+of a non-FITS array or raw event file.
+
+The first argument to the program specifies the FITS input image, array, or
+raw event file to display. If "stdin" is specified, data are read from
+the standard input. Use Funtools Bracket
+Notation to specify FITS extensions, image sections, and filters.
+
+
+If the data being displayed are columns (either in a FITS binary table
+or a raw event file), the individual rows are listed. Filters can be
+added using bracket notation. Thus:
+
+ [sh] fundisp "test.ev[time-(int)time>.15]"
+ X Y PHA PI TIME DX DY
+ ------- ------- ------- --------- ---------------- ---------- ----------
+ 10 8 10 8 17.1600 8.50 10.50
+ 9 9 9 9 17.1600 9.50 9.50
+ 10 9 10 9 18.1600 9.50 10.50
+ 10 9 10 9 18.1700 9.50 10.50
+ 8 10 8 10 17.1600 10.50 8.50
+ 9 10 9 10 18.1600 10.50 9.50
+ 9 10 9 10 18.1700 10.50 9.50
+ 10 10 10 10 19.1600 10.50 10.50
+ 10 10 10 10 19.1700 10.50 10.50
+ 10 10 10 10 19.1800 10.50 10.50
+
+[NB: The FITS binary table test file test.ev, as well as the FITS
+image test.fits, are contained in the funtools funtest directory.]
+
+
+When a table is being displayed using B<fundisp>, a second optional
+argument can be used to specify the columns to display. For example:
+
+ [sh] fundisp "test.ev[time-(int)time>=.99]" "x y time"
+ X Y TIME
+ -------- -------- ---------------------
+ 5 -6 40.99000000
+ 4 -5 59.99000000
+ -1 0 154.99000000
+ -2 1 168.99000000
+ -3 2 183.99000000
+ -4 3 199.99000000
+ -5 4 216.99000000
+ -6 5 234.99000000
+ -7 6 253.99000000
+
+
+
+The special column B<$REGION> can be specified to display the
+region id of each row:
+
+ [sh $] fundisp "test.ev[time-(int)time>=.99&&annulus(0 0 0 10 n=3)]" 'x y time $REGION'
+ X Y TIME REGION
+ -------- -------- --------------------- ----------
+ 5 -6 40.99000000 3
+ 4 -5 59.99000000 2
+ -1 0 154.99000000 1
+ -2 1 168.99000000 1
+ -3 2 183.99000000 2
+ -4 3 199.99000000 2
+ -5 4 216.99000000 2
+ -6 5 234.99000000 3
+ -7 6 253.99000000 3
+
+
+Here only rows with the proper fractional time and whose position also is
+within one of the three annuli are displayed.
+
+Columns can be excluded from display using a minus sign before the
+column:
+
+ [sh $] fundisp "test.ev[time-(int)time>=.99]" "-time"
+ X Y PHA PI DX DY
+ -------- -------- -------- ---------- ----------- -----------
+ 5 -6 5 -6 5.50 -6.50
+ 4 -5 4 -5 4.50 -5.50
+ -1 0 -1 0 -1.50 0.50
+ -2 1 -2 1 -2.50 1.50
+ -3 2 -3 2 -3.50 2.50
+ -4 3 -4 3 -4.50 3.50
+ -5 4 -5 4 -5.50 4.50
+ -6 5 -6 5 -6.50 5.50
+ -7 6 -7 6 -7.50 6.50
+
+All columns except the time column are displayed.
+
+The special column B<$N> can be specified to display the
+ordinal value of each row. Thus, continuing the previous example:
+
+ fundisp "test.ev[time-(int)time>=.99]" '-time $n'
+ X Y PHA PI DX DY N
+ ------- -------- -------- ---------- ----------- ----------- ----------
+ 5 -6 5 -6 5.50 -6.50 337
+ 4 -5 4 -5 4.50 -5.50 356
+ -1 0 -1 0 -1.50 0.50 451
+ -2 1 -2 1 -2.50 1.50 465
+ -3 2 -3 2 -3.50 2.50 480
+ -4 3 -4 3 -4.50 3.50 496
+ -5 4 -5 4 -5.50 4.50 513
+ -6 5 -6 5 -6.50 5.50 531
+ -7 6 -7 6 -7.50 6.50 550
+
+Note that the column specification is enclosed in single quotes to protect
+'$n' from begin expanded by the shell.
+
+
+In general, the rules for activating and de-activating columns are:
+
+
+=over 4
+
+
+
+
+=item *
+
+If only exclude columns are specified, then all columns but
+the exclude columns will be activated.
+
+
+=item *
+
+If only include columns are specified, then only the specified columns
+are activated.
+
+
+=item *
+
+If a mixture of include and exclude columns are specified, then
+all but the exclude columns will be active; this last case
+is ambiguous and the rule is arbitrary.
+
+
+=back
+
+
+In addition to specifying columns names explicitly, the special
+symbols B<+> and B<-> can be used to activate and
+de-activate B<all> columns. This is useful if you want to
+activate the $REGION column along with all other columns. According
+to the rules, the syntax "$REGION" only activates the region column
+and de-activates the rest. Use "+ $REGION" to activate all
+columns as well as the region column.
+
+
+If the data being displayed are image data (either in a FITS primary
+image, a FITS image extension, or an array file), an mxn pixel display
+is produced, where m and n are the dimensions of the image. By
+default, pixel values are displayed using the same data type as in the
+file. However, for integer data where the BSCALE and BZERO header parameters
+are present, the data is displayed as floats. In either case, the
+display data type can be overridden using an optional second argument
+of the form:
+
+ bitpix=n
+
+where n is 8,16,32,-32,-64, for unsigned char, short, int, float and double,
+respectively.
+
+
+Of course, running B<fundisp> on anything but the smallest image
+usually results in a display whose size makes it unreadable.
+Therefore, one can uses bracket notation (see below)
+to apply section and/or blocking to the image before generating a
+display. For example:
+
+ [sh] fundisp "test.fits[2:6,2:7]" bitpix=-32
+ 2 3 4 5 6
+ ---------- ---------- ---------- ---------- ----------
+ 2: 3.00 4.00 5.00 6.00 7.00
+ 3: 4.00 5.00 6.00 7.00 8.00
+ 4: 5.00 6.00 7.00 8.00 9.00
+ 5: 6.00 7.00 8.00 9.00 10.00
+ 6: 7.00 8.00 9.00 10.00 11.00
+ 7: 8.00 9.00 10.00 11.00 12.00
+
+
+
+Note that is is possible to display a FITS binary table as an image
+simply by passing the table through B<funimage> first:
+
+ [sh] ./funimage test.ev stdout | fundisp "stdin[2:6,2:7]" bitpix=8
+ 2 3 4 5 6
+ ------- ------- ------- ------- -------
+ 2: 3 4 5 6 7
+ 3: 4 5 6 7 8
+ 4: 5 6 7 8 9
+ 5: 6 7 8 9 10
+ 6: 7 8 9 10 11
+ 7: 8 9 10 11 12
+
+
+If the B<-l> (list) switch is used, then an image is displayed as a
+list containing the columns: X, Y, VAL. For example:
+
+ fundisp -l "test1.fits[2:6,2:7]" bitpix=-32
+ X Y VAL
+ ---------- ---------- -----------
+ 2 2 6.00
+ 3 2 1.00
+ 4 2 1.00
+ 5 2 1.00
+ 6 2 1.00
+ 2 3 1.00
+ 3 3 5.00
+ 4 3 1.00
+ 5 3 1.00
+ 6 3 1.00
+ 2 4 1.00
+ 3 4 1.00
+ 4 4 4.00
+ 5 4 1.00
+ 6 4 1.00
+ 2 5 1.00
+ 3 5 1.00
+ 4 5 1.00
+ 5 5 3.00
+ 6 5 1.00
+ 2 6 1.00
+ 3 6 1.00
+ 4 6 1.00
+ 5 6 1.00
+ 6 6 2.00
+ 2 7 1.00
+ 3 7 1.00
+ 4 7 1.00
+ 5 7 1.00
+ 6 7 1.00
+
+
+
+If the B<-n> (nohead) switch is used, then no header is output for
+tables. This is useful, for example, when fundisp output is being
+directed into gnuplot.
+
+
+The B<fundisp> program uses a default set of display formats:
+
+ datatype TFORM format
+ -------- ----- --------
+ double D "%21.8f"
+ float E "%11.2f"
+ int J "%10d"
+ short I "%8d"
+ byte B "%6d"
+ string A "%12.12s"
+ bits X "%8x"
+ logical L "%1x"
+
+Thus, the default display of 1 double and 2 shorts gives:
+
+ [sh] fundisp snr.ev "time x y"
+
+ TIME X Y
+ --------------------- -------- --------
+ 79494546.56818075 546 201
+ 79488769.94469175 548 201
+ ...
+
+You can change the display format for individual columns or for all
+columns of a given data types by means of the -f switch. The format
+string that accompanies -f is a space-delimited list of keyword=format
+values. The keyword values can either be column names (in which case
+the associated format pertains only to that column) or FITS table
+TFORM specifiers (in which case the format pertains to all columns
+having that data type). For example, you can change the double and
+short formats for all columns like this:
+
+ [sh] fundisp -f "D=%22.11f I=%3d" snr.ev "time x y"
+
+ TIME X Y
+ ---------------------- --- ---
+ 79494546.56818075478 546 201
+ 79488769.94469174743 548 201
+ ...
+
+
+
+Alternatively, you can change the format of the time and x columns like this:
+
+ [sh] fundisp -f "time=%22.11f x=%3d" snr.ev "time x y"
+
+ TIME X Y
+ ---------------------- --- --------
+ 79494546.56818075478 546 201
+ 79488769.94469174743 548 201
+ ...
+
+Note that there is a potential conflict if a column has the same name
+as one of the TFORM specifiers. In the examples above, the the "X"
+column in the table has the same name as the X (bit) datatype. To
+resolve this conflict, the format string is processed such that
+TFORM datatype specifiers are checked for first, using a
+case-sensitive comparison. If the specified format value is not an
+upper case TFORM value, then a case-insensitive check is made on the
+column name. This means that, in the examples above, "X=%3d" will refer
+to the X (bit) datatype, while "x=%3d" will refer to the X column:
+
+ [sh] fundisp -f "X=%3d" snr.ev "x y"
+
+ X Y
+ -------- --------
+ 546 201
+ 548 201
+ ...
+
+ [sh] fundisp -f "x=%3d" snr.ev "x y"
+
+ X Y
+ --- --------
+ 546 201
+ 548 201
+ ...
+
+As a rule, therefore, it is best always to specify the column name in
+lower case and TFORM data types in upper case.
+
+
+The B<-f [format]> will change the format for a single execution
+of fundisp. You also can use the B<FUN_FORMAT> envronment variable
+to change the format for all invocations of fundisp. The format of this
+environment variable's value is identical to that used with
+the B<-f> switch. This global value can be overridden in
+individual cases by use of the B<-f [format]> switch.
+
+
+Caveats: Please also note that it is the user's responsibility to
+match the format specifier to the column data type correctly. Also
+note that, in order to maintain visual alignment between names and
+columns, the column name will be truncated (on the left) if the
+format width is less than the length of the name. However, truncation
+is not performed if the output is in RDB format (using the -T switch).
+
+
+[An older-style format string is supported but deprecated. It
+consists of space-delimited C format statements for all data types,
+specified in the following order:
+
+ double float int short byte string bit.
+
+This order of the list is based on the assumption that people generally
+will want to change the float formats.
+
+If "-" is entered instead of a format statement for a given data type, the
+default format is used. Also, the format string can be terminated without
+specifying all formats, and defaults will be used for the rest of the
+list. Note that you must supply a minimum field width, i.e., "%6d" and
+"%-6d" are legal, "%d" is not legal.
+
+By using -f [format], you can change the double and short formats like this:
+
+ [sh] fundisp -f "22.11f - - 3d" snr.ev "time x y"
+
+ TIME X Y
+ ---------------------- --- ---
+ 79494546.56818075478 546 201
+ 79488769.94469174743 548 201
+ ...
+
+NB: This format is deprecated and will be removed in a future release.]
+
+
+The B<-F[c]> switch can be used to specify a (single-character)
+column separator (where the default is a space). Note that column
+formatting will almost certainly also add spaces to pad individual
+columns to the required width. These can be removed with a program
+such as sed, at the cost of generating unaligned columns. For example:
+
+fundisp -F',' snr.ev'[cir 512 512 .1]'
+ X, Y, PHA, PI, TIME, DX, DY
+--------,--------,--------,--------,---------------------,--------,--------
+ 512, 512, 6, 7, 79493997.45854475, 578, 574
+ 512, 512, 8, 9, 79494575.58943175, 579, 573
+ 512, 512, 5, 6, 79493631.03866175, 578, 575
+ 512, 512, 5, 5, 79493290.86521725, 578, 575
+ 512, 512, 8, 9, 79493432.00990875, 579, 573
+
+fundisp -F',' snr.ev'[cir 512 512 .1]' | sed 's/ *, */,/g'
+ X,Y,PHA,PI,TIME,DX,DY
+--------,--------,--------,--------,---------------------,--------,--------
+ 512,512,6,7,79493997.45854475,578,574
+ 512,512,8,9,79494575.58943175,579,573
+ 512,512,5,6,79493631.03866175,578,575
+ 512,512,5,5,79493290.86521725,578,575
+ 512,512,8,9,79493432.00990875,579,573
+
+fundisp -f "x=%3d y=%3d pi=%1d pha=%1d time=%20.11f dx=%3d dy=%3d" -F',' snr.ev'[cir 512 512 .1]' | sed 's/ *, */,/g'
+ X,Y,A,I,TIME,DX,DY
+---,---,-,-,--------------------,---,---
+512,512,6,7,79493997.45854474604,578,574
+512,512,8,9,79494575.58943174779,579,573
+512,512,5,6,79493631.03866174817,578,575
+512,512,5,5,79493290.86521725357,578,575
+512,512,8,9,79493432.00990875065,579,573
+
+
+
+
+If the B<-T> (rdb table) switch is used, the output will conform
+to starbase/rdb data base format: tabs will be inserted between
+columns rather than spaces. This format is not available when
+displaying image pixels (except in conjunction with the B<-l>
+switch).
+
+
+Finally, note that B<fundisp> can be used to create column filters from
+the auxiliary tables in a FITS file. For example, the following shell code
+will generate a good-time interval (GTI) filter for X-ray data files that
+contain a standard GTI extension:
+
+ #!/bin/sh
+ sed '1,/---- .*/d
+ /^$/,$d' | awk 'tot>0{printf "||"};{printf "time="$1":"$2; tot++}'
+
+If this script is placed in a file called "mkgti", it can be used in a
+command such as:
+
+ fundisp foo.fits"[GTI]" | mkgti > gti.filter
+
+The resulting filter file can then be used in various funtools programs:
+
+ funcnts foo.fits"[@gti.filter]" ...
+
+to process only the events in the good-time intervals.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funds9.pod b/funtools/doc/pod/funds9.pod
new file mode 100644
index 0000000..e1b5cc2
--- /dev/null
+++ b/funtools/doc/pod/funds9.pod
@@ -0,0 +1,113 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunDS9: Funtools and DS9 Image Display>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+Describes how funtools can be integrated into the ds9 Analysis menu.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+
+SAOImage/DS9 is an astronomical imaging and data visualization
+application used by astronomers around the world. DS9 can display
+standard astronomical FITS images and binary tables, but also has
+support for displaying raw array files, shared memory files, and data
+files automatically retrieved via FTP and HTTP. Standard functional
+capabilities include multiple frame buffers, colormap and region
+manipulation, and many data scaling algorithms. DS9's advanced
+features include TrueColor visuals, deep frame buffers, true
+PostScript printing, and display of image mosaics. The program's
+support of image tiling, "blinking", arbitrary zoom, rotation, and pan
+is unparalleled in astronomy. It also has innovative support for
+automatic retrieval and display of standard image data such as the
+Digital Sky Survey (using servers at SAO, StScI, or ESO).
+
+
+DS9 can communicate with external programs such as Funtools using the
+XPA
+messaging system. In addition, programs can be integrated directly
+into the DS9 GUI by means of a configurable Analysis menu. By
+default, the DS9 Analysis menu contains algorithms deemed essential to
+the core functions of DS9, e.g., display cross-cuts of data,
+iso-intensity contours, and WCS grids. However, new programs can be
+added to DS9 by creating a set-up file which can be loaded into DS9
+to reconfigure the Analysis menu.
+
+
+The basic format of the analysis set-up file is:
+
+ #
+ # Analysis command descriptions:
+ # menu label/description
+ # file templates for this command
+ # "menu" (add to menu) |"bind" (bind to key)
+ # analysis command line
+
+
+For example, the funcnts program can be specified in this way:
+
+ Funcnts (counts in source/bkgd regions; options: none)
+ *
+ menu
+ funcnts $filename $regions(source,,) $regions(background,,) | $text
+
+As shown above, DS9 supports a macro facility to provide information
+as well as task support to command lines. For example, the $regions
+macro is expanded by DS9 to provide the current source and/or
+background region to the analysis command. The $text macro is expanded
+to generate a text window display. It also is possible to query for
+parameters using a $param macro, plot data using a $plot macro,
+etc. See the DS9 documentation for further details.
+
+
+A set-up file called funtools.ds9 will
+load some useful Funtools applications (counts in regions, radial
+profile, X-ray light curve and energy spectrum, 1D histogram) into the DS9
+Analysis menu (version 2.1 and above). The file resides in the bin
+directory where Funtools programs are installed. It can be manually
+loaded into DS9 from the B<Load Analysis Commands ...> option of
+the B<Analysis> menu. Alternatively, you can tell DS9 to load
+this file automatically at start-up time by adding the pathname to the
+B<Edit>->B<Preferences>->B<Analysis Menu>->Analysis
+File menu option. (NB: make sure you select
+B<Edit>->B<Preferences>->B<Save Preferences> after setting
+the pathname.)
+
+
+The tasks in this setup file generally process the original disk-based
+FITS file. Funcnts-based results (radial profile, counts in regions)
+are presented in WCS units, if present in the FITS header. For
+situations where a disk file is not available (e.g., image data
+generated and sent to DS9's 'fits' XPA access point), versions of the
+radial profile and counts in regions tasks also are also offered
+utilizing DS9's internal image data. Results are presented in pixels.
+Aside from the units, the results should be identical to the file-based
+results.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funenv.pod b/funtools/doc/pod/funenv.pod
new file mode 100644
index 0000000..0717a17
--- /dev/null
+++ b/funtools/doc/pod/funenv.pod
@@ -0,0 +1,349 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunEnv: Funtools Environment Variables>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+Describes the environment variables which can be used to tailor the overall
+Funtools environment.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+The following environment variables are supported by Funtools:
+
+
+=over 4
+
+
+
+
+
+=item *
+
+B<FITS_EXTNAME>
+
+
+The B<FITS_EXTNAME> environment variable specifies the
+default FITS extension name when FunOpen() is called on a file lacking
+a primary image. Thus,
+
+ setenv FITS_EXTNAME "NEWEV"
+
+will allow you to call FunOpen() on files without specifying NEWEV in
+the
+Funtools bracket specification.
+If no FITS_EXTNAME variable is defined and the extension name also is
+not passed in the bracket specification, then the default will be to
+look for standard X-ray event table extension names "EVENTS" or
+"STDEVT" (we are, after all, and X-ray astronomy group at heart!).
+
+
+
+
+=item *
+
+B<FITS_EXTNUM>
+
+
+The B<FITS_EXTNUM> environment variable specifies the
+default FITS extension number when FunOpen() is called on a file lacking
+a primary image. Thus,
+
+ setenv FITS_EXTNUM 7
+
+will allow you to call FunOpen() on files to open the seventh
+extension without specifying the number in the
+Funtools bracket specification.
+
+
+
+
+=item *
+
+B<FITS_BINCOLS> and B<EVENTS_BINCOLS>
+
+
+These environment variable specifies the default binning key for
+FITS binary tables and raw event files, respectively. They can be
+over-ridden using the B<bincols=[naxis1,naxis2]> keyword in a
+Funtools bracket specification.
+The value of each environment variable
+is a pair of comma-delimited columns, enclosed in parentheses, to use
+for binning. For example, if you want to bin on detx and dety by
+default, then use:
+
+ setenv FITS_BINCOLS "(detx,dety)"
+
+in preference to adding a bincols specification to each filename:
+
+ foo.fits[bincols=(detx,dety)]
+
+
+
+
+
+=item *
+
+B<FITS_BITPIX> and B<EVENTS_BITPIX>
+
+
+These environment variable specifies the default bitpix value for
+binning FITS binary tables and raw event files, respectively. They can
+be over-ridden using the B<bitpix=[value]> keyword in a
+Funtools bracket specification. The value
+of each environment variable is one of the standard FITS bitpix values
+(8,16,32,-32,-64). For example, if you want binning routines to
+create a floating array, then use:
+
+ setenv FITS_BITPIX -32
+
+in preference to adding a bitpix specification to each filename:
+
+ foo.fits[bitpix=-32]
+
+
+
+
+
+=item *
+
+B<ARRAY>
+
+
+The B<ARRAY> environment variable specifies the default
+definition of an array file for Funtools.
+It is used if there is no array specification passed in the
+B<ARRAY()> directive in a
+Non-FITS Array specification.
+The value of the environment variable is a valid array specification such as:
+
+ setenv ARRAY "s100.150"
+ foo.arr[ARRAY()]
+
+This can be defined in preference to adding the specification to each filename:
+
+ foo.arr[ARRAY(s100.150)]
+
+
+
+
+
+=item *
+
+B<EVENTS>
+
+
+The B<EVENTS> environment variable specifies the default
+definition of an raw event file for Funtools.
+It is used if there is no EVENTS specification passed in the
+B<EVENTS()> directive in a
+Non-FITS EVENTS specification.
+The value of the environment variable is a valid EVENTS specification such as:
+
+ setenv EVENTS "x:J:1024,y:J:1024,pi:I,pha:I,time:D,dx:E:1024,dx:E:1024"
+ foo.ev[EVENTS()]
+
+This can be defined in preference to adding the specification to each filename:
+
+ foo.ev[EVENTS(x:J:1024,y:J:1024,pi:I,pha:I,time:D,dx:E:1024,dx:E:1024)]
+
+
+
+=back
+
+
+
+The following filter-related environment variables are supported by Funtools:
+
+
+=over 4
+
+
+
+
+
+
+=item *
+
+B<FILTER_PTYPE>
+
+
+The B<FILTER_PTYPE> environment variable specifies how to
+build a filter. There are three possible methods:
+
+
+=over 4
+
+
+
+
+=item *
+
+process or p
+
+
+The filter is compiled and linked against the funtools library (which
+must therefore be accessible in the original install directory) to produce
+a slave program. This program is fed events or image data and returns
+filter results.
+
+
+
+=item *
+
+dynamic or d (gcc only)
+
+
+The filter is compiled and linked against the funtools library (which
+must therefore be accessible in the original install directory) to produce
+a dynamic shared object, which is loaded into the funtools program and
+executed as a subroutine. (Extensive testing has shown that, contrary to
+expectations, this method is no faster than using a slave process.)
+
+
+
+=item *
+
+contained or c
+
+
+The filter and all supporting region code is compiled and linked
+without reference to the funtools library to produce a slave program
+(which is fed events or image data and returns filter results). This method
+is slower than the other two, because of the time it takes to compile the
+region filtering code. It is used by stand-alone programs such as ds9,
+which do not have access to the funtools library.
+
+
+=back
+
+
+
+By default, B<dynamic> is generally used for gcc compilers and
+B<process> for other compilers. However the filter building algorithm
+will check for required external files and will use B<contained> is
+these are missing.
+
+
+
+
+=item *
+
+B<FUN_MAXROW>
+
+
+The B<FUN_MAXROW> environment variable is used by core
+row-processing Funtools programs (funtable, fundisp, funcnts, funhist,
+funmerge, and funcalc) to set the maximum number of rows read at once
+(i.e. it sets the third argument to the FunTableRowGet() call). The
+default is 8192. Note that this variable is a convention only: it will
+not be a part of a non-core Funtools program unless code is explicitly
+added, since each call to FunTableRowGet() specifies its own maximum
+number of rows to read. NB: if you make this value very large, you
+probably will need to increase B<FUN_MAXBUFSIZE> (see below) as well.
+
+
+
+
+=item *
+
+B<FUN_MAXBUFSIZE>
+
+
+The B<FUN_MAXBUFSIZE> environment variable is used to limit the
+max buffer size that will be allocated to hold table row data. This
+buffer size is calculated to be the row size of the table multiplied
+by the maximum number of rows read at once (see above). Since the
+row size is unlimited (and we have examples of it being larger than 5
+Mb), it is possible that the total buffer size will exceed the machine
+capabilities. We therefore set a default value of 5Mb for the max buffer
+size, and adjust maxrow so that the total size calculated is less than
+this max buffer size. (If the row size is greater than this max buffer
+size, then maxrow is set to 1.) This environment variable will change
+the max buffer size allowed.
+
+
+
+
+=item *
+
+B<FILTER_CC>
+
+
+The B<FILTER_CC> environment variable specifies the compiler to
+use for compiling a filter specification. You also can use the B<CC>
+environment variable. If neither has been set, then gcc will be used
+if available. Otherwise cc is used if available.
+
+
+
+
+=item *
+
+B<FILTER_EXTRA>
+
+
+The B<FILTER_EXTRA> environment variable specifies extra options
+to add to a filter compile command line. In principle, you can add libraries,
+include files, and compiler switches. This variable should be used with care.
+
+
+
+
+=item *
+
+B<FILTER_TMPDIR>
+
+
+The B<FILTER_TMPDIR> environment variable specifies the temporary
+directory for filter compilation intermediate files. You also can use
+the B<TMPDIR> and B<TMP> variables. By default, /tmp is used
+as the temporary directory.
+
+
+
+
+=item *
+
+B<FILTER_KEEP>
+
+
+The B<FILTER_KEEP> environment variable specifies whether the
+intermediate filter files (i.e. C source file and compile log file)
+should be saved after a filter is built. The default is "false", so that
+these intermediate files are deleted. This variable is useful for debugging,
+but care should be taken to reset its value to false when debugging is
+complete.
+
+
+
+=back
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funfiles.pod b/funtools/doc/pod/funfiles.pod
new file mode 100644
index 0000000..7efb464
--- /dev/null
+++ b/funtools/doc/pod/funfiles.pod
@@ -0,0 +1,1019 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunFiles: Funtools Data Files>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+This document describes the data file formats (FITS, array, raw
+events) as well as the file types (gzip, socket, etc.) supported
+by Funtools.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+Funtools supports FITS images and binary tables, and binary files
+containing array (homogeneous) data or event (heterogeneous) data.
+IRAF-style brackets are appended to the filename to specify various
+kinds of information needed to characterize these data:
+
+ file[ext|ind|ARRAY()|EVENTS(),section][filters]
+ or
+ file[ext|ind|ARRAY()|EVENTS(),section,filters]
+
+where:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<file> is the Funtools file name
+
+
+=item *
+
+B<ext> is the FITS extension name
+
+
+=item *
+
+B<ind> is the FITS extension number
+
+
+=item *
+
+B<ARRAY()> is an array specification
+
+
+=item *
+
+B<EVENTS()> is an event specification
+
+
+=item *
+
+B<section> is the image section specification
+
+
+=item *
+
+B<filters> are spatial region and table (row) filters
+
+
+=back
+
+
+
+B<Supported Data Formats>
+
+Funtools programs (and the underlying libraries) support the
+following data file formats:
+
+
+=over 4
+
+
+
+
+=item *
+
+FITS images (and image extensions)
+
+
+=item *
+
+FITS binary tables
+
+
+=item *
+
+binary files containing an array of homogeneous data
+
+
+=item *
+
+binary files containing events, i.e. records of heterogeneous data
+
+
+=item *
+
+column-based text files, which are documented here
+
+
+=item *
+
+non-disk files and lists of files
+
+
+=back
+
+
+Information needed to identify and characterize
+the event or image data can be specified on the command line
+using IRAF-style bracket notation appended to the filename:
+
+ foo.fits # open FITS default extension
+ image.fits[3] # open FITS extension #3
+ events.fits[EVENTS] # open EVENTS extension
+ array.file[ARRAY(s1024)] # open 1024x1024 short array
+ events.file[EVENTS(x:1024,y:1024...)] # open non-FITS event list
+
+Note that in many Unix shells (e.g., csh and tcsh), filenames must
+be enclosed in quotes to protect the brackets from shell processing.
+
+B<FITS Images and Binary Tables>
+
+When FunOpen() opens a FITS file
+without a bracket specifier, the default behavior is to look for a
+valid image in the primary HDU. In the absence of a primary image,
+Funtools will try to open an extension named either B<EVENTS> or
+B<STDEVT>, if one of these exists. This default behavior supports
+both FITS image processing and standard X-ray event list processing
+(which, after all, is what we at SAO/HEAD do).
+
+
+In order to open a FITS binary table or image extension explicitly, it
+is necessary to specify either the extension name or the extension
+number in brackets:
+
+ foo.fits[1] # open extension #1: the primary HDU
+ foo.fits[3] # open extension #3 of a FITS file
+ foo.fits[GTI] # open GTI extension of a FITS file
+
+The ext argument specifies the name of the FITS extension (i.e. the
+value of the EXTENSION header parameter in a FITS extension), while
+the index specifies the value of the FITS EXTVER header parameter.
+Following FITS conventions, extension numbers start at 1.
+
+
+When a FITS data file is opened for reading using
+FunOpen(), the specified extension
+is automatically located and is used to initialize the Funtools internal
+data structures.
+
+B<Non-FITS Raw Event Files>
+
+In addition to FITS tables, Funtools programs and libraries can operate
+on non-FITS files containing heterogeneous event records. To specify
+such an event file, use:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+file[EVENTS(event-spec)]
+
+
+=item *
+
+file[EVENTS()]
+
+
+=back
+
+
+where B<event-spec> is a string that specified the names, data
+types, and optional image dimensions for each element of the event
+record:
+
+
+=over 4
+
+
+
+
+=item *
+
+[name]:[n][type]:[(lodim:)hidim]
+
+
+=back
+
+
+
+
+Data types follow standard conventions for FITS binary tables, but include
+two extra unsigned types ('U' and 'V'):
+
+
+=over 4
+
+
+
+
+=item *
+
+B<B> -- unsigned 8-bit char
+
+
+=item *
+
+B<I> -- signed 16-bit int
+
+
+=item *
+
+B<J> -- signed 32-bit int
+
+
+=item *
+
+B<K> -- signed 64-bit int
+
+
+=item *
+
+B<E> -- 32-bit float
+
+
+=item *
+
+B<D> -- 64-bit float
+
+
+=item *
+
+B<U> -- unsigned 16-bit int
+
+
+=item *
+
+B<V> -- unsigned 32-bit int
+
+
+=back
+
+
+An optional integer value B<n> can be prefixed to the type to indicate
+that the element is an array of n values. For example:
+
+ foo.fits[EVENTS(x:I,y:I,status:4J)]
+
+defines x and y as 16-bit ints and status as an array of 4 32-bit ints.
+
+
+Furthermore, image dimensions can be attached to the event specification
+in order to tell Funtools how to bin the events into an image. They
+follow the conventions for the FITS TLMIN/TLMAX keywords. If the low
+image dimension is not specified, it defaults to 1. Thus:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+RAWX:J:1:100
+
+
+=item *
+
+RAWX:J:100
+
+
+=back
+
+
+both specify that the dimension of this column runs from 1 to 100.
+
+
+NB: it is required that all padding be specified in the record
+definition. Thus, when writing out whole C structs instead of
+individual record elements, great care must be taken to include
+the compiler-added padding in the event definition.
+
+
+For example, suppose a FITS binary table has the following set of column
+definitions:
+
+ TTYPE1 = 'X ' / Label for field
+ TFORM1 = '1I ' / Data type for field
+ TLMIN1 = 1 / Min. axis value
+ TLMAX1 = 10 / Max. axis value
+ TTYPE2 = 'Y ' / Label for field
+ TFORM2 = '1I ' / Data type for field
+ TLMIN2 = 2 / Min. axis value
+ TLMAX2 = 11 / Max. axis value
+ TTYPE3 = 'PHA ' / Label for field
+ TFORM3 = '1I ' / Data type for field
+ TTYPE4 = 'PI ' / Label for field
+ TFORM4 = '1J ' / Data type for field
+ TTYPE5 = 'TIME ' / Label for field
+ TFORM5 = '1D ' / Data type for field
+ TTYPE6 = 'DX ' / Label for field
+ TFORM6 = '1E ' / Data type for field
+ TLMIN6 = 1 / Min. axis value
+ TLMAX6 = 10 / Max. axis value
+ TTYPE7 = 'DY ' / Label for field
+ TFORM7 = '1E ' / Data type for field
+ TLMIN7 = 3 / Min. axis value
+ TLMAX7 = 12 / Max. axis value
+
+
+An raw event file containing these same data would have the event
+specification:
+
+ EVENTS(X:I:10,Y:I:2:11,PHA:I,PI:J,TIME:D,DX:E:10,DY:E:3:12)
+
+
+
+If no event specification string is included within the EVENTS() operator,
+then the event specification is taken from the B<EVENTS> environment
+variable:
+
+ setenv EVENTS "X:I:10,Y:I:10,PHA:I,PI:J,TIME:D,DX:E:10,DY:E:10"
+
+
+
+In addition to knowing the data structure, it is necessary to know the
+I<endian> ordering of the data, i.e., whether or not the data is
+in I<bigendian> format, so that we can convert to the native
+format for this platform. This issue does not arise for FITS Binary
+Tables because all FITS files use big-endian ordering, regardless of
+platform. But for non-FITS data, big-endian data produced on a Sun
+workstation but read on a Linux PC needs to be byte-swapped, since PCs
+use little-endian ordering. To specify an ordering, use the
+I<bigendian=> or I<endian=> keywords on the command-line
+or the EVENTS_BIGENDIAN or EVENTS_ENDIAN environment variables. The
+value of the I<bigendian> variables should be "true" or "false",
+while the value of the I<endian> variables should be "little" or
+"big".
+
+
+For example, a PC can access data produced by a Sun using:
+
+ hrc.nepr[EVENTS(),bigendian=true]
+or
+ hrc.nepr[EVENTS(),endian=big]
+or
+ setenv EVENTS_BIGENDIAN true
+or
+ setenv EVENTS_ENDIAN big
+
+If none of these are specified, the data are assumed to follow the
+format for that platform and no byte-swapping is performed.
+
+B<Non-FITS Array Files>
+
+In addition to FITS images, Funtools programs and libraries can operate
+on non-FITS files containing arrays of homogeneous data. To specify
+an array file, use:
+
+
+=over 4
+
+
+
+
+=item *
+
+file[ARRAY(array-spec)]
+
+
+=item *
+
+file[ARRAY()]
+
+
+=back
+
+
+
+where array-spec is of the form:
+
+
+=over 4
+
+
+
+
+=item *
+
+[type][dim1][.dim2][:skip][endian]
+
+
+=back
+
+
+
+and where [type] is:
+
+
+=over 4
+
+
+
+
+=item *
+
+b (8-bit unsigned char)
+
+
+=item *
+
+s (16-bit short int)
+
+
+=item *
+
+u (16-bit unsigned short int)
+
+
+=item *
+
+i (32-bit int)
+
+
+=item *
+
+r,f (32-bit float)
+
+
+=item *
+
+d (64-bit float)
+
+
+=back
+
+
+
+
+The dim1 specification is required, but dim2 is optional and defaults
+to dim1. The skip specification is optional and defaults to 0. The
+optional endian specification can be 'l' or 'b' and defaults to the
+endian type for the current machine.
+
+
+If no array specification is included within the ARRAY() operator,
+then the array specification is taken from the B<ARRAY> environment
+variable. For example:
+
+
+ foo.arr[ARRAY(r512)] # bitpix=-32 dim1=512 dim2=512
+ foo.arr[ARRAY(r512.400)] # bitpix=-32 dim1=512 dim2=400
+ foo.arr[ARRAY(r512.400]) # bitpix=-32 dim1=512 dim2=400
+ foo.arr[ARRAY(r512.400:2880)] # bitpix=-32 dim1=512 dim2=400 skip=2880
+ foo.arr[ARRAY(r512l)] # bitpix=-32 dim1=512 dim2=512 endian=little
+ setenv ARRAY "r512.400:2880"
+ foo.arr[ARRAY()] # bitpix=-32 dim1=512 dim2=400 skip=2880
+
+
+B<Specifying Image Sections>
+
+Once a data file (and possibly, a FITS extension) has been specified,
+the next (optional) part of a bracket specification can be used to
+select image B<section> information, i.e., to specify the x,y
+limits of an image section, as well as the blocking factor to apply to
+that section. This information can be added to any file specification but
+only is used by Funtools image processing routines.
+
+
+The format of the image section specification is one of the following:
+
+
+=over 4
+
+
+
+
+=item *
+
+file[xy0:xy1,block]
+
+
+=item *
+
+file[x0:x1,y0:y1,block]
+
+
+=item *
+
+file[x0:x1,*,block]
+
+
+=item *
+
+file[*,y0:y1,block]
+
+
+=item *
+
+file[*,block]
+
+
+=back
+
+
+where the limit values can be ints or "*" for default. A single "*"
+can be used instead of val:val, as shown. Note that blocking is
+applied to the section after it is extracted.
+
+
+In addition to image sections specified by the lo and hi x,y limits, image
+sections using center positions can be specified:
+
+
+=over 4
+
+
+
+
+=item *
+
+file[dim1@xcen,dim2@ycen]
+
+
+=item *
+
+file[xdim2@xcen@ycen]
+
+
+=item *
+
+file[dim1@xcen,dim2@ycen,block]
+
+
+=item *
+
+file[dim@xcen@ycen,block]
+
+
+=back
+
+
+Note that the (float) values for dim, dim1, dim2, xcen, ycen must be
+specified or else the expression does not make sense!
+
+
+In all cases, block is optional and defaults to 1. An 's' or 'a' can
+be appended to signify "sum" or "average" blocking (default is "sum").
+Section specifications are given in image coordinates by default. If you
+wish to specify physical coordinates, add a 'p' as the last character
+of the section specification, before the closing bracket.
+For example:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+file[-8:-7,-8:-7p]
+
+
+=item *
+
+file[-8:-7,-8:-7,2p]
+
+
+=back
+
+
+
+A section can be specified in any Funtools file name. If the operation
+to be applied to that file is an imaging operation, then the
+specification will be utilized. If the operation is purely a table
+operation, then the section specification is ignored.
+
+
+Do not be confused by:
+
+ foo.fits[2]
+ foo.fits[*,2]
+
+The former specifies opening the second extension of the FITS file.
+The latter specifies application of block 2 to the image section.
+
+
+Note that the section specification must come after
+any of FITS B<ext> name or B<ind> number,
+but all sensible defaults are supported:
+
+
+=over 4
+
+
+
+
+=item *
+
+file[ext]
+
+
+=item *
+
+file[ext,index]
+
+
+=item *
+
+file[index]
+
+
+=item *
+
+file[ext,section]
+
+
+=item *
+
+file[ext,index,section]
+
+
+=item *
+
+file[index,section]
+
+
+=item *
+
+file[section]
+
+
+=back
+
+
+
+B<Binning FITS Binary Tables and Non-FITS Event Files>
+
+If a FITS binary table or a non-FITS raw event file is to be binned
+into a 2D image (e.g., using the
+funimage
+program), it is necessary to specify the two columns to be used for the
+binning, as well as the dimensions of the image. Funtools first looks
+for a specifier of the form:
+
+ bincols=([xnam[:tlmin[:tlmax:[binsiz]]]],[ynam[:tlmin[:tlmax[:binsiz]]]])
+
+in bracket syntax, and uses the column names thus specified. The tlmin, tlmax,
+and binsiz specifiers determine the image binning dimensions using:
+
+ dim = (tlmax - tlmin)/binsiz (floating point data)
+ dim = (tlmax - tlmin)/binsiz + 1 (integer data)
+
+These tlmin, tlmax, and binsiz specifiers can be omitted if TLMIN,
+TLMAX, and TDBIN header parameters are present in the FITS binary
+table header, respectively. If only one parameter is specified, it is
+assumed to be tlmax, and tlmin defaults to 1. If two parameters are
+specified, they are assumed to be tlmin and tlmax.
+
+For example, to bin an HRC event list columns "VPOS" and "UPOS", use:
+
+ hrc.nepr[bincols=(VPOS,UPOS)]
+
+or
+
+ hrc.nepr[bincols=(VPOS:49152,UPOS:4096)]
+
+Note that you can optionally specify the dimensions of these columns
+to cover cases where neither TLMAX keywords are defined in
+the header. If either dimension is specified, then both must be specified.
+
+
+You can set the FITS_BINCOLS or EVENTS_BINCOLS environment variable as
+an alternative to adding the "bincols=" specifier to each file name
+for FITS binary tables and raw event files, respectively. If no
+binning keywords or environment variables are specified, or if the
+specified columns are not in the binary table, the Chandra parameters
+CPREF (or PREFX) are searched for in the FITS binary table header.
+Failing this, columns named "X" and "Y" are sought. If these are not
+found, the code looks for columns containing the characters "X" and
+"Y". Thus, you can bin on "DETX" and "DETX" columns without
+specifying them, if these are the only column names containing the "X"
+and "Y" characters.
+
+
+Ordinarily, each event or row contributes one count to an image pixel
+during the 2D binning process. Thus, if five events all have the same
+(x,y) position, the image pixel value for that position will have a
+value of five. It is possible to specify a variable contribution
+for each event by using the vcol=[colname] filter spec:
+
+ vcol=[colname]
+
+The vcol colname is a column containing a numeric value in each event row
+that will be used as the contribution of the given event to its image
+pixel. For example, consider an event file that has the following content:
+
+ x:e:4 y:e:4 v:e
+ ------ ------ ----
+ 1 1 1.0
+ 2 2 2.0
+ 3 3 3.0
+ 4 4 0.0
+ 1 1 1.0
+ 2 2 2.0
+ 3 3 3.0
+ 4 4 4.0
+
+There are two events with x,y value of (1,1) so ordinarily a 2D image will
+have a value of 2 in the (1,1) pixel. If the v column is specified as the
+value column:
+
+ foo.fits'[vcol=v]'
+
+then each pixel will contain the additive sum of the associated (x,y)
+column values from the v column. For example, image pixel (1,1) will
+contain 1. + 1. = 2, image pixel (2,2) will contain (2 + 2) = 4, etc.
+
+
+An important variation on the use of a value column to specify the
+contribution an event makes to an image pixel is when the value column
+contains the reciprocal of the event contribution. For this case, the
+column name should be prefixed with a / (divide sign) thus:
+
+ foo.fits'[vcol=/v]'
+
+Each image pixel value will then be the sum of the reciprocals of the value
+column. A zero in the value column results in NaN (not a number).
+Thus, in the above example, image pixel (1.1) will contain 1/1 + 1/1 = 2,
+image pixel (2,2) will contain (1/2 + 1/2) = 1, etc. Image pixel (4,4)
+will contain (1/0 + 1/4) = NaN.
+
+
+You can set the FITS_VCOL or EVENTS_VCOL environment variable as
+an alternative to adding the "vcol=" specifier to each file name
+for FITS binary tables and raw event files, respectively.
+
+
+Finally, when binning events, the data type of the resulting 2D image
+must be specified. This can be done with the "bitpix=[n]" keyword in
+the bracket specification. For example:
+
+ events.fits[bincols=(VPOS,UPOS),bitpix=-32]
+
+will create a floating point image binned on columns VPOS and UPOS.
+If no bitpix keyword is specified, bitpix=32 is assumed. As with
+bincols values, you also can use the FITS_BITPIX and EVENTS_BITPIX
+environment variables to set this value for FITS binary tables and
+raw event files, respectively.
+
+
+The B<funimage> program also allows you to create a 1D image projection
+along any column of a table by using the B<bincols=[column]>
+filter specification and specifying a single column.
+For example, the following command projects a 1D image along
+the chipx column of a table:
+
+ funimage ev.fits'[bincols=chipx]' im.fits
+
+See funimage for more
+information about creating 1D and 2D images.
+
+
+Finally, please note that Funtools supports most FITS standards.
+We will add missing support as required by the community. In general,
+however, we do not support non-standard extensions. For example, we
+sense the presence of the binary table 'variable length array'
+proposed extension and we pass it along when copying and filtering
+files, but we do not process it. We will add support for new standards
+as they become official.
+
+B<Table and Spatial Region Filters>
+
+Note that, in addition extensions and image sections, Funtools bracket
+notation can be used to specify table and spatial region filters. These
+filters are always placed after the image section information. They
+can be specified in the same bracket or in a separate bracket
+immediately following:
+
+
+=over 4
+
+
+
+
+=item *
+
+file[ext|ind|ARRAY()|EVENTS(),section][filters]
+
+
+=item *
+
+file[ext|ind|ARRAY()|EVENTS(),section,filters]
+
+
+=back
+
+
+where:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<file> is the Funtools file name
+
+
+=item *
+
+B<ARRAY()> is an array specification
+
+
+=item *
+
+B<EVENTS()> is an event list specification
+
+
+=item *
+
+B<ext> is the FITS extension name
+
+
+=item *
+
+B<ind> is the FITS extension number
+
+
+=item *
+
+B<section> is the image section to extract
+
+
+=item *
+
+B<filters> are spatial region and table (row) filters to apply
+
+
+=back
+
+
+
+The topics of table and region filtering are covered in detail in:
+
+
+=over 4
+
+
+
+
+=item *
+
+Table Filtering
+
+
+=item *
+
+Spatial Region Filtering
+
+
+=back
+
+
+
+B<Disk Files and Other Supported File Types>
+
+The specified B<file> usually is an ordinary disk file. In
+addition, gzip'ed files are supported in Funtools: gzip'ed input files
+are automatically uncompressed as they are read, and gzip'ed output
+files are compressed as they are written. NB: if a FITS binary table
+is written in gzip format, the number of rows in the table will be set
+to -1. Such a file will work with Funtools programs but will not work
+with other FITS programs such as ds9.
+
+
+The special keywords "stdin" and "stdout" designate Unix standard
+input and standard output, respectively. The string "-" (hyphen) will
+be taken to mean "stdin" if the file is opened for reading and
+"stdout" if the file is opened for writing.
+
+
+A file also can be an INET socket on the same or another machine using
+the syntax:
+
+ machine:port
+
+Thus, for example:
+
+ karapet:1428
+
+specifies that I/O should be performed to/from port 1428 on the
+machine karapet. If no machine name is specified, the default is to
+use the current machine:
+
+ :1428
+
+This means to open port 1428 on the current machine. Socket support
+allows you to generate a distributed pipe:
+
+ on karapet: funtask1 in.fits bynars:1428
+ on bynars: funtask2 :1428 out.fits
+
+The socket mechanism thus supports simple parallel processing using
+B<process decomposition>. Note that parallel processing using
+B<data decomposition> is supported via the B<section> specifier (see
+below), and the B<row#> specifier, which is part of
+Table Filtering.
+
+
+A file also can be a pointer to shared memory using the syntax:
+
+ shm:[id|@key][:size]
+
+A shared memory segment is specified with a B<shm:> prefix,
+followed by either the shared memory id or the shared memory key
+(where the latter is prefixed by the '@' character). The size (in
+bytes) of the shared memory segment can then be appended (preceded by
+the ':' character). If the size specification is absent, the code will
+attempt to determine the length automatically.
+
+If the open mode contains the string "w+", then the memory segment will be
+created if it does not exist. (It also will be released and deleted when the
+file is closed.) In the case where a memory segment is being created, the
+length of the segment is required.
+
+
+A file also can be Unix piped command (i.e. a program to run) using the syntax:
+
+ "pipe: command arg1 ... argn"
+
+The output from the command must be a valid FITS file. It is important
+to use quotes to protect spaces so that command arguments are passed
+correctly. A silly example is:
+
+ fundisp "pipe: funtable 'foo.fits[cir 512 512 .1]' stdout"
+
+This seemed like a good idea at the time ...
+
+B<Lists of Files>
+
+
+Funtools also will process a list of files as a single file using the
+syntax:
+
+ "list: file1 file2 ... filen"
+
+The files in the list are separated by whitespace. Any of the
+above file types can be used. For example, if two files, foo1.fits and
+foo2.fits, are part of the same observation, they can be processed as
+a single file (using their own filters):
+
+ fundisp "list: foo1.fits[cir(512,512,10)] foo2.fits[cir(511,511,10)]"
+ X Y PHA PI TIME DX DY
+ -------- -------- -------- -------- --------------------- -------- --------
+ 512 512 6 7 79493997.45854475 578 574
+ 512 512 8 9 79494575.58943175 579 573
+ 512 512 5 6 79493631.03866175 578 575
+ 512 512 5 5 79493290.86521725 578 575
+ 512 512 8 9 79493432.00990875 579 573
+ 511 511 5 5 79488631.09462625 580 575
+ 511 511 10 11 79488780.60006675 580 573
+ 511 511 4 4 79494562.35474326 580 575
+ 511 511 6 6 79488203.01561825 580 575
+ 511 511 6 6 79488017.99730176 580 575
+ 511 511 4 4 79494332.45355175 580 575
+ 511 511 9 10 79492685.94014275 581 574
+ 511 511 5 5 79487708.71298325 580 575
+ 511 511 8 9 79493719.00160225 581 573
+
+Again, note that it is important to avoid spaces in the filters
+because the list separator also is whitespace. To protect whitespace
+in a filter, enclose the file specification in quotes:
+
+ fundisp "list: 'foo1.fits[cir 512 512 .1]' foo2.fits[cir(511,511,.1)]"
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funfilters.pod b/funtools/doc/pod/funfilters.pod
new file mode 100644
index 0000000..b9b6d83
--- /dev/null
+++ b/funtools/doc/pod/funfilters.pod
@@ -0,0 +1,521 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funfilters: Filtering Rows in a Table>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the user interface for
+filtering rows in binary tables.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+Table filtering allows a program to select rows from an table (e.g.,
+X-ray event list) by checking each row against one or more expressions
+involving the columns in the table. When a table is filtered, only
+valid rows satisfying these expressions are passed through for processing.
+
+
+A filter expression is specified using bracket notation appended to
+the filename of the data being processed:
+
+ foo.fits[pha==1&&pi==2]
+
+It is also possible to put region specification inside a file and
+then pass the filename in bracket notation:
+
+ foo.fits[@my.reg]
+
+Filters must be placed after the extension and image section
+information, when such information is present. The correct order is:
+
+
+=over 4
+
+
+
+
+=item *
+
+file[fileinfo,sectioninfo][filters]
+
+
+=item *
+
+file[fileinfo,sectioninfo,filters]
+
+
+=back
+
+
+where:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<file> is the Funtools file name
+
+
+=item *
+
+B<fileinfo> is an ARRAY, EVENT, FITS extension, or FITS index
+
+
+=item *
+
+B<sectioninfo> is the image section to extract
+
+
+=item *
+
+B<filters> are spatial region and table (row) filters to apply
+
+
+=back
+
+
+See Funtools Files for more information
+on file and image section specifications.
+
+B<Filter Expressions>
+
+
+Table filtering can be performed on columns of data in a FITS
+binary table or a raw event file. Table filtering is accomplished by
+means of B<table filter specifications>. An table filter
+specification consists of one or more B<filter expressions> Filter
+specifications also can contain comments and local/global processing
+directives.
+
+
+More specifically, a filter specification consist of one or more lines
+containing:
+
+ # comment until end of line
+ # include the following file in the table descriptor
+ @file
+ # each row expression can contain filters separated by operators
+ [filter_expression] BOOLOP [filter_expression2], ...
+ # each row expression can contain filters separated by the comma operator
+ [filter_expression1], [filter_expression2], ...
+ # the special row# keyword allows a range of rows to be processed
+ row#=m:n
+ # or a single row
+ row#=m
+ # regions are supported -- but are described elsewhere
+ [spatial_region_expression]
+
+
+
+A single filter expression consists of an arithmetic, logical, or
+other operations involving one or more column values from a
+table. Columns can be compared to other columns, to header values,
+or to numeric constants. Standard math functions can be applied to
+columns. Separate filter expressions can be combined using boolean operators.
+Standard C semantics can be used when constructing expressions, with
+the usual precedence and associativity rules holding sway:
+
+ Operator Associativity
+ -------- -------------
+ () left to right
+ !! (logical not) right to left
+ ! (bitwise not) - (unary minus) right to left
+ * / left to right
+ + - left to right
+ < <= > >= left to right
+ == != left to right
+ & (bitwise and) left to right
+ ^ (bitwise exclusive or) left to right
+ | (bitwise inclusive or) left to right
+ && (logical and) left to right
+ || (logical or) left to right
+ = right to left
+
+For example, if energy and pha are columns in a table,
+then the following are valid expressions:
+
+ pha>1
+ energy == pha
+ (pha>1) && (energy<=2)
+ max(pha,energy)>=2.5
+
+
+
+Comparison values can be integers or floats. Integer comparison values can be
+specified in decimal, octal (using '0' as prefix), hex (using '0x' as prefix)
+or binary (using '0b' as prefix). Thus, the following all specify the same
+comparison test of a status mask:
+
+ (status & 15) == 8 # decimal
+ (status & 017) == 010 # octal
+ (status & 0xf) == 0x8 # hex
+ (status & 0b1111) == 0b1000 # binary
+
+
+The special keyword row# allows you to process a range of rows.
+When row# is specified, the filter code skips to the designated
+row and only processes the specified number of rows. The
+"*" character can be utilized as the high limit value to denote
+processing of the remaining rows. Thus:
+
+ row#=100:109
+
+processes 10 rows, starting with row 100 (counting from 1),
+while:
+
+ row#=100:*
+
+specifies that all but the first 99 rows are to be processed.
+
+
+Spatial region filtering allows a program to select regions of an
+image or rows of a table (e.g., X-ray events) using simple geometric
+shapes and boolean combinations of shapes. For a complete description
+of regions, see Spatial Region Filtering.
+
+B<Separators Also Are Operators>
+
+As mentioned previously, multiple filter expressions can be specified
+in a filter descriptor, separated by commas or new-lines.
+When such a comma or new-line separator is used, the boolean AND operator
+is automatically generated in its place. Thus and expression such as:
+
+ pha==1,pi=2:4
+
+is equivalent to:
+
+ (pha==1) && (pi>=2&&pi<=4)
+
+
+[Note that the behavior of separators is different for filter expressions
+and spatial region expressions. The former uses AND as the operator, while
+the latter user OR. See
+Combining Region and Table Filters
+for more information about these conventions and how they are treated
+when combined.]
+
+B<Range Lists>
+
+Aside from the standard C syntax, filter expressions can make use of
+IRAF-style B<range lists> which specify a range of values. The
+syntax requires that the column name be followed by an '=' sign, which
+is followed by one or more comma-delimited range expressions of the form:
+
+ col = vv # col == vv in range
+ col = :vv # col <= vv in range
+ col = vv: # col >= vv in range
+ col = vv1:vv2 # vv1 <= col <= vv2 in range
+
+The vv's above must be numeric constants; the right hand side of a
+range list cannot contain a column name or header value.
+
+Note that, unlike an ordinary comma separator, the comma separator used
+between two or more range expressions denotes OR. Thus, when two or
+more range expressions are combined with a comma separator, the resulting
+expression is a shortcut for more complicated boolean logic. For example:
+
+ col = :3,6:8,10:
+
+is equivalent to:
+
+ (col=6 && col =10)
+
+Note also that the single-valued rangelist:
+
+ col = val
+
+is equivalent to the C-based filter expression:
+
+ col == val
+
+assuming, of course, that val is a numeric constant.
+
+B<Math Operations and Functions>
+
+It is permissible to specify C math functions as part of the filter syntax.
+When the filter parser recognizes a function call, it automatically
+includes the math.h and links in the C math library. Thus, it is
+possible to filter rows by expressions such as these:
+
+
+=over 4
+
+
+
+
+=item *
+
+(pi+pha)>(2+log(pi)-pha)
+
+
+=item *
+
+min(pi,pha)*14>x
+
+
+=item *
+
+max(pi,pha)==(pi+1)
+
+
+=item *
+
+feq(pi,pha)
+
+
+=item *
+
+div(pi,pha)>0
+
+
+=back
+
+
+The function feq(a,b) returns true (1) if the difference between a and b
+(taken as double precision values) is less than approximately 10E-15.
+The function div(a,b) divides a by b, but returns NaN (not a number)
+if b is 0. It is a safe way to avoid floating point errors when
+dividing one column by another.
+
+B<Include Files>
+
+The special B<@filename> directive specifies an include file
+containing filter expressions. This file is processed as part of
+the overall filter descriptor:
+
+ foo.fits[pha==1,@foo]
+
+
+B<Header Parameters>
+
+The filter syntax supports comparison between a column value and a
+header parameter value of a FITS binary tables (raw event files have no
+such header). The header parameters can be taken from the binary
+table header or the primary header. For example, assuming there is a
+header value MEAN_PHA in one of these headers, you can select photons
+having exactly this value using:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+pha==MEAN_PHA
+
+
+=back
+
+
+
+
+
+Table filtering is more easily described by means of examples.
+Consider data containing the following table structure:
+
+
+=over 4
+
+
+
+
+=item *
+
+double TIME
+
+
+=item *
+
+int X
+
+
+=item *
+
+int Y
+
+
+=item *
+
+short PI
+
+
+=item *
+
+short PHA
+
+
+=item *
+
+int DX
+
+
+=item *
+
+int DY
+
+
+=back
+
+
+
+
+Tables can be filtered on these columns using IRAF/QPOE range syntax or
+any valid C syntax. The following examples illustrate the possibilities:
+
+
+=over 4
+
+
+
+
+
+
+=item *
+
+pha=10
+
+
+=item *
+
+pha==10
+
+
+select rows whose pha value is exactly 10
+
+
+
+
+=item *
+
+pha=10:50
+
+
+select rows whose pha value is in the range of 10 to 50
+
+
+
+
+=item *
+
+pha=10:50,100
+
+
+select rows whose pha value is in the range of 10 to 50 or is
+equal to 100
+
+
+
+
+=item *
+
+pha>=10 && pha<=50
+
+
+select rows whose pha value is in the range of 10 to 50
+
+
+
+
+=item *
+
+pi=1,2&&pha>3
+
+
+select rows whose pha value is 1 or 2 and whose pi value is 3
+
+
+
+
+=item *
+
+pi=1,2 || pha>3
+
+
+select rows whose pha value is 1 or 2 or whose pi value is 3
+
+
+
+
+=item *
+
+pha==pi+1
+
+
+select rows whose pha value is 1 less than the pi value
+
+
+
+
+=item *
+
+(pha==pi+1) && (time>50000.0)
+
+
+select rows whose pha value is 1 less than the pi value
+and whose time value is greater than 50000
+
+
+
+
+=item *
+
+(pi+pha)>20
+
+
+select rows in which the sum of the pi and pha values is greater
+than 20
+
+
+
+
+=item *
+
+pi%2==1
+
+
+select rows in which the pi value is odd
+
+
+=back
+
+
+
+
+Currently, integer range list limits cannot be specified in binary
+notation (use decimal, hex, or octal instead). Please contact us if
+this is a problem.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funflush.pod b/funtools/doc/pod/funflush.pod
new file mode 100644
index 0000000..b525ad2
--- /dev/null
+++ b/funtools/doc/pod/funflush.pod
@@ -0,0 +1,107 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunFlush - flush data to output file>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void FunFlush(Fun fun, char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunFlush> routine will flush data to a FITS output file. In
+particular, it can be called after all rows have been written (using
+the FunTableRowPut() routine)
+in order to add the null padding that is required to complete a FITS
+block. It also should be called after completely writing an image using
+FunImagePut() or after writing
+the final row of an image using
+FunTableRowPut().
+
+
+The B<plist> (i.e., parameter list) argument is a string
+containing one or more comma-delimited B<keyword=value>
+parameters. If the plist string contains the parameter
+"copy=remainder" and the file was opened with a reference file, which,
+in turn, was opened for extension copying (i.e. the input
+FunOpen() mode also was "c" or "C"),
+then FunFlush also will copy the remainder of the FITS extensions from
+the input reference file to the output file. This normally would be
+done only at the end of processing.
+
+
+Note that FunFlush() is called
+with "copy=remainder" in the mode string by FunClose(). This means
+that if you close the output file before the reference input file, it
+is not necessary to call
+FunFlush() explicitly, unless you
+are writing more than one extension. See the
+evmerge example code. However, it is safe to
+call FunFlush() more than once
+without fear of re-writing either the padding or the copied
+extensions.
+
+
+In addition, if FunFlush() is
+called on an output file with the plist set to "copy=reference" and if
+the file was opened with a reference file, the reference extension is
+written to the output file. This mechanism provides a simple way to
+copy input extensions to an output file without processing the former.
+For example, in the code fragment below, an input extension is set to
+be the reference file for a newly opened output extension. If that
+reference extension is not a binary table, it is written to the output
+file:
+
+ /* process each input extension in turn */
+ for(ext=0; ;ext++){
+ /* get new extension name */
+ sprintf(tbuf, "%s[%d]", argv[1], ext);
+ /* open input extension -- if we cannot open it, we are done */
+ if( !(ifun=FunOpen(tbuf, "r", NULL)) )
+ break;
+ /* make the new extension the reference handle for the output file */
+ FunInfoPut(ofun, FUN_IFUN, &ifun, 0);
+ /* if its not a binary table, just write it out */
+ if( !(s=FunParamGets(ifun, "XTENSION", 0, NULL, &got)) ||
+ strcmp(s, "BINTABLE")){
+ if( s ) free(s);
+ FunFlush(ofun, "copy=reference");
+ FunClose(ifun);
+ continue;
+ }
+ else{
+ /* process binary table */
+ ....
+ }
+ }
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funhead.pod b/funtools/doc/pod/funhead.pod
new file mode 100644
index 0000000..ee224cc
--- /dev/null
+++ b/funtools/doc/pod/funhead.pod
@@ -0,0 +1,218 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funhead - display a header in a Funtools file>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funhead [-a] [-s] [-t] [-L] <iname> [oname ename]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -a # display all extension headers
+ -s # display 79 chars instead of 80 before the new-line
+ -t # prepend data type char to each line of output
+ -L # output in rdb/starbase list format
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funhead> displays the FITS header parameters in the specified
+FITS Extension.
+
+The first argument to the program specifies the Funtools input file
+to display. If "stdin" is specified, data are read from
+the standard input. Funtools Bracket
+Notation is used to specify particular FITS extension to process.
+Normally, the full 80 characters of each header card is output,
+followed by a new-line.
+
+
+If the B<-a> switch is specified, the header from each FITS
+extensions in the file is displayed. Note, however, that the B<-a>
+switch does not work with FITS files input via stdin. We hope to
+remove this restriction in a future release.
+
+
+If the B<-s> switch is specified, only 79 characters are output
+before the new-line. This helps the display on 80 character terminals.
+
+
+If the B<-t> switch is specified, the data type of the parameter
+is output as a one character prefix, followed by 77 characters of the
+param. The parameter data types are defined as: FUN_PAR_UNKNOWN
+('u'), FUN_PAR_COMMENT ('c'), FUN_PAR_LOGICAL ('l'), FUN_PAR_INTEGER
+('i'), FUN_PAR_STRING ('s'), FUN_PAR_REAL ('r'), FUN_PAR_COMPLEX ('x').
+
+
+If the B<-L> (rdb table) switch is used, the output will conform
+to starbase/rdb data base list format.
+
+
+For example to display the EVENTS extension (binary table):
+
+ [sh] funhead "foo.fits[EVENTS]"
+ XTENSION= 'BINTABLE' / FITS 3D BINARY TABLE
+ BITPIX = 8 / Binary data
+ NAXIS = 2 / Table is a matrix
+ NAXIS1 = 20 / Width of table in bytes
+ NAXIS2 = 30760 / Number of entries in table
+ PCOUNT = 0 / Random parameter count
+ GCOUNT = 1 / Group count
+ TFIELDS = 7 / Number of fields in each row
+ EXTNAME = 'EVENTS ' / Table name
+ EXTVER = 1 / Version number of table
+ TFORM1 = '1I ' / Data type for field
+ TTYPE1 = 'X ' / Label for field
+ TUNIT1 = ' ' / Physical units for field
+ TFORM2 = '1I ' / Data type for field
+ etc. ...
+ END
+
+
+
+To display the third header:
+
+ [sh] funhead "foo.fits[3]"
+ XTENSION= 'BINTABLE' / FITS 3D BINARY TABLE
+ BITPIX = 8 / Binary data
+ NAXIS = 2 / Table is a matrix
+ NAXIS1 = 32 / Width of table in bytes
+ NAXIS2 = 40 / Number of entries in table
+ PCOUNT = 0 / Random parameter count
+ GCOUNT = 1 / Group count
+ TFIELDS = 7 / Number of fields in each row
+ EXTNAME = 'TGR ' / Table name
+ EXTVER = 1 / Version number of table
+ TFORM1 = '1D ' / Data type for field
+ etc. ...
+ END
+
+
+
+To display the primary header (i.e., extension 0):
+
+ sh> funhead "coma.fits[0]"
+ SIMPLE = T /STANDARD FITS FORMAT
+ BITPIX = 16 /2-BYTE TWOS-COMPL INTEGER
+ NAXIS = 2 /NUMBER OF AXES
+ NAXIS1 = 800 /
+ NAXIS2 = 800 /
+ DATATYPE= 'INTEGER*2' /SHORT INTEGER
+ END
+
+
+
+The funhead program also can edit (i.e. add, delete, or modify) or
+display individual headers parameters. Edit mode is signalled by the
+presence of two additional command-line arguments: output file and
+edit command file, in that order. Edit mode acts as a filter: the
+output file will contain the entire input FITS file, including other
+extensions. The edit command file can be "stdin", in which case edit
+command are read from the standard input.
+
+
+The edit command file contains parameter comments (having '#' in the
+first column) and delete and assignment(modify or add) operations. A
+delete operation is specified by preceding the parameter name with a
+minus sign "-". A display operation (very useful in interactive
+sessions, i.e., where the edit commands are taken from stdin) is
+specified by preceding the parameter name with a question mark "?". In
+either case, a parameter value need not be specified. An assignment
+operation is specified in the same two ways that a parameter is
+specified in a text header (but without the comment character that
+precedes header params), i.e.:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+FITS-style comments have an equal sign "=" between the keyword and
+value and an optional slash "/" to signify a comment. The strict FITS
+rules on column positions are not enforced.
+
+
+
+=item *
+
+Free-form comments can have an optional colon separator between the
+keyword and value. In the absence of quote, all tokens after the
+keyword are part of the value, i.e. no comment is allowed.
+
+
+=back
+
+
+
+
+For example, the following interactive session checks for the
+existence of parameters, adds new parameters, modifies them, and
+modifies and deletes existing parameters:
+
+ sh$ ./funhead snr.ev foo.fits -
+ # look for FOO1
+ ? FOO1
+ WARNING: FOO1 not found
+ # add new foo1
+ FOO1 = 100
+ # add foo2
+ FOO2 = 200
+ # reset foo1 to a different value
+ FOO1 -1
+ # delete foo2
+ -FOO2
+ # change existing value
+ EXTVER 2
+ ? XS-SORT
+ XS-SORT = 'EOF ' / type of event sort
+ # delete existing value
+ -XS-SORT
+ # exit
+ ^D
+
+
+
+See Column-based Text Files
+for more information about header parameter format.
+
+
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funhist.pod b/funtools/doc/pod/funhist.pod
new file mode 100644
index 0000000..fc1885d
--- /dev/null
+++ b/funtools/doc/pod/funhist.pod
@@ -0,0 +1,252 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funhist - create a 1D histogram of a column (from a FITS binary table or raw event file) or an image>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funhist [-n|-w|-T] <iname> [column] [[lo:hi:]bins]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -n # normalize bin value by the width of each bin
+ -w # specify bin width instead of number of bins in arg3
+ -T # output in rdb/starbase format (tab separators)
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funhist> creates a one-dimensional histogram from the specified
+columns of a FITS Extension
+binary table of a FITS file (or from a non-FITS raw event file), or
+from a FITS image or array, and writes that histogram as an ASCII
+table. Alternatively, the program can perform a 1D projection of one
+of the image axes.
+
+
+The first argument to the program is required, and specifies the
+Funtools file: FITS table or image, raw event file, or array. If
+"stdin" is specified, data are read from the standard input. Use
+Funtools Bracket Notation to specify FITS
+extensions, and filters.
+
+
+For a table, the second argument also is required. It specifies the
+column to use in generating the histogram. If the data file is of
+type image (or array), the column is optional: if "x" (or "X"), "y"
+(or "Y") is specified, then a projection is performed over the x
+(dim1) or y (dim2) axes, respectively. (That is, this projection will
+give the same results as a histogram performed on a table containing
+the equivalent x,y event rows.) If no column name is specified or
+"xy" (or "XY") is specified for the image, then a histogram is
+performed on the values contained in the image pixels.
+
+
+The argument that follows is optional and specifies the number of bins
+to use in creating the histogram and, if desired, the range of bin
+values. For image and table histograms, the range should specify the
+min and max data values. For image histograms on the x and y axes,
+the range should specify the min and max image bin values. If this
+argument is omitted, the number of output bins for a table is
+calculated either from the TLMIN/TLMAX headers values (if these exist
+in the table FITS header for the specified column) or by going through
+the data to calculate the min and max value. For an image, the number
+of output bins is calculated either from the DATAMIN/DATAMAX header
+values, or by going through the data to calculate min and max value.
+(Note that this latter calculation might fail if the image cannot be
+fit in memory.) If the data are floating point (table or image) and
+the number of bins is not specified, an arbitrary default of 128 is
+used.
+
+
+For binary table processing, the B<-w> (bin width) switch can be used
+to specify the width of each bin rather than the number of bins. Thus:
+
+ funhist test.ev pha 1:100:5
+
+means that 5 bins of width 20 are used in the histogram, while:
+
+ funhist -w test.ev pha 1:100:5
+
+means that 20 bins of width 5 are used in the histogram.
+
+
+The data are divvied up into the specified number of bins and the
+resulting 1D histogram (or projection) is output in ASCII table
+format. For a table, the output displays the low_edge (inclusive) and
+hi_edge (exclusive) values for the data. For example, a 15-row table
+containing a "pha" column whose values range from -7.5 to 7.5
+can be processed thus:
+
+
+ [sh] funhist test.ev pha
+ # data file: /home/eric/data/test.ev
+ # column: pha
+ # min,max,bins: -7.5 7.5 15
+
+ bin value lo_edge hi_edge
+ ------ --------- --------------------- ---------------------
+ 1 22 -7.50000000 -6.50000000
+ 2 21 -6.50000000 -5.50000000
+ 3 20 -5.50000000 -4.50000000
+ 4 19 -4.50000000 -3.50000000
+ 5 18 -3.50000000 -2.50000000
+ 6 17 -2.50000000 -1.50000000
+ 7 16 -1.50000000 -0.50000000
+ 8 30 -0.50000000 0.50000000
+ 9 16 0.50000000 1.50000000
+ 10 17 1.50000000 2.50000000
+ 11 18 2.50000000 3.50000000
+ 12 19 3.50000000 4.50000000
+ 13 20 4.50000000 5.50000000
+ 14 21 5.50000000 6.50000000
+ 15 22 6.50000000 7.50000000
+
+ [sh] funhist test.ev pha 1:6
+ # data file: /home/eric/data/test.ev
+ # column: pha
+ # min,max,bins: 0.5 6.5 6
+
+ bin value lo_edge hi_edge
+ ------ --------- --------------------- ---------------------
+ 1 16 0.50000000 1.50000000
+ 2 17 1.50000000 2.50000000
+ 3 18 2.50000000 3.50000000
+ 4 19 3.50000000 4.50000000
+ 5 20 4.50000000 5.50000000
+ 6 21 5.50000000 6.50000000
+
+ [sh] funhist test.ev pha 1:6:3
+ # data file: /home/eric/data/test.ev
+ # column: pha
+ # min,max,bins: 0.5 6.5 3
+
+ bin value lo_edge hi_edge
+ ------ --------- --------------------- ---------------------
+ 1 33 0.50000000 2.50000000
+ 2 37 2.50000000 4.50000000
+ 3 41 4.50000000 6.50000000
+
+
+
+For a table histogram, the B<-n>(normalize) switch can be used to
+normalize the bin value by the width of the bin (i.e., hi_edge-lo_edge):
+
+ [sh] funhist -n test.ev pha 1:6:3
+ # data file: test.ev
+ # column: pha
+ # min,max,bins: 0.5 6.5 3
+ # width normalization (val/(hi_edge-lo_edge)) is applied
+
+ bin value lo_edge hi_edge
+ ------ --------------------- --------------------- ---------------------
+ 1 16.50000000 0.50000000 2.50000000
+ 2 6.16666667 2.50000000 4.50000000
+ 3 4.10000000 4.50000000 6.50000000
+
+This could used, for example, to produce a light curve with values
+having units of counts/second instead of counts.
+
+
+For an image histogram, the output displays the low and high image
+values (both inclusive) used to generate the histogram. For example,
+in the following example, 184 pixels had a value of 1, 31 had a value
+of 2, while only 2 had a value of 3,4,5,6, or 7:
+
+ [sh] funhist test.fits
+ # data file: /home/eric/data/test.fits
+ # min,max,bins: 1 7 7
+
+ bin value lo_val hi_val
+ ------ --------------------- --------------------- ---------------------
+ 1 184.00000000 1.00000000 1.00000000
+ 2 31.00000000 2.00000000 2.00000000
+ 3 2.00000000 3.00000000 3.00000000
+ 4 2.00000000 4.00000000 4.00000000
+ 5 2.00000000 5.00000000 5.00000000
+ 6 2.00000000 6.00000000 6.00000000
+ 7 2.00000000 7.00000000 7.00000000
+
+
+
+For the axis projection of an image, the output displays the low and
+high image bins (both inclusive) used to generate the projection. For
+example, in the following example, 21 counts had their X bin value of
+2, etc.:
+
+ [sh] funhist test.fits x 2:7
+ # data file: /home/eric/data/test.fits
+ # column: X
+ # min,max,bins: 2 7 6
+
+ bin value lo_bin hi_bin
+ ------ --------------------- --------------------- ---------------------
+ 1 21.00000000 2.00000000 2.00000000
+ 2 20.00000000 3.00000000 3.00000000
+ 3 19.00000000 4.00000000 4.00000000
+ 4 18.00000000 5.00000000 5.00000000
+ 5 17.00000000 6.00000000 6.00000000
+ 6 16.00000000 7.00000000 7.00000000
+
+ [sh] funhist test.fits x 2:7:2
+ # data file: /home/eric/data/test.fits
+ # column: X
+ # min,max,bins: 2 7 2
+
+ bin value lo_bin hi_bin
+ ------ --------------------- --------------------- ---------------------
+ 1 60.00000000 2.00000000 4.00000000
+ 2 51.00000000 5.00000000 7.00000000
+
+
+
+You can use gnuplot or other plotting programs to graph the
+results, using a script such as:
+
+ #!/bin/sh
+ sed -e '1,/---- .*/d
+ /^$/,$d' | \
+ awk '\
+ BEGIN{print "set nokey; set title \"funhist\"; set xlabel \"bin\"; set ylabel \"counts\"; plot \"-\" with boxes"} \
+ {print $3, $2, $4-$3}' | \
+ gnuplot -persist - 1>/dev/null 2>&1
+
+
+Similar plot commands are supplied in the script B<funhist.plot>:
+
+ funhist test.ev pha ... | funhist.plot gnuplot
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funidx.pod b/funtools/doc/pod/funidx.pod
new file mode 100644
index 0000000..37bb712
--- /dev/null
+++ b/funtools/doc/pod/funidx.pod
@@ -0,0 +1,224 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funidx: Using Indexes to Filter Rows in a Table>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the user interface for
+filtering rows in binary tables with indexes.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+Funtools Table Filtering allows rows in a
+table to be selected based on the values of one or more columns in the
+row. Because the actual filter code is compiled on the fly, it is very
+efficient. However, for very large files (hundreds of Mb or larger),
+evaluating the filter expression on each row can take a long time. Therefore,
+funtools supports index files for columns, which are used automatically during
+filtering to reduce dramatically the number of row evaluations performed.
+The speed increase for indexed filtering can be an order of magnitude or
+more, depending on the size of the file.
+
+
+The funindex program creates an
+index on one or more columns in a binary table. For example, to create an index
+for the column pi in the file huge.fits, use:
+
+ funindex huge.fits pi
+
+This will create an index named huge_pi.idx.
+
+
+When a filter expression is initialized for row evaluation, funtools
+looks for an index file for each column in the filter expression. If
+found, and if the file modification date of the index file is later
+than that of the data file, then the index will be used to reduce the
+number of rows that are evaluated in the filter. When
+Spatial Region Filtering is part of the
+expression, the columns associated with the region are checked for index
+files.
+
+
+If an index file is not available for a given column, then in general,
+all rows must be checked when that column is part of a filter
+expression. This is not true, however, when a non-indexed column is
+part of an AND expression. In this case, only the rows that pass the
+other part of the AND expression need to be checked. Thus, in some cases,
+filtering speed can increase significantly even if all columns are not
+indexed.
+
+
+Also note that certain types of filter expression syntax cannot make
+use of indices. For example, calling functions with column names as
+arguments implies that all rows must be checked against the function
+value. Once again, however, if this function is part of an AND
+expression, then a significant improvement in speed still is possible
+if the other part of the AND expression is indexed.
+
+
+For example, note below the dramatic speedup in searching a 1 Gb
+file using an AND filter, even when one of the columns (pha) has no
+index:
+
+
+ time fundisp \
+ huge.fits'[idx_activate=0,idx_debug=1,pha=2348&&cir 4000 4000 1]' \
+ "x y pha"
+ x y pha
+ ---------- ----------- ----------
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 42.36u 13.07s 6:42.89 13.7%
+
+ time fundisp \
+ huge.fits'[idx_activate=1,idx_debug=1,pha=2348&&cir 4000 4000 1]' \
+ "x y pha"
+ x y pha
+ ---------- ----------- ----------
+ idxeq: [INDEF]
+ idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
+ idxand(1): INDEF [IDX_OR_SORT]
+ idxall(1): [IDX_OR_SORT]
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 1.55u 0.37s 1:19.80 2.4%
+
+
+When all columns are indexed, the increase in speed can be even more dramatic:
+
+ time fundisp \
+ huge.fits'[idx_activate=0,idx_debug=1,pi=770&&cir 4000 4000 1]' \
+ "x y pi"
+ x y pi
+ ---------- ----------- ----------
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 42.60u 12.63s 7:28.63 12.3%
+
+ time fundisp \
+ huge.fits'[idx_activate=1,idx_debug=1,pi=770&&cir 4000 4000 1]' \
+ "x y pi"
+ x y pi
+ ---------- ----------- ----------
+ idxeq: pi start=9473025,stop=9492240 => pi[ROW 9473025:9492240]
+ idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
+ idxor sort/merge: pi[ROW 9473025:9492240] [IDX_OR_SORT]
+ idxmerge(5): [IDX_OR_SORT] pi[ROW]
+ idxall(1): [IDX_OR_SORT]
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 1.67u 0.30s 0:24.76 7.9%
+
+
+
+The miracle of indexed filtering (and indeed, of any indexing) is the
+speed of the binary search on the index, which is of order log2(n)
+instead of n. (The funtools binary search method is taken from
+http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary, to whom
+grateful acknowledgement is made.) This means that the larger the
+file, the better the performance. Conversely, it also means that for
+small files, using an index (and the overhead involved) can slow
+filtering down somewhat. Our tests indicate that on a file containing
+a few tens of thousands of rows, indexed filtering can be 10 to 20
+percent slower than non-indexed filtering. Of course, your mileage
+will vary with conditions (disk access speed, amount of available
+memory, process load, etc.)
+
+
+Any problem encountered during index processing will result in
+indexing being turned off, and replaced by filtering all rows. You can turn
+filtering off manually by setting the idx_activate variable to 0 (in a filter
+expression) or the FILTER_IDX_ACTIVATE environment variable to 0 (in the global
+environment). Debugging output showing how the indexes are being processed can
+be displayed to stderr by setting the idx_debug variable to 1 (in a filter
+expression) or the FILTER_IDX_DEBUG environment variable to 1 (in the global
+environment).
+
+
+Currently, indexed filtering only works with FITS binary tables and raw
+event files. It does not work with text files. This restriction might be
+removed in a future release.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funimage.pod b/funtools/doc/pod/funimage.pod
new file mode 100644
index 0000000..7ec3f93
--- /dev/null
+++ b/funtools/doc/pod/funimage.pod
@@ -0,0 +1,314 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funimage - create a FITS image from a Funtools data file>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funimage [-a] <iname> <oname> [bitpix=n]
+funimage [-l] <iname> <oname> <xcol:xdims> <ycol:ydims> <vcol> [bitpix=n]
+funimage [-p x|y] <iname> <oname> [bitpix=n]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -a # append to existing output file as an image extension
+ -l # input is a list file containing xcol, ycol, value
+ -p [x|y] # project along x or y axis to create a 1D image
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funimage> creates a primary FITS image from the specified
+FITS Extension
+and/or
+Image Section
+of a FITS file, or from an
+Image Section
+of a non-FITS array, or from a raw event file.
+
+The first argument to the program specifies the FITS input image,
+array, or raw event file to process. If "stdin" is specified, data are
+read from the standard input. Use Funtools
+Bracket Notation to specify FITS extensions, image sections, and
+filters. The second argument is the output FITS file. If "stdout" is
+specified, the FITS image is written to the standard output. By
+default, the output pixel values are of the same data type as those of the
+input file (or type "int" when binning a table), but this can be
+overridden using an optional third argument of the form:
+
+ bitpix=n
+
+where n is 8,16,32,-32,-64, for unsigned char, short, int, float and double,
+respectively.
+
+
+If the input data are of type image, the appropriate section is
+extracted and blocked (based on how the
+Image Section is specified), and
+the result is written to the FITS primary image. When an integer
+image containing the BSCALE and BZERO keywords is converted to float,
+the pixel values are scaled and the scaling keywords are deleted from the
+output header. When converting integer scaled data to integer
+(possibly of a different size), the pixels are not scaled and the
+scaling keywords are retained.
+
+
+If the input data is a binary table or raw event file, these are
+binned into an image, from which a section is extracted and blocked,
+and written to a primary FITS image. In this case, it is necessary to
+specify the two columns that will be used in the 2D binning. This can
+be done on the command line using the B<bincols=(x,y)> keyword:
+
+ funcnts "foo.ev[EVENTS,bincols=(detx,dety)]"
+
+The full form of the B<bincols=> specifier is:
+
+ bincols=([xname[:tlmin[:tlmax:[binsiz]]]],[yname[:tlmin[:tlmax[:binsiz]]]])
+
+where the tlmin, tlmax, and binsiz specifiers determine the image binning
+dimensions:
+
+ dim = (tlmax - tlmin)/binsiz (floating point data)
+ dim = (tlmax - tlmin)/binsiz + 1 (integer data)
+
+Using this syntax, it is possible to bin any two columns of a binary
+table at any bin size. Note that the tlmin, tlmax, and binsiz
+specifiers can be omitted if TLMIN, TLMAX, and TDBIN header parameters
+(respectively) are present in the FITS binary table header for the
+column in question. Note also that if only one parameter is specified,
+it is assumed to be tlmax, and tlmin defaults to 1. If two parameters
+are specified, they are assumed to be tlmin and tlmax.
+See Binning FITS Binary Tables and Non-FITS
+Event Files for more information about binning parameters.
+
+
+By default, a new 2D FITS image file is created and the image is written
+to the primary HDU. If the B<-a> (append) switch is specified,
+the image is appended to an existing FITS file as an IMAGE extension.
+(If the output file does not exist, the switch is effectively ignored
+and the image is written to the primary HDU.) This can be useful in a
+shell programming environment when processing multiple FITS images
+that you want to combine into a single final FITS file.
+
+
+B<funimage> also can take input from a table containing columns of
+x, y, and value (e.g., the output from B<fundisp -l> which
+displays each image x and y and the number of counts at that
+position.) When the B<-l> (list) switch is used, the input file is
+taken to be a FITS or ASCII table containing (at least) three columns
+that specify the x and y image coordinates and the value of that
+image pixel. In this case, B<funimage> requires four extra
+arguments: xcolumn:xdims, ycolumn:ydims, vcolumn and bitpix=n. The x
+and y col:dim information takes the form:
+
+ name:dim # values range from 1 to dim
+ name:min:max # values range from min to max
+ name:min:max:binsiz # dimensions scaled by binsize
+
+In particular, the min value should be used whenever the
+minimum coordinate value is something other than one. For example:
+
+ funimage -l foo.lst foo.fits xcol:0:512 ycol:0:512 value bitpix=-32
+
+
+
+The list feature also can be used to read unnamed columns from standard
+input: simply replace the column name with a null string. Note
+that the dimension information is still required:
+
+ funimage -l stdin foo.fits "":0:512 "":0:512 "" bitpix=-32
+ 240 250 1
+ 255 256 2
+ ...
+ ^D
+
+
+
+The list feature provides a simple way to generate a blank image.
+If you pass a Column-based Text File
+to funimage in which the text header contains the required image
+information, then funimage will correctly make a blank image. For
+example, consider the following text file (called foo.txt):
+
+ x:I:1:10 y:I:1:10
+ ------ ------
+ 0 0
+
+This text file defines two columns, x and y, each of data type 32-bit int and
+image dimension 10. The command:
+
+ funimage foo.txt foo.fits bitpix=8
+
+will create an empty FITS image called foo.fits containing a 10x10
+image of unsigned char:
+
+ fundisp foo.fits
+ 1 2 3 4 5 6 7 8 9 10
+ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
+ 10: 0 0 0 0 0 0 0 0 0 0
+ 9: 0 0 0 0 0 0 0 0 0 0
+ 8: 0 0 0 0 0 0 0 0 0 0
+ 7: 0 0 0 0 0 0 0 0 0 0
+ 6: 0 0 0 0 0 0 0 0 0 0
+ 5: 0 0 0 0 0 0 0 0 0 0
+ 4: 0 0 0 0 0 0 0 0 0 0
+ 3: 0 0 0 0 0 0 0 0 0 0
+ 2: 0 0 0 0 0 0 0 0 0 0
+ 1: 1 0 0 0 0 0 0 0 0 0
+
+
+
+Note that the text file must contain at least
+one row of data. However, in the present example, event position 0,0 is
+outside the limits of the image and will be ignored. (You can, of course,
+use real x,y values to seed the image with data.)
+
+
+Furthermore, you can use the TEXT filter specification to obviate the need for
+an input text file altogether. The following command will create the same
+10x10 char image without an actual input file:
+
+ funimage stdin'[TEXT(x:I:10,y:I:10)]' foo.fits bitpix=8 < /dev/null
+or
+ funimage /dev/null'[TEXT(x:I:10,y:I:10)]' foo.fits bitpix=8
+
+
+
+You also can use either of these methods to generate a region mask simply
+by appending a region inside the filter brackets and specfying B<mask=all>
+along with the bitpix. For example, the following command will generate a
+10x10 char mask using 3 regions:
+
+ funimage stdin'[TEXT(x:I:10,y:I:10),cir(5,5,4),point(10,1),-cir(5,5,2)]' \
+ foo.fits bitpix=8,mask=all < /dev/null
+
+The resulting mask looks like this:
+
+ fundisp foo.fits
+ 1 2 3 4 5 6 7 8 9 10
+ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
+ 10: 0 0 0 0 0 0 0 0 0 0
+ 9: 0 0 0 0 0 0 0 0 0 0
+ 8: 0 0 1 1 1 1 1 0 0 0
+ 7: 0 1 1 1 1 1 1 1 0 0
+ 6: 0 1 1 0 0 0 1 1 0 0
+ 5: 0 1 1 0 0 0 1 1 0 0
+ 4: 0 1 1 0 0 0 1 1 0 0
+ 3: 0 1 1 1 1 1 1 1 0 0
+ 2: 0 0 1 1 1 1 1 0 0 0
+ 1: 0 0 0 0 0 0 0 0 0 2
+
+
+
+You can use B<funimage> to create 1D image projections along the x
+or y axis using the B<-p [x|y]> switch. This capability works for
+both images and tables. For example consider a FITS table named ev.fits
+containing the following rows:
+
+ X Y
+ -------- --------
+ 1 1
+ 1 2
+ 1 3
+ 1 4
+ 1 5
+ 2 2
+ 2 3
+ 2 4
+ 2 5
+ 3 3
+ 3 4
+ 3 5
+ 4 4
+ 4 5
+ 5 5
+
+
+A corresponding 5x5 image, called dim2.fits, would therefore contain:
+
+ 1 2 3 4 5
+ ---------- ---------- ---------- ---------- ----------
+ 5: 1 1 1 1 1
+ 4: 1 1 1 1 0
+ 3: 1 1 1 0 0
+ 2: 1 1 0 0 0
+ 1: 1 0 0 0 0
+
+A projection along the y axis can be performed on either the table or
+the image:
+
+ funimage -p y ev.fits stdout | fundisp stdin
+ 1 2 3 4 5
+ ---------- ---------- ---------- ---------- ----------
+ 1: 1 2 3 4 5
+
+ funimage -p y dim2.fits stdout | fundisp stdin
+ 1 2 3 4 5
+ ---------- ---------- ---------- ---------- ----------
+ 1: 1 2 3 4 5
+
+
+
+Furthermore, you can create a 1D image projection along any column of
+a table by using the B<bincols=[column]> filter specification and
+specifying a single column. For example, the following command
+projects the same 1D image along the y axis of a table as use of
+the B<-p y> switch:
+
+ funimage ev.fits'[bincols=y]' stdout | fundisp stdin
+ 1 2 3 4 5
+ ---------- ---------- ---------- ---------- ----------
+ 1: 1 2 3 4 5
+
+
+
+Examples:
+
+Create a FITS image from a FITS binary table:
+
+ [sh] funimage test.ev test.fits
+
+
+
+Display the FITS image generated from a blocked section of FITS binary table:
+
+ [sh] funimage "test.ev[2:8,3:7,2]" stdout | fundisp stdin
+ 1 2 3
+ --------- --------- ---------
+ 1: 20 28 36
+ 2: 28 36 44
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funimageget.pod b/funtools/doc/pod/funimageget.pod
new file mode 100644
index 0000000..a569bba
--- /dev/null
+++ b/funtools/doc/pod/funimageget.pod
@@ -0,0 +1,237 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunImageGet - get an image or image section>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void *FunImageGet(Fun fun, void *buf, char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunImageGet()> routine returns an binned image array of the
+specified section of a Funtools data file. If the input data are
+already of type image, the array is generated by extracting the
+specified image section and then binning it according to the specified
+bin factor. If the input data are contained in a binary table or raw
+event file, the rows are binned on the columns specified by the
+B<bincols=> keyword (using appropriate default columns as
+necessary), after which the image section and bin factors are
+applied. In both cases, the data is automatically converted from FITS
+to native format, if necessary.
+
+The first argument is the Funtools handle returned by
+FunOpen(). The second B<buf>
+argument is a pointer to a data buffer to fill. If NULL is specified,
+FunImageGet will allocate a buffer of the appropriate size. Generally
+speaking, you always want Funtools to allocate the buffer because
+the image dimensions will be determined by
+Funtools image sectioning
+on the command line.
+
+The third B<plist> (i.e., parameter list) argument is a string
+containing one or more comma-delimited B<keyword=value>
+parameters. It can be used to specify the return data type using the
+B<bitpix=> keyword. If no such keyword is specified in the plist
+string, the data type of the returned image is the same as the data type
+of the original input file, or is of type int for FITS binary tables.
+
+
+If the B<bitpix=> keyword is supplied in the plist string, the data
+type of the returned image will be one of the supported FITS image
+data types:
+
+
+=over 4
+
+
+
+
+=item *
+
+8 unsigned char
+
+
+=item *
+
+16 short
+
+
+=item *
+
+32 int
+
+
+=item *
+
+-32 float
+
+
+=item *
+
+-64 double
+
+
+=back
+
+
+For example:
+
+ void *buf;
+ /* extract data section into an image buffer */
+ if( !(buf = FunImageGet(fun, NULL, NULL)) )
+ gerror(stderr, "could not FunImageGet: %s\n", iname);
+
+will allocate buf and retrieve the image in the file data format. In
+this case, you will have to determine the data type (using the
+FUN_SECT_BITPIX value in the
+FunInfoGet()
+routine)
+and then use a switch statement to process each data type:
+
+ int bitpix;
+ void *buf;
+ unsigned char *cbuf;
+ short *sbuf;
+ int *ibuf;
+ ...
+ buf = FunImageGet(fun, NULL, NULL);
+ FunInfoGet(fun, FUN_SECT_BITPIX, &bitpix, 0);
+ /* set appropriate data type buffer to point to image buffer */
+ switch(bitpix){
+ case 8:
+ cbuf = (unsigned char *)buf; break;
+ case 16:
+ sbuf = (short *)buf; break;
+ case 32:
+ ibuf = (int *)buf; break;
+ ...
+
+See the
+imblank example code
+for more details on how to process an image when the data type is not
+specified beforehand.
+
+
+It often is easier to specify the data type directly:
+
+ double *buf;
+ /* extract data section into a double image buffer */
+ if( !(buf = FunImageGet(fun, NULL, "bitpix=-64")) )
+ gerror(stderr, "could not FunImageGet: %s\n", iname);
+
+will extract the image while converting to type double.
+
+
+On success, a pointer to the image buffer is returned. (This will be
+the same as the second argument, if NULL is not passed to the latter.)
+On error, NULL is returned.
+
+
+In summary, to retrieve image or row data into a binned image, you simply
+call FunOpen() followed by
+FunImageGet(). Generally, you
+then will want to call
+FunInfoGet()
+to retrieve the
+axis dimensions (and data type) of the section you are processing
+(so as to take account of sectioning and blocking of the original data):
+
+ double *buf;
+ int i, j;
+ int dim1, dim2;
+ ... other declarations, etc.
+
+ /* open the input FITS file */
+ if( !(fun = FunOpen(argv[1], "rc", NULL)) )
+ gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
+
+ /* extract and bin the data section into a double float image buffer */
+ if( !(buf = FunImageGet(fun, NULL, "bitpix=-64")) )
+ gerror(stderr, "could not FunImageGet: %s\n", argv[1]);
+
+ /* get dimension information from funtools structure */
+ FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
+
+ /* loop through pixels and reset values below limit to value */
+ for(i=0; i<dim1*dim2; i++){
+ if( buf[i] <= blimit ) buf[i] = bvalue;
+ }
+
+
+
+Another useful plist string value is "mask=all", which returns an
+image populated with regions id values. Image pixels within a region
+will contain the associated region id (region values start at 1), and
+otherwise will contain a 0 value. Thus, the returned image is a
+region mask which can be used to process the image data (which
+presumably is retrieved by a separate call to FunImageGet) pixel by
+pixel.
+
+
+If a FITS binary table or a non-FITS raw event file is being binned
+into an image, it is necessary to specify the two columns that will be
+used in the 2D binning. This usually is done on the command line
+using the B<bincols=(x,y)> keyword:
+
+ funcnts "foo.ev[EVENTS,bincols=(detx,dety)]"
+
+
+
+The full form of the B<bincols=> specifier is:
+
+ bincols=([xname[:tlmin[:tlmax:[binsiz]]]],[yname[:tlmin[:tlmax[:binsiz]]]])
+
+where the tlmin, tlmax, and binsiz specifiers determine the image binning
+dimensions:
+
+ dim = (tlmax - tlmin)/binsiz (floating point data)
+ dim = (tlmax - tlmin)/binsiz + 1 (integer data)
+
+These tlmin, tlmax, and binsiz specifiers can be omitted if TLMIN,
+TLMAX, and TDBIN header parameters (respectively) are present in the
+FITS binary table header for the column in question. Note that if
+only one parameter is specified, it is assumed to be tlmax, and tlmin
+defaults to 1. If two parameters are specified, they are assumed to be
+tlmin and tlmax.
+
+
+If B<bincols> is not specified on the command line, Funtools tries
+to use appropriate defaults: it looks for the environment variable
+FITS_BINCOLS (or FITS_BINKEY). Then it looks for the Chandra
+parameters CPREF (or PREFX) in the FITS binary table header. Failing
+this, it looks for columns named "X" and "Y" and if these are not
+found, it looks for columns containing the characters "X" and "Y".
+
+See Binning FITS Binary Tables and
+Non-FITS Event Files for more information.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funimageput.pod b/funtools/doc/pod/funimageput.pod
new file mode 100644
index 0000000..60eea7d
--- /dev/null
+++ b/funtools/doc/pod/funimageput.pod
@@ -0,0 +1,145 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunImagePut - put an image to a Funtools file>
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunImagePut(Fun fun, void *buf, int dim1, int dim2, int bitpix,
+ char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+The B<FunImagePut()> routine outputs an image array to a FITS
+file. The image is written either as a primary header/data unit or as
+an image extension, depending on whether other data have already been
+written to the file. That is, if the current file position is at the
+beginning of the file, a primary HDU is written. Otherwise, an
+image extension is written.
+
+
+The first argument is the Funtools handle returned by
+FunOpen(). The second B<buf>
+argument is a pointer to a data buffer to write. The B<dim1>and
+B<dim2> arguments that follow specify the dimensions of the image,
+where dim1 corresponds to naxis1 and dim2 corresponds to naxis2. The
+B<bitpix> argument specifies the data type of the image and can
+have the following FITS-standard values:
+
+
+=over 4
+
+
+
+
+=item *
+
+8 unsigned char
+
+
+=item *
+
+16 short
+
+
+=item *
+
+32 int
+
+
+=item *
+
+-32 float
+
+
+=item *
+
+-64 double
+
+
+=back
+
+
+
+
+When FunTableRowPut() is first
+called for a given image, Funtools checks to see if the primary header
+has already been written (by having previously written an image or a
+binary table.) If not, this image is written to the primary HDU.
+Otherwise, it is written to an image extension.
+
+Thus, a simple program to generate a FITS image might look like this:
+
+ int i;
+ int dim1=512, dim2=512;
+ double *dbuf;
+ Fun fun;
+ dbuf = malloc(dim1*dim2*sizeof(double));
+ /* open the output FITS image, preparing to copy input params */
+ if( !(fun = FunOpen(argv[1], "w", NULL)) )
+ gerror(stderr, "could not FunOpen output file: %s\n", argv[1]);
+ for(i=0; i<(dim1*dim2); i++){
+ ... fill dbuf ...
+ }
+ /* put the image (header will be generated automatically */
+ if( !FunImagePut(fun, buf, dim1, dim2, -64, NULL) )
+ gerror(stderr, "could not FunImagePut: %s\n", argv[1]);
+ FunClose(fun);
+ free(dbuf);
+
+
+
+In addition, if a
+Funtools reference handle
+was specified when this table was opened, the
+parameters from this
+Funtools reference handle
+are merged into the new image
+header. Furthermore, if a reference image was specified during
+FunOpen(), the values of
+B<dim1>, B<dim2>, and B<bitpix> in the calling sequence
+can all be set to 0. In this case, default values are taken from the
+reference image section. This is useful if you are reading an image
+section in its native data format, processing it, and then writing
+that section to a new FITS file. See the
+imblank example code.
+
+
+The data are assumed to be in the native machine format and will
+automatically be swapped to FITS big-endian format if necessary. This
+behavior can be over-ridden with the B<convert=[true|false]>
+keyword in the B<plist> param list string.
+
+
+When you are finished writing the image, you should call
+FunFlush() to write out the FITS
+image padding. However, this is not necessary if you subsequently call
+FunClose() without doing any other I/O to the FITS file.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funimagerowget.pod b/funtools/doc/pod/funimagerowget.pod
new file mode 100644
index 0000000..91c776a
--- /dev/null
+++ b/funtools/doc/pod/funimagerowget.pod
@@ -0,0 +1,137 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunImageRowGet - get row(s) of an image>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void *FunImageRowGet(Fun fun, void *buf, int rstart, int rstop,
+ char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunImageRowGet()> routine returns one or more image rows
+from the specified section of a Funtools data file. If the input data
+are of type image, the array is generated by extracting the specified
+image rows and then binning them according to the specified bin
+factor. If the input data are contained in a binary table or raw
+event file, the rows are binned on the columns specified by the
+B<bincols=> keyword (using appropriate default columns as needed),
+after which the image section and bin factors are applied.
+
+
+The first argument is the Funtools handle returned by
+FunOpen(). The second B<buf>
+argument is a pointer to a data buffer to fill. If NULL is specified,
+FunImageGet() will allocate a buffer of the appropriate size.
+
+
+The third and fourth arguments specify the first and last row to
+retrieve. Rows are counted starting from 1, up to the value of
+FUN_YMAX(fun). The final B<plist> (i.e., parameter list) argument
+is a string containing one or more comma-delimited
+B<keyword=value> parameters. It can be used to specify the return
+data type using the B<bitpix=> keyword. If no such keyword is
+specified in the plist string, the data type of the image is the same
+as the data type of the original input file, or is of type int for
+FITS binary tables.
+
+
+If the B<bitpix=>value is supplied in the plist string, the data
+type of the returned image will be one of the supported FITS image
+data types:
+
+
+=over 4
+
+
+
+
+=item *
+
+8 unsigned char
+
+
+=item *
+
+16 short
+
+
+=item *
+
+32 int
+
+
+=item *
+
+-32 float
+
+
+=item *
+
+-64 double
+
+
+=back
+
+
+
+
+For example:
+
+ double *drow;
+ Fun fun;
+ ... open files ...
+ /* get section dimensions */
+ FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
+ /* allocate one line's worth */
+ drow = malloc(dim1*sizeof(double));
+ /* retrieve and process each input row (starting at 1) */
+ for(i=1; i <= dim2; i++){
+ if( !FunImageRowGet(fun, drow, i, i, "bitpix=-64") )
+ gerror(stderr, "can't FunImageRowGet: %d %s\n", i, iname);
+ /* reverse the line */
+ for(j=1; j<=dim1; j++){
+ ... process drow[j-1] ...
+ }
+ }
+ ...
+
+
+
+On success, a pointer to the image buffer is returned. (This will be
+the same as the second argument, if NULL is not passed to the latter.)
+On error, NULL is returned. Note that the considerations described
+above for specifying binning columns in
+FunImageGet() also apply to
+B<FunImageRowGet()>.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funimagerowput.pod b/funtools/doc/pod/funimagerowput.pod
new file mode 100644
index 0000000..2ff05cc
--- /dev/null
+++ b/funtools/doc/pod/funimagerowput.pod
@@ -0,0 +1,122 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunImageRowPut - put row(s) of an image>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void *FunImageRowPut(Fun fun, void *buf, int rstart, int rstop,
+ int dim1, int dim2, int bitpix, char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunImageRowPut()> routine writes one or more image rows to
+the specified FITS image file. The first argument is the Funtools
+handle returned by FunOpen().
+The second B<buf> argument is a pointer to the row data buffer,
+while the third and fourth arguments specify the starting and ending
+rows to write. Valid rows values range from 1 to dim2, i.e., row is
+one-valued.
+
+
+The B<dim1>and B<dim2> arguments that follow specify the
+dimensions, where dim1 corresponds to naxis1 and dim2 corresponds to
+naxis2. The B<bitpix> argument data type of the image and can
+have the following FITS-standard values:
+
+
+=over 4
+
+
+
+
+=item *
+
+8 unsigned char
+
+
+=item *
+
+16 short
+
+
+=item *
+
+32 int
+
+
+=item *
+
+-32 float
+
+
+=item *
+
+-64 double
+
+
+=back
+
+
+
+For example:
+
+ double *drow;
+ Fun fun, fun2;
+ ... open files ...
+ /* get section dimensions */
+ FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
+ /* allocate one line's worth */
+ drow = malloc(dim1*sizeof(double));
+ /* retrieve and process each input row (starting at 1) */
+ for(i=1; i <= dim2; i++){
+ if( !FunImageRowGet(fun, drow, i, i, "bitpix=-64") )
+ gerror(stderr, "can't FunImageRowGet: %d %s\n", i, iname);
+ ... process drow ...
+ if( !FunImageRowPut(fun2, drow, i, i, 64, NULL) )
+ gerror(stderr, "can't FunImageRowPut: %d %s\n", i, oname);
+ }
+ ...
+
+
+
+The data are assumed to be in the native machine format and will
+automatically be swapped to big-endian FITS format if necessary. This
+behavior can be over-ridden with the B<convert=[true|false]>
+keyword in the B<plist> param list string.
+
+
+When you are finished writing the image, you should call
+FunFlush() to write out the FITS
+image padding. However, this is not necessary if you subsequently call
+FunClose() without doing any other I/O to the FITS file.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funindex.pod b/funtools/doc/pod/funindex.pod
new file mode 100644
index 0000000..cdc2fc7
--- /dev/null
+++ b/funtools/doc/pod/funindex.pod
@@ -0,0 +1,83 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funindex - create an index for a column of a FITS binary table>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funindex <switches> <iname> <key> [oname]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ NB: these options are not compatible with Funtools processing. Please
+ use the defaults instead.
+ -c # compress output using gzip"
+ -a # ASCII output, ignore -c (default: FITS table)"
+ -f # FITS table output (default: FITS table)"
+ -l # long output, i.e. with key value(s) (default: long)"
+ -s # short output, i.e. no key value(s) (default: long)"
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The funindex script creates an index for the specified column (key) by
+running funtable -s (sort) and then saving the column value and the
+record number for each sorted row. This index will be used automatically
+ by funtools filtering of that column, provided the index file's modification
+date is later than that of the data file.
+
+
+The first required argument is the name of the FITS binary table
+to index. Please note that text files cannot be indexed at this time.
+The second required argument is the column (key) name to index. While
+multiple keys can be specified in principle, the funtools index processing
+assume a single key and will not recognize files containing multiple keys.
+
+
+By default, the output index file name is [root]_[key].idx, where [root]
+is the root of the input file. Funtools looks for this specific file name
+when deciding whether to use an index for faster filtering. Therefore, the
+optional third argument (output file name) should not be used for funtools
+processing.
+
+
+For example, to create an index on column Y for a given FITS file, use:
+
+ funindex foo.fits Y
+
+This will generate an index named foo_y.idx, which will be used by funtools
+for filters involving the Y column.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funindexes.pod b/funtools/doc/pod/funindexes.pod
new file mode 100644
index 0000000..e4cabaa
--- /dev/null
+++ b/funtools/doc/pod/funindexes.pod
@@ -0,0 +1,215 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funindexes: Using Indexes to Filtering Rows in a Table>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the user interface for
+filtering rows in binary tables with indexes.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+Funtools Table Filtering allows rows in a
+table to be selected based on the values of one or more columns in the
+row. Because the actual filter code is compiled on the fly, it is very
+efficient. For very large files (hundreds of Mb or larger), however,
+evaluating the filter expression on each row can take a long time. Therefore,
+funtools supports index files for columns, which are used automatically during
+filtering to reduce dramatically the number of row evaluations performed.
+The speed increase for indexed filtering can be an order of magnitude or
+more, depending on the size of the file.
+
+
+The funindex program creates a
+index on column in a binary table. For example, to create an index
+for the column pi in the file huge.fits, use:
+
+ funindex huge.fits pi
+
+This will create an index named huge_pi.idx.
+
+
+When a filter expression is initialized for row evaluation, funtools
+looks for an index file for each column in the filter expression. If
+found, and if the file modification date of the index file is later
+than that of the data file, then the index will be used to reduce the
+number of rows that are evaluated in the filter. When <A
+HREF="./regions.html">Spatial Region Filtering is part of the
+expression, the columns associated with the region checked for index
+files.
+
+
+If an index file is not available for a given column, then in general,
+all rows must be checked when that column is part of a filter
+expression. This is not true, however, when a non-indexed column is
+part of an AND expression. In this case, only the rows that pass the
+other part of the AND expression need to be checked. Thus, in some cases,
+filtering speed can increase significantly even if all columns are not
+indexed.
+
+
+Also note that certain types of filter expression syntax cannot make
+use of indices. For example, calling functions with column names as
+arguments implies that all rows must be checked against the function
+value. Once again, however, if this function is part of an AND
+expression, then a significant improvement in speed still is possible
+if the other part of the AND expression is indexed.
+
+
+As an example, note below the dramatic speedup in searching a 1 Gb
+file using an AND filter, even when one of the columns (pha) has no
+index:
+
+
+bynars-16: time fundisp huge.fits'[idx_use=0,idx_debug=1,pha=2348&&cir 4000 4000 1]' "x y pha"
+ x y pha
+----------- ----------- ----------
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+42.36u 13.07s 6:42.89 13.7%
+
+bynars-17: time fundisp huge.fits'[idx_use=1,idx_debug=1,pha=2348&&cir 4000 4000 1]' "x y pha"
+ x y pha
+----------- ----------- ----------
+idxeq: [INDEF]
+idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
+idxand(1): INDEF [IDX_OR_SORT]
+idxall(1): [IDX_OR_SORT]
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+ 3999.48 4000.47 2348
+1.55u 0.37s 1:19.80 2.4%
+
+
+When all columns are indexed, the increase in speed can be even more dramatic:
+
+bynars-20: time fundisp huge.fits'[idx_use=0,idx_debug=1,pi=770&&cir 4000 4000 1]' "x y pi"
+ x y pi
+----------- ----------- ----------
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+42.60u 12.63s 7:28.63 12.3%
+
+bynars-21: time fundisp huge.fits'[idx_use=1,idx_debug=1,pi=770&&cir 4000 4000 1]' "x y pi"
+ x y pi
+----------- ----------- ----------
+idxeq: pi start=9473025,stop=9492240 => pi[ROW 9473025:9492240]
+idxand sort: x[ROW 8037025:8070128] y[ROW 5757665:5792352]
+idxor sort/merge: pi[ROW 9473025:9492240] [IDX_OR_SORT]
+idxmerge(5): [IDX_OR_SORT] pi[ROW]
+idxall(1): [IDX_OR_SORT]
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+ 3999.48 4000.47 770
+1.67u 0.30s 0:24.76 7.9%
+
+
+
+The miracle of indexed filtering (and indeed, of any indexing) is due
+to the speed of the binary search on the index, which is of order
+log2(n) instead of n. (The funtools binary search method is taken from
+http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary, to whom
+grateful acknowledgement is made.) This means that the larger the
+file, the better the performance. Conversely, it also means that
+for small files, using an index (and the overhead involved) can slow
+filtering down somewhat. Our tests indicate that on a file containing
+a few tens of thousands of rows, indexed filtering can be 10-20
+percent slower. Of course, your mileage will vary with conditions
+(disk access speed, amount of available memory, process load, etc.)
+
+
+Any problem encountered during index processing is supposed to result in
+indexing being turned off, replaced by filtering all rows. You can turn
+filtering off manually by setting the idx_use variable to 0 (in a filter
+expression) or the FILTER_IDX_USE environment variable to 0 (in the global
+environment). Debugging output showing how the indexes are being processed can
+be displayed to stderr by setting the idx_debug variable to 1 (in a filter
+expression) or the FILTER_IDX_DEBUG environment variable to 1 (in the global
+environment).
+
+
+Currently, indexed filtering only works with FITS binary tables and raw
+event files. It does not work with text files. This restriction might be
+removed in a future release.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funinfoget.pod b/funtools/doc/pod/funinfoget.pod
new file mode 100644
index 0000000..456ac0c
--- /dev/null
+++ b/funtools/doc/pod/funinfoget.pod
@@ -0,0 +1,226 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunInfoGet - get information from Funtools struct>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunInfoGet(Fun fun, int type, char *addr, ...)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunInfoGet()> routine returns information culled from the
+Funtools structure. The first argument is the Fun handle from which
+information is to be retrieved. This first required argument is followed
+by a variable length list of pairs of arguments. Each pair consists
+of an integer representing the type of information to retrieve and the
+address where the information is to be stored. The list is terminated by a 0.
+The routine returns the number of get actions performed.
+
+
+The full list of available information is described below. Please note
+that only a few of these will be useful to most application developers.
+For imaging applications, the most important types are:
+
+ FUN_SECT_DIM1 int /* dim1 for section */
+ FUN_SECT_DIM2 int /* dim2 for section */
+ FUN_SECT_BITPIX int /* bitpix for section */
+
+These would be used to determine the dimensions and data type of image
+data retrieved using the
+FunImageGet() routine. For
+example:
+
+ /* extract and bin the data section into an image buffer */
+ buf = FunImageGet(fun, NULL, NULL);
+ /* get required information from funtools structure.
+ this should come after the FunImageGet() call, in case the call
+ changed sect_bitpix */
+ FunInfoGet(fun,
+ FUN_SECT_BITPIX, &bitpix,
+ FUN_SECT_DIM1, &dim1,
+ FUN_SECT_DIM2, &dim2,
+ 0);
+ /* loop through pixels and reset values below limit to value */
+ for(i=0; i<dim1*dim2; i++){
+ switch(bitpix){
+ case 8:
+ if( cbuf[i] <= blimit ) cbuf[i] = bvalue;
+ ...
+ }
+
+It is important to bear in mind that the call to
+FunImageGet()
+can change the value of FUN_SECT_BITPIX (e.g. if "bitpix=n" is passed
+in the param list). Therefore, a call to
+FunInfoGet()
+should be made B<after> the call to
+FunImageGet(),
+in order to retrieve the updated bitpix value.
+See the imblank example code for more
+details.
+
+
+It also can be useful to retrieve the World Coordinate System
+information from the Funtools structure. Funtools uses the the WCS
+Library developed by Doug Mink at SAO, which is available
+here.
+(More information about the WCSTools project in general can be found
+here.)
+The FunOpen() routine initializes
+two WCS structures that can be used with this WCS Library.
+Applications can retrieve either of these two WCS structures using
+B<FunInfoGet()>:
+
+ FUN_WCS struct WorldCoor * /* wcs structure, for image coordinates*/
+ FUN_WCS0 struct WorldCoor * /* wcs structure, for physical coordinates */
+
+The structure retrieved by FUN_WCS is a WCS library handle containing
+parameters suitable for use with image coordinates, regardless of whether the
+data are images or tables. For this structure, the WCS reference point
+(CRPIX) has been converted to image coordinates if the underlying file
+is a table (and therefore in physical coordinates). You therefore must
+ensure that the positions being passed to a routine like pix2wcs are in
+image coordinates. The FUN_WCS0 structure has not had its WCS
+reference point converted to image coordinates. It therefore is useful
+when passing processing physical coordinates from a table.
+
+
+Once a WCS structure has been retrieved, it can be used as the first
+argument to the WCS library routines. (If the structure is NULL, no
+WCS information was contained in the file.) The two important WCS routines
+that Funtools uses are:
+
+ #include <wcs.h&gt
+ void pix2wcs (wcs,xpix,ypix,xpos,ypos)
+ struct WorldCoor *wcs; /* World coordinate system structure */
+ double xpix,ypix; /* x and y coordinates in pixels */
+ double *xpos,*ypos; /* RA and Dec in degrees (returned) */
+
+
+which converts pixel coordinates to sky coordinates, and:
+
+
+ void wcs2pix (wcs, xpos, ypos, xpix, ypix, offscl)
+ struct WorldCoor *wcs; /* World coordinate system structure */
+ double xpos,ypos; /* World coordinates in degrees */
+ double *xpix,*ypix; /* coordinates in pixels */
+ int *offscl; /* 0 if within bounds, else off scale */
+
+which converts sky coordinates to pixel coordinates. Again, please note
+that the wcs structure returned by FUN_WCS assumes that image coordinates
+are passed to the pix2wcs routine, while FUN_WCS0 assumes that physical
+coordinates are passed.
+
+
+Note that funtools.h file automatically includes wcs.h. An example
+program that utilizes these WCS structure to call WCS Library routines
+is twcs.c.
+
+
+The following is the complete list of information that can be returned:
+
+ name type comment
+ --------- -------- ---------------------------------------------
+ FUN_FNAME char * /* file name */
+ FUN_GIO GIO /* gio handle */
+ FUN_HEADER FITSHead /* fitsy header struct */
+ FUN_TYPE int /* TY_TABLE,TY_IMAGE,TY_EVENTS,TY_ARRAY */
+ FUN_BITPIX int /* bits/pixel in file */
+ FUN_MIN1 int /* tlmin of axis1 -- tables */
+ FUN_MAX1 int /* tlmax of axis1 -- tables */
+ FUN_MIN2 int /* tlmin of axis2 -- tables */
+ FUN_MAX2 int /* tlmax of axis2 -- tables */
+ FUN_DIM1 int /* dimension of axis1 */
+ FUN_DIM2 int /* dimension of axis2 */
+ FUN_ENDIAN int /* 0=little, 1=big endian */
+ FUN_FILTER char * /* supplied filter */
+ FUN_IFUN FITSHead /* pointer to reference header */
+ FUN_IFUN0 FITSHead /* same as above, but no reset performed */
+ /* image information */
+ FUN_DTYPE int /* data type for images */
+ FUN_DLEN int /* length of image in bytes */
+ FUN_DPAD int /* padding to end of extension */
+ FUN_DOBLANK int /* was blank keyword defined? */
+ FUN_BLANK int /* value for blank */
+ FUN_SCALED int /* was bscale/bzero defined? */
+ FUN_BSCALE double /* bscale value */
+ FUN_BZERO double /* bzero value */
+ /* table information */
+ FUN_NROWS int /* number of rows in file (naxis2) */
+ FUN_ROWSIZE int /* size of user row struct */
+ FUN_BINCOLS char * /* specified binning columns */
+ FUN_OVERFLOW int /* overflow detected during binning? */
+ /* array information */
+ FUN_SKIP int /* bytes to skip in array header */
+ /* section information */
+ FUN_SECT_X0 int /* low dim1 value of section */
+ FUN_SECT_X1 int /* hi dim1 value of section */
+ FUN_SECT_Y0 int /* low dim2 value of section */
+ FUN_SECT_Y1 int /* hi dim2 value of section */
+ FUN_SECT_BLOCK int /* section block factor */
+ FUN_SECT_BTYPE int /* 's' (sum), 'a' (average) for binning */
+ FUN_SECT_DIM1 int /* dim1 for section */
+ FUN_SECT_DIM2 int /* dim2 for section */
+ FUN_SECT_BITPIX int /* bitpix for section */
+ FUN_SECT_DTYPE int /* data type for section */
+ FUN_RAWBUF char * /* pointer to raw row buffer */
+ FUN_RAWSIZE int /* byte size of raw row records */
+ /* column information */
+ FUN_NCOL int /* number of row columns defined */
+ FUN_COLS FunCol /* array of row columns */
+ /* WCS information */
+ FUN_WCS struct WorldCoor * /* wcs structure, converted for images*/
+ FUN_WCS0 struct WorldCoor * /* wcs structure, not converted */
+
+
+
+Row applications would not normally need any of this information.
+An example of how these values can be used in more complex programs is
+the evnext example code. In this program, the
+time value for each row is changed to be the value of the succeeding
+row. The program thus reads the time values for a batch of rows,
+changes the time values to be the value for the succeeding row, and
+then merges these changed time values back with the other columns to
+the output file. It then reads the next batch, etc.
+
+
+This does not work for the last row read in each batch, since there
+is no succeeding row until the next batch is read. Therefore, the
+program saves that last row until it has read the next batch, then
+processes the former before starting on the new batch. In order to
+merge the last row successfully, the code uses FUN_RAWBUF to save
+and restore the raw input data associated with each batch of
+rows. Clearly, this requires some information about how funtools
+works internally. We are happy to help you write such programs as the
+need arises.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funinfoput.pod b/funtools/doc/pod/funinfoput.pod
new file mode 100644
index 0000000..5124dfc
--- /dev/null
+++ b/funtools/doc/pod/funinfoput.pod
@@ -0,0 +1,180 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunInfoPut - put information into a Funtools struct>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunInfoPut(Fun fun, int type, char *addr, ...)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunInfoPut()> routine puts information into a Funtools
+structure. The first argument is the Fun handle from which
+information is to be retrieved. After this first required argument
+comes a variable length list of pairs of arguments. Each pair consists
+of an integer representing the type of information to store and the
+address of the new information to store in the struct. The variable
+list is terminated by a 0. The routine returns the number of put
+actions performed.
+
+
+The full list of available information is described above with the
+FunInfoPut() routine. Although
+use of this routine is expected to be uncommon, there is one
+important situation in which it plays an essential part: writing
+multiple extensions to a single output file.
+
+
+For input, multiple extensions are handled by calling
+FunOpen() for each extension to be
+processed. When opening multiple inputs, it sometimes is the case that
+you will want to process them and then write them (including their
+header parameters) to a single output file. To accomplish this, you
+open successive input extensions using
+FunOpen() and then call
+B<FunInfoPut()> to set the
+Funtools reference handle
+of the output file to that of the newly opened input extension:
+
+ /* open a new input extension */
+ ifun=FunOpen(tbuf, "r", NULL)) )
+ /* make the new extension the reference handle for the output file */
+ FunInfoPut(ofun, FUN_IFUN, &ifun, 0);
+
+
+Resetting FUN_IFUN has same effect as when a funtools handle is passed
+as the final argument to
+FunOpen(). The state of the output
+file is reset so that a new extension is ready to be written.
+Thus, the next I/O call on the output extension will output the
+header, as expected.
+
+
+For example, in a binary table, after resetting FUN_IFUN you can then
+call FunColumnSelect() to
+select the columns for output. When you then call
+FunImagePut() or <A
+HREF="./library.html#funtablerowput">FunTableRowPut(), a new
+extension will be written that contains the header parameters from the
+reference extension. Remember to call
+FunFlush() to complete output of a
+given extension.
+
+
+A complete example of this capability is given
+in the evcol example code.
+The central algorithm is:
+
+
+=over 4
+
+
+
+
+=item *
+
+open the output file without a reference handle
+
+
+=item *
+
+loop: open each input extension in turn
+
+
+=over 4
+
+
+
+
+=item *
+
+set the reference handle for output to the newly opened input extension
+
+
+=item *
+
+read the input rows or image and perform processing
+
+
+=item *
+
+write new rows or image to the output file
+
+
+=item *
+
+flush the output
+
+
+=item *
+
+close input extension
+
+
+=back
+
+
+
+
+=item *
+
+close output file
+
+
+=back
+
+
+Note that FunFlush() is called
+after processing each input extension in order to ensure that the
+proper padding is written to the output file. A call to
+FunFlush() also ensures that the
+extension header is written to the output file in the case where there
+are no rows to output.
+
+
+If you wish to output a new extension without using a
+Funtools reference handle, you can
+call FunInfoPut() to reset the FUN_OPS value directly. For a binary
+table, you would then call FunColumnSelect() to set up the columns for
+this new extension.
+
+ /* reset the operations performed on this handle */
+ int ops=0;
+ FunInfoPut(ofun, FUN_OPS, &ops, 0);
+ FunColumnSelect(fun, sizeof(EvRec), NULL,
+ "MYCOL", "J", "w", FUN_OFFSET(Ev, mycol),
+ NULL);
+
+Once the FUN_OPS variable has been reset, the next I/O call on the
+output extension will output the header, as expected.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funjoin.pod b/funtools/doc/pod/funjoin.pod
new file mode 100644
index 0000000..d7830f9
--- /dev/null
+++ b/funtools/doc/pod/funjoin.pod
@@ -0,0 +1,233 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funjoin - join two or more FITS binary tables on specified columns>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funjoin [switches] <ifile1> <ifile2> ... <ifilen> <ofile>
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -a cols # columns to activate in all files
+ -a1 cols ... an cols # columns to activate in each file
+ -b 'c1:bvl,c2:bv2' # blank values for common columns in all files
+ -bn 'c1:bv1,c2:bv2' # blank values for columns in specific files
+ -j col # column to join in all files
+ -j1 col ... jn col # column to join in each file
+ -m min # min matches to output a row
+ -M max # max matches to output a row
+ -s # add 'jfiles' status column
+ -S col # add col as status column
+ -t tol # tolerance for joining numeric cols [2 files only]
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+B<funjoin> joins rows from two or more (up to 32)
+FITS Binary Table files, based on the values
+of specified join columns in each file. NB: the join columns must have
+an index file associated with it. These files are generated using the
+B<funindex> program.
+
+
+The first argument to the program specifies the first input FITS table
+or raw event file. If "stdin" is specified, data are read from the
+standard input. Subsequent arguments specify additional event files
+and tables to join. The last argument is the output FITS file.
+
+
+NB: Do B<not> use Funtools Bracket
+Notation to specify FITS extensions and row filters when running
+funjoin or you will get wrong results. Rows are accessed and joined
+using the index files directly, and this bypasses all filtering.
+
+
+The join columns are specified using the B<-j col> switch (which
+specifies a column name to use for all files) or with B<-j1 col1>,
+B<-j2 col2>, ... B<-jn coln> switches (which specify a column
+name to use for each file). A join column must be specified for each file.
+If both B<-j col> and B<-jn coln> are specified for a given
+file, then the latter is used. Join columns must either be of type
+string or type numeric; it is illegal to mix numeric and string
+columns in a given join. For example, to join three files using the
+same key column for each file, use:
+
+ funjoin -j key in1.fits in2.fits in3.fits out.fits
+
+A different key can be specified for the third file in this way:
+
+ funjoin -j key -j3 otherkey in1.fits in2.fits in3.fits out.fits
+
+
+
+The B<-a "cols"> switch (and B<-a1 "col1">,
+B<-a2 "cols2"> counterparts) can be used to specify columns to
+activate (i.e. write to the output file) for each input file. By
+default, all columns are output.
+
+
+If two or more columns from separate files have the same name, the
+second (and subsequent) columns are renamed to have an underscore
+and a numeric value appended.
+
+
+The B<-m min> and B<-M max> switches specify the minimum
+and maximum number of joins required to write out a row. The default
+minimum is 0 joins (i.e. all rows are written out) and the default maximum
+is 63 (the maximum number of possible joins with a limit of 32 input files).
+For example, to write out only those rows in which exactly two files
+have columns that match (i.e. one join):
+
+ funjoin -j key -m 1 -M 1 in1.fits in2.fits in3.fits ... out.fits
+
+
+
+A given row can have the requisite number of joins without all of the
+files being joined (e.g. three files are being joined but only two
+have a given join key value). In this case, all of the columns of the
+non-joined file are written out, by default, using blanks (zeros or NULLs).
+The B<-b c1:bv1,c2:bv2> and
+B<-b1 'c1:bv1,c2:bv2' -b2 'c1:bv1,c2:bv2' ...>
+switches can be used to set the blank value for columns common to all
+files and/or columns in a specified file, respectively. Each blank value
+string contains a comma-separated list of column:blank_val specifiers.
+For floating point values (single or double), a case-insensitive string
+value of "nan" means that the IEEE NaN (not-a-number) should be
+used. Thus, for example:
+
+ funjoin -b "AKEY:???" -b1 "A:-1" -b3 "G:NaN,E:-1,F:-100" ...
+
+means that a non-joined AKEY column in any file will contain the
+string "???", the non-joined A column of file 1 will contain a value
+of -1, the non-joined G column of file 3 will contain IEEE NaNs, while
+the non-joined E and F columns of the same file will contain values -1
+and -100, respectively. Of course, where common and specific blank values
+are specified for the same column, the specific blank value is used.
+
+
+To distinguish which files are non-blank components of a given row,
+the B<-s> (status) switch can be used to add a bitmask column named
+"JFILES" to the output file. In this column, a bit is set for each
+non-blank file composing the given row, with bit 0 corresponds to the
+first file, bit 1 to the second file, and so on. The file names
+themselves are stored in the FITS header as parameters named JFILE1,
+JFILE2, etc. The B<-S col> switch allows you to change the name
+of the status column from the default "JFILES".
+
+
+A join between rows is the Cartesian product of all rows in one file
+having a given join column value with all rows in a second file having
+the same value for its join column and so on. Thus, if file1 has 2
+rows with join column value 100, file2 has 3 rows with the same value,
+and file3 has 4 rows, then the join results in 2*3*4=24 rows being output.
+
+
+The join algorithm directly processes the index file associated with
+the join column of each file. The smallest value of all the current
+columns is selected as a base, and this value is used to join
+equal-valued columns in the other files. In this way, the index files
+are traversed exactly once.
+
+
+The B<-t tol> switch specifies a tolerance value for numeric
+columns. At present, a tolerance value can join only two files at a
+time. (A completely different algorithm is required to join more than
+two files using a tolerance, somethng we might consider implementing
+in the future.)
+
+
+The following example shows many of the features of funjoin. The input files
+t1.fits, t2.fits, and t3.fits contain the following columns:
+
+ [sh] fundisp t1.fits
+ AKEY KEY A B
+ ----------- ------ ------ ------
+ aaa 0 0 1
+ bbb 1 3 4
+ ccc 2 6 7
+ ddd 3 9 10
+ eee 4 12 13
+ fff 5 15 16
+ ggg 6 18 19
+ hhh 7 21 22
+
+fundisp t2.fits
+ AKEY KEY C D
+ ----------- ------ ------ ------
+ iii 8 24 25
+ ggg 6 18 19
+ eee 4 12 13
+ ccc 2 6 7
+ aaa 0 0 1
+
+fundisp t3.fits
+ AKEY KEY E F G
+------------ ------ -------- -------- -----------
+ ggg 6 18 19 100.10
+ jjj 9 27 28 200.20
+ aaa 0 0 1 300.30
+ ddd 3 9 10 400.40
+
+
+
+Given these input files, the following funjoin command:
+
+
+ funjoin -s -a1 "-B" -a2 "-D" -a3 "-E" -b \
+ "AKEY:???" -b1 "AKEY:XXX,A:255" -b3 "G:NaN,E:-1,F:-100" \
+ -j key t1.fits t2.fits t3.fits foo.fits
+
+will join the files on the KEY column, outputting all columns except B
+(in t1.fits), D (in t2.fits) and E (in t3.fits), and setting blank
+values for AKEY (globally, but overridden for t1.fits) and A (in file
+1) and G, E, and F (in file 3). A JFILES column will be output to
+flag which files were used in each row:
+
+
+ AKEY KEY A AKEY_2 KEY_2 C AKEY_3 KEY_3 F G JFILES
+ ------------ ------ ------ ------------ ------ ------ ------------ ------ -------- ----------- --------
+ aaa 0 0 aaa 0 0 aaa 0 1 300.30 7
+ bbb 1 3 ??? 0 0 ??? 0 -100 nan 1
+ ccc 2 6 ccc 2 6 ??? 0 -100 nan 3
+ ddd 3 9 ??? 0 0 ddd 3 10 400.40 5
+ eee 4 12 eee 4 12 ??? 0 -100 nan 3
+ fff 5 15 ??? 0 0 ??? 0 -100 nan 1
+ ggg 6 18 ggg 6 18 ggg 6 19 100.10 7
+ hhh 7 21 ??? 0 0 ??? 0 -100 nan 1
+ XXX 0 255 iii 8 24 ??? 0 -100 nan 2
+ XXX 0 255 ??? 0 0 jjj 9 28 200.20 4
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funlib.pod b/funtools/doc/pod/funlib.pod
new file mode 100644
index 0000000..354e217
--- /dev/null
+++ b/funtools/doc/pod/funlib.pod
@@ -0,0 +1,542 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunLib: the Funtools Programming Interface>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+A description of the Funtools library.
+
+
+
+=head1 DESCRIPTION
+
+
+
+B<Introduction to the Funtools Programming Interface>
+
+To create a Funtools application, you need to include
+the funtools.h definitions file in your code:
+
+ #include <funtools.h>
+
+
+You then call Funtools subroutines and functions to access Funtools data.
+The most important routines are:
+
+
+=over 4
+
+
+
+
+
+
+=item *
+
+FunOpen: open a Funtools file
+
+
+=item *
+
+FunInfoGet: get info about an image or table
+
+
+=item *
+
+FunImageGet: retrieve image data
+
+
+=item *
+
+FunImageRowGet: retrieve image data by row
+
+
+=item *
+
+FunImagePut: output image data
+
+
+=item *
+
+FunImageRowPut: output image data by row
+
+
+=item *
+
+FunColumnSelect: select columns in a table for access
+
+
+=item *
+
+FunTableRowGet: retrieve rows from a table
+
+
+=item *
+
+FunTableRowPut: output rows to a table
+
+
+=item *
+
+FunClose: close a Funtools file
+
+
+=back
+
+
+
+Your program must be linked against the libfuntools.a library,
+along with the math library. The following libraries also might be required
+on your system:
+
+
+=over 4
+
+
+
+
+=item *
+
+-lsocket -lnsl for socket support
+
+
+=item *
+
+-ldl for dynamic loading
+
+
+=back
+
+
+
+For example, on a Solaris system using gcc, use the following link line:
+
+ gcc -o foo foo.c -lfuntools -lsocket -lnsl -ldl -lm
+
+On a Solaris system using Solaris cc, use the following link line:
+
+ gcc -o foo foo.c -lfuntools -lsocket -lnsl -lm
+
+On a Linux system using gcc, use the following link line:
+
+ gcc -o foo foo.c -lfuntools -ldl -lm
+
+Once configure has built a Makefile on your platform, the required
+"extra" libraries (aside from -lm, which always is required) are
+specified in that file's EXTRA_LIBS variable. For example, under
+Linux you will find:
+
+ grep EXTRA_LIBS Makefile
+ EXTRA_LIBS = -ldl
+ ...
+
+
+
+The Funtools library contains both the zlib library
+(http://www.gzip.org/zlib/) and Doug Mink's WCS library
+(http://tdc-www.harvard.edu/software/wcstools/). It is not necessary
+to put these libraries on a Funtools link line. Include files
+necessary for using these libraries are installed in the Funtools
+include directory.
+
+B<Funtools Programming Tutorial>
+
+The
+FunOpen()
+function is used to open a FITS file, an array, or a raw event file:
+
+ /* open the input FITS file for reading */
+ ifun = FunOpen(iname, "r", NULL);
+ /* open the output FITS file for writing, and connect it to the input file */
+ ofun = FunOpen(iname, "w", ifun);
+
+A new output file can inherit header parameters automatically from
+existing input file by passing the input Funtools handle as the last
+argument to the new file's
+FunOpen()
+call as shown above.
+
+
+For image data, you then can call
+FunImageGet()
+to read an image into memory.
+
+ float buf=NULL;
+ /* extract and bin the data section into an image buffer */
+ buf = FunImageGet(fun, NULL, "bitpix=-32");
+
+If the (second) buf argument to this call is NULL, buffer space is allocated
+automatically. The (third) plist argument can be used to specify the
+return data type of the array. If NULL is specified, the data type of
+the input file is used.
+
+
+To process an image buffer, you would generally make a call to
+FunInfoGet() to determine the
+dimensions of the image (which may have been changed from the original
+file dimensions due to Funtools image
+sectioning on the command line). In a FITS image, the index along
+the dim1 axis varies most rapidly, followed by the dim2 axis, etc.
+Thus, to access each pixel in an 2D image, use a double loop such as:
+
+ buf = FunImageGet(fun, NULL, "bitpix=-32");
+ FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
+ for(i=1; i<=dim2; i++){
+ for(j=1; j<=dim1; j++){
+ ... process buf[((i-1)*dim1)+(j-1)] ...
+ }
+ }
+
+or:
+
+ buf = FunImageGet(fun, NULL, "bitpix=-32");
+ FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2, 0);
+ for(i=0; i<(dim1*dim2); i++){
+ ... process buf[i] ...
+ }
+
+Finally, you can write the resulting image to disk using
+FunImagePut():
+
+ FunImagePut(fun2, buf, dim1, dim2, -32, NULL);
+
+Note that Funtools automatically takes care of book-keeping tasks such as
+reading and writing FITS headers (although you can, of course, write
+your own header or add your own parameters to a header).
+
+
+For binary tables and raw event files, a call to
+FunOpen()
+will be followed by a call to the
+FunColumnSelect()
+routine to select columns to be read from the input file and/or
+written to the output file:
+
+
+ typedef struct evstruct{
+ double time;
+ int time2;
+ } *Ev, EvRec;
+ FunColumnSelect(fun, sizeof(EvRec), NULL,
+ "time", "D", "rw", FUN_OFFSET(Ev, time),
+ "time2", "J", "w", FUN_OFFSET(Ev, time2),
+ NULL);
+
+Columns whose (third) mode argument contains an "r" are "readable",
+i.e., columns will be read from the input file and converted into the
+data type specified in the call's second argument. These columns
+values then are stored in the specified offset of the user record
+structure. Columns whose mode argument contains a "w" are
+"writable", i.e., these values will be written to the output file.
+The
+FunColumnSelect()
+routine also offers the option of automatically merging user
+columns with the original input columns when writing the output
+rows.
+
+
+Once a set of columns has been specified, you can retrieve rows using
+FunTableRowGet(),
+and write the rows using
+FunTableRowPut():
+
+ Ev ebuf, ev;
+ /* get rows -- let routine allocate the array */
+ while( (ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* process all rows */
+ for(i=0; i<got; i++){
+ /* point to the i'th row */
+ ev = ebuf+i;
+ /* time2 is generated here */
+ ev->time2 = (int)(ev->time+.5);
+ /* change the input time as well */
+ ev->time = -(ev->time/10.0);
+ }
+ /* write out this batch of rows with the new column */
+ FunTableRowPut(fun2, (char *)ebuf, got, 0, NULL);
+ /* free row data */
+ if( ebuf ) free(ebuf);
+ }
+
+The input rows are retrieved into an array of user structs, which
+can be accessed serially as shown above. Once again, Funtools
+automatically takes care of book-keeping tasks such as reading and writing
+FITS headers (although you can, of course, write your own header or
+add your own parameters to a header).
+
+
+When all processing is done, you can call
+FunClose()
+to close the file(s):
+
+ FunClose(fun2);
+ FunClose(fun);
+
+
+
+These are the basics of processing FITS files (and arrays or raw event
+data) using Funtools. The routines in these examples are described in
+more detail below, along with a few other routines that support
+parameter access, data flushing, etc.
+
+B<Compiling and Linking>
+
+To create a Funtools application, a software developer will include
+the funtools.h definitions file in Funtools code:
+
+ #include <funtools.h>
+
+The program is linked against the libfuntools.a library, along with the
+math library (and the dynamic load library, if the latter is available
+on your system):
+
+ gcc -o foo foo.c -lfuntools -ldl -lm
+
+
+If gcc is used, Funtools filtering can be performed using dynamically
+loaded shared objects that are built at run-time. Otherwise, filtering
+is performed using a slave process.
+
+Funtools has been built on the following systems:
+
+
+=over 4
+
+
+
+
+=item *
+
+Sun/Solaris 5.X
+
+
+=item *
+
+Linux/RedHat Linux 5.X,6.X,7.X
+
+
+=item *
+
+Dec Alpha/OSF1 V4.X
+
+
+=item *
+
+WindowsNT/Cygwin 1.0
+
+
+=item *
+
+SGI/IRIX64 6.5
+
+
+=back
+
+
+
+B<A Short Digression on Subroutine Order>
+
+There is a natural order for all I/O access libraries. You would not
+think of reading a file without first opening it, or writing a file
+after closing it. A large part of the experiment in funtools is to use
+the idea of "natural order" as a means of making programming
+easier. We do this by maintaining the state of processing for a given
+funtools file, so that we can do things like write headers and flush
+extension padding at the right time, without you having to do it.
+
+
+For example, if you open a new funtools file for writing using
+FunOpen(),
+then generate an array of image data and call
+FunImagePut(),
+funtools knows to write the image header automatically.
+There is no need to think about writing a standard header.
+Of course, you can add parameters to the file first by
+calling one of the
+FunParamPut()
+routines, and these parameters will automatically be added
+to the header when it is written out. There still is no
+need to write the header explicitly.
+
+
+Maintaining state in this way means that there are certain rules of
+order which should be maintained in any funtools program. In particular,
+we strongly recommend the following ordering rules be adhered to:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+When specifying that input extensions be copied to an output file
+via a reference handle, open the output file B<before> reading the
+input file. (Otherwise the initial copy will not occur).
+
+
+
+=item *
+
+Always write parameters to an output file using one of the
+FunParamPut() calls
+B<before> writing any data. (This is a good idea for all FITS
+libraries, to avoid having to recopy data is the FITS header needs
+to be extended by adding a single parameter.)
+
+
+
+=item *
+
+If you retrieve an image, and need to know the data
+type, use the FUN_SECT_BITPIX option of
+FunInfoGet(),
+B<after> calling
+FunImageGet(), since
+it is possible to change the value of BITPIX from the latter.
+
+
+
+=item *
+
+When specifying that input extensions be copied to an output file
+via a reference handle, close the output file B<before> closing
+input file, or else use
+FunFlush()
+explicitly on the output file
+B<before> closing the input file. (Otherwise the final copy will
+not occur).
+
+
+=back
+
+
+
+
+We believe that these are the natural rules that are implied in most
+FITS programming tasks. However, we recognize that making explicit use
+of "natural order" to decide what automatic action to take on behalf
+of the programmer is experimental. Therefore, if you find that your
+needs are not compatible with our preferred order, please let us know
+-- it will be most illuminating for us as we evaluate this experiment.
+
+B<Funtools Programming Examples>
+
+The following complete coding examples are provided to illustrate the
+simplicity of Funtools applications. They can be found in the funtest
+subdirectory of the Funtools distribution. In many cases, you should
+be able to modify one of these programs to generate your own Funtools
+program:
+
+
+=over 4
+
+
+
+
+=item *
+
+evread.c: read and write binary tables
+
+
+=item *
+
+evcols.c: add column and rows to binary tables
+
+
+=item *
+
+evmerge.c: merge new columns with existing columns
+
+
+=item *
+
+evnext.c: manipulate raw data pointers
+
+
+=item *
+
+imblank.c: blank out image values below a threshold
+
+
+=item *
+
+asc2fits.c: convert a specific ASCII table to FITS binary table
+
+
+=back
+
+
+
+B<The Funtools Programming Reference Manual>
+
+
+#include <funtools.h>
+
+Fun FunOpen(char *name, char *mode, Fun ref)
+
+void *FunImageGet(Fun fun, void *buf, char *plist)
+
+int FunImagePut(Fun fun, void *buf, int dim1, int dim2, int bitpix, char *plist)
+
+void * FunImageRowGet(Fun fun, void *buf, int rstart, int rstop, char *plist)
+
+void * FunImageRowPut(Fun fun, void *buf, int rstart, int rstop, int dim1, int dim2, int bitpix, char *plist)
+
+int FunColumnSelect(Fun fun, int size, char *plist, ...)
+
+void FunColumnActivate(Fun fun, char *s, char *plist)
+
+int FunColumnLookup(Fun fun, char *s, int which, char **name, int *type, int *mode, int *offset, int *n, int *width)
+
+void *FunTableRowGet(Fun fun, void *rows, int maxrow, char *plist, int *nrow)
+
+int FunTableRowPut(Fun fun, void *rows, int nev, int idx, char *plist)
+
+int FunParamGetb(Fun fun, char *name, int n, int defval, int *got)
+
+int FunParamGeti(Fun fun, char *name, int n, int defval, int *got)
+
+double FunParamGetd(Fun fun, char *name, int n, double defval, int *got)
+
+char *FunParamGets(Fun fun, char *name, int n, char *defval, int *got)
+
+int FunParamPutb(Fun fun, char *name, int n, int value, char *comm, int append)
+
+int FunParamPuti(Fun fun, char *name, int n, int value, char *comm, int append)
+
+int FunParamPutd(Fun fun, char *name, int n, double value, int prec, char *comm, int append)
+
+int FunParamPuts(Fun fun, char *name, int n, char *value, char *comm, int append)
+
+int FunInfoGet(Fun fun, int type, ...)
+
+int FunInfoPut(Fun fun, int type, ...)
+
+void FunFlush(Fun fun, char *plist)
+
+void FunClose(Fun fun)
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funmerge.pod b/funtools/doc/pod/funmerge.pod
new file mode 100644
index 0000000..0cb9216
--- /dev/null
+++ b/funtools/doc/pod/funmerge.pod
@@ -0,0 +1,122 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funmerge - merge one or more Funtools table files>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funmerge [-w|-x] -f [colname] <iname1> <iname2> ... <oname>
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -f # output a column specifying file from which this event came
+ -w # adjust position values using WCS info
+ -x # adjust position values using WCS info and save old values
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funmerge> merges FITS data from one or more
+FITS Binary Table files
+or raw event files.
+
+The first argument to the program specifies the first input FITS table
+or raw event file. If "stdin" is specified, data are read from the
+standard input. Use Funtools Bracket
+Notation to specify FITS extensions and row filters. Subsequent
+arguments specify additional event files and tables to merge. (NB: Stdin
+cannot not be used for any of these additional input file arguments.)
+The last argument is the output FITS file. The columns in each input table
+must be identical.
+
+
+If an input file begins with the '@' character, it is processed as an
+include file, i.e., as a text file containing event file names (as
+well as blank lines and/or comment lines starting with the '#' sign).
+If standard input is specified as an include file ('@stdin'), then
+file names are read from the standard input until EOF (^D). Event
+files and include files can be mixed on a command line.
+
+
+Rows from each table are written sequentially to the output
+file. If the switch B<-f [colname]> is specified on the command
+line, an additional column is added to each row containing the number
+of the file from which that row was taken (starting from one). In
+this case, the corresponding file names are stored in the header
+parameters having the prefix B<FUNFIL>, i.e., FUNFIL01,
+FUNFIL02, etc.
+
+
+Using the B<-w> switch (or B<-x> switch as described
+below), B<funmerge> also can adjust the position column values
+using the WCS information in each file. (By position columns, we mean
+the columns that the table is binned on, i.e., those columns defined
+by the B<bincols=> switch, or (X,Y) by default.) To perform WCS
+alignment, the WCS of the first file is taken as the base WCS. Each
+position in subsequent files is adjusted by first converting it to the
+sky coordinate in its own WCS coordinate system, then by converting
+this sky position to the sky position of the base WCS, and finally
+converting back to a pixel position in the base system. Note that in
+order to perform WCS alignment, the appropriate WCS and TLMIN/TLMAX
+keywords must already exist in each FITS file.
+
+When performing WCS alignment, you can save the original positions in
+the output file by using the B<-x> (for "xtra") switch instead
+of the B<-w> switch (i.e., using this switch also implies using
+B<-w>) The old positions are saved in columns having the same
+name as the original positional columns, with the added prefix "OLD_".
+
+Examples:
+
+
+Merge two tables, and preserve the originating file number for
+each row in the column called "FILE" (along with the corresponding
+file name in the header):
+
+ [sh] funmerge -f "FILE" test.ev test2.ev merge.ev
+
+
+
+Merge two tables with WCS alignment, saving the old position values in
+2 additional columns:
+
+ [sh] funmerge -x test.ev test2.ev merge.ev
+
+
+
+This program only works on raw event files and binary tables. We have
+not yet implemented image and array merging.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funopen.pod b/funtools/doc/pod/funopen.pod
new file mode 100644
index 0000000..3d6ab3e
--- /dev/null
+++ b/funtools/doc/pod/funopen.pod
@@ -0,0 +1,166 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunOpen - open a Funtools data file>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ Fun FunOpen(char *name, char *mode, Fun ref);
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunOpen()> routine opens a Funtools data file for reading or
+appending, or creates a new FITS file for writing. The B<name>
+argument specifies the name of the Funtools data file to open. You can
+use IRAF-style bracket notation to specify
+Funtools Files, Extensions, and Filters.
+A separate call should be made each time a different FITS extension is
+accessed:
+
+ Fun fun;
+ char *iname;
+ ...
+ if( !(fun = FunOpen(iname, "r", NULL)) ){
+ fprintf(stderr, "could not FunOpen input file: %s\n", iname);
+ exit(1);
+ }
+
+
+If B<mode> is "r", the file is opened for reading, and processing
+is set up to begin at the specified extension. For reading,
+B<name> can be B<stdin>, in which case the standard input is read.
+
+
+If B<mode> is "w", the file is created if it does not exist, or
+opened and truncated for writing if it does exist. Processing starts
+at the beginning of the file. The B<name> can be B<stdout>,
+in which case the standard output is readied for processing.
+
+
+If B<mode> is "a", the file is created if it does not exist, or
+opened if it does exist. Processing starts at the end of the file.
+The B<name> can be B<stdout>, in which case the standard
+output is readied for processing.
+
+
+When a Funtools file is opened for writing or appending, a previously
+opened Funtools reference
+handle can be specified as the third argument. This handle
+typically is associated with the input Funtools file that will be used
+to generate the data for the output data. When a reference file is
+specified in this way, the output file will inherit the (extension)
+header parameters from the input file:
+
+ Fun fun, fun2;
+ ...
+ /* open input file */
+ if( !(fun = FunOpen(argv[1], "r", NULL)) )
+ gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
+ /* open the output FITS image, inheriting params from input */
+ if( !(fun2 = FunOpen(argv[2], "w", fun)) )
+ gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);
+
+Thus, in the above example, the output FITS binary table file will
+inherit all of the parameters associated with the input binary table
+extension.
+
+A file opened for writing with a
+Funtools reference handle also
+inherits the selected columns (i.e. those columns chosen for
+processing using the
+FunColumnSelect() routine)
+from the reference file as its default columns. This makes it easy to
+open an output file in such a way that the columns written to the
+output file are the same as the columns read in the input file. Of
+course, column selection can easily be tailored using the
+FunColumnSelect() routine.
+In particular, it is easy to merge user-defined columns with the input
+columns to generate a new file. See the
+evmerge for a complete example.
+
+
+In addition, when a
+Funtools reference handle
+is supplied in a FunOpen() call,
+it is possible also to specify that all other extensions from the
+reference file (other than the input extension being processed) should
+be copied from the reference file to the output file. This is useful,
+for example, in a case where you are processing a FITS binary table
+or image and you want to copy all of the other extensions to
+the output file as well. Copy of other extensions is controlled by
+adding a "C" or "c" to the mode string of the
+FunOpen() call of the input
+reference file. If "C" is specified, then other extensions are
+B<always> copied (i.e., copy is forced by the application). If
+"c" is used, then other extensions are copied if the user requests
+copying by adding a plus sign "+" to the extension name in the bracket
+specification. For example, the B<funtable> program utilizes
+"c" mode, giving users the option of copying all other extensions:
+
+ /* open input file -- allow user copy of other extensions */
+ if( !(fun = FunOpen(argv[1], "rc", NULL)) )
+ gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
+ /* open the output FITS image, inheriting params from input */
+ if( !(fun2 = FunOpen(argv[2], "w", fun)) )
+ gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);
+
+
+Thus, B<funtable> supports either of these command lines:
+
+ # copy only the EVENTS extension
+ csh> funtable "test.ev[EVENTS,circle(512,512,10)]" foo.ev
+ # copy ALL extensions
+ csh> funtable "test.ev[EVENTS+,circle(512,512,10)]" foo.ev
+
+
+
+Use of a Funtools reference
+handle implies that the input file is opened before the output
+file. However, it is important to note that if copy mode ("c" or "C")
+is specified for the input file, the actual input file open is delayed
+until just after the output file is opened, since the copy of prior
+extensions to the output file takes place while Funtools is seeking to
+the specified input extension. This implies that the output file
+should be opened before any I/O is done on the input file or else the
+copy will fail. Note also that the copy of subsequent extension will
+be handled automatically by
+FunClose()
+if the output file is
+closed before the input file. Alternatively, it can be done explicitly
+by FunFlush(), but again, this
+assumes that the input file still is open.
+
+
+Upon success FunOpen() returns a
+Fun handle that is used in subsequent Funtools calls. On error, NULL
+is returned.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funparamget.pod b/funtools/doc/pod/funparamget.pod
new file mode 100644
index 0000000..6d06d10
--- /dev/null
+++ b/funtools/doc/pod/funparamget.pod
@@ -0,0 +1,153 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunParamGet - get a Funtools param value>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunParamGetb(Fun fun, char *name, int n, int defval, int *got)
+
+ int FunParamGeti(Fun fun, char *name, int n, int defval, int *got)
+
+ double FunParamGetd(Fun fun, char *name, int n, double defval, int *got)
+
+ char *FunParamGets(Fun fun, char *name, int n, char *defval, int *got)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The four routines B<FunParamGetb()>, B<FunParamGeti()>,
+B<FunParamGetd()>, and B<FunParamGets()>, return the value of
+a FITS header parameter as a boolean, int, double, and string,
+respectively. The string returned by B<FunParamGets()> is a malloc'ed
+copy of the header value and should be freed when no longer needed.
+
+
+The first argument is the Fun handle associated with the FITS header
+being accessed. Normally, the header is associated with the FITS
+extension that you opened with B<FunOpen()>. However, you can use
+FunInfoPut() to specify access of the primary header. In particular,
+if you set the FUN_PRIMARYHEADER parameter to 1, then the primary
+header is used for all parameter access until the value is reset to
+0. For example:
+
+ int val;
+ FunParamGeti(fun, "NAXIS", 1, 0, &got); # current header
+ val=1;
+ FunInfoPut(fun, FUN_PRIMARYHEADER, &val, 0); # switch to ...
+ FunParamGeti(fun, "NAXIS", 1, 0, &got); # ... primary header
+ FunParamGeti(fun, "NAXIS", 2, 0, &got); # ... primary header
+ val=0;
+ FunInfoPut(fun, FUN_PRIMARYHEADER, &val, 0); # switch back to ...
+ FunParamGeti(fun, "NAXIS", 2, 0, &got); # current header
+
+
+
+Alternatively, you can use the FUN_PRIMARY macro to access parameters
+from the primary header on a per-parameter basis:
+
+ FunParamGeti(fun, "NAXIS1", 0, 0, &got); # current header
+ FunParamGeti(FUN_PRIMARY(fun), "NAXIS1", 0, 0, &got); # primary header
+
+B<NB: FUN_PRIMARY is deprecated.>
+It makes use of a global parameter and therefore will not not
+appropriate for threaded applications, when we make funtools
+thread-safe. We recommend use of FunInfoPut() to switch between the
+extension header and the primary header.
+
+
+For output data, access to the primary header is only possible until
+the header is written out, which usually takes place when the first
+data are written.
+
+
+The second argument is the name of the parameter to access. The third
+B<n> argument, if non-zero, is an integer that will be added as a
+suffix to the parameter name. This makes it easy to use a simple loop
+to process parameters having the same root name. For example, to
+gather up all values of TLMIN and TLMAX for each column in a binary
+table, you can use:
+
+ for(i=0, got=1; got; i++){
+ fun->cols[i]->tlmin = (int)FunParamGeti(fun, "TLMIN", i+1, 0.0, &got);
+ fun->cols[i]->tlmax = (int)FunParamGeti(fun, "TLMAX", i+1, 0.0, &got);
+ }
+
+
+
+The fourth B<defval> argument is the default value to return if
+the parameter does not exist. Note that the data type of this
+parameter is different for each specific FunParamGet() call. The final
+B<got> argument will be 0 if no param was found. Otherwise the
+data type of the parameter is returned as follows: FUN_PAR_UNKNOWN
+('u'), FUN_PAR_COMMENT ('c'), FUN_PAR_LOGICAL ('l'), FUN_PAR_INTEGER
+('i'), FUN_PAR_STRING ('s'), FUN_PAR_REAL ('r'), FUN_PAR_COMPLEX ('x').
+
+
+These routines return the value of the header parameter, or the
+specified default value if the header parameter does not exist. The
+returned value is a malloc'ed string and should be freed when no
+longer needed.
+
+
+By default, B<FunParamGets()> returns the string value of the
+named parameter. However, you can use FunInfoPut() to retrieve the
+raw 80-character FITS card instead. In particular, if you set the
+FUN_RAWPARAM parameter to 1, then card images will be returned by
+FunParamGets() until the value is reset to 0.
+
+
+Alternatively, if the FUN_RAW macro is applied to the name, then the
+80-character raw FITS card is returned instead.
+B<NB: FUN_RAW is deprecated.>
+It makes use of a global parameter and therefore will not not
+appropriate for threaded applications, when we make funtools
+thread-safe. We recommend use of FunInfoPut() to switch between the
+extension header and the primary header.
+
+
+Note that in addition to the behaviors described above, the
+routine B<FunParamGets()> will return the 80 raw characters of the
+B<nth> FITS card (including the comment) if B<name> is specified as
+NULL and B<n> is positive. For example, to loop through all FITS
+header cards in a given extension and print out the raw card, use:
+
+ for(i=1; ;i++){
+ if( (s = FunParamGets(fun, NULL, i, NULL, &got)) ){
+ fprintf(stdout, "%.80s\n", s);
+ free(s);
+ }
+ else{
+ break;
+ }
+ }
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funparamput.pod b/funtools/doc/pod/funparamput.pod
new file mode 100644
index 0000000..65d1b55
--- /dev/null
+++ b/funtools/doc/pod/funparamput.pod
@@ -0,0 +1,147 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunParamPut - put a Funtools param value>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ int FunParamPutb(Fun fun, char *name, int n, int value, char *comm,
+ int append)
+
+ int FunParamPuti(Fun fun, char *name, int n, int value, char *comm,
+ int append)
+
+ int FunParamPutd(Fun fun, char *name, int n, double value, int prec,
+ char *comm, int append)
+
+ int FunParamPuts(Fun fun, char *name, int n, char *value, char *comm,
+ int append)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The four routines B<FunParamPutb()>, B<FunParamPuti()>,
+B<FunParamPutd()>, and B<FunParamPuts()>, will set the value
+of a FITS header parameter as a boolean, int, double, and string,
+respectively.
+
+
+The first argument is the Fun handle associated with the FITS header
+being accessed. Normally, the header is associated with the FITS
+extension that you opened with B<FunOpen()>.
+However, you can use FunInfoPut() to specify that use of the primary
+header. In particular, if you set the FUN_PRIMARYHEADER parameter to
+1, then the primary header is used for all parameter access until the
+value is reset to 0. For example:
+
+ int val;
+ FunParamPuti(fun, "NAXIS1", 0, 10, NULL, 1); # current header
+ val=1;
+ FunInfoPut(fun, FUN_PRIMARYHEADER, &val, 0); # switch to ...
+ FunParamPuti(fun, "NAXIS1", 0, 10, NULL, 1); # primary header
+
+(You also can use the deprecated FUN_PRIMARY macro, to access
+parameters from the primary header.)
+
+
+The second argument is the B<name> of the parameter. (
+In accordance with FITS standards, the special names B<COMMENT>
+and B<HISTORY>, as well as blank names, are output without the "= "
+value indicator in columns 9 and 10.
+
+
+The third B<n> argument, if non-zero, is an integer that will be
+added as a suffix to the parameter name. This makes it easy to use a
+simple loop to process parameters having the same root name. For
+example, to set the values of TLMIN and TLMAX for each column in a
+binary table, you can use:
+
+ for(i=0; i<got; i++){
+ FunParamPutd(fun, "TLMIN", i+1, tlmin[i], 7, "min column val", 1);
+ FunParamPutd(fun, "TLMAX", i+1, tlmax[i], 7, "max column val", 1);
+ }
+
+
+
+The fourth B<defval> argument is the value to set. Note that the
+data type of this argument is different for each specific
+FunParamPut() call. The B<comm> argument is the comment
+string to add to this header parameter. Its value can be NULL. The
+final B<append> argument determines whether the parameter is added
+to the header if it does not exist. If set to a non-zero value, the
+header parameter will be appended to the header if it does not exist.
+If set to 0, the value will only be used to change an existing parameter.
+
+
+Note that the double precision routine FunParamPutd() supports an
+extra B<prec> argument after the B<value> argument, in order
+to specify the precision when converting the double value to ASCII. In
+general a 20.[prec] format is used (since 20 characters are alloted to
+a floating point number in FITS) as follows: if the double value being
+put to the header is less than 0.1 or greater than or equal to
+10**(20-2-[prec]), then %20.[prec]e format is used (i.e., scientific
+notation); otherwise %20.[prec]f format is used (i.e., numeric
+notation).
+
+
+As a rule, parameters should be set before writing the table or image.
+It is, however, possible to update the value of an B<existing>
+parameter after writing an image or table (but not to add a new
+one). Such updating only works if the parameter already exists and if
+the output file is seekable, i.e. if it is a disk file or is stdout
+being redirected to a disk file.
+
+
+It is possible to add a new parameter to a header after the data has
+been written, but only if space has previously been reserved. To reserve
+space, add a blank parameter whose value is the name of the parameter you
+eventually will update. Then, when writing the new parameter, specify a
+value of 2 for the append flag. The parameter writing routine will
+first look to update an existing parameter, as usual. If an existing
+parameter is not found, an appropriately-valued blank parameter will be
+searched for and replaced. For example:
+
+ /* add blank card to be used as a place holder for IPAR1 update */
+ FunParamPuts(fun, NULL, 0, "IPAR1", "INTEGER Param", 0);
+ ...
+ /* write header and data */
+ FunTableRowPut(fun, events, got, 0, NULL);
+ ...
+ /* update param in file after writing data -- note append = 2 here */
+ FunParamPuti(fun, "IPAR", 1, 400, "INTEGER Param", 2);
+
+
+
+The parameter routines return a 1 if the routine was successful and a 0 on
+failure. In general, the major reason for failure is that you did not
+set the append argument to a non-zero value and the parameter did not
+already exist in the file.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funref.pod b/funtools/doc/pod/funref.pod
new file mode 100644
index 0000000..13b158f
--- /dev/null
+++ b/funtools/doc/pod/funref.pod
@@ -0,0 +1,170 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunRef: the Funtools Reference Handle>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+A description of how to use a Funtools reference handle to connect a
+Funtools input file to an output file.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+The Funtools reference handle connects a Funtools input file to a
+Funtools output file so that parameters (or even whole extensions) can
+be copied from the one to the other. To make the connection, the Funtools
+handle of the input file is passed to the
+final argument of the
+FunOpen() call for the output file:
+
+ if( !(ifun = FunOpen(argv[1], "r", NULL)) )
+ gerror(stderr, "could not FunOpen input file: %s\n", argv[1]);
+ if( !(ofun = FunOpen(argv[2], "w", ifun)) )
+ gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);
+
+It does not matter what type of input or output file (or extension) is
+opened, or whether they are the same type. When the output image or
+binary table is written using
+FunImagePut()
+or
+FunTableRowPut()
+an appropriate header will be written first, with parameters copied
+from the input extension. Of course, invalid parameters will be
+removed first, e.g., if the input is a binary table and the output is
+an image, then binary table parameters such as TFORM, TUNIT,
+etc. parameters will not be copied to the output.
+
+
+Use of a reference handle also allows default values to be passed
+to
+FunImagePut() in order to
+write out an output image with the same dimensions and data type
+as the input image. To use the defaults from the input, a value
+of 0 is entered for dim1, dim2, and bitpix. For example:
+
+ fun = FunOpen(argv[1], "r", NULL);
+ fun2 = FunOpen(argv[2], "w", fun);
+ buf = FunImageGet(fun, NULL, NULL);
+ ... process image data ...
+ FunImagePut(fun2, buf, 0, 0, 0, NULL);
+
+Of course, you often want to get information about the data type
+and dimensions of the image for processing. The above code
+is equivalent to the following:
+
+ fun = FunOpen(argv[1], "r", NULL);
+ fun2 = FunOpen(argv[2], "w", fun);
+ buf = FunImageGet(fun, NULL, NULL);
+ FunInfoGet(fun, FUN_SECT_DIM1, &dim1, FUN_SECT_DIM2, &dim2,
+ FUN_SECT_BITPIX, &bitpix, 0);
+ ... process image data ...
+ FunImagePut(fun2, buf, dim1, dim2, bitpix, NULL);
+
+
+
+It is possible to change the reference handle for a given output Funtools
+handle using the
+FunInfoPut() routine:
+
+ /* make the new extension the reference handle for the output file */
+ FunInfoPut(fun2, FUN_IFUN, &fun, 0);
+
+When this is done, Funtools specially resets the output file to start
+a new output extension, which is connected to the new input reference
+handle. You can use this mechanism to process multiple input extensions
+into a single output file, by successively opening the former and
+setting the reference handle for the latter. For example:
+
+ /* open a new output FITS file */
+ if( !(fun2 = FunOpen(argv[2], "w", NULL)) )
+ gerror(stderr, "could not FunOpen output file: %s\n", argv[2]);
+ /* process each input extension in turn */
+ for(ext=0; ;ext++){
+ /* get new extension name */
+ sprintf(tbuf, "%s[%d]", argv[1], ext);
+ /* open it -- if we cannot open it, we are done */
+ if( !(fun=FunOpen(tbuf, "r", NULL)) )
+ break;
+ /* make the new extension the reference handle for the output file */
+ FunInfoPut(fun2, FUN_IFUN, &fun, 0);
+ ... process ...
+ /* flush output extension (write padding, etc.) */
+ FunFlush(fun2, NULL);
+ /* close the input extension */
+ FunClose(fun);
+ }
+
+In this example, the output file is opened first. Then each successive
+input extension is opened, and the output reference handle is set to
+the newly opened input handle. After data processing is performed, the
+output extension is flushed and the input extension is closed, in
+preparation for the next input extension.
+
+Finally, a reference handle can be used to copy other extensions from
+the input file to the output file. Copy of other extensions is
+controlled by adding a "C" or "c" to the mode string of the
+FunOpen()
+call B<of the input reference file>. If "C" is specified, then
+other extensions are B<always> copied (i.e., copy is forced by the
+application). If "c" is used, then other extensions are copied if the
+user requests copying by adding a plus sign "+" to the extension name
+in the bracket specification. For example, the B<funtable>
+program utilizes user-specified "c" mode so that the second example
+below will copy all extensions:
+
+ # copy only the EVENTS extension
+ csh> funtable "test.ev[EVENTS,circle(512,512,10)]" foo.ev
+ # copy ALL extensions
+ csh> funtable "test.ev[EVENTS+,circle(512,512,10)]" foo.ev
+
+When extension copy is specified in the input file, the call to
+FunOpen()
+on the input file delays the actual file open until the output file
+also is opened (or until I/O is performed on the input file, which
+ever happens first). Then, when the output file is opened, the input
+file is also opened and input extensions are copied to the output
+file, up to the specific extension being opened. Processing of input
+and output extensions then proceed.
+
+When extension processing is complete, the remaining extensions need to
+be copied from input to output. This can be done explicitly, using the
+FunFlush()
+call with the "copy=remaining" plist:
+
+ FunFlush(fun, "copy=remaining");
+
+Alternatively, this will happen automatically, if the output file
+is closed B<before> the input file:
+
+ /* we could explicitly flush remaining extensions that need copying */
+ /* FunFlush(fun2, "copy=remaining"); */
+ /* but if we close output before input, end flush is done automatically */
+ FunClose(fun2);
+ FunClose(fun);
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funregions.pod b/funtools/doc/pod/funregions.pod
new file mode 100644
index 0000000..7f975ad
--- /dev/null
+++ b/funtools/doc/pod/funregions.pod
@@ -0,0 +1,571 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Regions: Spatial Region Filtering>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the user interface for spatial
+region filtering images and tables.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+Spatial region filtering allows a program to select regions of an
+image or rows of a table (e.g., X-ray events) to process using
+simple geometric shapes and boolean combinations of shapes. When an
+image is filtered, only pixels found within these shapes are
+processed. When a table is filtered, only rows found within these
+shapes are processed.
+
+
+Spatial region filtering for images and tables is accomplished by
+means of B<region specifications>. A region specification
+consists of one or more B<region expressions>, which are geometric
+shapes,combined according to the rules of boolean algebra. Region
+specifications also can contain comments and local/global processing
+directives.
+
+
+Typically, region specifications are specified using bracket notation
+appended to the filename of the data being processed:
+
+ foo.fits[circle(512,512,100)]
+
+It is also possible to put region specification inside a file and
+then pass the filename in bracket notation:
+
+ foo.fits[@my.reg]
+
+
+
+When region filters are passed in bracket notation in this manner, the
+filtering is set up automatically when the file is opened and all
+processing occurs through the filter. Programs also can use the filter
+library API to open filters explicitly.
+
+B<Region Expressions>
+
+More specifically, region specifications consist of one or more lines
+containing:
+
+ # comment until end of line
+ global keyword=value keyword=value ... # set global value(s)
+ # include the following file in the region descriptor
+ @file
+ # use the FITS image as a mask (cannot be used with other regions)
+ @fitsimage
+ # each region expression contains shapes separated by operators
+ [region_expression1], [region_expression2], ...
+ [region_expression], [region_expression], ...
+
+
+
+A single region expression consists of:
+
+ # parens and commas are optional, as is the + sign
+ [+-]shape(num , num , ...) OP1 shape num num num OP2 shape ...
+
+e.g.:
+
+ ([+-]shape(num , num , ...) && shape num num || shape(num, num)
+ # a comment can come after a region -- reserved for local properties
+ [+-]shape(num , num , ...) # local properties go here, e.g. color=red
+
+
+
+Thus, a region descriptor consists of one or more region
+expressions or B<regions>, separated by comas, new-lines, or
+semi-colons. Each B<region> consists of one or more geometric
+shapes combined using standard boolean operation. Several types
+of shapes are supported, including:
+
+
+ shape: arguments:
+ ----- ----------------------------------------
+ ANNULUS xcenter ycenter inner_radius outer_radius
+ BOX xcenter ycenter xwidth yheight (angle)
+ CIRCLE xcenter ycenter radius
+ ELLIPSE xcenter ycenter xwidth yheight (angle)
+ FIELD none
+ LINE x1 y1 x2 y2
+ PIE xcenter ycenter angle1 angle2
+ POINT x1 y1
+ POLYGON x1 y1 x2 y2 ... xn yn
+
+
+
+In addition, the following regions accept B<accelerator> syntax:
+
+
+ shape arguments
+ ----- ------------------------------------------
+ ANNULUS xcenter ycenter radius1 radius2 ... radiusn
+ ANNULUS xcenter ycenter inner_radius outer_radius n=[number]
+ BOX xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
+ BOX xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
+ CIRCLE xcenter ycenter r1 r2 ... rn # same as annulus
+ CIRCLE xcenter ycenter rinner router n=[number] # same as annulus
+ ELLIPSE xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
+ ELLIPSE xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
+ PIE xcenter ycenter angle1 angle2 (angle3) (angle4) (angle5) ...
+ PIE xcenter ycenter angle1 angle2 (n=[number])
+ POINT x1 y1 x2 y2 ... xn yn
+
+Note that the circle accelerators are simply aliases for the annulus
+accelerators. See region geometry
+for more information about accelerators.
+
+
+Finally, the following are combinations of pie with different shapes
+(called "panda" for "Pie AND Annulus") allow for easy specification of
+radial sections:
+
+
+ shape: arguments:
+ ----- ---------
+ PANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
+ CPANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
+ BPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # box
+ EPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # ellipse
+
+
+The panda and cpanda specify combinations of annulus and circle with pie,
+respectively and give identical results. The bpanda combines box and pie,
+while epanda combines ellipse and pie.
+See region geometry
+for more information about pandas.
+
+
+The following "shapes" are ignored by funtools (generated by ds9):
+
+ shape: arguments:
+ ----- ---------
+ PROJECTION x1 y1 x2 y2 width # NB: ignored by funtools
+ RULER x1 y1 x2 y2 # NB: ignored by funtools
+ TEXT x y # NB: ignored by funtools
+ GRID # NB: ignored by funtools
+ TILE # NB: ignored by funtools
+ COMPASS # NB: ignored by funtools
+
+
+
+All arguments to regions are real values; integer values are
+automatically converted to real where necessary. All angles are in
+degrees and run from the positive image x-axis to the positive image
+y-axis. If a rotation angle is part of the associated WCS header, that
+angle is added implicitly as well.
+
+
+Note that 3-letter abbreviations are supported for all shapes, so that
+you can specify "circle" or "cir".
+
+
+B<Columns Used in Region Filtering>
+
+By default, the x,y values in a region expression refer to the two
+"image binning" columns, i.e. the columns that would be used to
+bin the data into an image. For images, these are just the 2 dimensions
+of the image. For tables, these usually default to x and y but
+can be changed as required. For example, in Funtools, new binning
+columns are specified using a bincols=(col1,col2) statement within
+the bracket string on the command line.
+
+Alternate columns for region filtering can be specified by the syntax:
+
+ (col1,col2)=region(...)
+
+e.g.:
+
+ (X,Y)=annulus(x,y,ri,ro)
+ (PHA,PI)=circle(x,y,r)
+ (DX,DY)=ellipse(x,y,a,b[,angle])
+
+
+
+B<Region Algebra>
+
+(See also Region Algebra for more complete
+information.)
+
+
+Region shapes can be combined together using Boolean operators:
+
+ Symbol Operation Use
+ -------- --------- -----------------------------------
+ ! not Exclude this shape from this region
+ & or && and Include only the overlap of these shapes
+ | or || inclusive or Include all of both shapes
+ ^ exclusive or Include both shapes except their overlap
+
+Note that the !region syntax must be combined with another region in order
+that we be able to assign a region id properly. That is,
+
+ !circle(512,512,10)
+
+is not a legal region because there is no valid region id to work with.
+To get the full field without a circle, combine the above with field(),
+as in:
+
+ field() && !circle(512,512,10)
+
+
+B< Region Separators Also Are Operators>
+
+
+As mentioned previously, multiple region expressions can be specified
+in a region descriptor, separated by commas, new-lines, or
+semi-colons. When such a separator is used, the boolean OR operator
+is automatically generated in its place but, unlike explicit use of
+the OR operator, the region ID is incremented (starting from 1).
+
+
+For example, the two shapes specified in this example are given the
+same region value:
+
+ foo.fits[circle(512,512,10)||circle(400,400,20)]
+
+On the other hand, the two shapes defined in the following example are
+given different region values:
+
+ foo.fits[circle(512,512,10),circle(400,400,20)]
+
+
+
+Of course these two examples will both mask the same table rows or
+pixels. However, in programs that distinguish region id's (such as
+funcnts ), they will act
+differently. The explicit OR operator will result in one region
+expression consisting of two shapes having the same region id and
+funcnts will report a single region. The comma operator will cause
+funcnts to report two region expressions, each with one shape, in
+its output.
+
+
+In general, commas are used to separate region expressions entered
+in bracket notation on the command line:
+
+ # regions are added to the filename in bracket notation
+ foo.fits[circle(512,512,100),circle(400,400,20)]
+
+New-lines are used to separate region
+expressions in a file:
+
+ # regions usually are separated by new-lines in a file
+ # use @filename to include this file on the command line
+ circle(512,512,100)
+ circle(400,400,20)
+
+Semi-colons are provided for backward compatibility with the original
+IRAF/PROS implementation and can be used in either case.
+
+
+If a pixel is covered by two different regions expressions, it is
+given the mask value of the B<first> region that contains that
+pixel. That is, successive regions B<do not> overwrite previous
+regions in the mask, as was the case with the original PROS regions.
+In this way, an individual pixel is covered by one and only one
+region. This means that one must sometimes be careful about the order
+in which regions are defined. If region N is fully contained within
+region M, then N should be defined B<before> M, or else it will be
+"covered up" by the latter.
+
+B<Region Exclusion>
+
+Shapes also can be globally excluded from all the region specifiers in
+a region descriptor by using a minus sign before a region:
+
+
+ operator arguments:
+ -------- -----------
+ - Globally exclude the region expression following '-' sign
+ from ALL regions specified in this file
+
+The global exclude region can be used by itself; in such a case, field() is
+implied.
+
+
+A global exclude differs from the local exclude (i.e. a shape prefixed
+by the logical not "!" symbol) in that global excludes are logically
+performed last, so that no region will contain pixels from a globally
+excluded shape. A local exclude is used in a boolean expression with
+an include shape, and only excludes pixels from that include shape.
+Global excludes cannot be used in boolean expressions.
+
+B<Include Files>
+
+
+The B<@filename> directive specifies an include file
+containing region expressions. This file is processed as part of
+the overall region descriptor:
+
+ foo.fits[circle(512,512,10),@foo]
+
+A filter include file simply includes text without changing the state
+of the filter. It therefore can be used in expression. That is, if the
+file foo1 contains "pi==1" and foo2 contains "pha==2" then
+the following expressions are equivalent:
+
+ "[@foo1&&@foo2]" is equivalent to "[pi==1&&pha==2]"
+ "[pha==1||@foo2]" is equivalent to "[pi==1||pha==2]"
+ "[@foo1,@foo2]" is equivalent to "[pi==1,pha==2]"
+
+Be careful that you specify evaluation order properly using
+parenthesis, especially if the include file contains multiple
+filter statements. For example, consider a file containing two
+regions such as:
+
+ circle 512 512 10
+ circle 520 520 10
+
+If you want to include only events (or pixels) that are in these regions
+and have a pi value of 4, then the correct syntax is:
+
+ pi==4&&(@foo)
+
+since this is equivalent to:
+
+ pi==4 && (circle 512 512 10 || circle 520 520 10)
+
+If you leave out the parenthesis, you are filtering this statement:
+
+ pi==4 && circle 512 512 10 || circle 520 520 10)
+
+which is equivalent to:
+
+ (pi==4 && circle 512 512 10) || circle 520 520 10)
+
+The latter syntax only applies the pi test to the first region.
+
+
+For image-style filtering, the B<@filename> can specify an 8-bit
+or 16-bit FITS image. In this case, the pixel values in the mask image
+are used as the region mask. The valid pixels in the mask must have
+positive values. Zero values are excluded from the mask and negative
+values are not allowed. Moreover, the region id value is taken as
+the image pixel value and the total number of regions is taken to be
+the highest pixel value. The dimensions of the image mask must be less
+than or equal to the image dimensions of the data. The mask will be
+replicated as needed to match the size of the image. (Thus, best
+results are obtained when the data dimensions are an even multiple of
+the mask dimensions.)
+
+
+An image mask can be used in any image filtering operation, regardless
+of whether the data is of type image or table. For example, the
+funcnts )
+program performs image filtering on images or tables, and so
+FITS image masks are valid input for either type of data in this
+program.. An image mask cannot be used in a program such as
+fundisp )
+when the input data is a table, because fundisp displays
+rows of a table and processes these rows using event-style filtering.
+
+B<Global and Local Properties of Regions>
+
+
+The ds9 image display program describes a host of properties such as
+color, font, fix/free state, etc. Such properties can be specified
+globally (for all regions) or locally (for an individual region).
+The B<global> keyword specifies properties and qualifiers for all
+regions, while local properties are specified in comments on the same
+line as the region:
+
+ global color=red
+ circle(10,10,2)
+ circle(20,20,3) # color=blue
+ circle(30,30,4)
+
+The first and third circles will be red, which the second circle will
+be blue. Note that funtools currently ignores region properties, as
+they are used in display only.
+
+B< Coordinate Systems>
+
+For each region, it is important to specify the coordinate system
+used to interpret the region, i.e., to set the context in which position and
+size values are interpreted. For this purpose, the following keywords
+are recognized:
+
+
+ name description
+ ---- ------------------------------------------
+ PHYSICAL pixel coords of original file using LTM/LTV
+ IMAGE pixel coords of current file
+ FK4, B1950 sky coordinate systems
+ FK5, J2000 sky coordinate systems
+ GALACTIC sky coordinate systems
+ ECLIPTIC sky coordinate systems
+ ICRS currently same as J2000
+ LINEAR linear wcs as defined in file
+ AMPLIFIER mosaic coords of original file using ATM/ATV
+ DETECTOR mosaic coords of original file using DTM/DTV
+
+
+
+B<Specifying Positions, Sizes, and Angles>
+
+The arguments to region shapes can be floats or integers describing
+positions and sizes. They can be specified as pure numbers or using
+explicit formatting directives:
+
+
+ position arguments description
+ ------------------ ------------------------------
+ [num] context-dependent (see below)
+ [num]d degrees
+ [num]r radians
+ [num]p physical pixels
+ [num]i image pixels
+ [num]:[num]:[num] hms for 'odd' position arguments
+ [num]:[num]:[num] dms for 'even' position arguments
+ [num]h[num]m[num]s explicit hms
+ [num]d[num]m[num]s explicit dms
+
+ size arguments description
+ -------------- -----------
+ [num] context-dependent (see below)
+ [num]" arc seconds
+ [num]' arc minutes
+ [num]d degrees
+ [num]r radians
+ [num]p physical pixels
+ [num]i image pixels
+
+
+
+When a "pure number" (i.e. one without a format directive such as 'd'
+for 'degrees') is specified, its interpretation depends on the context
+defined by the 'coordsys' keyword. In general, the rule is:
+
+
+All pure numbers have implied units corresponding to the current
+coordinate system.
+
+
+If no such system is explicitly specified, the default system is
+implicitly assumed to be PHYSICAL.
+
+
+In practice this means that for IMAGE and PHYSICAL systems, pure
+numbers are pixels. Otherwise, for all systems other than linear,
+pure numbers are degrees. For LINEAR systems, pure numbers are in the
+units of the linear system. This rule covers both positions and
+sizes.
+
+
+The input values to each shape can be specified in several coordinate
+systems including:
+
+
+ name description
+ ---- ----------------------------
+ IMAGE pixel coords of current file
+ LINEAR linear wcs as defined in file
+ FK4, B1950 various sky coordinate systems
+ FK5, J2000
+ GALACTIC
+ ECLIPTIC
+ ICRS
+ PHYSICAL pixel coords of original file using LTM/LTV
+ AMPLIFIER mosaic coords of original file using ATM/ATV
+ DETECTOR mosaic coords of original file using DTM/DTV
+
+
+
+If no coordinate system is specified, PHYSICAL is assumed. PHYSICAL or
+a World Coordinate System such as J2000 is preferred and most general.
+The coordinate system specifier should appear at the beginning of the
+region description, on a separate line (in a file), or followed by a
+new-line or semicolon; e.g.,
+
+
+ global coordsys physical
+ circle 6500 9320 200
+
+
+The use of celestial input units automatically implies WORLD
+coordinates of the reference image. Thus, if the world coordinate
+system of the reference image is J2000, then
+
+
+ circle 10:10:0 20:22:0 3'
+
+
+is equivalent to:
+
+
+ circle 10:10:0 20:22:0 3' # j2000
+
+
+
+Note that by using units as described above, you may mix coordinate
+systems within a region specifier; e.g.,
+
+
+ circle 6500 9320 3' # physical
+
+
+
+Note that, for regions which accept a rotation angle:
+
+
+ellipse (x, y, r1, r2, angle)
+box(x, y, w, h, angle)
+
+
+the angle is relative to the specified coordinate system. In
+particular, if the region is specified in WCS coordinates, the angle
+is related to the WCS system, not x/y image coordinate axis. For WCS
+systems with no rotation, this obviously is not an issue. However,
+some images do define an implicit rotation (e.g., by using a non-zero
+CROTA value in the WCS parameters) and for these images, the angle
+will be relative to the WCS axes. In such case, a region specification
+such as:
+
+
+fk4;ellipse(22:59:43.985, +58:45:26.92,320", 160", 30)
+
+
+will not, in general, be the same region specified as:
+
+
+physical;ellipse(465, 578, 40, 20, 30)
+
+
+even when positions and sizes match. The angle is relative to WCS axes
+in the first case, and relative to physical x,y axes in the second.
+
+
+
+More detailed descriptions are available for:
+Region Geometry,
+Region Algebra,
+Region Coordinates, and
+Region Boundaries.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funsky.pod b/funtools/doc/pod/funsky.pod
new file mode 100644
index 0000000..421d5d7
--- /dev/null
+++ b/funtools/doc/pod/funsky.pod
@@ -0,0 +1,260 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funsky - convert between image and sky coordinates>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ funsky iname[ext] # RA,Dec (deg) or image pix from stdin
+ funsky iname[ext] [lname] # RA, Dec (deg) or image pix from list
+ funsky iname[ext] [col1] [col2] # named cols:units from stdin
+ funsky iname[ext] [lname] [col1] [col2] # named cols:units from list
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -d # always use integer tlmin conversion (as ds9 does)
+ -r # convert x,y to RA,Dec (default: convert RA,Dec to x,y)
+ -o # include offset from the nominal target position (in arcsec)
+ -v # display input values also (default: display output only)
+ -T # output display in rdb format (w/header,tab delimiters)
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+Funsky converts input sky coordinates (RA, Dec) to image coordinates (or vice
+versa) using the WCS information contained in the specified FITS file. Several
+calling sequences are supported in order to make it easy to specify
+coordinate positions in different ways.
+
+
+The first required argument is always the input FITS file (or
+extension) containing the WCS information in an extension header. Note
+that the data from this file is not used. By default, the program
+converts input RA and Dec values to X and Y using this WCS
+information. If the WCS is associated with a FITS image, then the X,Y
+values are image values. If the WCS is associated with a binary table,
+then the X, Y values are physical values. To convert X,Y to RA and
+Dec, use the B<-r> (reverse) switch.
+
+
+If no other command arguments are supplied, then the input positions
+are read from the standard input. Each line is assumed to contain a
+single coordinate position consisting of an RA in degrees (or X in
+pixels) followed by a Dec in degrees (or Y in pixels). The usual
+delimiters are supported (spaces, commas, tabs). For example:
+
+ # read from stdin, default column names and units
+ [sh] funsky snr.ev
+ 22.982695 58.606523 # input RA (hrs), Dec(deg)
+ 510.00 510.00
+ 22.982127 58.607634 # input
+ 512.00 510.50
+ 22.981700 58.614301 # input
+ 513.50 513.50
+ ^D # end of input
+
+
+
+If a second argument is supplied, this argument is assumed to be
+a file containing RA (X) and Dec (Y) positions. The file can either be
+an ASCII table or a FITS binary table. The order of columns is
+unimportant, if the table has a column header. In this case, the
+names of the columns must be one of "RA", "DEC", or "X", "Y" for sky
+to image and image to sky conversions, respectively. If the table has
+no header, then once again, RA (X) is assumed to first, followed
+by DEC (Y).
+For example:
+
+ # read from file, default column names and units
+ [sh] cat hd.in
+ RA DEC
+ --------- ---------
+ 22.982695 58.606523
+ 22.982127 58.607634
+ 22.981700 58.614301
+
+ [sh] funsky snr.ev hd.in
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+
+
+If three arguments are supplied, then the input positions again are
+read from the standard input. Each line is assumed to contain a single
+coordinate position consisting of an RA (or X in pixels) followed by a
+Dec (or Y in pixels), with the usual delimiters supported. However,
+the second and third arguments now specify the column names and/or
+sky units using a colon-delimited syntax:
+
+ [colname]:[h|d|r]
+
+If the colname is omitted, the names default to "RA", "DEC", "X", "Y",
+"COL1", or "COL2" as above. If the units are omitted, the default is degrees
+for both RA and Dec. When the -r switch is used (convert from image
+to sky) the units are applied to the output instead of the input. The following
+examples will serve to illustrate the options:
+
+ # read from stdin, specifying column names (def. units: degrees)
+ [sh] cat hd.in
+ MYRA MYDEC
+ --------- ---------
+ 22.982695 58.606523
+ 22.982127 58.607634
+ 22.981700 58.614301
+
+ [sh] funsky snr.ev MYRA MYDEC < hd.in
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ # read from stdin, specifying column names and units
+ [sh] cat dd.in
+ MYRA MYDEC
+ --------- ---------
+ 344.740432 58.606523
+ 344.731900 58.607634
+ 344.725500 58.614301
+
+ [sh] funsky snr.ev MYRA:d MYDEC:d < dd.in
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ # read stdin, convert image to sky, specifying output sky units
+ [sh] cat im.in
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ [sh] cat im.in | funsky -r snr.ev :d :d
+ 344.740432 58.606523
+ 344.731900 58.607634
+ 344.725500 58.614301
+
+
+
+Finally, four command arguments specify both and input file and column names
+and/or units:
+
+ [sh] cat dd.in
+ MYRA MYDEC
+ --------- ---------
+ 344.740432 58.606523
+ 344.731900 58.607634
+ 344.725500 58.614301
+
+ [sh] funsky snr.ev dd.in MYRA:d MYDEC:d
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ # read file, convert image to sky, specifying output sky units
+ [sh] cat im.in
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ [sh] funsky -r snr.ev im.in :d :d
+ 344.740432 58.606523
+ 344.731900 58.607634
+ 344.725500 58.614301
+
+
+
+By default, the output of funsky consists only of the converted coordinate
+position(s), one per output line. This makes parsing in shell scripts easy.
+Use the B<-v> (verbose) switch to specify that the input
+coordinates should be pre-pended to each line. For example:
+
+ [sh] cat dd.in
+ MYRA MYDEC
+ --------- ---------
+ 344.740432 58.606523
+ 344.731900 58.607634
+ 344.725500 58.614301
+
+ [sh] funsky snr.ev dd.in MYRA:d MYDEC:d
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ [sh] funsky -v snr.ev dd.in MYRA:d MYDEC:d
+ 344.740432 58.606523 510.00 510.00
+ 344.731900 58.607634 512.00 510.50
+ 344.725500 58.614301 513.50 513.50
+
+
+
+In addition, a full starbase table can be output using the B<-T>
+(table) switch. This switch can be used with or without the -v
+switch. If the -T and -v are both specified, then a descriptive header
+parameters are output before the table (mainly to remind you of the
+sky units):
+
+ # output table in non-verbose mode
+ [sh] funsky -T snr.ev dd.in MYRA:d MYDEC:d
+ X Y
+ ------------ ------------
+ 510.00 510.00
+ 512.00 510.50
+ 513.50 513.50
+
+ # output table in verbose mode
+ [sh] funsky -T -v snr.ev dd.in MYRA:d MYDEC:d
+ # IFILE = /Users/eric/data/snr.ev
+ # ICOL1 = MYRA
+ # ICOL2 = MYDEC
+ # IUNITS1 = d
+ # IUNITS2 = d
+ # OCOL1 = X
+ # OCOL2 = Y
+
+ MYRA MYDEC X Y
+ ------------ ------------ ------------ ------------
+ 344.740432 58.606523 510.00 510.00
+ 344.731900 58.607634 512.00 510.50
+ 344.725500 58.614301 513.50 513.50
+
+
+
+Finally, the B<-d> (ds9) switch mimicks ds9's use of integer TLMIN
+and TLMAX values for all coordinate transformations. FITS conventions
+seem to call for use of floating point TLMIN and TLMAX when the data are
+floats. This convention is followed by funsky but results in a
+small discrepancy with ds9's converted values for floating point
+data. We will remedy this conflict in the future, maybe.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funtable.pod b/funtools/doc/pod/funtable.pod
new file mode 100644
index 0000000..d4e8475
--- /dev/null
+++ b/funtools/doc/pod/funtable.pod
@@ -0,0 +1,296 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funtable - copy selected rows from a Funtools file to a FITS binary table>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funtable [-a] [-i|-z] [-m] [-s cols] <iname> <oname> [columns]
+
+
+
+
+
+=head1 OPTIONS
+
+
+
+
+
+ -a # append to existing output file as a table extension
+ -i # for image data, only generate X and Y columns
+ -m # for tables, write a separate file for each region
+ -s "col1 ..." # columns on which to sort
+ -z # for image data, output zero-valued pixels
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+B<funtable> selects rows from the specified
+FITS Extension
+(binary table only) of a FITS file, or from a non-FITS raw event
+file, and writes those rows to a FITS binary table file. It also
+will create a FITS binary table from an image or a raw array file.
+
+
+The first argument to the program specifies the FITS file, raw event
+file, or raw array file. If "stdin" is specified, data are read from
+the standard input. Use Funtools Bracket
+Notation to specify FITS extensions, and filters. The second
+argument is the output FITS file. If "stdout" is specified, the FITS
+binary table is written to the standard output. By default, all
+columns of the input file are copied to the output file. Selected
+columns can be output using an optional third argument in the form:
+
+ "column1 column1 ... columnN"
+
+
+
+The B<funtable> program generally is used to select rows from a
+FITS binary table using
+Table Filters
+and/or
+Spatial Region Filters.
+For example, you can copy only selected rows (and output only selected
+columns) by executing in a command such as:
+
+ [sh] funtable "test.ev[pha==1&&pi==10]" stdout "x y pi pha" | fundisp stdin
+ X Y PHA PI
+ ------- ------- ------- ---------
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+ 1 10 1 10
+
+
+The special column B<$REGION> can be specified to write the
+region id of each row:
+
+ [sh $] funtable "test.ev[time-(int)time>=.99&&annulus(0 0 0 10 n=3)]" stdout 'x y time $REGION' | fundisp stdin
+ X Y TIME REGION
+ -------- -------- --------------------- ----------
+ 5 -6 40.99000000 3
+ 4 -5 59.99000000 2
+ -1 0 154.99000000 1
+ -2 1 168.99000000 1
+ -3 2 183.99000000 2
+ -4 3 199.99000000 2
+ -5 4 216.99000000 2
+ -6 5 234.99000000 3
+ -7 6 253.99000000 3
+
+
+Here only rows with the proper fractional time and whose position also is
+within one of the three annuli are written.
+
+Columns can be excluded from display using a minus sign before the
+column:
+
+ [sh $] funtable "test.ev[time-(int)time>=.99]" stdout "-time" | fundisp stdin
+ X Y PHA PI DX DY
+ -------- -------- -------- ---------- ----------- -----------
+ 5 -6 5 -6 5.50 -6.50
+ 4 -5 4 -5 4.50 -5.50
+ -1 0 -1 0 -1.50 0.50
+ -2 1 -2 1 -2.50 1.50
+ -3 2 -3 2 -3.50 2.50
+ -4 3 -4 3 -4.50 3.50
+ -5 4 -5 4 -5.50 4.50
+ -6 5 -6 5 -6.50 5.50
+ -7 6 -7 6 -7.50 6.50
+
+All columns except the time column are written.
+
+In general, the rules for activating and de-activating columns are:
+
+
+=over 4
+
+
+
+
+=item *
+
+If only exclude columns are specified, then all columns but
+the exclude columns will be activated.
+
+
+=item *
+
+If only include columns are specified, then only the specified columns
+are activated.
+
+
+=item *
+
+If a mixture of include and exclude columns are specified, then
+all but the exclude columns will be active; this last case
+is ambiguous and the rule is arbitrary.
+
+
+=back
+
+
+In addition to specifying columns names explicitly, the special
+symbols I<+> and I<-> can be used to activate and
+de-activate I<all> columns. This is useful if you want to
+activate the $REGION column along with all other columns. According
+to the rules, the syntax "$REGION" only activates the region column
+and de-activates the rest. Use "+ $REGION" to activate all
+columns as well as the region column.
+
+
+Ordinarily, only the selected table is copied to the output file. In
+a FITS binary table, it sometimes is desirable to copy all of the
+other FITS extensions to the output file as well. This can be done by
+appending a '+' sign to the name of the extension in the input file
+name. For example, the first command below copies only the EVENT table,
+while the second command copies other extensions as well:
+
+ [sh] funtable "/proj/rd/data/snr.ev[EVENTS]" events.ev
+ [sh] funtable "/proj/rd/data/snr.ev[EVENTS+]" eventsandmore.ev
+
+
+
+If the input file is an image or a raw array file, then
+B<funtable> will generate a FITS binary table from the pixel
+values in the image. Note that it is not possible to specify the
+columns to output (using command-line argument 3). Instead, there are
+two ways to create such a binary table from an image. By default, a
+3-column table is generated, where the columns are "X", "Y", and
+"VALUE". For each pixel in the image, a single row (event) is
+generated with the "X" and "Y" columns assigned the dim1 and dim2
+values of the image pixel, respectively and the "VALUE" column
+assigned the value of the pixel. With sort of table, running
+B<funhist> on the "VALUE" column will give the same results as
+running B<funhist> on the original image.
+
+
+If the B<-i> ("individual" rows) switch is specified, then only
+the "X" and "Y" columns are generated. In this case, each positive
+pixel value in the image generates n rows (events), where n is equal
+to the integerized value of that pixel (plus 0.5, for floating point
+data). In effect, B<-i> approximately recreates the rows of a
+table that would have been binned into the input image. (Of course,
+this is only approximately correct, since the resulting x,y positions
+are integerized.)
+
+
+If the B<-s [col1 col2 ... coln]> ("sort") switch is specified,
+the output rows of a binary table will be sorted using the
+specified columns as sort keys. The sort keys must be scalar columns
+and also must be part of the output file (i.e. you cannot sort on a
+column but not include it in the output). This facility uses the
+B<_sort> program (included with funtools), which must be accessible
+via your path.
+
+
+For binary tables, the B<-m> ("multiple files") switch will
+generate a separate file for each region in the filter specification
+i.e. each file contains only the rows from that region. Rows
+which pass the filter but are not in any region also are put in a
+separate file.
+
+
+The separate output file names generated by the B<-m> switch are
+produced automatically from the root output file to contain the region id of
+the associated region. (Note that region ids start at 1, so that the
+file name associated with id 0 contains rows that pass the filter but
+are not in any given region.) Output file names are generated as follows:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+A $n specification can be used anywhere in the root file name (suitably
+quoted to protect it from the shell) and will be expanded to be the id
+number of the associated region. For example:
+
+ funtable -m input.fits'[cir(512,512,1);cir(520,520,1)...]' 'foo.goo_$n.fits'
+
+will generate files named foo.goo_0.fits (for rows not in any region but
+still passing the filter), foo.goo_1.fits (rows in region id #1, the first
+region), foo.goo_2.fits (rows in region id #2), etc. Note that single quotes
+in the output root are required to protect the '$' from the shell.
+
+
+
+=item *
+
+If $n is not specified, then the region id will be placed before
+the first dot (.) in the filename. Thus:
+
+ funtable -m input.fits'[cir(512,512,1);cir(520,520,1)...]' foo.evt.fits
+
+will generate files named foo0.evt.fits (for rows not in any region but
+still passing the filter), foo1.evt.fits (rows in region id #1),
+foo2.evt.fits (rows in region id #2), etc.
+
+
+
+=item *
+
+If no dot is specified in the root output file name, then
+the region id will be appended to the filename. Thus:
+
+ funtable -m input.fits'[cir(512,512,1);cir(520,520,1)...]' 'foo_evt'
+
+will generate files named foo_evt0 (for rows not in any region but
+still passing the filter), foo_evt1 (rows in region id #1),
+foo_evt2 (rows in region id #2), etc.
+
+
+=back
+
+
+The multiple file mechanism provide a simple way to generate
+individual source data files with a single pass through the data.
+
+
+By default, a new FITS file is created and the binary table is written
+to the first extension. If the B<-a> (append) switch is specified,
+the table is appended to an existing FITS file as a BINTABLE extension.
+Note that the output FITS file must already exist.
+
+
+If the B<-z> ("zero" pixel values) switch is specified and
+B<-i> is not specified, then pixels having a zero value will
+be output with their "VALUE" column set to zero. Obviously, this
+switch does not make sense when individual events are output.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funtablerowget.pod b/funtools/doc/pod/funtablerowget.pod
new file mode 100644
index 0000000..86c1e66
--- /dev/null
+++ b/funtools/doc/pod/funtablerowget.pod
@@ -0,0 +1,111 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunTableRowGet - get Funtools rows>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+ #include <funtools.h>
+
+ void *FunTableRowGet(Fun fun, void *rows, int maxrow, char *plist,
+ int *nrow)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+The B<FunTableRowGet()> routine retrieves rows from a Funtools
+binary table or raw event file, and places the values of columns
+selected by FunColumnSelect()
+into an array of user structs. Selected column values are
+automatically converted to the specified user data type (and to native
+data format) as necessary.
+
+
+The first argument is the Fun handle associated with this row data.
+The second B<rows> argument is the array of user structs into
+which the selected columns will be stored. If NULL is passed, the
+routine will automatically allocate space for this array. (This
+includes proper allocation of pointers within each struct, if the "@"
+pointer type is used in the selection of columns. Note that if you
+pass NULL in the second argument, you should free this space using the
+standard free() system call when you are finished with the array of
+rows.) The third B<maxrow> argument specifies the maximum number
+of rows to be returned. Thus, if B<rows> is allocated by the
+user, it should be at least of size maxrow*sizeof(evstruct).
+
+
+The fourth B<plist> argument is a param list string. Currently,
+the keyword/value pair "mask=transparent" is supported in the plist
+argument. If this string is passed in the call's plist argument, then
+all rows are passed back to the user (instead of just rows passing
+the filter). This is only useful when
+FunColumnSelect() also is
+used to specify "$region" as a column to return for each row. In
+such a case, rows found within a region have a returned region value
+greater than 0 (corresponding to the region id of the region in which
+they are located), rows passing the filter but not in a region have
+region value of -1, and rows not passing any filter have region
+value of 0. Thus, using "mask=transparent" and the returned region
+value, a program can process all rows and decide on an action based
+on whether a given row passed the filter or not.
+
+
+The final argument is a pointer to an int variable that will return
+the actual number of rows returned. The routine returns a pointer to
+the array of stored rows, or NULL if there was an error. (This pointer
+will be the same as the second argument, if the latter is non-NULL).
+
+ /* get rows -- let routine allocate the row array */
+ while( (buf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* process all rows */
+ for(i=0; i<got; i++){
+ /* point to the i'th row */
+ ev = buf+i;
+ /* rearrange some values. etc. */
+ ev->energy = (ev->pi+ev->pha)/2.0;
+ ev->pha = -ev->pha;
+ ev->pi = -ev->pi;
+ }
+ /* write out this batch of rows */
+ FunTableRowPut(fun2, buf, got, 0, NULL);
+ /* free row data */
+ if( buf ) free(buf);
+ }
+
+As shown above, successive calls to
+FunTableRowGet() will return the
+next set of rows from the input file until all rows have been read,
+i.e., the routine behaves like sequential Unix I/O calls such as
+fread(). See evmerge example code for a
+more complete example.
+
+
+Note that FunTableRowGet() also can be called as FunEventsGet(), for
+backward compatibility.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funtablerowput.pod b/funtools/doc/pod/funtablerowput.pod
new file mode 100644
index 0000000..b063e43
--- /dev/null
+++ b/funtools/doc/pod/funtablerowput.pod
@@ -0,0 +1,200 @@
+=pod
+
+=head1 NAME
+
+
+
+B<FunTableRowPut - put Funtools rows>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+int FunTableRowPut(Fun fun, void *rows, int nev, int idx, char *plist)
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+The B<FunTableRowPut()> routine writes rows to a FITS binary
+table, taking its input from an array of user structs that contain
+column values selected by a previous call to
+FunColumnSelect(). Selected
+column values are automatically converted from native data format to
+FITS data format as necessary.
+
+
+The first argument is the Fun handle associated with this row data.
+The second B<rows> argument is the array of user structs to
+output. The third B<nrow> argument specifies the number number of
+rows to write. The routine will write B<nrow> records, starting
+from the location specified by B<rows>.
+
+
+The fourth B<idx> argument is the index of the first raw input
+row to write, in the case where rows from the user buffer are
+being merged with their raw input row counterparts (see below). Note
+that this B<idx> value is has nothing to do with the
+row buffer specified in argument 1. It merely matches the row
+being written with its corresponding (hidden) raw row. Thus, if you
+read a number of rows, process them, and then write them out all at
+once starting from the first user row, the value of B<idx>
+should be 0:
+
+ Ev ebuf, ev;
+ /* get rows -- let routine allocate the row array */
+ while( (ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* process all rows */
+ for(i=0; i<got; i++){
+ /* point to the i'th row */
+ ev = ebuf+i;
+ ...
+ }
+ /* write out this batch of rows, starting with the first */
+ FunTableRowPut(fun2, (char *)ebuf, got, 0, NULL);
+ /* free row data */
+ if( ebuf ) free(ebuf);
+ }
+
+
+
+On the other hand, if you write out the rows one at a time (possibly
+skipping rows), then, when writing the i'th row from the input
+array of rows, set B<idx> to the value of i:
+
+ Ev ebuf, ev;
+ /* get rows -- let routine allocate the row array */
+ while( (ebuf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* process all rows */
+ for(i=0; i<got; i++){
+ /* point to the i'th row */
+ ev = ebuf+i;
+ ...
+ /* write out the current (i.e., i'th) row */
+ FunTableRowPut(fun2, (char *)ev, 1, i, NULL);
+ }
+ /* free row data */
+ if( ebuf ) free(ebuf);
+ }
+
+
+
+The final argument is a param list string that is not currently used.
+The routine returns the number of rows output. This should be equal
+to the value passed in the third nrow</B argument.
+
+
+When FunTableRowPut() is first
+called for a given binary table, Funtools checks to see of the primary
+header has already been written (either by writing a previous row
+table or by writing an image.) If not, a dummy primary header is
+written to the file specifying that an extension should be expected.
+After this, a binary table header is automatically written containing
+information about the columns that will populate this table. In
+addition, if a
+Funtools reference handle
+was specified when this table was opened, the parameters from this
+Funtools reference handle
+are merged into the new binary table header.
+
+
+In a typical Funtools row loop, you read rows using
+FunTableRowGet()() and write
+rows using FunTableRowPut(). The columns written by
+FunTableRowPut()() are those defined as writable by a previous call to
+FunColumnSelect(). If
+that call to FunColumnSelect also specified
+B<merge=[update|replace|append]>, then the entire corresponding
+raw input row record will be merged with the output row according
+to the B<merge> specification (see
+FunColumnSelect() above).
+
+
+A call to write rows can either be done once, after all rows in
+the input batch have been processed, or it can be done (slightly less
+efficiently) one row at a time (or anything in between). We do
+recommend that you write all rows associated with a given batch of
+input rows before reading new rows. This is B<required> if
+you are merging the output rows with the raw input rows (since
+the raw rows are destroyed with each successive call to get new rows).
+
+For example:
+
+ Ev buf, ev;
+ ...
+ /* get rows -- let routine allocate the row array */
+ while( (buf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* point to the i'th row */
+ ev = buf + i;
+ .... process
+ }
+ /* write out this batch of rows */
+ FunTableRowPut(fun2, buf, got, 0, NULL);
+ /* free row data */
+ if( buf ) free(buf);
+ }
+
+
+or
+
+
+ Ev buf, ev;
+ ...
+ /* get rows -- let routine allocate the row array */
+ while( (buf = (Ev)FunTableRowGet(fun, NULL, MAXROW, NULL, &got)) ){
+ /* process all rows */
+ for(i=0; i<got; i++){
+ /* point to the i'th row */
+ ev = buf + i;
+ ... process
+ /* write out this batch of rows with the new column */
+ if( dowrite )
+ FunTableRowPut(fun2, buf, 1, i, NULL);
+ }
+ /* free row data */
+ if( buf ) free(buf);
+ }
+
+
+
+Note that the difference between these calls is that the first one
+outputs B<got> rows all at once and therefore passes
+B<idx=0> in argument four, so that merging starts at the first raw
+input row. In the second case, a check it made on each row to see
+if it needs to be output. If so, the value of B<idx> is passed as
+the value of the B<i> variable which points to the current row
+being processed in the batch of input rows.
+
+
+As shown above, successive calls to
+FunTableRowPut() will write
+rows sequentially. When you are finished writing all rows in a
+table, you should call
+FunFlush() to write out the FITS
+binary table padding. However, this is not necessary if you
+subsequently call FunClose() without doing any other I/O to the FITS
+file.
+
+
+Note that FunTableRowPut() also can be called as FunEventsPut(), for
+backward compatibility.
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+=cut
diff --git a/funtools/doc/pod/funtbl.pod b/funtools/doc/pod/funtbl.pod
new file mode 100644
index 0000000..1fb9bb0
--- /dev/null
+++ b/funtools/doc/pod/funtbl.pod
@@ -0,0 +1,137 @@
+=pod
+
+=head1 NAME
+
+
+
+B<funtbl - extract a table from Funtools ASCII output>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+funtable [-c cols] [-h] [-n table] [-p prog] [-s sep] <iname>
+
+
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+[NB: This program has been deprecated in favor of the ASCII text processing
+support in funtools. You can now perform fundisp on funtools ASCII output
+files (specifying the table using bracket notation) to extract tables
+and columns.]
+
+The B<funtbl> script extracts a specified table (without the
+header and comments) from a funtools ASCII output file and writes the
+result to the standard output. The first non-switch argument is the
+ASCII input file name (i.e. the saved output from funcnts, fundisp,
+funhist, etc.). If no filename is specified, stdin is read. The
+-n switch specifies which table (starting from 1) to extract. The
+default is to extract the first table. The -c switch is a
+space-delimited list of column numbers to output, e.g. -c "1 3 5"
+will extract the first three odd-numbered columns. The default is to
+extract all columns. The -s switch specifies the separator string to
+put between columns. The default is a single space. The -h switch
+specifies that column names should be added in a header line before
+the data is output. Without the switch, no header is prepended. The
+-p program switch allows you to specify an awk-like program to run
+instead of the default (which is host-specific and is determined at
+build time). The -T switch will output the data in rdb format (i.e.,
+with a 2-row header of column names and dashes, and with data columns
+separated by tabs). The -help switch will print out a message
+describing program usage.
+
+
+For example, consider the output from the following funcnts command:
+
+ [sh] funcnts -sr snr.ev "ann 512 512 0 9 n=3"
+ # source
+ # data file: /proj/rd/data/snr.ev
+ # arcsec/pixel: 8
+ # background
+ # constant value: 0.000000
+ # column units
+ # area: arcsec**2
+ # surf_bri: cnts/arcsec**2
+ # surf_err: cnts/arcsec**2
+
+ # summed background-subtracted results
+ upto net_counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 147.000 12.124 0.000 0.000 1600.00 0.092 0.008
+ 2 625.000 25.000 0.000 0.000 6976.00 0.090 0.004
+ 3 1442.000 37.974 0.000 0.000 15936.00 0.090 0.002
+
+
+ # background-subtracted results
+ reg net_counts error background berror area surf_bri surf_err
+ ---- ------------ --------- ------------ --------- --------- --------- ---------
+ 1 147.000 12.124 0.000 0.000 1600.00 0.092 0.008
+ 2 478.000 21.863 0.000 0.000 5376.00 0.089 0.004
+ 3 817.000 28.583 0.000 0.000 8960.00 0.091 0.003
+
+
+ # the following source and background components were used:
+ source_region(s)
+ ----------------
+ ann 512 512 0 9 n=3
+
+ reg counts pixels sumcnts sumpix
+ ---- ------------ --------- ------------ ---------
+ 1 147.000 25 147.000 25
+ 2 478.000 84 625.000 109
+ 3 817.000 140 1442.000 249
+
+
+There are four tables in this output. To extract the last one, you
+can execute:
+
+ [sh] funcnts -s snr.ev "ann 512 512 0 9 n=3" | funtbl -n 4
+ 1 147.000 25 147.000 25
+ 2 478.000 84 625.000 109
+ 3 817.000 140 1442.000 249
+
+Note that the output has been re-formatted so that only a single space
+separates each column, with no extraneous header or comment information.
+
+
+To extract only columns 1,2, and 4 from the last example (but with a header
+prepended and tabs between columns), you can execute:
+
+ [sh] funcnts -s snr.ev "ann 512 512 0 9 n=3" | funtbl -c "1 2 4" -h -n 4 -s "\t"
+ #reg counts sumcnts
+ 1 147.000 147.000
+ 2 478.000 625.000
+ 3 817.000 1442.000
+
+
+Of course, if the output has previously been saved in a file named
+foo.out, the same result can be obtained by executing:
+
+ [sh] funtbl -c "1 2 4" -h -n 4 -s "\t" foo.out
+ #reg counts sumcnts
+ 1 147.000 147.000
+ 2 478.000 625.000
+ 3 817.000 1442.000
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funtext.pod b/funtools/doc/pod/funtext.pod
new file mode 100644
index 0000000..9e20d1f
--- /dev/null
+++ b/funtools/doc/pod/funtext.pod
@@ -0,0 +1,718 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funtext: Support for Column-based Text Files>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the options for processing column-based
+text files.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+
+Funtools will automatically sense and process "standard"
+column-based text files as if they were FITS binary tables without any
+change in Funtools syntax. In particular, you can filter text files
+using the same syntax as FITS binary tables:
+
+ fundisp foo.txt'[cir 512 512 .1]'
+ fundisp -T foo.txt > foo.rdb
+ funtable foo.txt'[pha=1:10,cir 512 512 10]' foo.fits
+
+
+
+The first example displays a filtered selection of a text file. The
+second example converts a text file to an RDB file. The third example
+converts a filtered selection of a text file to a FITS binary table.
+
+
+Text files can also be used in Funtools image programs. In this case,
+you must provide binning parameters (as with raw event files), using
+the bincols keyword specifier:
+
+
+ bincols=([xname[:tlmin[:tlmax:[binsiz]]]],[yname[:tlmin[:tlmax[:binsiz]]]
+
+
+For example:
+
+ funcnts foo'[bincols=(x:1024,y:1024)]' "ann 512 512 0 10 n=10"
+
+
+B<Standard Text Files>
+
+
+Standard text files have the following characteristics:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+Optional comment lines start with #
+
+
+=item *
+
+Optional blank lines are considered comments
+
+
+=item *
+
+An optional table header consists of the following (in order):
+
+
+=over 4
+
+
+
+
+=item *
+
+a single line of alpha-numeric column names
+
+
+=item *
+
+an optional line of unit strings containing the same number of cols
+
+
+=item *
+
+an optional line of dashes containing the same number of cols
+
+
+=back
+
+
+
+
+=item *
+
+Data lines follow the optional header and (for the present) consist of
+ the same number of columns as the header.
+
+
+=item *
+
+Standard delimiters such as space, tab, comma, semi-colon, and bar.
+
+
+=back
+
+
+
+
+Examples:
+
+
+ # rdb file
+ foo1 foo2 foo3 foos
+ ---- ---- ---- ----
+ 1 2.2 3 xxxx
+ 10 20.2 30 yyyy
+
+ # multiple consecutive whitespace and dashes
+ foo1 foo2 foo3 foos
+ --- ---- ---- ----
+ 1 2.2 3 xxxx
+ 10 20.2 30 yyyy
+
+ # comma delims and blank lines
+ foo1,foo2,foo3,foos
+
+ 1,2.2,3,xxxx
+ 10,20.2,30,yyyy
+
+ # bar delims with null values
+ foo1|foo2|foo3|foos
+ 1||3|xxxx
+ 10|20.2||yyyy
+
+ # header-less data
+ 1 2.2 3 xxxx
+ 10 20.2 30 yyyy
+
+
+
+The default set of token delimiters consists of spaces, tabs, commas,
+semi-colons, and vertical bars. Several parsers are used
+simultaneously to analyze a line of text in different ways. One way
+of analyzing a line is to allow a combination of spaces, tabs, and
+commas to be squashed into a single delimiter (no null values between
+consecutive delimiters). Another way is to allow tab, semi-colon, and
+vertical bar delimiters to support null values, i.e. two consecutive
+delimiters implies a null value (e.g. RDB file). A successful parser
+is one which returns a consistent number of columns for all rows, with
+each column having a consistent data type. More than one parser can
+be successful. For now, it is assumed that successful parsers all
+return the same tokens for a given line. (Theoretically, there are
+pathological cases, which will be taken care of as needed). Bad parsers
+are discarded on the fly.
+
+
+If the header does not exist, then names "col1", "col2", etc. are
+assigned to the columns to allow filtering. Furthermore, data types
+for each column are determined by the data types found in the columns
+of the first data line, and can be one of the following: string, int,
+and double. Thus, all of the above examples return the following
+display:
+
+ fundisp foo'[foo1>5]'
+ FOO1 FOO2 FOO3 FOOS
+ ---------- --------------------- ---------- ------------
+ 10 20.20000000 30 yyyy
+
+
+B<Comments Convert to Header Params>
+
+
+Comments which precede data rows are converted into header parameters and
+will be written out as such using funimage or funhead. Two styles of comments
+are recognized:
+
+
+1. FITS-style comments have an equal sign "=" between the keyword and
+value and an optional slash "/" to signify a comment. The strict FITS
+rules on column positions are not enforced. In addition, strings only
+need to be quoted if they contain whitespace. For example, the following
+are valid FITS-style comments:
+
+
+ # fits0 = 100
+ # fits1 = /usr/local/bin
+ # fits2 = "/usr/local/bin /opt/local/bin"
+ # fits3c = /usr/local/bin /opt/local/bin /usr/bin
+ # fits4c = "/usr/local/bin /opt/local/bin" / path dir
+
+
+Note that the fits3c comment is not quoted and therefore its value is the
+single token "/usr/local/bin" and the comment is "opt/local/bin /usr/bin".
+This is different from the quoted comment in fits4c.
+
+
+2. Free-form comments can have an optional colon separator between the
+keyword and value. In the absence of quote, all tokens after the
+keyword are part of the value, i.e. no comment is allowed. If a string
+is quoted, then slash "/" after the string will signify a comment.
+For example:
+
+
+ # com1 /usr/local/bin
+ # com2 "/usr/local/bin /opt/local/bin"
+ # com3 /usr/local/bin /opt/local/bin /usr/bin
+ # com4c "/usr/local/bin /opt/local/bin" / path dir
+
+ # com11: /usr/local/bin
+ # com12: "/usr/local/bin /opt/local/bin"
+ # com13: /usr/local/bin /opt/local/bin /usr/bin
+ # com14c: "/usr/local/bin /opt/local/bin" / path dir
+
+
+
+Note that com3 and com13 are not quoted, so the whole string is part of
+the value, while comz4c and com14c are quoted and have comments following
+the values.
+
+
+Some text files have column name and data type information in the header.
+You can specify the format of column information contained in the
+header using the "hcolfmt=" specification. See below for a detailed
+description.
+
+B<Multiple Tables in a Single File>
+
+
+Multiple tables are supported in a single file. If an RDB-style file
+is sensed, then a ^L (vertical tab) will signify end of
+table. Otherwise, an end of table is sensed when a new header (i.e.,
+all alphanumeric columns) is found. (Note that this heuristic does not
+work for single column tables where the column type is ASCII and the
+table that follows also has only one column.) You also can specify
+characters that signal an end of table condition using the B<eot=>
+keyword. See below for details.
+
+
+You can access the nth table (starting from 1) in a multi-table file
+by enclosing the table number in brackets, as with a FITS extension:
+
+
+ fundisp foo'[2]'
+
+The above example will display the second table in the file.
+(Index values start at 1 in oder to maintain logical compatibility
+with FITS files, where extension numbers also start at 1).
+
+
+B<TEXT() Specifier>
+
+
+As with ARRAY() and EVENTS() specifiers for raw image arrays and raw
+event lists respectively, you can use TEXT() on text files to pass
+key=value options to the parsers. An empty set of keywords is
+equivalent to not having TEXT() at all, that is:
+
+
+ fundisp foo
+ fundisp foo'[TEXT()]'
+
+
+are equivalent. A multi-table index number is placed before the TEXT()
+specifier as the first token, when indexing into a multi-table:
+
+ fundisp foo'[2,TEXT(...)]'
+
+
+The filter specification is placed after the TEXT() specifier, separated
+by a comma, or in an entirely separate bracket:
+
+
+ fundisp foo'[TEXT(...),circle 512 512 .1]'
+ fundisp foo'[2,TEXT(...)][circle 512 512 .1]'
+
+
+B<Text() Keyword Options>
+
+
+The following is a list of keywords that can be used within the TEXT()
+specifier (the first three are the most important):
+
+
+
+=over 4
+
+
+
+
+
+
+=item *
+
+delims="[delims]"
+
+
+Specify token delimiters for this file. Only a single parser having these
+delimiters will be used to process the file.
+
+ fundisp foo.fits'[TEXT(delims="!")]'
+ fundisp foo.fits'[TEXT(delims="\t%")]'
+
+
+
+
+
+=item *
+
+comchars="[comchars]"
+
+
+Specify comment characters. You must include "\n" to allow blank lines.
+These comment characters will be used for all standard parsers (unless delims
+are also specified).
+
+ fundisp foo.fits'[TEXT(comchars="!\n")]'
+
+
+
+
+
+=item *
+
+cols="[name1:type1 ...]"
+
+
+Specify names and data type of columns. This overrides header
+names and/or data types in the first data row or default names and
+data types for header-less tables.
+
+ fundisp foo.fits'[TEXT(cols="x:I,y:I,pha:I,pi:I,time:D,dx:E,dy:e")]'
+
+
+If the column specifier is the only keyword, then the cols= is not
+required (in analogy with EVENTS()):
+
+ fundisp foo.fits'[TEXT(x:I,y:I,pha:I,pi:I,time:D,dx:E,dy:e)]'
+
+Of course, an index is allowed in this case:
+
+ fundisp foo.fits'[2,TEXT(x:I,y:I,pha:I,pi:I,time:D,dx:E,dy:e)]'
+
+
+
+
+
+=item *
+
+eot="[eot delim]"
+
+
+Specify end of table string specifier for multi-table files. RDB
+files support ^L. The end of table specifier is a string and the whole
+string must be found alone on a line to signify EOT. For example:
+
+ fundisp foo.fits'[TEXT(eot="END")]'
+
+will end the table when a line contains "END" is found. Multiple lines
+are supported, so that:
+
+ fundisp foo.fits'[TEXT(eot="END\nGAME")]'
+
+will end the table when a line contains "END" followed by a line
+containing "GAME".
+
+In the absence of an EOT delimiter, a new table will be sensed when a new
+header (all alphanumeric columns) is found.
+
+
+
+
+=item *
+
+null1="[datatype]"
+
+
+Specify data type of a single null value in row 1.
+Since column data types are determined by the first row, a null value
+in that row will result in an error and a request to specify names and
+data types using cols=. If you only have a one null in row 1, you don't
+need to specify all names and columns. Instead, use null1="type" to
+specify its data type.
+
+
+
+
+=item *
+
+alen=[n]
+
+
+Specify size in bytes for ASCII type columns.
+FITS binary tables only support fixed length ASCII columns, so a
+size value must be specified. The default is 16 bytes.
+
+
+
+
+=item *
+
+nullvalues=["true"|"false"]
+
+
+Specify whether to expect null values.
+Give the parsers a hint as to whether null values should be allowed. The
+default is to try to determine this from the data.
+
+
+
+
+=item *
+
+whitespace=["true"|"false"]
+
+
+Specify whether surrounding white space should be kept as part of
+string tokens. By default surrounding white space is removed from
+tokens.
+
+
+
+
+=item *
+
+header=["true"|"false"]
+
+
+Specify whether to require a header. This is needed by tables
+containing all string columns (and with no row containing dashes), in
+order to be able to tell whether the first row is a header or part of
+the data. The default is false, meaning that the first row will be
+data. If a row dashes are present, the previous row is considered the
+column name row.
+
+
+
+
+=item *
+
+units=["true"|"false"]
+
+
+Specify whether to require a units line.
+Give the parsers a hint as to whether a row specifying units should be
+allowed. The default is to try to determine this from the data.
+
+
+
+
+=item *
+
+i2f=["true"|"false"]
+
+
+Specify whether to allow int to float conversions.
+If a column in row 1 contains an integer value, the data type for that
+column will be set to int. If a subsequent row contains a float in
+that same column, an error will be signaled. This flag specifies that,
+instead of an error, the float should be silently truncated to
+int. Usually, you will want an error to be signaled, so that you can
+specify the data type using cols= (or by changing the value of
+the column in row 1).
+
+
+
+
+=item *
+
+comeot=["true"|"false"|0|1|2]
+
+
+Specify whether comment signifies end of table.
+If comeot is 0 or false, then comments do not signify end of table and
+can be interspersed with data rows. If the value is true or 1 (the
+default for standard parsers), then non-blank lines (e.g. lines
+beginning with '#') signify end of table but blanks are allowed
+between rows. If the value is 2, then all comments, including blank
+lines, signify end of table.
+
+
+
+
+=item *
+
+lazyeot=["true"|"false"]
+
+
+Specify whether "lazy" end of table should be permitted (default is
+true for standard formats, except rdb format where explicit ^L is required
+between tables). A lazy EOT can occur when a new table starts directly
+after an old one, with no special EOT delimiter. A check for this EOT
+condition is begun when a given row contains all string tokens. If, in
+addition, there is a mismatch between the number of tokens in the
+previous row and this row, or a mismatch between the number of string
+tokens in the prev row and this row, a new table is assumed to have
+been started. For example:
+
+ ival1 sval3
+ ----- -----
+ 1 two
+ 3 four
+
+ jval1 jval2 tval3
+ ----- ----- ------
+ 10 20 thirty
+ 40 50 sixty
+
+Here the line "jval1 ..." contains all string tokens. In addition,
+the number of tokens in this line (3) differs from the number of
+tokens in the previous line (2). Therefore a new table is assumed
+to have started. Similarly:
+
+ ival1 ival2 sval3
+ ----- ----- -----
+ 1 2 three
+ 4 5 six
+
+ jval1 jval2 tval3
+ ----- ----- ------
+ 10 20 thirty
+ 40 50 sixty
+
+Again, the line "jval1 ..." contains all string tokens. The number of
+string tokens in the previous row (1) differs from the number of
+tokens in the current row(3). We therefore assume a new table as been
+started. This lazy EOT test is not performed if lazyeot is explicitly
+set to false.
+
+
+
+
+=item *
+
+hcolfmt=[header column format]
+
+
+Some text files have column name and data type information in the header.
+For example, VizieR catalogs have headers containing both column names
+and data types:
+
+ #Column e_Kmag (F6.3) ?(k_msigcom) K total magnitude uncertainty (4) [ucd=ERROR]
+ #Column Rflg (A3) (rd_flg) Source of JHK default mag (6) [ucd=REFER_CODE]
+ #Column Xflg (I1) [0,2] (gal_contam) Extended source contamination (10) [ucd=CODE_MISC]
+
+
+while Sextractor files have headers containing column names alone:
+
+
+ # 1 X_IMAGE Object position along x [pixel]
+ # 2 Y_IMAGE Object position along y [pixel]
+ # 3 ALPHA_J2000 Right ascension of barycenter (J2000) [deg]
+ # 4 DELTA_J2000 Declination of barycenter (J2000) [deg]
+
+The hcolfmt specification allows you to describe which header lines
+contain column name and data type information. It consists of a string
+defining the format of the column line, using "$col" (or "$name") to
+specify placement of the column name, "$fmt" to specify placement of the
+data format, and "$skip" to specify tokens to ignore. You also can
+specify tokens explicitly (or, for those users familiar with how
+sscanf works, you can specify scanf skip specifiers using "%*").
+For example, the VizieR hcolfmt above might be specified in several ways:
+
+ Column $col ($fmt) # explicit specification of "Column" string
+ $skip $col ($fmt) # skip one token
+ %*s $col ($fmt) # skip one string (using scanf format)
+
+while the Sextractor format might be specified using:
+
+ $skip $col # skip one token
+ %*d $col # skip one int (using scanf format)
+
+You must ensure that the hcolfmt statement only senses actual column
+definitions, with no false positives or negatives. For example, the
+first Sextractor specification, "$skip $col", will consider any header
+line containing two tokens to be a column name specifier, while the
+second one, "%*d $col", requires an integer to be the first token. In
+general, it is preferable to specify formats as explicitly as
+possible.
+
+
+Note that the VizieR-style header info is sensed automatically by the
+funtools standard VizieR-like parser, using the hcolfmt "Column $col
+($fmt)". There is no need for explicit use of hcolfmt in this case.
+
+
+
+
+=item *
+
+debug=["true"|"false"]
+
+
+Display debugging information during parsing.
+
+
+
+=back
+
+
+
+B<Environment Variables>
+
+
+Environment variables are defined to allow many of these TEXT() values to be
+set without having to include them in TEXT() every time a file is processed:
+
+
+ keyword environment variable
+ ------- --------------------
+ delims TEXT_DELIMS
+ comchars TEXT_COMCHARS
+ cols TEXT_COLUMNS
+ eot TEXT_EOT
+ null1 TEXT_NULL1
+ alen TEXT_ALEN
+ bincols TEXT_BINCOLS
+ hcolfmt TEXT_HCOLFMT
+
+
+B<Restrictions and Problems>
+
+
+As with raw event files, the '+' (copy extensions) specifier is not
+supported for programs such as funtable.
+
+
+String to int and int to string data conversions are allowed by the
+text parsers. This is done more by force of circumstance than by
+conviction: these transitions often happens with VizieR catalogs,
+which we want to support fully. One consequence of allowing these
+transitions is that the text parsers can get confused by columns which
+contain a valid integer in the first row and then switch to a
+string. Consider the following table:
+
+ xxx yyy zzz
+ ---- ---- ----
+ 111 aaa bbb
+ ccc 222 ddd
+
+The xxx column has an integer value in row one a string in row two,
+while the yyy column has the reverse. The parser will erroneously
+treat the first column as having data type int:
+
+ fundisp foo.tab
+ XXX YYY ZZZ
+ ---------- ------------ ------------
+ 111 'aaa' 'bbb'
+ 1667457792 '222' 'ddd'
+
+while the second column is processed correctly. This situation can be avoided
+in any number of ways, all of which force the data type of the first column
+to be a string. For example, you can edit the file and explicitly quote the
+first row of the column:
+
+ xxx yyy zzz
+ ---- ---- ----
+ "111" aaa bbb
+ ccc 222 ddd
+
+ [sh] fundisp foo.tab
+ XXX YYY ZZZ
+ ------------ ------------ ------------
+ '111' 'aaa' 'bbb'
+ 'ccc' '222' 'ddd'
+
+You can edit the file and explicitly set the data type of the first column:
+
+ xxx:3A yyy zzz
+ ------ ---- ----
+ 111 aaa bbb
+ ccc 222 ddd
+
+ [sh] fundisp foo.tab
+ XXX YYY ZZZ
+ ------------ ------------ ------------
+ '111' 'aaa' 'bbb'
+ 'ccc' '222' 'ddd'
+
+You also can explicitly set the column names and data types of all columns,
+without editing the file:
+
+ [sh] fundisp foo.tab'[TEXT(xxx:3A,yyy:3A,zzz:3a)]'
+ XXX YYY ZZZ
+ ------------ ------------ ------------
+ '111' 'aaa' 'bbb'
+ 'ccc' '222' 'ddd'
+
+The issue of data type transitions (which to allow and which to disallow)
+is still under discussion.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/funtools.pod b/funtools/doc/pod/funtools.pod
new file mode 100644
index 0000000..ff43cfb
--- /dev/null
+++ b/funtools/doc/pod/funtools.pod
@@ -0,0 +1,542 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funtools: FITS Users Need Tools>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+This document is the Table of Contents for Funtools.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+Funtools, is a "minimal buy-in" FITS library and utility package developed
+at the the High Energy Astrophysics Division of SAO. The Funtools
+library provides simplified access to a wide array of file types:
+standard astronomical FITS images and binary tables, raw arrays and
+binary event lists, and even tables of ASCII column data. A
+sophisticated region filtering library (compatible with ds9) filters
+images and tables using boolean operations between geometric shapes,
+support world coordinates, etc. Funtools also supports advanced
+capabilities such as optimized data searching using index files.
+
+The main goal of the Funtools project has been to develop a minimal buy-in
+FITS library for researchers who are occasional (but serious) coders. In
+this case, "minimal buy-in" means "easy to learn, easy to use, and easy to
+re-learn next month". We have tried to achieve this goal by emphasizing two
+essential capabilities. The first is the ability to develop FITS programs
+without knowing much about FITS, i.e., without having to deal with the
+arcane rules for generating a properly formatted FITS file. The second is
+to support the use of already-familiar C/Unix facilities, especially C
+structs and Unix stdio. Taken together, these two capabilities should allow
+researchers to leverage their existing programming expertise while
+minimizing the need to learn new and complex coding rules.
+
+
+
+
+Choose from the following topics:
+
+
+
+
+=over 4
+
+
+
+
+=item *
+
+Funtools User Programs
+
+
+=over 4
+
+
+
+
+=item *
+
+funcalc: Funtools calculator (for binary tables)
+[funcalc(1)]
+
+
+=item *
+
+funcen: find centroid (for binary tables)
+[funcen(1)]
+
+
+=item *
+
+funcnts: count photons in specified regions
+[funcnts(1)]
+
+
+=item *
+
+funcone: cone search on RA, Dec columns
+[funcone(1)]
+
+
+=item *
+
+fundisp: display data in a Funtools data file
+[fundisp(1)]
+
+
+=item *
+
+funhead: display a header in a Funtools file
+[funhead(1)]
+
+
+=item *
+
+funhist: create a 1D histogram of a column
+[funhist(1)]
+
+
+=item *
+
+funimage: create a FITS image from a Funtools data file
+[funimage(1)]
+
+
+=item *
+
+funindex: create an index on a column in a binary table
+[funindex(1)]
+
+
+=item *
+
+funjoin: join two or more FITS binary tables on specified columns
+[funjoin(1)]
+
+
+=item *
+
+funmerge: merge one or more Funtools table files
+[funmerge(1)]
+
+
+=item *
+
+funsky: convert between image and sky coordinates, using WCS info from a FITS header
+[funsky(1)]
+
+
+=item *
+
+funtable: copy selected rows from a Funtools file to a FITS binary table
+[funtable(1)]
+
+
+=item *
+
+funtbl: extract a table from
+Funtools ASCII output
+[funtbl(1)]
+
+
+=item *
+
+funtools and ds9 image display
+[funds9(n)]
+
+
+=back
+
+
+
+
+
+=item *
+
+Funtools Programming
+
+
+=over 4
+
+
+
+
+=item *
+
+Funtools Programming Summary
+[funlib(3)]
+
+
+=item *
+
+Funtools Programming Tutorial
+[funlib(3)]
+
+
+=item *
+
+A Short Digression on Subroutine Order
+[funlib(3)]
+
+
+=item *
+
+Compiling and Linking
+[funlib(3)]
+
+
+=item *
+
+The Funtools Reference Handle
+[funlib(3)]
+
+
+=item *
+
+The Funtools Programming Reference Manual
+
+
+=over 4
+
+
+
+
+=item *
+
+FunOpen: open a Funtools file
+[funopen(3)]
+
+
+=item *
+
+FunImageGet: retrieve image data
+[funimageget(3)]
+
+
+=item *
+
+FunImagePut: output image data
+[funimageput(3)]
+
+
+=item *
+
+FunImageRowGet: retrieve image data by row
+[funimagerowget(3)]
+
+
+=item *
+
+FunImageRowPut: output image data by row
+[funimagerowput(3)]
+
+
+=item *
+
+FunTableRowGet: retrieve rows from a table
+[funtablerowget(3)]
+
+
+=item *
+
+FunTableRowPut: output rows to a table
+[funtablerowput(3)]
+
+
+=item *
+
+FunColumnSelect: select columns in a table for access
+[funcolumnselect(3)]
+
+
+=item *
+
+FunColumnActivate: activate columns in a table for read/write
+[funcolumnactivate(3)]
+
+
+=item *
+
+FunColumnLookup: lookup info about the columns in a table
+[funcolumnlookup(3)]
+
+
+=item *
+
+FunInfoGet: get info about an image or table
+[funinfoget(3)]
+
+
+=item *
+
+FunInfoPut: put info about an image or table
+[funinfoput(3)]
+
+
+=item *
+
+FunParamGet: get header param
+[funparamget(3)]
+
+
+=item *
+
+FunParamPut: put header param
+[funparamput(3)]
+
+
+=item *
+
+FunFlush: flush I/O in a Funtools file
+[funflush(3)]
+
+
+=item *
+
+FunClose: close a Funtools file
+[funclose(3)]
+
+
+=back
+
+
+
+
+
+=item *
+
+Funtools Programming Examples
+[funlib(3)]
+
+
+=over 4
+
+
+
+
+=item *
+
+evmerge: merge new columns with existing columns
+
+
+=item *
+
+evcols: add column and rows to binary tables
+
+
+=item *
+
+imblank: blank out image values below a threshold
+
+
+=back
+
+
+
+
+=back
+
+
+
+
+
+=item *
+
+Funtools Data Files
+[funfiles(n)]
+
+
+=over 4
+
+
+
+
+=item *
+
+Supported Data Formats
+
+
+=over 4
+
+
+
+
+=item *
+
+FITS File and Extensions
+
+
+=item *
+
+Non-FITS Raw Event Files
+
+
+=item *
+
+Non-FITS Array Files
+
+
+=item *
+
+Column-based Text (ASCII) Files
+
+
+=item *
+
+Database Views of Tables
+
+
+=back
+
+
+
+
+=item *
+
+Image Sections and Blocking
+
+
+=item *
+
+Binning FITS Binary Tables and Non-FITS Event Files
+
+
+=item *
+
+Disk Files and Other Supported File Types
+
+
+=back
+
+
+
+
+
+=item *
+
+Funtools Data Filtering
+
+
+=over 4
+
+
+
+
+=item *
+
+Table Filtering
+[funfilters(n)]
+
+
+=item *
+
+Fast Table Filtering using Indexes
+[funidx(n)]
+
+
+=item *
+
+Spatial Region Filtering
+[funregions(n)]
+
+
+=over 4
+
+
+
+
+=item *
+
+Region Geometry
+[reggeometry(n)]
+
+
+=item *
+
+Region Algebra
+[regalgebra(n)]
+
+
+=item *
+
+Region Coordinates
+[regcoords(n)]
+
+
+=item *
+
+Region Boundaries
+[regbounds(n)]
+
+
+=item *
+
+Differences Between Funtools and IRAF Regions
+[regdiff(n)]
+
+
+=back
+
+
+
+
+=item *
+
+Combining Table and Region Filters
+[funcombine(n)]
+
+
+=back
+
+
+
+
+
+=item *
+
+Miscellaneous
+
+
+=over 4
+
+
+
+
+=item *
+
+Funtools Environment Variables
+[funenv(n)]
+
+
+=item *
+
+Funtools ChangeLog
+
+
+=back
+
+
+
+
+
+=back
+
+
+
+
+
+
+=cut
diff --git a/funtools/doc/pod/funview.pod b/funtools/doc/pod/funview.pod
new file mode 100644
index 0000000..f0c2095
--- /dev/null
+++ b/funtools/doc/pod/funview.pod
@@ -0,0 +1,407 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funview: Database View Support for Tables>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the options for utilizing
+database-inspired Views of tables.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+B<Database Views>
+
+In database parlance, a B<View> defines a "virtual table", i.e.,
+a description of row and/or column selection filters (but with no
+permanent storage space allocated). When used in place of a table, a
+View selects the specified rows and/or columns from one or more real
+tables. Views enable you to see complicated data tables in a more
+convenient format. They also can be used as a security mechanism, by
+restricting user access to specific columns and/or rows. [See:
+
+http://www.cs.unibo.it/~ciaccia/COURSES/RESOURCES/SQLTutorial/sqlch5.htm
+
+for a good discussion of SQL Views.]
+
+
+Funtools supports an expanded notion of Views for all tabular data
+(FITS tables, raw binary tables, and ASCII column files). Funtools
+Views allow you to pre-set values for the filter specification, the
+columns to activate, and display format (though the latter is for
+fundisp only). Setting the filter and column activation values
+provides functionality equivalent to that of a classical database
+View, while the ability to set the format is similar to classical
+report writing capabilities.
+
+B<Funtools View Attributes>
+
+A Funtools View is a text file containing one or more of the following
+columns:
+
+ column description
+ ------ -----------------------------
+ view name of view
+ file data file name or template
+ filter filter specification
+ columns columns to activate
+ format fundisp format specification
+
+All of the attribute columns are optional, including
+the B<view> name itself. This means that a View can be named or
+unnamed. Unnamed Views can refer to a specific file or a template of
+files (obviously if neither the view or the file column is specified,
+the input View specification will never be used). You can specify any
+combination of filter, column, and format parameters. (It also is
+possible to apply file-specific View to other files; see the discussion
+on B<View Lists> below). Each column has a size limit of 1024 characters.
+
+
+For example, consider the following View file:
+
+ view file format columns filter
+ ---- ---------------------- ------ ------------ -------
+ x3 ${HOME}/data/snr.ev I=%4d x y pi pha cir 512 512 .1
+ x2 ${HOME}/data/snr.ev x y pi pha cir 512 512 .1
+ x1 ${HOME}/data/snr.ev cir 512 512 .1
+ x1a ${HOME}/data/snr.ev x y pi pha
+ x0 ${HOME}/data/snr.ev
+ xf I=%4d
+ xc x y pi pha
+ xr cir 512 512 .1
+ *.ev x y pi pha
+ *.fit x y dx dy cir 400 400 3
+ *.fits I=%3d x y dx dy cir 400 400 3
+
+This database example is in rdb format, i.e. using tab delimiters and
+permitting null values. Any valid ASCII table format is acceptable,
+but if you use a format that does not permit null values, it will be
+necessary to quote the null strings.
+
+
+The first five entries (x3, x2, x1, x1a, x0) are named entries defining
+default values specifically for the snr.ev data file. Typically, you
+would use these Views by specifying View name, and the corresponding
+file, filter, column, and format values would be used. Note that the x0
+View is essentially an alias for the pathname of this file.
+
+
+The next three entries define defaults that can be applied to any
+file. You typically would use these View names in conjunction with
+a specific file name (see B<View Lists> below) so that the associated
+parameter(s) were applied to that file.
+
+
+The last three entry in the database define unnamed Views that
+pertains to all files ending with the specified templates. In these
+cases, any View that specifies a file name matching the file template
+would be processed with the associated parameter attributes.
+
+B<Invoking a Funtools View (in Place of an Input File)>
+
+To use a Funtools View, you simply pre-pend the "v:" prefix to a View name or
+a file name where an input file name usually is specified. For example:
+
+ fundisp v:x3
+
+specifies that the View named x3 (with its file name and associated
+parameters) is processed as the input file to fundisp. Using the
+example database, above, this is equivalent to:
+
+ fundisp -f "I=%4d" ${HOME}/data/snr.ev'[cir 512 512 .1]' "x y pi pha"
+
+That is, the format is used with fundisp's -f (format) switch, while the
+filename and extension are composed of the x3 View's filename and
+region filter.
+
+
+Similarly, executing a command such as:
+
+ fundisp v:foo.fit
+
+will match the unnamed View associated with the template "*.fit".
+This is equivalent to executing:
+
+ fundisp foo.fit'[cir 400 400 3]' "x y dx dy"
+
+Of course, if you omit the "v:" prefix, then no View processing takes place:
+
+ fundisp foo.fit # process foo.fit without any View parameters
+ fundisp x3 # error (assuming there is no file named x3)
+
+
+B<Basic View Matching Rules>
+
+
+When a "v:" prefix is recognized, Funtools searches for a View database
+file in the following order:
+
+ location description
+ ------------ ------------------------------------
+ FUN_VIEWFILE environment variable (any file name)
+ ./.funtools.vu hidden file, default name
+ $HOME/.funtools.vu hidden file, default name
+
+The first View database file located is used to construct a new
+filename, as well as an activation column specification and a format
+specification. The following rules are used:
+
+
+1. An attempt is made to match the input name (i.e., the part of the
+input View after the "v:" prefix) against the B<view> column value
+(if present) of each row in the database. If a match is found, the
+values of all non-blank columns are saved for later use. Also note
+that the first match terminates the search: i.e., the order of the
+database rows matters.
+
+
+2. If no B<view> match is made, an attempt is made to match the input
+name against the B<file> column value (if present). Matching is
+performed on the full pathname of both the input name and the
+database file name, and on the non-directory (root) part of these
+files. This means that the root specification:
+
+ fundisp v:snr.ev
+
+will match a row in the database that has a full pathname in the file,
+allowing you to use a B<file>-matched View without having to
+specify the full pathname. In this example, the "v:snr.ev" View
+specification will match the first row (v:x3) in the database:
+
+ x3 ${HOME}/data/snr.ev I=%4d x y pi pha cir 512 512 .1
+
+even though the row contains a fully qualified pathname as the file
+value. Once again, values of all non-blank columns are saved, and the
+first match terminates the search.
+
+
+3. If neither a B<view> or a B<view> match has been found,
+then a simple template match is attempted against the B<view>
+values. Template matching supports a simplified version of file
+globbing (not a regular expression), with support for a single "*"
+(all characters), "?" (single character), or "[...]" (range) specification.
+
+
+4. If no template match was found on the B<view> column, then a
+simple template match is attempted against the B<file> columns.
+
+
+5. If no match is found, then the filename (minus the "v:" prefix) is
+returned.
+
+B<More on View Matching Rules: Single vs. Multiple Matches >
+
+The matching rules described above stop after the first match,
+regardless of whether that match provides values for all three
+parameters (filter, columns, and format). In cases where a B<view>
+or B<file> match does not provide all three values, it is possible
+that a template match might do so. With regard to the example View
+database above, the x1 View provides only a filter, while omitting
+both the format and columns values. But note that the final rows in
+the database could provide the values via a template match on the
+filename. This sort of multiple matching is especially valuable in
+order to provide "global" values to several Views.
+
+
+Obviously, multiple matching might not be wanted in every
+case. Therefore, we support both multiple matching and single matching
+according to the value of the FUN_VIEWMATCH environment variable. If
+the FUN_VIEWMATCH environment variable exists and if its value begins
+with "s", then a single match is used and missing parameters are not
+filled in with subsequent template matches on the file name. That is,
+matching rules above are followed exactly as explained above. If the
+value of this environment variable begins with "m" (or does not exist),
+then multiple matches are used to try to fill in missing parameters.
+In this case, template matching always takes place and missing values are
+taken from these template matches.
+
+
+Thus, in the example above, the View specification:
+
+ fundisp v:x1
+
+will take the file name and filter value from the x1 View:
+
+ x1 ${HOME}/data/snr.ev cir 512 512 .1
+
+The column value then will be taken from the "*.ev" file template match
+against the x1 file name:
+
+ *.ev x y pi pha
+
+Note once again that order is important: missing values are taken in the
+order in which the template matches are processed.
+
+B<View Lists: Applying a View to Any File>
+
+
+It is possible to apply a named View, or even several Views, to any
+data file by appending a B<viewlist> immediately after the standard "v:"
+prefix. A viewlist takes the form:
+
+ :v1,v2,...vn:
+
+where v1, v2, etc. are named Views. The two ":" colon characters surrounding
+the list are required. Thus, the syntax for applying a viewlist to a file is:
+
+ v::view1,view2,...viewn:filename
+
+Note that the name after the last ":" is assumed to be a file; it is
+not permissible (or sensible) to use a View name.
+
+
+For example, the View specification:
+
+ fundisp v::x2:foo
+
+applies the x2 View to the file foo (even if there is a View named foo)
+and (in using our example database) is equivalent to:
+
+ ./fundisp foo'[cir 512 512 .1] "x y pi pha"
+
+The same command can be effected using a list of Views:
+
+ fundisp v::x1,x1a:foo
+
+
+
+What happens if a viewlist is used and the file also matches a
+template? Consider, for example, this View specification:
+
+ fundisp v::x2:foo.fit
+
+Here, the x2 View will supply filter and column values, while the
+template *.fit can also supply (different) filter and column
+values. In this case, the explicitly specified Views of the viewlist
+trump the matched view values.
+
+
+On the other hand, if a file template match can supply a View value
+that is not supplied by the viewlist, then that value will be taken
+from the file template match. For example:
+
+ fundisp v::x2:foo.fits
+
+does not explicitly supply a format value, but the file match on *.fits
+can and does. You can avoid supplying missing values using file template
+matching by replacing the first ":" with a "-" in a viewlist
+specification:
+
+ fundisp v:-x2:foo.fits
+
+The use of ":+" to explicitly allow file template matching is also
+supported, but is the same as the default case. Note that the nuances
+of viewlist support are subject to change as our experience and
+understanding grow.
+
+B<Overriding Values Associated with a View>
+
+
+To override values associated with a View, simply supply the override
+values in the correct place on the command line. Thus, given
+the example database described above, the command:
+
+ fundisp v:x3
+
+specifies that the View named x3, along with its file name and
+associated parameters, be processed as the input file to fundisp in
+this way:
+
+ fundisp -f "I=%4d" ${HOME}/data/snr.ev'[cir 512 512 .1]' "x y pi pha"
+
+To override one or more of these values, simply specify a new value
+for the format, filter, or columns. For example, if your input View file
+contains a filter, then the View will use that filter as an override
+of the View filter:
+
+ fundisp v:x3'[cir 400 400 3]'
+
+will use the columns and format of the x3 View but not the x3 filter. Further
+examples are:
+
+ fundisp v:x3 "x y dx dy" # activate a different set of columns
+ fundisp -f "I=%3d" v:x3 # use a different format statement
+
+
+
+Note that extension names, extension index values, and other
+non-filter specifications B<do not> override the View
+filter. Thus:
+
+ fundisp v:foo.fit[3]
+
+will still use the filter associated with the .fit template (see above), since
+the "3" is an extension index, not a filter.
+
+B<Environment Variables>
+
+The following environment variables are used by Funtools Views:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<FUN_VIEWNAME>
+
+
+The B<FUN_VIEWNAME> environment variable specifies the
+name and location of the View database file. If not present, the
+files ./.funtools.vu and $HOME/.funtools.vu are searched for, in
+that order.
+
+
+
+=item *
+
+B<FUN_VIEWMATCH>
+
+
+The B<FUN_VIEWMATCH> environment variable specifies whether a
+single match or multiple match algorithm is used to locate parameter
+values. If the value of this environment variable begins with "s",
+then a single match is used and missing parameters are not filled in
+with subsequent template matches on the file name. If the value begins
+with "m", then multiple matches are used to try to fill in missing
+parameters. The default is to use multiple matches.
+
+
+=back
+
+
+
+B<Restrictions and Problems>
+
+Support for overriding a filter (while not overriding extension names,
+extension indexes, etc.) requires that we can sense the presence of a
+filter in a bracket specification. It is unclear yet whether our
+algorithm is perfect.
+
+
+Go to Funtools Help Index
+
+Last updated: August 3, 2007
+
+
+
+
+
+=cut
diff --git a/funtools/doc/pod/funvu.pod b/funtools/doc/pod/funvu.pod
new file mode 100644
index 0000000..528ea50
--- /dev/null
+++ b/funtools/doc/pod/funvu.pod
@@ -0,0 +1,404 @@
+=pod
+
+=head1 NAME
+
+
+
+B<Funvu: database View support for tables>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document contains a summary of the options for utilizing
+database-inspired Views of tables.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+B<Database Views>
+
+In database parlance, a B<View> defines a "virtual table", i.e.,
+a description of row and/or column selection filters (but with no
+permanent storage space allocated). When used in place of a table, a
+View selects the specified rows and/or columns from one or more real
+tables. Views enable users to see complicated data tables in a more
+convenient format. They also can be used as a security mechanism, by
+restricting user access to specific columns and/or rows. [See:
+http://www.cs.unibo.it/~ciaccia/COURSES/RESOURCES/SQLTutorial/sqlch5.htm
+for a good discussion of SQL Views.]
+
+
+Funtools supports an expanded notion of Views for all tabular data
+(FITS tables, raw binary tables, and ASCII column files). Funtools
+Views allow you to pre-set values for the filter specification, the
+columns to activate and display format (though the latter is for
+fundisp only). Setting the filter and column activation values
+provides functionality equivalent to that of a classical database
+View, while the ability to set the format is similar to classical
+report writing capabilities.
+
+B<Funtools View Attributes>
+
+A Funtools View consists of one or more of the following attributes:
+
+ column description
+ ------ -----------------------------
+ view name of view
+ file data file name or template
+ filter filter specification
+ columns columns to activate
+ format fundisp format specification
+
+All of the attribute columns are optional, including
+the B<view> name itself. This means that a View can be named or
+unnamed. Unnamed Views can refer to a specific file or a template of
+files (obviously if neither the view or the file column is specified,
+the input View specification will never be used). You can specify any
+combination of filter, column, and format parameters. (It also is
+possible to apply file-specific View to other files; see the discussion
+on B<View Lists> below). Each column has a size limit of 1024 characters.
+
+
+For example, consider the following View database:
+
+ view file format columns filter
+ ---- ---------------------- ------ ------------ -------
+ x3 ${HOME}/data/snr.ev I=%4d x y pi pha cir 512 512 .1
+ x2 ${HOME}/data/snr.ev x y pi pha cir 512 512 .1
+ x1 ${HOME}/data/snr.ev cir 512 512 .1
+ x1a ${HOME}/data/snr.ev x y pi pha
+ x0 ${HOME}/data/snr.ev
+ xf I=%4d
+ xc x y pi pha
+ xr cir 512 512 .1
+ *.ev x y pi pha
+ *.fit x y dx dy cir 400 400 3
+ *.fits I=%3d x y dx dy cir 400 400 3
+
+This database example is in rdb format, i.e. using tab delimiters and
+permitting null values. Any valid ASCII table format is acceptable,
+but if you use a format that does not permit null values, it will be
+necessary to quote the null strings.
+
+
+The first five entries (x3, x2, x1, x1a, x0) are named entries defining
+default values specifically for the snr.ev data file. Typically, you
+would use these Views by specifying View name, and the corresponding
+file, filter, column, and format values would be used. Note that the x0
+View is essentially an alias for the pathname of this file.
+
+
+The next three entries define defaults that can be applied to any
+file. Here, you typically would use these View names in conjunction with
+a specific file name (see B<View Lists> below) so that the associated
+parameter(s) were applied to that file.
+
+
+The last three entry in the database define unnamed Views that
+pertains to all files ending with the specified templates. In these
+cases, any View that specifies a file name matching the file template
+would be processed with the associated parameter attributes.
+
+B<Invoking a Funtools View (in Place of an Input File)>
+
+To specify a Funtools View, pre-pend the "v:" prefix to a View name or
+a file name where an input file name usually is specified. For example:
+
+ fundisp v:x3
+
+specifies that the View named x3, its file name and associated
+parameters, be processed as the input file to fundisp. Using the
+example database, above, this is equivalent to:
+
+ fundisp -f "I=%4d" ${HOME}/data/snr.ev'[cir 512 512 .1]' "x y pi pha"
+
+That is, the format is used with fundisp's -f (format) switch, while the
+filename and extension are composed of the x3 View's filename and
+region filter.
+
+
+Similarly, executing a command such as:
+
+ fundisp v:foo.fit
+
+will match the unnamed View associated with the template "*.fit".
+This is equivalent to executing:
+
+ fundisp foo.fit'[cir 400 400 3]' "x y dx dy"
+
+Of course, if you omit the "v:" prefix, then no View processing takes place:
+
+ fundisp foo.fit # process foo.fit without any View parameters
+ fundisp x3 # error (assuming there is no file named x3)
+
+
+B<Basic View Matching Rules>
+
+
+When a "v:" prefix is recognized, Funtools searches for a View database
+file in the following order:
+
+ location description
+ ------------ ------------------------------------
+ FUN_VIEWFILE environment variable (any file name)
+ ./.funtools.vu hidden file, default name
+ $HOME/.funtools.vu hidden file, default name
+
+The first View database file located is used to construct a new
+filename, as well as an activation column specification and a format
+specification. The following rules are used:
+
+
+1. An attempt is made to match the input name (i.e. the part of the
+input View after the "v:" prefix) against the B<view> column value
+(if present) of each row in the database. If a match is found, the
+values of all non-blank columns are saved for later use. Also note
+that the first match terminates the search: i.e. the order of the
+database rows does matter.
+
+
+2. If no B<view> match is made, an attempt is made to match the input
+name against the B<file> column value (if present). Matching is
+performed on the full pathname of both the input name and the
+database file name, and on the non-directory (root) part of these
+files. This means that the root specification:
+
+ fundisp v:snr.ev
+
+will match a row in the database that has a full pathname in the file,
+allowing you to use a B<file>-matched View without having to
+specify the full pathname. In this example, the "v:snr.ev" View
+specification will match the first row (v:x3) in the database:
+
+ x3 ${HOME}/data/snr.ev I=%4d x y pi pha cir 512 512 .1
+
+even though the row contains a fully qualified pathname as the file
+value. Once again, values of all non-blank columns are saved, and the
+first match terminates the search.
+
+
+3. If neither a B<view> or a B<view> match has been found,
+then a simple template is attempted against the B<view>
+values. The template matching supports a simplified version of file
+globbing (not a regular expression), with support for a single "*"
+(all characters), "?" (single character), or "[...]" (range) specification.
+
+
+4. If no template match was found on the B<view> column, then a
+simple template match is attempted against the B<file> columns.
+
+
+5. If no match is found, then the filename (minus the "v:" prefix) is
+returned.
+
+B<More on View Matching Rules: Single vs. Multiple Matches >
+
+The matching rules described above stop after the first match,
+regardless of whether that match provides values for all three
+parameters (filter, columns, and format). In cases where a B<view>
+or B<file> match does not provide all three values, it is possible
+that a template match might do so. With regard to the example View
+database above, the x1 View provides only a filter, while omitting
+both the format and columns values. But note that the final rows in
+the database could provide the values via a template match on the
+filename. This sort of multiple matching is especially valuable in
+order to provide "global" values to several Views.
+
+
+Obviously, multiple matching might not be wanted in every
+case. Therefore, we support both multiple matching and single matching
+according to the value of the FUN_VIEWMATCH environment variable. If
+the FUN_VIEWMATCH environment variable exists and if its value begins
+with "s", then a single match is used and missing parameters are not
+filled in with subsequent template matches on the file name. That is,
+matching rules above are followed exactly as explained above. If the
+value of this environment variable begins with "m" (or does not exist),
+then multiple matches are used to try to fill in missing parameters.
+In this case, template matching always takes place and missing values are
+taken from these template matches.
+
+
+Thus, in the example above, the View specification:
+
+ fundisp v:x1
+
+will take the file name and filter value from the x1 View:
+
+ x1 ${HOME}/data/snr.ev cir 512 512 .1
+
+The column value then will be taken from the "*.ev" file template match
+against the x1 file name:
+
+ *.ev x y pi pha
+
+Note once again that order is important: missing values are taken in the
+order in which the template matches are processed.
+
+B<View Lists: Applying a View to Any File>
+
+
+It is possible to apply a named View, or even several Views, to any
+data file by appending a B<viewlist> immediately after the standard "v:"
+prefix. A viewlist takes the form:
+
+ :v1,v2,...vn:
+
+where v1, v2, etc. are named Views. The two ":" colon characters surrounding
+the list are required. Thus, the syntax for applying a viewlist to a file is:
+
+ v::view1,view2,...viewn:filename
+
+Note that the name after the last ":" is assumed to be a file; it is
+not permissible (or sensible) to use a View name.
+
+
+For example, the View specification:
+
+ fundisp v::x2:foo
+
+applies the x2 View to the file foo (even if there is a View named foo)
+and (in using our example database) is equivalent to:
+
+ ./fundisp foo'[cir 512 512 .1] "x y pi pha"
+
+The same command can be effected using a list of Views:
+
+ fundisp v::x1,x1a:foo
+
+
+
+What happens if a viewlist is used and the file also matches a
+template? Consider, for example, this View specification:
+
+ fundisp v::x2:foo.fit
+
+Here, the x2 View will supply filter and column values, while the
+template *.fit can also supply (different) filter and column
+values. In this case, the explicitly specified Views of the viewlist
+trump the matched view values.
+
+
+On the other hand, if a file template match can supply a View value
+that is not supplied by the viewlist, then that value will be taken
+from the file template match. For example:
+
+ fundisp v::x2:foo.fits
+
+does not explicitly supply a format value, but the file match on *.fits
+can and does. You can avoid supplying missing values using file template
+matching by replacing the first ":" with a "-" in a viewlist
+specification:
+
+ fundisp v:-x2:foo.fits
+
+The use of ":+" to explicitly allow file template matching is also
+supported, but is the same as the default case. Note that the nuances
+of viewlist support are subject to change as our experience and
+understanding grows.
+
+B<Overriding Values Associated with a View>
+
+
+To override values associated with a View, simply supply the override
+values in the correct place on the command line. For example, given
+the example database described above, the command:
+
+ fundisp v:x3
+
+specifies that the View named x3, along with its file name and
+associated parameters, be processed as the input file to fundisp in
+this way:
+
+ fundisp -f "I=%4d" ${HOME}/data/snr.ev'[cir 512 512 .1]' "x y pi pha"
+
+To override one or more of these values, simply specify a new value
+for the format, filter, or columns. For example, if your input View file
+contains a filter, then the View will use that filter as an override
+of the View filter:
+
+ fundisp v:x3'[cir 400 400 3]'
+
+will use the columns and format of the x3 View but not the x3 filter. Further
+examples are:
+
+ fundisp v:x3 "x y dx dy" # activate a different set of columns
+ fundisp -f "I=%3d" v:x3 # use a different format statement
+
+
+
+Note that extension names, extension index values, and other
+non-filter specifications B<do not> override the View
+filter. Thus:
+
+ fundisp v:foo.fit[3]
+
+will still use the filter associated with the .fit template (see above), since
+the "3" is an extension index, not a filter.
+
+B<Environment Variables>
+
+The following environment variables are used by Funtools Views:
+
+
+=over 4
+
+
+
+
+=item *
+
+B<FUN_VIEWNAME>
+
+
+The B<FUN_VIEWNAME> environment variable specifies the
+name and location of the View database file. If not present, the
+files ./.funtools.vu and $HOME/.funtools.vu are searched for, in
+that order.
+
+
+
+=item *
+
+B<FUN_VIEWMATCH>
+
+
+The B<FUN_VIEWMATCH> environment variable specifies whether a
+single match or multiple match algorithm is used to locate parameter
+values. If the value of this environment variable begins with "s",
+then a single match is used and missing parameters are not filled in
+with subsequent template matches on the file name. If the value begins
+with "m", then multiple matches are used to try to fill in missing
+parameters. The default is to use multiple matches.
+
+
+=back
+
+
+
+B<Restrictions and Problems>
+
+Support for overriding a filter (while not overriding extension names,
+extension indexes, etc.) requires that we can sense the presence of a
+filter in a bracket specification. It is unclear yet whether our
+algorithm is perfect.
+
+
+Go to Funtools Help Index
+
+Last updated: January 3, 2006
+
+
+
+
+
+=cut
diff --git a/funtools/doc/pod/regalgebra.pod b/funtools/doc/pod/regalgebra.pod
new file mode 100644
index 0000000..4c6da88
--- /dev/null
+++ b/funtools/doc/pod/regalgebra.pod
@@ -0,0 +1,286 @@
+=pod
+
+=head1 NAME
+
+
+
+B<RegAlgebra: Boolean Algebra on Spatial Regions>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document describes the boolean arithmetic defined for
+region expressions.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+When defining a region, several shapes can be combined using boolean
+operations. The boolean operators are (in order of precedence):
+
+ Symbol Operator Associativity
+ ------ -------- -------------
+ ! not right to left
+ & and left to right
+ ^ exclusive or left to right
+ | inclusive or left to right
+
+
+For example, to create a mask consisting of a large circle with a
+smaller box removed, one can use the B<and> and B<not>
+operators:
+
+ CIRCLE(11,11,15) & !BOX(11,11,3,6)
+
+
+and the resulting mask is:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 1:1111111111111111111111..................
+ 2:1111111111111111111111..................
+ 3:11111111111111111111111.................
+ 4:111111111111111111111111................
+ 5:111111111111111111111111................
+ 6:1111111111111111111111111...............
+ 7:1111111111111111111111111...............
+ 8:1111111111111111111111111...............
+ 9:111111111...1111111111111...............
+ 10:111111111...1111111111111...............
+ 11:111111111...1111111111111...............
+ 12:111111111...1111111111111...............
+ 13:111111111...1111111111111...............
+ 14:111111111...1111111111111...............
+ 15:1111111111111111111111111...............
+ 16:1111111111111111111111111...............
+ 17:111111111111111111111111................
+ 18:111111111111111111111111................
+ 19:11111111111111111111111.................
+ 20:1111111111111111111111..................
+ 21:1111111111111111111111..................
+ 22:111111111111111111111...................
+ 23:..11111111111111111.....................
+ 24:...111111111111111......................
+ 25:.....11111111111........................
+ 26:........................................
+ 27:........................................
+ 28:........................................
+ 29:........................................
+ 30:........................................
+ 31:........................................
+ 32:........................................
+ 33:........................................
+ 34:........................................
+ 35:........................................
+ 36:........................................
+ 37:........................................
+ 38:........................................
+ 39:........................................
+ 40:........................................
+
+A three-quarter circle can be defined as:
+
+ CIRCLE(20,20,10) & !PIE(20,20,270,360)
+
+
+and looks as follows:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 1:........................................
+ 2:........................................
+ 3:........................................
+ 4:........................................
+ 5:........................................
+ 6:........................................
+ 7:........................................
+ 8:........................................
+ 9:........................................
+ 10:........................................
+ 11:...............111111111................
+ 12:..............11111111111...............
+ 13:............111111111111111.............
+ 14:............111111111111111.............
+ 15:...........11111111111111111............
+ 16:..........1111111111111111111...........
+ 17:..........1111111111111111111...........
+ 18:..........1111111111111111111...........
+ 19:..........1111111111111111111...........
+ 20:..........1111111111111111111...........
+ 21:..........1111111111....................
+ 22:..........1111111111....................
+ 23:..........1111111111....................
+ 24:..........1111111111....................
+ 25:...........111111111....................
+ 26:............11111111....................
+ 27:............11111111....................
+ 28:..............111111....................
+ 29:...............11111....................
+ 30:........................................
+ 31:........................................
+ 32:........................................
+ 33:........................................
+ 34:........................................
+ 35:........................................
+ 36:........................................
+ 37:........................................
+ 38:........................................
+ 39:........................................
+ 40:........................................
+
+Two non-intersecting ellipses can be made into the same region:
+
+ ELL(20,20,10,20,90) | ELL(1,1,20,10,0)
+
+
+and looks as follows:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 1:11111111111111111111....................
+ 2:11111111111111111111....................
+ 3:11111111111111111111....................
+ 4:11111111111111111111....................
+ 5:1111111111111111111.....................
+ 6:111111111111111111......................
+ 7:1111111111111111........................
+ 8:111111111111111.........................
+ 9:111111111111............................
+ 10:111111111...............................
+ 11:...........11111111111111111............
+ 12:........111111111111111111111111........
+ 13:.....11111111111111111111111111111......
+ 14:....11111111111111111111111111111111....
+ 15:..11111111111111111111111111111111111...
+ 16:.1111111111111111111111111111111111111..
+ 17:111111111111111111111111111111111111111.
+ 18:111111111111111111111111111111111111111.
+ 19:111111111111111111111111111111111111111.
+ 20:111111111111111111111111111111111111111.
+ 21:111111111111111111111111111111111111111.
+ 22:111111111111111111111111111111111111111.
+ 23:111111111111111111111111111111111111111.
+ 24:.1111111111111111111111111111111111111..
+ 25:..11111111111111111111111111111111111...
+ 26:...11111111111111111111111111111111.....
+ 27:.....11111111111111111111111111111......
+ 28:.......111111111111111111111111.........
+ 29:...........11111111111111111............
+ 30:........................................
+ 31:........................................
+ 32:........................................
+ 33:........................................
+ 34:........................................
+ 35:........................................
+ 36:........................................
+ 37:........................................
+ 38:........................................
+ 39:........................................
+ 40:........................................
+
+You can use several boolean operations in a single region expression,
+to create arbitrarily complex regions. With the important exception
+below, you can apply the operators in any order, using parentheses if
+necessary to override the natural precedences of the operators.
+
+
+NB: Using a panda shape is always much more efficient than explicitly
+specifying "pie & annulus", due to the ability of panda to place a
+limit on the number of pixels checked in the pie shape. If you are
+going to specify the intersection of pie and annulus, use panda
+instead.
+
+
+As described in "help regreometry", the B<PIE> slice goes to the
+edge of the field. To limit its scope, B<PIE> usually is is
+combined with other shapes, such as circles and annuli, using boolean
+operations. In this context, it is worth noting that that there is a
+difference between B<-PIE> and B<&!PIE>. The former is a
+global exclude of all pixels in the B<PIE> slice, while the latter
+is a local excludes of pixels affecting only the region(s) with which
+the B<PIE> is combined. For example, the following region uses
+B<&!PIE> as a local exclude of a single circle. Two other circles
+are also defined and are unaffected by the local exclude:
+
+
+ CIRCLE(1,8,1)
+ CIRCLE(8,8,7)&!PIE(8,8,60,120)&!PIE(8,8,240,300)
+ CIRCLE(15,8,2)
+
+ 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+ - - - - - - - - - - - - - - -
+ 15: . . . . . . . . . . . . . . .
+ 14: . . . . 2 2 2 2 2 2 2 . . . .
+ 13: . . . 2 2 2 2 2 2 2 2 2 . . .
+ 12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 10: . . . . 2 2 2 2 2 2 2 . . . .
+ 9: . . . . . . 2 2 2 . . . . 3 3
+ 8: 1 . . . . . . . . . . . . 3 3
+ 7: . . . . . . 2 2 2 . . . . 3 3
+ 6: . . . . 2 2 2 2 2 2 2 . . . .
+ 5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 3: . . . 2 2 2 2 2 2 2 2 2 . . .
+ 2: . . . . 2 2 2 2 2 2 2 . . . .
+ 1: . . . . . . . . . . . . . . .
+
+
+Note that the two other regions are not affected by the B<&!PIE>,
+which only affects the circle with which it is combined.
+
+
+On the other hand, a B<-PIE> is an global exclude that does
+affect other regions with which it overlaps:
+
+
+ CIRCLE(1,8,1)
+ CIRCLE(8,8,7)
+ -PIE(8,8,60,120)
+ -PIE(8,8,240,300)
+ CIRCLE(15,8,2)
+
+ 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+ - - - - - - - - - - - - - - -
+ 15: . . . . . . . . . . . . . . .
+ 14: . . . . 2 2 2 2 2 2 2 . . . .
+ 13: . . . 2 2 2 2 2 2 2 2 2 . . .
+ 12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 10: . . . . 2 2 2 2 2 2 2 . . . .
+ 9: . . . . . . 2 2 2 . . . . . .
+ 8: . . . . . . . . . . . . . . .
+ 7: . . . . . . 2 2 2 . . . . . .
+ 6: . . . . 2 2 2 2 2 2 2 . . . .
+ 5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
+ 3: . . . 2 2 2 2 2 2 2 2 2 . . .
+ 2: . . . . 2 2 2 2 2 2 2 . . . .
+ 1: . . . . . . . . . . . . . . .
+
+
+The two smaller circles are entirely contained within the two exclude
+B<PIE> slices and therefore are excluded from the region.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/regbounds.pod b/funtools/doc/pod/regbounds.pod
new file mode 100644
index 0000000..c63a0bd
--- /dev/null
+++ b/funtools/doc/pod/regbounds.pod
@@ -0,0 +1,203 @@
+=pod
+
+=head1 NAME
+
+
+
+B<RegBounds: Region Boundaries>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+Describes how spatial region boundaries are handled.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+The golden rule for spatial region filtering was first enunciated by
+Leon VanSpeybroeck in 1986:
+
+
+Each photon will be counted once, and no photon will be counted
+more than once.
+
+
+This means that we must be careful about boundary
+conditions. For example, if a circle is contained in an annulus such
+that the inner radius of the annulus is the same as the radius of the
+circle, then photons on that boundary must always be assigned to one
+or the other region. That is, the number of photons in both regions
+must equal the sum of the number of photons in each region taken
+separately.
+
+With this in mind, the rules for determining whether a boundary image
+pixel or table row are assigned to a region are defined below.
+
+B<Image boundaries : radially-symmetric shapes (circle, annuli, ellipse)>
+
+For image filtering, pixels whose center is inside the boundary are
+included. This also applies non-radially-symmetric shapes. When a
+pixel center is exactly on the boundary, the pixel assignment rule is:
+
+
+
+=over 4
+
+
+
+
+=item *
+
+the outer boundary of a symmetric shape does not include such pixels
+
+
+=item *
+
+the inner boundary of a symmetric shape (annulus) includes such pixels
+
+
+=back
+
+
+
+In this way, an annulus with radius from 0 to 1, centered exactly on a
+pixel, includes the pixel on which it is centered, but none of its
+neighbors.
+
+These rules ensure that when defining concentric shapes, no pixels are
+omitted between concentric regions and no pixels are claimed by two
+regions. When applied to small symmetric shapes, the shape is less
+likely to be skewed, as would happen with non-radially-symmetric
+rules. These rules differ from the rules for box-like shapes, which
+are more likely to be positioned adjacent to one another.
+
+B<Image Boundaries: non-radially symmetric shapes (polygons, boxes)>
+
+For image filtering, pixels whose center is inside the boundary are
+included. This also applies radially-symmetric shapes. When a pixel
+center is exactly on the boundary of a non-radially symmetric region,
+the pixel is included in the right or upper region, but not the left
+or lower region. This ensures that geometrically adjoining regions
+touch but don't overlap.
+
+B<Row Boundaries are Analytic>
+
+When filtering table rows, the boundary rules are the same as for
+images, except that the calculation is not done on the center of a
+pixel, (since table rows, especially X-ray events rows, often have
+discrete, floating point positions) but are calculated exactly. That
+is, an row is inside the boundary without regard to its integerized
+pixel value. For rows that are exactly on a region boundary, the
+above rules are applied to ensure that all rows are counted once and
+no row is counted more than once.
+
+
+Because row boundaries are calculated differently from image boundaries,
+certain programs will give different results when filtering the same
+region file. In particular, fundisp/funtable (which utilize analytic
+row filtering) perform differently from funcnts (which performs image
+filtering, even on tables).
+
+B<Image Boundaries vs. Row Boundaries: Practical Considerations>
+
+
+You will sometimes notice a discrepancy between running funcnts on an
+binary table file and running fundisp on the same file with the same filter.
+For example, consider the following:
+
+ fundisp test1.fits"[box(4219,3887,6,6,0)]" | wc
+ 8893 320148 3752846
+
+Since fundisp has a 2-line header, there are actually 8891 photons
+that pass the filter. But then run funtable and select only the
+rows that pass this filter, placing them in a new file:
+
+ ./funtable test1.fits"[box(4219,3887,6,6,0)]" test2.fits
+
+Now run funcnts using the original filter on the derived file:
+
+ ./funcnts test2.fits "physical; box(4219,3887,6,6,0)"
+
+ [... lot of processed output ...]
+
+ # the following source and background components were used:
+ source region(s)
+ ----------------
+ physical; box(4219,3887,6,6,0)
+
+ reg counts pixels
+ ---- ------------ ---------
+ 1 7847.000 36
+
+There are 1044 rows (events) that pass the row filter in fundisp (or
+funtable) but fail to make it through funcnts. Why?
+
+
+The reason can be traced to how analytic row filtering (fundisp, funtable)
+differs from integerized pixel filtering(funcnts, funimage). Consider the
+region:
+
+ box(4219,3887,6,6,0)
+
+Analytically (i.e., using row filtering), positions will pass this
+filter successfully if:
+
+ 4216 <= x <= 4222
+ 3884 <= y <= 3890
+
+For example, photons with position values of x=4216.4 or y=3884.08 will pass.
+
+
+Integerized image filtering is different in that the pixels that will
+pass this filter have centers at:
+
+ x = 4217, 4218, 4219, 4220, 4221, 4222
+ y = 3885, 3886, 3887, 3888, 3889, 3890
+
+Note that there are 6 pixels in each direction, as specified by the region.
+That means that positions will pass the filter successfully if:
+
+ 4217 <= (int)x <= 4222
+ 3885 <= (int)y <= 3890
+
+Photons with position values of x=4216.4 or y=3884.08 will NOT pass.
+
+
+Note that the position values are integerized, in effect, binned into
+image values. This means that x=4222.4 will pass this filter, but not
+the analytic filter above. We do this to maintain the design goal that
+either all counts in a pixel are included in an integerized filter, or
+else none are included.
+
+
+[It could be argued that the correct photon limits for floating point
+row data really should be:
+
+ 4216.5 <= x <= 4222.5
+ 3884.5 <= y <= 3890.5
+
+since each pixel extends for .5 on either side of the center. We chose
+to the maintain integerized algorithm for all image-style filtering so
+that funcnts would give the exact same results regardless of whether
+a table or a derived non-blocked binned image is used.]
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/regcoords.pod b/funtools/doc/pod/regcoords.pod
new file mode 100644
index 0000000..a026a5c
--- /dev/null
+++ b/funtools/doc/pod/regcoords.pod
@@ -0,0 +1,247 @@
+=pod
+
+=head1 NAME
+
+
+
+B<RegCoords: Spatial Region Coordinates>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document describes the specification of coordinate systems, and the
+interpretation of coordinate values, for spatial region filtering.
+
+
+
+=head1 DESCRIPTION
+
+
+
+B<Pixel coordinate systems>
+
+The default coordinate system for regions is PHYSICAL, which means
+that region position and size values are taken from the original
+data. (Note that this is a change from the original IRAF/PROS
+implementation, in which the IMAGE coordinate system was the default.)
+PHYSICAL coordinates always refer to pixel positions on the original
+image (using IRAF LTM and LTV keywords). With PHYSICAL coordinates,
+if a set of coordinates specifies the position of an object in an
+original FITS file, the same coordinates will specify the same object
+in any FITS derived from the original. Physical coordinates are
+invariant with blocking of FITS files or taking sections of images,
+even when a blocked section is written to a new file.
+
+
+Thus, although a value in pixels refers, by default, to the PHYSICAL
+coordinate system, you may specify that position values refer to the
+image coordinate system using the B<global> or B<local>
+properties commands:
+
+
+ global coordsys image
+ circle 512 512 100
+
+
+The B<global> command changes the coordinate system for all
+regions that follow, while the B<local> command changes the
+coordinate system only for the region immediately following:
+
+ local coordsys image
+ circle 512 512 100
+ circle 1024 1024 200
+
+This changes the coordinate system only for the region that follows.
+In the above example, the second region uses the global coordinate
+system (PHYSICAL by default).
+
+
+B<World Coordinate Systems>
+
+If World Coordinate System information is contained in the data file
+being filtered, it also is possible to define regions using a sky
+coordinate system. Supported systems include:
+
+
+ name description
+ ---- -----------
+ PHYSICAL pixel coords of original file using LTM/LTV
+ IMAGE pixel coords of current file
+ FK4, B1950 sky coordinate systems
+ FK5, J2000 sky coordinate systems
+ GALACTIC sky coordinate systems
+ ECLIPTIC sky coordinate systems
+ ICRS currently same as J2000
+ LINEAR linear wcs as defined in file
+
+
+In addition, two mosaic coordinate systems have been defined that
+utilize the (evolving) IRAF mosaic keywords:
+
+
+ name description
+ ---- -----------
+ AMPLIFIER mosaic coords of original file using ATM/ATV
+ DETECTOR mosaic coords of original file using DTM/DTV
+
+Again, to use one of these coordinate systems, the B<global> or
+B<local> properties commands are used:
+
+
+ global coordsys galactic
+
+
+B<WCS Positions and Sizes>
+
+In addition to pixels, positional values in a WCS-enabled region can
+be specified using sexagesimal or degrees format:
+
+
+ position arguments description
+ ------------------ -----------
+ [num] context-dependent (see below)
+ [num]d degrees
+ [num]r radians
+ [num]p physical pixels
+ [num]i image pixels
+ [num]:[num]:[num] hms for 'odd' position arguments
+ [num]:[num]:[num] dms for 'even' position arguments
+ [num]h[num]m[num]s explicit hms
+ [num]d[num]m[num]s explicit dms
+
+
+If ':' is used as sexagesimal separator, the value is considered to be
+specifying hours/minutes/seconds if it is the first argument of a
+positional pair, and degrees/minutes/seconds for the second argument
+of a pair (except for galactic coordinates, which always use degrees):
+
+
+ argument description
+ ----------- -----------
+ 10:20:30.0 10 hours, 20 minutes, 30 seconds for 1st positional argument
+ 10 degrees, 20 minutes, 30 seconds for 2nd positional argument
+ 10h20m30.0 10 hours, 20 minutes, 30 seconds
+ 10d20m30.0 10 degrees, 20 minutes, 30 seconds
+ 10.20d 10.2 degrees
+
+
+Similarly, the units of size values are defined by the formating
+character(s) attached to a number:
+
+
+ size arguments description
+ -------------- -----------
+ [num] context-dependent (see below)
+ [num]" arc seconds
+ [num]' arc minutes
+ [num]d degrees
+ [num]r radians
+ [num]p physical pixels
+ [num]i image pixels
+
+
+For example:
+
+ argument description
+ ----------- -----------
+ 10 ten pixels
+ 10' ten minutes of arc
+ 10" ten seconds of arc
+ 10d ten degrees
+ 10p ten pixels
+ 0.5r half of a radian
+
+
+
+An example of using sky coordinate systems follows:
+
+
+ global coordsys B1950
+ -box 175.54d 20.01156d 10' 10'
+ local coordsys J2000
+ pie 179.57d 22.4d 0 360 n=4 && annulus 179.57d 22.4d 3' 24' n=5
+
+
+At the FK4 1950 coordinates 175.54d RA, 20.01156d DEC exclude a 10
+minute by 10 minute box. Then at the FK5 2000 coordinates 179.57d RA
+22.4d DEC draw a radial profile regions pattern with 4 quadrants and 5
+annuli ranging from 3 minutes to 24 minutes in diameter. In this
+example, the default coordinate system is overridden by the commands
+in the regions spec.
+
+B<NB: The Meaning of Pure Numbers Are Context Sensitive>
+
+
+When a "pure number" (i.e. one without a format directive such as 'd'
+for 'degrees') is specified as a position or size, its interpretation
+depends on the context defined by the 'coordsys' keyword. In general,
+the rule is:
+
+
+All pure numbers have implied units corresponding to the current
+coordinate system.
+
+
+If no coordinate system is explicitly specified, the default system is
+implicitly assumed to be PHYSICAL. In practice this means that for
+IMAGE and PHYSICAL systems, pure numbers are pixels. Otherwise,
+for all systems other than LINEAR, pure numbers are degrees. For
+LINEAR systems, pure numbers are in the units of the linear system.
+This rule covers both positions and sizes.
+
+
+As a corollary, when a sky-formatted number is used with the IMAGE
+or PHYSICAL coordinate system (which includes the default case of no
+coordsys being specified), the formatted number is assumed to be in
+the units of the WCS contained in the current file. If no sky WCS is
+specified, an error results.
+
+
+Examples:
+
+
+ circle(512,512,10)
+ ellipse 202.44382d 47.181656d 0.01d 0.02d
+
+
+
+In the absence of a specified coordinate system, the circle uses the
+default PHYSICAL units of pixels, while the ellipse explicitly uses degrees,
+presumably to go with the WCS in the current file.
+
+
+ global coordsys=fk5
+ global color=green font="system 10 normal"
+ circle 202.44382 47.181656 0.01
+ circle 202.44382 47.181656 10p
+ ellipse(512p,512p,10p,15p,20)
+
+
+
+
+Here, the circles use the FK5 units of degrees (except for the
+explicit use of pixels in the second radius), while the ellipse
+explicitly specifies pixels. The ellipse angle is in degrees.
+
+
+Note that Chandra data format appears to use "coordsys=physical"
+implicitly. Therefore, for most Chandra applications, valid regions
+can be generated safely by asking ds9 to save/display regions in
+pixels using the PHYSICAL coordsys.
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/regdiff.pod b/funtools/doc/pod/regdiff.pod
new file mode 100644
index 0000000..e1c38ca
--- /dev/null
+++ b/funtools/doc/pod/regdiff.pod
@@ -0,0 +1,99 @@
+=pod
+
+=head1 NAME
+
+
+
+B<RegDiff:Differences Between Funtools and IRAF Regions>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+Describes the differences between Funtools/ds9 regions and the old IRAF/PROS
+regions.
+
+
+
+=head1 DESCRIPTION
+
+
+
+
+
+We have tried to make Funtools regions compatible with their
+predecessor, IRAF/PROS regions. For simple regions and simple boolean
+algebra between regions, there should be no difference between the two
+implementations. The following is a list of differences and
+incompatibilities between the two:
+
+
+
+=over 4
+
+
+
+
+
+
+=item *
+
+If a pixel is covered by two different regions expressions,
+Funtools assigns the mask value of the B<first> region that
+contains that pixel. That is, successive regions B<do not>
+overwrite previous regions in the mask, as was the case with the
+original PROS regions. This means that one must define overlapping
+regions in the reverse order in which they were defined in PROS. If
+region N is fully contained within region M, then N should be defined
+B<before> M, or else it will be "covered up" by the latter. This
+change is necessitated by the use of optimized filter compilation, i.e.,
+Funtools only tests individual regions until a proper match is made.
+
+
+
+
+=item *
+
+The B<PANDA> region has replaced the old PROS syntax in which
+a B<PIE> accelerator was combined with an B<ANNULUS> accelerator
+using B<AND>. That is,
+
+ ANNULUS(20,20,0,15,n=4) & PIE(20,20,0,360,n=3)
+
+has been replaced by:
+
+ PANDA(20,20,0,360,3,0,15,4)
+
+The PROS syntax was inconsistent with the meaning of the B<AND> operator.
+
+
+
+
+=item *
+
+The meaning of pure numbers (i.e., without format specifiers) in
+regions has been clarified, as has the syntax for specifying coordinate
+systems. See the general discussion on
+Spatial Region Filtering
+for more information.
+
+
+
+=back
+
+
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut
diff --git a/funtools/doc/pod/reggeometry.pod b/funtools/doc/pod/reggeometry.pod
new file mode 100644
index 0000000..0d442d5
--- /dev/null
+++ b/funtools/doc/pod/reggeometry.pod
@@ -0,0 +1,1156 @@
+=pod
+
+=head1 NAME
+
+
+
+B<RegGeometry: Geometric Shapes in Spatial Region Filtering>
+
+
+
+=head1 SYNOPSIS
+
+
+
+
+
+This document describes the geometry of regions available for spatial
+filtering in IRAF/PROS analysis.
+
+
+
+=head1 DESCRIPTION
+
+
+
+B<Geometric shapes>
+
+Several geometric shapes are used to describe regions. The valid
+shapes are:
+
+
+ shape: arguments:
+ ----- ----------------------------------------
+ ANNULUS xcenter ycenter inner_radius outer_radius
+ BOX xcenter ycenter xwidth yheight (angle)
+ CIRCLE xcenter ycenter radius
+ ELLIPSE xcenter ycenter xwidth yheight (angle)
+ FIELD none
+ LINE x1 y1 x2 y2
+ PIE xcenter ycenter angle1 angle2
+ POINT x1 y1
+ POLYGON x1 y1 x2 y2 ... xn yn
+
+
+
+All arguments are real values; integer values are automatically
+converted to real where necessary. All angles are in degrees and
+specify angles that run counter-clockwise from the positive y-axis.
+
+
+Shapes can be specified using "command" syntax:
+
+ [shape] arg1 arg2 ...
+
+or using "routine" syntax:
+
+ [shape](arg1, arg2, ...)
+
+or by any combination of the these. (Of course, the parentheses must
+balance and there cannot be more commas than necessary.) The shape
+keywords are case-insensitive. Furthermore, any shape can be
+specified by a three-character unique abbreviation. For example, one
+can specify three circular regions as:
+
+
+ "foo.fits[CIRCLE 512 512 50;CIR(128 128, 10);cir(650,650,20)]"
+
+
+(Quotes generally are required to protect the region descriptor
+from being processed by the Unix shell.)
+
+
+
+
+The B<annulus> shape specifies annuli, centered at xcenter,
+ycenter, with inner and outer radii (r1, r2). For example,
+
+ ANNULUS 25 25 5 10
+
+specifies an annulus centered at 25.0 25.0 with an inner radius of 5.0 and
+an outer radius of 10. Assuming (as will be done for all examples in this
+document, unless otherwise noted) this shape is used in a mask of size 40x40,
+it will look like this:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:....................111111111...........
+ 33:...................11111111111..........
+ 32:.................111111111111111........
+ 31:.................111111111111111........
+ 30:................11111111111111111.......
+ 29:...............1111111.....1111111......
+ 28:...............111111.......111111......
+ 27:...............11111.........11111......
+ 26:...............11111.........11111......
+ 25:...............11111.........11111......
+ 24:...............11111.........11111......
+ 23:...............11111.........11111......
+ 22:...............111111.......111111......
+ 21:...............1111111.....1111111......
+ 20:................11111111111111111.......
+ 19:.................111111111111111........
+ 18:.................111111111111111........
+ 17:...................11111111111..........
+ 16:....................111111111...........
+ 15:........................................
+ 14:........................................
+ 13:........................................
+ 12:........................................
+ 11:........................................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:........................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+
+
+
+
+The B<box> shape specifies an orthogonally oriented box,
+centered at xcenter, ycenter, of size xwidth, yheight. It requires four
+arguments and accepts an optional fifth argument to specify a rotation angle.
+When the rotation angle is specified (in degrees), the box is rotated by
+an angle that runs counter-clockwise from the positive y-axis.
+
+
+The B<box> shape specifies a rotated box, centered at
+xcenter, ycenter, of size xwidth, yheight. The box is rotated by an angle
+specified in degrees that runs counter-clockwise from the positive y-axis.
+If the angle argument is omitted, it defaults to 0.
+
+
+
+
+The B<circle> shape specifies a circle, centered at xcenter,
+ycenter, of radius r. It requires three arguments.
+
+
+
+
+The B<ellipse> shape specifies an ellipse, centered at
+xcenter, ycenter, with y-axis width a and the y-axis length b defined such
+that:
+
+ x**2/a**2 + y**2/b**2 = 1
+
+Note that a can be less than, equal to, or greater than b. The ellipse
+is rotated the specified number of degrees. The rotation is done according
+to astronomical convention, counter-clockwise from the positive y-axis.
+An ellipse defined by:
+
+ ELLIPSE 20 20 5 10 45
+
+will look like this:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:........................................
+ 33:........................................
+ 32:........................................
+ 31:........................................
+ 30:........................................
+ 29:........................................
+ 28:........................................
+ 27:............111111......................
+ 26:............11111111....................
+ 25:............111111111...................
+ 24:............11111111111.................
+ 23:............111111111111................
+ 22:............111111111111................
+ 21:.............111111111111...............
+ 20:.............1111111111111..............
+ 19:..............111111111111..............
+ 18:...............111111111111.............
+ 17:...............111111111111.............
+ 16:................11111111111.............
+ 15:..................111111111.............
+ 14:...................11111111.............
+ 13:.....................111111.............
+ 12:........................................
+ 11:........................................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:........................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+
+
+
+
+
+The B<field> shape specifies the entire field as a
+region. It is not usually specified explicitly, but is used implicitly in the
+case where no regions are specified, that is, in cases where either a null
+string or some abbreviation of the string "none" is input.
+B<Field> takes no arguments.
+
+
+
+
+The B<pie> shape specifies an angular wedge of the entire field,
+centered at xcenter, ycenter. The wedge runs between the two specified angles.
+The angles are given in degrees, running counter-clockwise from the positive
+x-axis. For example,
+
+ PIE 20 20 90 180
+
+defines a region from 90 degrees to 180 degrees, i.e., quadrant 2 of the
+Cartesian plane. The display of such a region looks like this:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:11111111111111111111....................
+ 39:11111111111111111111....................
+ 38:11111111111111111111....................
+ 37:11111111111111111111....................
+ 36:11111111111111111111....................
+ 35:11111111111111111111....................
+ 34:11111111111111111111....................
+ 33:11111111111111111111....................
+ 32:11111111111111111111....................
+ 31:11111111111111111111....................
+ 30:11111111111111111111....................
+ 29:11111111111111111111....................
+ 28:11111111111111111111....................
+ 27:11111111111111111111....................
+ 26:11111111111111111111....................
+ 25:11111111111111111111....................
+ 24:11111111111111111111....................
+ 23:11111111111111111111....................
+ 22:11111111111111111111....................
+ 21:11111111111111111111....................
+ 20:........................................
+ 19:........................................
+ 18:........................................
+ 17:........................................
+ 16:........................................
+ 15:........................................
+ 14:........................................
+ 13:........................................
+ 12:........................................
+ 11:........................................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:........................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+The pie slice specified is always a counter-clockwise sweep between
+the angles, starting at the first angle and ending at the second. Thus:
+
+ PIE 10 15 30 60
+
+describes a 30 degree sweep from 2 o'clock to 1 o'clock, while:
+
+ PIE 10 15 60 30
+
+describes a 330 degree counter-clockwise sweep from 1 o'clock to 2 o'clock
+passing through 12 o'clock (0 degrees). Note in both of these examples that
+the center of the slice can be anywhere on the plane. The second mask looks
+like this:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:111111111111111111111111................
+ 39:11111111111111111111111.................
+ 38:11111111111111111111111.................
+ 37:1111111111111111111111..................
+ 36:1111111111111111111111..................
+ 35:111111111111111111111...................
+ 34:11111111111111111111....................
+ 33:11111111111111111111....................
+ 32:1111111111111111111....................1
+ 31:1111111111111111111..................111
+ 30:111111111111111111.................11111
+ 29:111111111111111111................111111
+ 28:11111111111111111...............11111111
+ 27:1111111111111111..............1111111111
+ 26:1111111111111111.............11111111111
+ 25:111111111111111............1111111111111
+ 24:111111111111111..........111111111111111
+ 23:11111111111111.........11111111111111111
+ 22:11111111111111........111111111111111111
+ 21:1111111111111.......11111111111111111111
+ 20:111111111111......1111111111111111111111
+ 19:111111111111....111111111111111111111111
+ 18:11111111111....1111111111111111111111111
+ 17:11111111111..111111111111111111111111111
+ 16:1111111111.11111111111111111111111111111
+ 15:1111111111111111111111111111111111111111
+ 14:1111111111111111111111111111111111111111
+ 13:1111111111111111111111111111111111111111
+ 12:1111111111111111111111111111111111111111
+ 11:1111111111111111111111111111111111111111
+ 10:1111111111111111111111111111111111111111
+ 9:1111111111111111111111111111111111111111
+ 8:1111111111111111111111111111111111111111
+ 7:1111111111111111111111111111111111111111
+ 6:1111111111111111111111111111111111111111
+ 5:1111111111111111111111111111111111111111
+ 4:1111111111111111111111111111111111111111
+ 3:1111111111111111111111111111111111111111
+ 2:1111111111111111111111111111111111111111
+ 1:1111111111111111111111111111111111111111
+
+The pie slice goes to the edge of the field. To limit its scope, pie
+usually is is combined with other shapes, such as circles and annuli,
+using boolean operations. (See below and in "help regalgebra").
+
+
+Pie Performance Notes:
+
+Pie region processing time is proportional to the size of the image,
+and not the size of the region. This is because the pie shape is the
+only infinite length shape, and we essentially must check all y rows
+for inclusion (unlike other regions, where the y limits can be
+calculated beforehand). Thus, pie can run very slowly on large images.
+In particular, it will run MUCH more slowly than the panda shape in
+image-based region operations (such as funcnts). We recommend use of
+panda over pie where ever possible.
+
+
+If you must use pie, always try to put it last in a boolean &&
+expression. The reason for this is that the filter code is optimized
+to exit as soon as the result is know. Since pie is the slowest
+region, it is better to avoid executing it if another region can decide
+the result. Consider, for example, the difference in time required to
+process a Chandra ACIS file when a pie and circle are combined in
+two different orders:
+
+
+ time ./funcnts nacis.fits "circle 4096 4096 100 && pie 4096 4096 10 78"
+2.87u 0.38s 0:35.08 9.2%
+
+ time ./funcnts nacis.fits "pie 4096 4096 10 78 && circle 4096 4096 100 "
+89.73u 0.36s 1:03.50 141.8%
+
+
+
+Black-magic performance note:
+
+
+Panda region processing uses a B<quick test> pie region instead of
+the normal pie region when combining its annulus and pie shapes. This
+B<qtpie> shape differs from the normal pie in that it utilizes the
+y limits from the previous region with which it is combined. In a
+panda shape, which is a series of annuli combined with pies, the
+processing time is thus reduced to that of the annuli.
+
+
+You can use the qtpie shape instead of pie in cases where you are
+combining pie with another shape using the && operator. This will
+cause the pie limits to be set using limits from the other shape, and
+will speed up the processing considerably. For example, the above
+execution of funcnts can be improved considerably using this technique:
+
+
+ time ./funcnts nacis.fits "circle 4096 4096 100 && qtpie 4096 4096 10 78"
+4.66u 0.33s 0:05.87 85.0%
+
+
+
+We emphasize that this is a quasi-documented feature and might change in
+the future. The qtpie shape is not recognized by ds9 or other programs.
+
+
+
+
+The B<line> shape allows single pixels in a line between (x1,y1) and
+(x2,y2) to be included or excluded. For example:
+
+ LINE (5,6, 24,25)
+
+displays as:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:........................................
+ 33:........................................
+ 32:........................................
+ 31:........................................
+ 30:........................................
+ 29:........................................
+ 28:........................................
+ 27:........................................
+ 26:........................................
+ 25:.......................1................
+ 24:......................1.................
+ 23:.....................1..................
+ 22:....................1...................
+ 21:...................1....................
+ 20:..................1.....................
+ 19:.................1......................
+ 18:................1.......................
+ 17:...............1........................
+ 16:..............1.........................
+ 15:.............1..........................
+ 14:............1...........................
+ 13:...........1............................
+ 12:..........1.............................
+ 11:.........1..............................
+ 10:........1...............................
+ 9:.......1................................
+ 8:......1.................................
+ 7:.....1..................................
+ 6:....1...................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+
+
+
+
+The B<point> shape allows single pixels to be included or
+excluded. Although the (x,y) values are real numbers, they are truncated
+to integer and the corresponding pixel is included or excluded, as specified.
+
+
+Several points can be put in one region declaration; unlike the
+original IRAF implementation, each now is given a different region mask value.
+This makes it easier, for example, for funcnts to determine the number of
+photons in the individual pixels. For example,
+
+ POINT (5,6, 10,11, 20,20, 35,30)
+
+will give the different region mask values to all four points, as shown below:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:........................................
+ 33:........................................
+ 32:........................................
+ 31:........................................
+ 30:..................................4.....
+ 29:........................................
+ 28:........................................
+ 27:........................................
+ 26:........................................
+ 25:........................................
+ 24:........................................
+ 23:........................................
+ 22:........................................
+ 21:........................................
+ 20:...................3....................
+ 19:........................................
+ 18:........................................
+ 17:........................................
+ 16:........................................
+ 15:........................................
+ 14:........................................
+ 13:........................................
+ 12:........................................
+ 11:.........2..............................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:....1...................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+
+
+
+
+The B<polygon> shape specifies a polygon with vertices
+(x1, y1) ... (xn, yn). The polygon is closed automatically: one should
+not specify the last vertex to be the same as the first. Any number of
+vertices are allowed. For example, the following polygon defines a
+right triangle as shown below:
+
+ POLYGON (10,10, 10,30, 30,30)
+
+
+looks like this:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:........................................
+ 33:........................................
+ 32:........................................
+ 31:........................................
+ 30:..........11111111111111111111..........
+ 29:..........1111111111111111111...........
+ 28:..........111111111111111111............
+ 27:..........11111111111111111.............
+ 26:..........1111111111111111..............
+ 25:..........111111111111111...............
+ 24:..........11111111111111................
+ 23:..........1111111111111.................
+ 22:..........111111111111..................
+ 21:..........11111111111...................
+ 20:..........1111111111....................
+ 19:..........111111111.....................
+ 18:..........11111111......................
+ 17:..........1111111.......................
+ 16:..........111111........................
+ 15:..........11111.........................
+ 14:..........1111..........................
+ 13:..........111...........................
+ 12:..........11............................
+ 11:..........1.............................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:........................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+Note that polygons can get twisted upon themselves if edge lines
+cross. Thus:
+
+ POL (10,10, 20,20, 20,10, 10,20)
+
+will produce an area which is two triangles, like butterfly wings, as shown
+below:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:........................................
+ 33:........................................
+ 32:........................................
+ 31:........................................
+ 30:........................................
+ 29:........................................
+ 28:........................................
+ 27:........................................
+ 26:........................................
+ 25:........................................
+ 24:........................................
+ 23:........................................
+ 22:........................................
+ 21:........................................
+ 20:........................................
+ 19:..........1........1....................
+ 18:..........11......11....................
+ 17:..........111....111....................
+ 16:..........1111..1111....................
+ 15:..........1111111111....................
+ 14:..........1111..1111....................
+ 13:..........111....111....................
+ 12:..........11......11....................
+ 11:..........1........1....................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:........................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+
+
+
+
+The following are combinations of pie with different shapes
+(called "panda" for "Pie AND Annulus") allow for easy specification of
+radial sections:
+
+ shape: arguments:
+ ----- ---------
+ PANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
+ CPANDA xcen ycen ang1 ang2 nang irad orad nrad # circular
+ BPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # box
+ EPANDA xcen ycen ang1 ang2 nang xwlo yhlo xwhi yhhi nrad (ang) # ellipse
+
+
+The B<panda> (B<P>ies B<AND> B<A>nnuli) shape can be
+used to create combinations of pie and annuli markers. It is analogous
+to a Cartesian product on those shapes, i.e., the result is several
+shapes generated by performing a boolean AND between pies and
+annuli. Thus, the panda and cpanda specify combinations of annulus and
+circle with pie, respectively and give identical results. The bpanda
+combines box and pie, while epanda combines ellipse and pie.
+
+
+Consider the example shown below:
+
+ PANDA(20,20, 0,360,3, 0,15,4)
+
+Here, 3 pie slices centered at 20, 20 are combined with 4 annuli, also
+centered at 20, 20. The result is a mask with 12 regions (displayed in
+base 16 to save characters):
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:..............44444444444...............
+ 33:............444444444444444.............
+ 32:...........88444444444444444............
+ 31:.........888844443333344444444..........
+ 30:........88888833333333333444444.........
+ 29:........88888733333333333344444.........
+ 28:.......8888877733333333333344444........
+ 27:......888887777332222233333344444.......
+ 26:......888877777622222222333334444.......
+ 25:.....88887777766622222222333334444......
+ 24:.....88887777666622222222233334444......
+ 23:.....88887777666651111222233334444......
+ 22:.....88877776666551111122223333444......
+ 21:.....88877776666555111122223333444......
+ 20:.....888777766665559999aaaabbbbccc......
+ 19:.....888777766665559999aaaabbbbccc......
+ 18:.....888777766665599999aaaabbbbccc......
+ 17:.....88887777666659999aaaabbbbcccc......
+ 16:.....888877776666aaaaaaaaabbbbcccc......
+ 15:.....888877777666aaaaaaaabbbbbcccc......
+ 14:......8888777776aaaaaaaabbbbbcccc.......
+ 13:......888887777bbaaaaabbbbbbccccc.......
+ 12:.......88888777bbbbbbbbbbbbccccc........
+ 11:........888887bbbbbbbbbbbbccccc.........
+ 10:........888888bbbbbbbbbbbcccccc.........
+ 9:.........8888ccccbbbbbcccccccc..........
+ 8:...........88ccccccccccccccc............
+ 7:............ccccccccccccccc.............
+ 6:..............ccccccccccc...............
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+
+
+
+
+Several regions with different mask values can be combined in the
+same mask. This supports comparing data from the different regions.
+(For information on how to combine different shapes into a single
+region, see "help regalgebra".) For example, consider the following
+set of regions:
+
+ ANNULUS 25 25 5 10
+ ELLIPSE 20 20 5 10 315
+ BOX 15 15 5 10
+
+The resulting mask will look as follows:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........................................
+ 35:........................................
+ 34:....................111111111...........
+ 33:...................11111111111..........
+ 32:.................111111111111111........
+ 31:.................111111111111111........
+ 30:................11111111111111111.......
+ 29:...............1111111.....1111111......
+ 28:...............111111.......111111......
+ 27:...............11111.222222..11111......
+ 26:...............111112222222..11111......
+ 25:...............111112222222..11111......
+ 24:...............111112222222..11111......
+ 23:...............111112222222..11111......
+ 22:...............111111222222.111111......
+ 21:..............211111112222.1111111......
+ 20:............322211111111111111111.......
+ 19:............32222111111111111111........
+ 18:............22222111111111111111........
+ 17:............222222211111111111..........
+ 16:............22222222111111111...........
+ 15:............222222222...................
+ 14:............22222222....................
+ 13:............222222......................
+ 12:............33333.......................
+ 11:............33333.......................
+ 10:........................................
+ 9:........................................
+ 8:........................................
+ 7:........................................
+ 6:........................................
+ 5:........................................
+ 4:........................................
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+Note that when a pixel is in 2 or more regions, it is arbitrarily
+assigned to a one of the regions in question (often based on how a
+give C compiler optimizes boolean expressions).
+
+
+B<Region accelerators>
+
+
+Two types of \fBaccelerators, to simplify region specification,
+are provided as natural extensions to the ways shapes are described.
+These are: extended lists of parameters, specifying multiple regions,
+valid for annulus, box, circle, ellipse, pie, and points; and
+B<n=>, valid for annulus, box, circle, ellipse, and pie (not
+point). In both cases, one specification is used to define several
+different regions, that is, to define shapes with different mask
+values in the region mask.
+
+
+The following regions accept B<accelerator> syntax:
+
+ shape arguments
+ ----- ------------------------------------------
+ ANNULUS xcenter ycenter radius1 radius2 ... radiusn
+ ANNULUS xcenter ycenter inner_radius outer_radius n=[number]
+ BOX xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
+ BOX xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
+ CIRCLE xcenter ycenter r1 r2 ... rn # same as annulus
+ CIRCLE xcenter ycenter rinner router n=[number] # same as annulus
+ ELLIPSE xcenter ycenter xw1 yh1 xw2 yh2 ... xwn yhn (angle)
+ ELLIPSE xcenter ycenter xwlo yhlo xwhi yhhi n=[number] (angle)
+ PIE xcenter ycenter angle1 angle2 (angle3) (angle4) (angle5) ...
+ PIE xcenter ycenter angle1 angle2 (n=[number])
+ POINT x1 y1 x2 y2 ... xn yn
+
+Note that the circle accelerators are simply aliases for the annulus
+accelerators.
+
+
+For example, several annuli at the same center can be specified in one
+region expression by specifying more than two radii. If B<N>
+radii are specified, then B<N>-1 annuli result, with the outer
+radius of each preceding annulus being the inner radius of the
+succeeding annulus. Each annulus is considered a separate region, and
+is given a separate mask value. For example,
+
+ ANNULUS 20 20 0 2 5 10 15 20
+
+specifies five different annuli centered at 20 20, and is equivalent to:
+
+ ANNULUS 20.0 20.0 0 2
+ ANNULUS 20.0 20.0 2 5
+ ANNULUS 20.0 20.0 5 10
+ ANNULUS 20.0 20.0 10 15
+ ANNULUS 20.0 20.0 15 20
+
+The mask is shown below:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:.............5555555555555..............
+ 38:...........55555555555555555............
+ 37:.........555555555555555555555..........
+ 36:........55555555555555555555555.........
+ 35:......555555555555555555555555555.......
+ 34:.....55555555544444444444555555555......
+ 33:....5555555544444444444444455555555.....
+ 32:....5555555444444444444444445555555.....
+ 31:...555555444444444444444444444555555....
+ 30:..55555544444444444444444444444555555...
+ 29:..55555544444443333333334444444555555...
+ 28:.5555554444444333333333334444444555555..
+ 27:.5555544444433333333333333344444455555..
+ 26:555555444444333333333333333444444555555.
+ 25:555554444443333333333333333344444455555.
+ 24:555554444433333332222233333334444455555.
+ 23:555554444433333322222223333334444455555.
+ 22:555554444433333222222222333334444455555.
+ 21:555554444433333222111222333334444455555.
+ 20:555554444433333222111222333334444455555.
+ 19:555554444433333222111222333334444455555.
+ 18:555554444433333222222222333334444455555.
+ 17:555554444433333322222223333334444455555.
+ 16:555554444433333332222233333334444455555.
+ 15:555554444443333333333333333344444455555.
+ 14:555555444444333333333333333444444555555.
+ 13:.5555544444433333333333333344444455555..
+ 12:.5555554444444333333333334444444555555..
+ 11:..55555544444443333333334444444555555...
+ 10:..55555544444444444444444444444555555...
+ 9:...555555444444444444444444444555555....
+ 8:....5555555444444444444444445555555.....
+ 7:....5555555544444444444444455555555.....
+ 6:.....55555555544444444444555555555......
+ 5:......555555555555555555555555555.......
+ 4:........55555555555555555555555.........
+ 3:.........555555555555555555555..........
+ 2:...........55555555555555555............
+ 1:.............5555555555555..............
+
+
+
+For boxes and ellipses, if an odd number of arguments is specified,
+then the last argument is assumed to be an angle. Otherwise, the
+angle is assumed to be zero. For example:
+
+ ellipse 20 20 3 5 6 10 9 15 12 20 45
+
+specifies an 3 ellipses at a 45 degree angle:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:........................................
+ 38:........................................
+ 37:........................................
+ 36:........33333333........................
+ 35:......333333333333......................
+ 34:.....3333333333333333...................
+ 33:....333333333333333333..................
+ 32:....33333332222233333333................
+ 31:...3333332222222222333333...............
+ 30:...33333222222222222233333..............
+ 29:...333332222222222222223333.............
+ 28:...3333222222211112222223333............
+ 27:...33332222211111111222223333...........
+ 26:...333322222111111111122223333..........
+ 25:...3333222211111111111122223333.........
+ 24:....3332222111111..1111122223333........
+ 23:....333322211111.....11112222333........
+ 22:....33332222111.......11112223333.......
+ 21:.....33322221111.......11122223333......
+ 20:.....33332221111.......11112223333......
+ 19:.....33332222111.......11112222333......
+ 18:......33332221111.......11122223333.....
+ 17:.......33322221111.....111112223333.....
+ 16:.......3333222211111..1111112222333.....
+ 15:........3333222211111111111122223333....
+ 14:.........333322221111111111222223333....
+ 13:..........33332222211111111222223333....
+ 12:...........3333222222111122222223333....
+ 11:............333322222222222222233333....
+ 10:.............33333222222222222233333....
+ 9:..............3333332222222222333333....
+ 8:...............33333333222223333333.....
+ 7:.................333333333333333333.....
+ 6:..................3333333333333333......
+ 5:.....................333333333333.......
+ 4:.......................33333333.........
+ 3:........................................
+ 2:........................................
+ 1:........................................
+
+Note in the above example that the lower limit is not part of the
+region for boxes, circles, and ellipses. This makes circles and annuli
+equivalent, i.e.:
+
+ circle 20 20 5 10 15 20
+ annulus 20 20 5 10 15 20
+
+both give the following region mask:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........................................
+ 39:.............3333333333333..............
+ 38:...........33333333333333333............
+ 37:.........333333333333333333333..........
+ 36:........33333333333333333333333.........
+ 35:......333333333333333333333333333.......
+ 34:.....33333333322222222222333333333......
+ 33:....3333333322222222222222233333333.....
+ 32:....3333333222222222222222223333333.....
+ 31:...333333222222222222222222222333333....
+ 30:..33333322222222222222222222222333333...
+ 29:..33333322222221111111112222222333333...
+ 28:.3333332222222111111111112222222333333..
+ 27:.3333322222211111111111111122222233333..
+ 26:333333222222111111111111111222222333333.
+ 25:333332222221111111111111111122222233333.
+ 24:33333222221111111.....11111112222233333.
+ 23:3333322222111111.......1111112222233333.
+ 22:333332222211111.........111112222233333.
+ 21:333332222211111.........111112222233333.
+ 20:333332222211111.........111112222233333.
+ 19:333332222211111.........111112222233333.
+ 18:333332222211111.........111112222233333.
+ 17:3333322222111111.......1111112222233333.
+ 16:33333222221111111.....11111112222233333.
+ 15:333332222221111111111111111122222233333.
+ 14:333333222222111111111111111222222333333.
+ 13:.3333322222211111111111111122222233333..
+ 12:.3333332222222111111111112222222333333..
+ 11:..33333322222221111111112222222333333...
+ 10:..33333322222222222222222222222333333...
+ 9:...333333222222222222222222222333333....
+ 8:....3333333222222222222222223333333.....
+ 7:....3333333322222222222222233333333.....
+ 6:.....33333333322222222222333333333......
+ 5:......333333333333333333333333333.......
+ 4:........33333333333333333333333.........
+ 3:.........333333333333333333333..........
+ 2:...........33333333333333333............
+ 1:.............3333333333333..............
+
+
+
+
+As a final example, specifying several angles in one pie slice
+expression is equivalent to specifying several separate slices with
+the same center. As with the annulus, if B<N> angles are
+specified, then B<N>-1 slices result, with the ending angle of
+each preceding slice being the starting angle of the succeeding slice.
+Each slice is considered a separate region, and is given a separate
+mask value. For example,
+
+ PIE 12 12 315 45 115 270
+
+specifies three regions as shown below:
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:2222222222222222222222222222222222222222
+ 39:2222222222222222222222222222222222222221
+ 38:2222222222222222222222222222222222222211
+ 37:2222222222222222222222222222222222222111
+ 36:2222222222222222222222222222222222221111
+ 35:3222222222222222222222222222222222211111
+ 34:3222222222222222222222222222222222111111
+ 33:3322222222222222222222222222222221111111
+ 32:3322222222222222222222222222222211111111
+ 31:3332222222222222222222222222222111111111
+ 30:3332222222222222222222222222221111111111
+ 29:3333222222222222222222222222211111111111
+ 28:3333222222222222222222222222111111111111
+ 27:3333322222222222222222222221111111111111
+ 26:3333322222222222222222222211111111111111
+ 25:3333322222222222222222222111111111111111
+ 24:3333332222222222222222221111111111111111
+ 23:3333332222222222222222211111111111111111
+ 22:3333333222222222222222111111111111111111
+ 21:3333333222222222222221111111111111111111
+ 20:3333333322222222222211111111111111111111
+ 19:3333333322222222222111111111111111111111
+ 18:3333333332222222221111111111111111111111
+ 17:3333333332222222211111111111111111111111
+ 16:3333333333222222111111111111111111111111
+ 15:3333333333222221111111111111111111111111
+ 14:3333333333322211111111111111111111111111
+ 13:3333333333322111111111111111111111111111
+ 12:33333333333.1111111111111111111111111111
+ 11:3333333333331111111111111111111111111111
+ 10:333333333333.111111111111111111111111111
+ 9:333333333333..11111111111111111111111111
+ 8:333333333333...1111111111111111111111111
+ 7:333333333333....111111111111111111111111
+ 6:333333333333.....11111111111111111111111
+ 5:333333333333......1111111111111111111111
+ 4:333333333333.......111111111111111111111
+ 3:333333333333........11111111111111111111
+ 2:333333333333.........1111111111111111111
+ 1:333333333333..........111111111111111111
+
+
+
+The annulus, box, circle, ellipse, and pie shapes also accept an
+B<n=[int]> syntax for specifying multiple regions. The
+B<n=[int]>syntax interprets the previous (shape-dependent)
+arguments as lower and upper limits for the region and creates n
+shapes with evenly spaced boundaries. For example, if B<n=[int]>
+is specified in an annulus, the two immediately preceding radii
+(B<rn> and B<rm>) are divided into B<int> annuli, such
+that the inner radius of the first is B<rn> and the outer radius
+of the last is B<rm>. For example,
+
+ ANNULUS 20 20 5 20 n=3
+
+is equivalent to:
+
+ ANNULUS 20 20 5 10 15 20
+
+If this syntax is used with an ellipse or box, then the two preceding
+pairs of values are taken to be lower and upper limits for a set of
+ellipses or boxes. A circle uses the two preceding arguments for upper
+and lower radii. For pie, the two preceding angles are divided into n
+wedges such that the starting angle of the first is the lower bound
+and the ending angle of the last is the upper bound. In all cases,
+the B<n=[int]> syntax allows any single alphabetic character
+before the "=", i.e, i=3, z=3, etc. are all equivalent.
+
+
+Also note that for boxes and ellipses, the optional angle argument is
+always specified after the B<n=[int]> syntax. For example:
+
+ ellipse 20 20 4 6 16 24 n=3 45
+
+specifies 3 elliptical regions at an angle of 45 degrees:
+
+
+ 1234567890123456789012345678901234567890
+ ----------------------------------------
+ 40:........33333333........................
+ 39:.....33333333333333.....................
+ 38:....33333333333333333...................
+ 37:...33333333333333333333.................
+ 36:..33333333333333333333333...............
+ 35:.3333333333222223333333333..............
+ 34:3333333322222222222233333333............
+ 33:33333332222222222222223333333...........
+ 32:333333222222222222222222333333..........
+ 31:3333322222222222222222222333333.........
+ 30:33333222222222111122222222333333........
+ 29:333332222222111111112222222333333.......
+ 28:3333222222211111111111222222333333......
+ 27:3333222222111111111111112222233333......
+ 26:33332222221111111111111112222233333.....
+ 25:33332222211111111.111111112222233333....
+ 24:333322222111111......111111222223333....
+ 23:333322222111111.......111112222233333...
+ 22:33333222221111.........11111222223333...
+ 21:333332222211111.........11112222233333..
+ 20:.33332222211111.........11111222223333..
+ 19:.33333222221111.........111112222233333.
+ 18:..33332222211111.........11112222233333.
+ 17:..333332222211111.......111111222233333.
+ 16:...333322222111111......111111222223333.
+ 15:...333332222211111111.111111112222233333
+ 14:....333332222211111111111111122222233333
+ 13:.....33333222221111111111111122222233333
+ 12:.....33333322222211111111111222222233333
+ 11:......3333332222222111111112222222333333
+ 10:.......333333222222221111222222222333333
+ 9:........33333322222222222222222222333333
+ 8:.........333333222222222222222222333333.
+ 7:..........33333332222222222222223333333.
+ 6:...........3333333322222222222233333333.
+ 5:.............3333333333222223333333333..
+ 4:..............33333333333333333333333...
+ 3:................33333333333333333333....
+ 2:..................33333333333333333.....
+ 1:....................33333333333333......
+
+
+
+Both the variable argument syntax and the B<n=[int]> syntax must
+occur alone in a region descriptor (aside from the optional angle for
+boxes and ellipses). They cannot be combined. Thus, it is not valid
+to precede or follow an B<n=[int]> accelerator with more angles or
+radii, as in this example:
+
+ # INVALID -- one too many angles before a=5 ...
+ # and no angles are allowed after a=5
+ PIE 12 12 10 25 50 a=5 85 135
+
+Instead, use three separate specifications, such as:
+
+ PIE 12 12 10 25
+ PIE 12 12 25 50 a=5
+ PIE 12 12 85 135
+
+The original (IRAF) implementation of region filtering permitted this
+looser syntax, but we found it caused more confusion than it was worth
+and therefore removed it.
+
+
+NB: Accelerators may be combined with other shapes in a boolean
+expression in any order. (This is a change starting with funtools
+v1.1.1. Prior to this release, the accelerator shape had to be
+specified last). The actual region mask id values returned depend on the
+order in which the shapes are specified, although the total number of
+pixels or rows that pass the filter will be consistent. For this
+reason, use of accelerators in boolean expressions is discouraged in
+programs such as funcnts, where region mask id values are used
+to count events or image pixels.
+
+
+[All region masks displayed in this document were generated using the
+B<fundisp> routine and the undocumented "mask=all" argument (with
+spaced removed using sed ):
+
+ fundisp "funtools/funtest/test40.fits[ANNULUS 25 25 5 10]" mask=all |\
+ sed 's/ //g'
+
+Note that you must supply an image of the appropriate size -- in this case,
+a FITS image of dimension 40x40 is used.]
+
+
+
+=head1 SEE ALSO
+
+
+
+See funtools(n) for a list of Funtools help pages
+
+
+
+=cut