summaryrefslogtreecommitdiffstats
path: root/Lib/turtledemo
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/turtledemo')
-rw-r--r--Lib/turtledemo/__init__.py0
-rw-r--r--Lib/turtledemo/about_turtle.txt76
-rw-r--r--Lib/turtledemo/about_turtledemo.txt13
-rw-r--r--Lib/turtledemo/bytedesign.py162
-rw-r--r--Lib/turtledemo/chaos.py59
-rw-r--r--Lib/turtledemo/clock.py132
-rw-r--r--Lib/turtledemo/colormixer.py60
-rw-r--r--Lib/turtledemo/demohelp.txt75
-rw-r--r--Lib/turtledemo/forest.py109
-rw-r--r--Lib/turtledemo/fractalcurves.py138
-rw-r--r--Lib/turtledemo/minimal_hanoi.py76
-rw-r--r--Lib/turtledemo/nim.py226
-rw-r--r--Lib/turtledemo/paint.py50
-rw-r--r--Lib/turtledemo/peace.py65
-rw-r--r--Lib/turtledemo/penrose.py181
-rw-r--r--Lib/turtledemo/planet_and_moon.py113
-rw-r--r--Lib/turtledemo/round_dance.py86
-rw-r--r--Lib/turtledemo/tree.py63
-rw-r--r--Lib/turtledemo/turtle.cfg10
-rw-r--r--Lib/turtledemo/two_canvases.py52
-rw-r--r--Lib/turtledemo/wikipedia.py65
-rw-r--r--Lib/turtledemo/yinyang.py49
22 files changed, 1860 insertions, 0 deletions
diff --git a/Lib/turtledemo/__init__.py b/Lib/turtledemo/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/Lib/turtledemo/__init__.py
diff --git a/Lib/turtledemo/about_turtle.txt b/Lib/turtledemo/about_turtle.txt
new file mode 100644
index 0000000..e4ba217
--- /dev/null
+++ b/Lib/turtledemo/about_turtle.txt
@@ -0,0 +1,76 @@
+
+========================================================
+ A new turtle module for Python
+========================================================
+
+Turtle graphics is a popular way for introducing programming to
+kids. It was part of the original Logo programming language developed
+by Wally Feurzig and Seymour Papert in 1966.
+
+Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it
+the command turtle.forward(15), and it moves (on-screen!) 15 pixels in
+the direction it is facing, drawing a line as it moves. Give it the
+command turtle.left(25), and it rotates in-place 25 degrees clockwise.
+
+By combining together these and similar commands, intricate shapes and
+pictures can easily be drawn.
+
+----- turtle.py
+
+This module is an extended reimplementation of turtle.py from the
+Python standard distribution up to Python 2.5. (See: http:\\www.python.org)
+
+It tries to keep the merits of turtle.py and to be (nearly) 100%
+compatible with it. This means in the first place to enable the
+learning programmer to use all the commands, classes and methods
+interactively when using the module from within IDLE run with
+the -n switch.
+
+Roughly it has the following features added:
+
+- Better animation of the turtle movements, especially of turning the
+ turtle. So the turtles can more easily be used as a visual feedback
+ instrument by the (beginning) programmer.
+
+- Different turtle shapes, gif-images as turtle shapes, user defined
+ and user controllable turtle shapes, among them compound
+ (multicolored) shapes. Turtle shapes can be stgretched and tilted, which
+ makes turtles zu very versatile geometrical objects.
+
+- Fine control over turtle movement and screen updates via delay(),
+ and enhanced tracer() and speed() methods.
+
+- Aliases for the most commonly used commands, like fd for forward etc.,
+ following the early Logo traditions. This reduces the boring work of
+ typing long sequences of commands, which often occur in a natural way
+ when kids try to program fancy pictures on their first encounter with
+ turtle graphcis.
+
+- Turtles now have an undo()-method with configurable undo-buffer.
+
+- Some simple commands/methods for creating event driven programs
+ (mouse-, key-, timer-events). Especially useful for programming games.
+
+- A scrollable Canvas class. The default scrollable Canvas can be
+ extended interactively as needed while playing around with the turtle(s).
+
+- A TurtleScreen class with methods controlling background color or
+ background image, window and canvas size and other properties of the
+ TurtleScreen.
+
+- There is a method, setworldcoordinates(), to install a user defined
+ coordinate-system for the TurtleScreen.
+
+- The implementation uses a 2-vector class named Vec2D, derived from tuple.
+ This class is public, so it can be imported by the application programmer,
+ which makes certain types of computations very natural and compact.
+
+- Appearance of the TurtleScreen and the Turtles at startup/import can be
+ configured by means of a turtle.cfg configuration file.
+ The default configuration mimics the appearance of the old turtle module.
+
+- If configured appropriately the module reads in docstrings from a docstring
+ dictionary in some different language, supplied separately and replaces
+ the english ones by those read in. There is a utility function
+ write_docstringdict() to write a dictionary with the original (english)
+ docstrings to disc, so it can serve as a template for translations.
diff --git a/Lib/turtledemo/about_turtledemo.txt b/Lib/turtledemo/about_turtledemo.txt
new file mode 100644
index 0000000..54c25a5
--- /dev/null
+++ b/Lib/turtledemo/about_turtledemo.txt
@@ -0,0 +1,13 @@
+
+ --------------------------------------
+ About turtleDemo.py
+ --------------------------------------
+
+ Tiny demo Viewer to view turtle graphics example scripts.
+
+ Quickly and dirtyly assembled by Gregor Lingl.
+ June, 2006
+
+ For more information see: turtleDemo - Help
+
+ Have fun!
diff --git a/Lib/turtledemo/bytedesign.py b/Lib/turtledemo/bytedesign.py
new file mode 100644
index 0000000..96118b3
--- /dev/null
+++ b/Lib/turtledemo/bytedesign.py
@@ -0,0 +1,162 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_bytedesign.py
+
+An example adapted from the example-suite
+of PythonCard's turtle graphcis.
+
+It's based on an article in BYTE magazine
+Problem Solving with Logo: Using Turtle
+Graphics to Redraw a Design
+November 1982, p. 118 - 134
+
+-------------------------------------------
+
+Due to the statement
+
+t.delay(0)
+
+in line 152, which sets the animation delay
+to 0, this animation runs in "line per line"
+mode as fast as possible.
+"""
+
+import math
+from turtle import Turtle, mainloop
+from time import clock
+
+# wrapper for any additional drawing routines
+# that need to know about each other
+class Designer(Turtle):
+
+ def design(self, homePos, scale):
+ self.up()
+ for i in range(5):
+ self.forward(64.65 * scale)
+ self.down()
+ self.wheel(self.position(), scale)
+ self.up()
+ self.backward(64.65 * scale)
+ self.right(72)
+ self.up()
+ self.goto(homePos)
+ self.right(36)
+ self.forward(24.5 * scale)
+ self.right(198)
+ self.down()
+ self.centerpiece(46 * scale, 143.4, scale)
+ self.getscreen().tracer(True)
+
+ def wheel(self, initpos, scale):
+ self.right(54)
+ for i in range(4):
+ self.pentpiece(initpos, scale)
+ self.down()
+ self.left(36)
+ for i in range(5):
+ self.tripiece(initpos, scale)
+ self.left(36)
+ for i in range(5):
+ self.down()
+ self.right(72)
+ self.forward(28 * scale)
+ self.up()
+ self.backward(28 * scale)
+ self.left(54)
+ self.getscreen().update()
+
+ def tripiece(self, initpos, scale):
+ oldh = self.heading()
+ self.down()
+ self.backward(2.5 * scale)
+ self.tripolyr(31.5 * scale, scale)
+ self.up()
+ self.goto(initpos)
+ self.setheading(oldh)
+ self.down()
+ self.backward(2.5 * scale)
+ self.tripolyl(31.5 * scale, scale)
+ self.up()
+ self.goto(initpos)
+ self.setheading(oldh)
+ self.left(72)
+ self.getscreen().update()
+
+ def pentpiece(self, initpos, scale):
+ oldh = self.heading()
+ self.up()
+ self.forward(29 * scale)
+ self.down()
+ for i in range(5):
+ self.forward(18 * scale)
+ self.right(72)
+ self.pentr(18 * scale, 75, scale)
+ self.up()
+ self.goto(initpos)
+ self.setheading(oldh)
+ self.forward(29 * scale)
+ self.down()
+ for i in range(5):
+ self.forward(18 * scale)
+ self.right(72)
+ self.pentl(18 * scale, 75, scale)
+ self.up()
+ self.goto(initpos)
+ self.setheading(oldh)
+ self.left(72)
+ self.getscreen().update()
+
+ def pentl(self, side, ang, scale):
+ if side < (2 * scale): return
+ self.forward(side)
+ self.left(ang)
+ self.pentl(side - (.38 * scale), ang, scale)
+
+ def pentr(self, side, ang, scale):
+ if side < (2 * scale): return
+ self.forward(side)
+ self.right(ang)
+ self.pentr(side - (.38 * scale), ang, scale)
+
+ def tripolyr(self, side, scale):
+ if side < (4 * scale): return
+ self.forward(side)
+ self.right(111)
+ self.forward(side / 1.78)
+ self.right(111)
+ self.forward(side / 1.3)
+ self.right(146)
+ self.tripolyr(side * .75, scale)
+
+ def tripolyl(self, side, scale):
+ if side < (4 * scale): return
+ self.forward(side)
+ self.left(111)
+ self.forward(side / 1.78)
+ self.left(111)
+ self.forward(side / 1.3)
+ self.left(146)
+ self.tripolyl(side * .75, scale)
+
+ def centerpiece(self, s, a, scale):
+ self.forward(s); self.left(a)
+ if s < (7.5 * scale):
+ return
+ self.centerpiece(s - (1.2 * scale), a, scale)
+
+def main():
+ t = Designer()
+ t.speed(0)
+ t.hideturtle()
+ t.getscreen().delay(0)
+ t.getscreen().tracer(0)
+ at = clock()
+ t.design(t.position(), 2)
+ et = clock()
+ return "runtime: %.2f sec." % (et-at)
+
+if __name__ == '__main__':
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/chaos.py b/Lib/turtledemo/chaos.py
new file mode 100644
index 0000000..d4656f8
--- /dev/null
+++ b/Lib/turtledemo/chaos.py
@@ -0,0 +1,59 @@
+# File: tdemo_chaos.py
+# Author: Gregor Lingl
+# Date: 2009-06-24
+
+# A demonstration of chaos
+
+from turtle import *
+
+N = 80
+
+def f(x):
+ return 3.9*x*(1-x)
+
+def g(x):
+ return 3.9*(x-x**2)
+
+def h(x):
+ return 3.9*x-3.9*x*x
+
+def jumpto(x, y):
+ penup(); goto(x,y)
+
+def line(x1, y1, x2, y2):
+ jumpto(x1, y1)
+ pendown()
+ goto(x2, y2)
+
+def coosys():
+ line(-1, 0, N+1, 0)
+ line(0, -0.1, 0, 1.1)
+
+def plot(fun, start, colour):
+ pencolor(colour)
+ x = start
+ jumpto(0, x)
+ pendown()
+ dot(5)
+ for i in range(N):
+ x=fun(x)
+ goto(i+1,x)
+ dot(5)
+
+def main():
+ reset()
+ setworldcoordinates(-1.0,-0.1, N+1, 1.1)
+ speed(0)
+ hideturtle()
+ coosys()
+ plot(f, 0.35, "blue")
+ plot(g, 0.35, "green")
+ plot(h, 0.35, "red")
+ # Now zoom in:
+ for s in range(100):
+ setworldcoordinates(0.5*s,-0.1, N+1, 1.1)
+ return "Done!"
+
+if __name__ == "__main__":
+ main()
+ mainloop()
diff --git a/Lib/turtledemo/clock.py b/Lib/turtledemo/clock.py
new file mode 100644
index 0000000..a0d157b
--- /dev/null
+++ b/Lib/turtledemo/clock.py
@@ -0,0 +1,132 @@
+#!/usr/bin/env python3
+# -*- coding: cp1252 -*-
+""" turtle-example-suite:
+
+ tdemo_clock.py
+
+Enhanced clock-program, showing date
+and time
+ ------------------------------------
+ Press STOP to exit the program!
+ ------------------------------------
+"""
+from turtle import *
+from datetime import datetime
+
+mode("logo")
+
+def jump(distanz, winkel=0):
+ penup()
+ right(winkel)
+ forward(distanz)
+ left(winkel)
+ pendown()
+
+def hand(laenge, spitze):
+ fd(laenge*1.15)
+ rt(90)
+ fd(spitze/2.0)
+ lt(120)
+ fd(spitze)
+ lt(120)
+ fd(spitze)
+ lt(120)
+ fd(spitze/2.0)
+
+def make_hand_shape(name, laenge, spitze):
+ reset()
+ jump(-laenge*0.15)
+ begin_poly()
+ hand(laenge, spitze)
+ end_poly()
+ hand_form = get_poly()
+ register_shape(name, hand_form)
+
+
+def clockface(radius):
+ reset()
+ pensize(7)
+ for i in range(60):
+ jump(radius)
+ if i % 5 == 0:
+ fd(25)
+ jump(-radius-25)
+ else:
+ dot(3)
+ jump(-radius)
+ rt(6)
+
+def setup():
+ global second_hand, minute_hand, hour_hand, writer
+ mode("logo")
+ make_hand_shape("second_hand", 125, 25)
+ make_hand_shape("minute_hand", 130, 25)
+ make_hand_shape("hour_hand", 90, 25)
+ clockface(160)
+ second_hand = Turtle()
+ second_hand.shape("second_hand")
+ second_hand.color("gray20", "gray80")
+ minute_hand = Turtle()
+ minute_hand.shape("minute_hand")
+ minute_hand.color("blue1", "red1")
+ hour_hand = Turtle()
+ hour_hand.shape("hour_hand")
+ hour_hand.color("blue3", "red3")
+ for hand in second_hand, minute_hand, hour_hand:
+ hand.resizemode("user")
+ hand.shapesize(1, 1, 3)
+ hand.speed(0)
+ ht()
+ writer = Turtle()
+ #writer.mode("logo")
+ writer.ht()
+ writer.pu()
+ writer.bk(85)
+
+
+def wochentag(t):
+ wochentag = ["Monday", "Tuesday", "Wednesday",
+ "Thursday", "Friday", "Saturday", "Sunday"]
+ return wochentag[t.weekday()]
+
+def datum(z):
+ monat = ["Jan.", "Feb.", "Mar.", "Apr.", "May", "June",
+ "July", "Aug.", "Sep.", "Oct.", "Nov.", "Dec."]
+ j = z.year
+ m = monat[z.month - 1]
+ t = z.day
+ return "%s %d %d" % (m, t, j)
+
+def tick():
+ t = datetime.today()
+ sekunde = t.second + t.microsecond*0.000001
+ minute = t.minute + sekunde/60.0
+ stunde = t.hour + minute/60.0
+ tracer(False)
+ writer.clear()
+ writer.home()
+ writer.forward(65)
+ writer.write(wochentag(t),
+ align="center", font=("Courier", 14, "bold"))
+ writer.back(150)
+ writer.write(datum(t),
+ align="center", font=("Courier", 14, "bold"))
+ writer.forward(85)
+ tracer(True)
+ second_hand.setheading(6*sekunde)
+ minute_hand.setheading(6*minute)
+ hour_hand.setheading(30*stunde)
+ tracer(True)
+ ontimer(tick, 100)
+
+def main():
+ tracer(False)
+ setup()
+ tracer(True)
+ tick()
+ return "EVENTLOOP"
+
+if __name__ == "__main__":
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/colormixer.py b/Lib/turtledemo/colormixer.py
new file mode 100644
index 0000000..f5d308d
--- /dev/null
+++ b/Lib/turtledemo/colormixer.py
@@ -0,0 +1,60 @@
+# colormixer
+
+from turtle import Screen, Turtle, mainloop
+import sys
+sys.setrecursionlimit(20000) # overcomes, for now, an instability of Python 3.0
+
+class ColorTurtle(Turtle):
+
+ def __init__(self, x, y):
+ Turtle.__init__(self)
+ self.shape("turtle")
+ self.resizemode("user")
+ self.shapesize(3,3,5)
+ self.pensize(10)
+ self._color = [0,0,0]
+ self.x = x
+ self._color[x] = y
+ self.color(self._color)
+ self.speed(0)
+ self.left(90)
+ self.pu()
+ self.goto(x,0)
+ self.pd()
+ self.sety(1)
+ self.pu()
+ self.sety(y)
+ self.pencolor("gray25")
+ self.ondrag(self.shift)
+
+ def shift(self, x, y):
+ self.sety(max(0,min(y,1)))
+ self._color[self.x] = self.ycor()
+ self.fillcolor(self._color)
+ setbgcolor()
+
+def setbgcolor():
+ screen.bgcolor(red.ycor(), green.ycor(), blue.ycor())
+
+def main():
+ global screen, red, green, blue
+ screen = Screen()
+ screen.delay(0)
+ screen.setworldcoordinates(-1, -0.3, 3, 1.3)
+
+ red = ColorTurtle(0, .5)
+ green = ColorTurtle(1, .5)
+ blue = ColorTurtle(2, .5)
+ setbgcolor()
+
+ writer = Turtle()
+ writer.ht()
+ writer.pu()
+ writer.goto(1,1.15)
+ writer.write("DRAG!",align="center",font=("Arial",30,("bold","italic")))
+ return "EVENTLOOP"
+
+if __name__ == "__main__":
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/demohelp.txt b/Lib/turtledemo/demohelp.txt
new file mode 100644
index 0000000..5683875
--- /dev/null
+++ b/Lib/turtledemo/demohelp.txt
@@ -0,0 +1,75 @@
+
+
+ ----------------------------------------------
+
+ turtleDemo - Help
+
+ ----------------------------------------------
+
+ This document has two sections:
+
+ (1) How to use the demo viewer
+ (2) How to add your own demos to the demo repository
+
+
+ (1) How to use the demo viewer.
+
+ Select a demoscript from the example menu.
+ The (syntax coloured) source code appears in the left
+ source code window. IT CANNOT BE EDITED, but ONLY VIEWED!
+
+ - Press START button to start the demo.
+ - Stop execution by pressing the STOP button.
+ - Clear screen by pressing the CLEAR button.
+ - Restart by pressing the START button again.
+
+ SPECIAL demos are those which run EVENTDRIVEN.
+ (For example clock.py - or oldTurtleDemo.py which
+ in the end expects a mouse click.):
+
+ Press START button to start the demo.
+
+ - Until the EVENTLOOP is entered everything works
+ as in an ordinary demo script.
+
+ - When the EVENTLOOP is entered, you control the
+ application by using the mouse and/or keys (or it's
+ controlled by some timer events)
+ To stop it you can and must press the STOP button.
+
+ While the EVENTLOOP is running, the examples menu is disabled.
+
+ - Only after having pressed the STOP button, you may
+ restart it or choose another example script.
+
+ * * * * * * * *
+ In some rare situations there may occur interferences/conflicts
+ between events concerning the demo script and those concerning the
+ demo-viewer. (They run in the same process.) Strange behaviour may be
+ the consequence and in the worst case you must close and restart the
+ viewer.
+ * * * * * * * *
+
+
+ (2) How to add your own demos to the demo repository
+
+ - scriptname: must begin with tdemo_ ,
+ so it must have the form tdemo_<your-script-name>.py
+
+ - place: same directory as turtleDemo.py or some
+ subdirectory, the name of which must also begin with
+ tdemo_.....
+
+ - requirements on source code:
+ code must contain a main() function which will
+ be executed by the viewer (see provided example scripts)
+ main() may return a string which will be displayed
+ in the Label below the source code window (when execution
+ has finished.)
+
+ !! For programs, which are EVENT DRIVEN, main must return
+ !! the string "EVENTLOOP". This informs the viewer, that the
+ !! script is still running and must be stopped by the user!
+
+
+
diff --git a/Lib/turtledemo/forest.py b/Lib/turtledemo/forest.py
new file mode 100644
index 0000000..a837d84
--- /dev/null
+++ b/Lib/turtledemo/forest.py
@@ -0,0 +1,109 @@
+#!/usr/bin/env python3
+""" turtlegraphics-example-suite:
+
+ tdemo_forest.py
+
+Displays a 'forest' of 3 'breadth-first-trees'
+similar to the one from example tree.
+For further remarks see xtx_tree.py
+
+This example is a 'breadth-first'-rewrite of
+a Logo program written by Erich Neuwirth. See:
+http://homepage.univie.ac.at/erich.neuwirth/
+"""
+from turtle import Turtle, colormode, tracer, mainloop
+from random import randrange
+from time import clock
+
+def symRandom(n):
+ return randrange(-n,n+1)
+
+def randomize( branchlist, angledist, sizedist ):
+ return [ (angle+symRandom(angledist),
+ sizefactor*1.01**symRandom(sizedist))
+ for angle, sizefactor in branchlist ]
+
+def randomfd( t, distance, parts, angledist ):
+ for i in range(parts):
+ t.left(symRandom(angledist))
+ t.forward( (1.0 * distance)/parts )
+
+def tree(tlist, size, level, widthfactor, branchlists, angledist=10, sizedist=5):
+ # benutzt Liste von turtles und Liste von Zweiglisten,
+ # fuer jede turtle eine!
+ if level > 0:
+ lst = []
+ brs = []
+ for t, branchlist in list(zip(tlist,branchlists)):
+ t.pensize( size * widthfactor )
+ t.pencolor( 255 - (180 - 11 * level + symRandom(15)),
+ 180 - 11 * level + symRandom(15),
+ 0 )
+ t.pendown()
+ randomfd(t, size, level, angledist )
+ yield 1
+ for angle, sizefactor in branchlist:
+ t.left(angle)
+ lst.append(t.clone())
+ brs.append(randomize(branchlist, angledist, sizedist))
+ t.right(angle)
+ for x in tree(lst, size*sizefactor, level-1, widthfactor, brs,
+ angledist, sizedist):
+ yield None
+
+
+def start(t,x,y):
+ colormode(255)
+ t.reset()
+ t.speed(0)
+ t.hideturtle()
+ t.left(90)
+ t.penup()
+ t.setpos(x,y)
+ t.pendown()
+
+def doit1(level, pen):
+ pen.hideturtle()
+ start(pen, 20, -208)
+ t = tree( [pen], 80, level, 0.1, [[ (45,0.69), (0,0.65), (-45,0.71) ]] )
+ return t
+
+def doit2(level, pen):
+ pen.hideturtle()
+ start(pen, -135, -130)
+ t = tree( [pen], 120, level, 0.1, [[ (45,0.69), (-45,0.71) ]] )
+ return t
+
+def doit3(level, pen):
+ pen.hideturtle()
+ start(pen, 190, -90)
+ t = tree( [pen], 100, level, 0.1, [[ (45,0.7), (0,0.72), (-45,0.65) ]] )
+ return t
+
+# Hier 3 Baumgeneratoren:
+def main():
+ p = Turtle()
+ p.ht()
+ tracer(75,0)
+ u = doit1(6, Turtle(undobuffersize=1))
+ s = doit2(7, Turtle(undobuffersize=1))
+ t = doit3(5, Turtle(undobuffersize=1))
+ a = clock()
+ while True:
+ done = 0
+ for b in u,s,t:
+ try:
+ b.__next__()
+ except:
+ done += 1
+ if done == 3:
+ break
+
+ tracer(1,10)
+ b = clock()
+ return "runtime: %.2f sec." % (b-a)
+
+if __name__ == '__main__':
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/fractalcurves.py b/Lib/turtledemo/fractalcurves.py
new file mode 100644
index 0000000..c49f8b8
--- /dev/null
+++ b/Lib/turtledemo/fractalcurves.py
@@ -0,0 +1,138 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_fractalCurves.py
+
+This program draws two fractal-curve-designs:
+(1) A hilbert curve (in a box)
+(2) A combination of Koch-curves.
+
+The CurvesTurtle class and the fractal-curve-
+methods are taken from the PythonCard example
+scripts for turtle-graphics.
+"""
+from turtle import *
+from time import sleep, clock
+
+class CurvesTurtle(Pen):
+ # example derived from
+ # Turtle Geometry: The Computer as a Medium for Exploring Mathematics
+ # by Harold Abelson and Andrea diSessa
+ # p. 96-98
+ def hilbert(self, size, level, parity):
+ if level == 0:
+ return
+ # rotate and draw first subcurve with opposite parity to big curve
+ self.left(parity * 90)
+ self.hilbert(size, level - 1, -parity)
+ # interface to and draw second subcurve with same parity as big curve
+ self.forward(size)
+ self.right(parity * 90)
+ self.hilbert(size, level - 1, parity)
+ # third subcurve
+ self.forward(size)
+ self.hilbert(size, level - 1, parity)
+ # fourth subcurve
+ self.right(parity * 90)
+ self.forward(size)
+ self.hilbert(size, level - 1, -parity)
+ # a final turn is needed to make the turtle
+ # end up facing outward from the large square
+ self.left(parity * 90)
+
+ # Visual Modeling with Logo: A Structural Approach to Seeing
+ # by James Clayson
+ # Koch curve, after Helge von Koch who introduced this geometric figure in 1904
+ # p. 146
+ def fractalgon(self, n, rad, lev, dir):
+ import math
+
+ # if dir = 1 turn outward
+ # if dir = -1 turn inward
+ edge = 2 * rad * math.sin(math.pi / n)
+ self.pu()
+ self.fd(rad)
+ self.pd()
+ self.rt(180 - (90 * (n - 2) / n))
+ for i in range(n):
+ self.fractal(edge, lev, dir)
+ self.rt(360 / n)
+ self.lt(180 - (90 * (n - 2) / n))
+ self.pu()
+ self.bk(rad)
+ self.pd()
+
+ # p. 146
+ def fractal(self, dist, depth, dir):
+ if depth < 1:
+ self.fd(dist)
+ return
+ self.fractal(dist / 3, depth - 1, dir)
+ self.lt(60 * dir)
+ self.fractal(dist / 3, depth - 1, dir)
+ self.rt(120 * dir)
+ self.fractal(dist / 3, depth - 1, dir)
+ self.lt(60 * dir)
+ self.fractal(dist / 3, depth - 1, dir)
+
+def main():
+ ft = CurvesTurtle()
+
+ ft.reset()
+ ft.speed(0)
+ ft.ht()
+ ft.getscreen().tracer(1,0)
+ ft.pu()
+
+ size = 6
+ ft.setpos(-33*size, -32*size)
+ ft.pd()
+
+ ta=clock()
+ ft.fillcolor("red")
+ ft.begin_fill()
+ ft.fd(size)
+
+ ft.hilbert(size, 6, 1)
+
+ # frame
+ ft.fd(size)
+ for i in range(3):
+ ft.lt(90)
+ ft.fd(size*(64+i%2))
+ ft.pu()
+ for i in range(2):
+ ft.fd(size)
+ ft.rt(90)
+ ft.pd()
+ for i in range(4):
+ ft.fd(size*(66+i%2))
+ ft.rt(90)
+ ft.end_fill()
+ tb=clock()
+ res = "Hilbert: %.2fsec. " % (tb-ta)
+
+ sleep(3)
+
+ ft.reset()
+ ft.speed(0)
+ ft.ht()
+ ft.getscreen().tracer(1,0)
+
+ ta=clock()
+ ft.color("black", "blue")
+ ft.begin_fill()
+ ft.fractalgon(3, 250, 4, 1)
+ ft.end_fill()
+ ft.begin_fill()
+ ft.color("red")
+ ft.fractalgon(3, 200, 4, -1)
+ ft.end_fill()
+ tb=clock()
+ res += "Koch: %.2fsec." % (tb-ta)
+ return res
+
+if __name__ == '__main__':
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/minimal_hanoi.py b/Lib/turtledemo/minimal_hanoi.py
new file mode 100644
index 0000000..cfb78dc
--- /dev/null
+++ b/Lib/turtledemo/minimal_hanoi.py
@@ -0,0 +1,76 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_minimal_hanoi.py
+
+A minimal 'Towers of Hanoi' animation:
+A tower of 6 discs is transferred from the
+left to the right peg.
+
+An imho quite elegant and concise
+implementation using a tower class, which
+is derived from the built-in type list.
+
+Discs are turtles with shape "square", but
+stretched to rectangles by shapesize()
+ ---------------------------------------
+ To exit press STOP button
+ ---------------------------------------
+"""
+from turtle import *
+
+class Disc(Turtle):
+ def __init__(self, n):
+ Turtle.__init__(self, shape="square", visible=False)
+ self.pu()
+ self.shapesize(1.5, n*1.5, 2) # square-->rectangle
+ self.fillcolor(n/6., 0, 1-n/6.)
+ self.st()
+
+class Tower(list):
+ "Hanoi tower, a subclass of built-in type list"
+ def __init__(self, x):
+ "create an empty tower. x is x-position of peg"
+ self.x = x
+ def push(self, d):
+ d.setx(self.x)
+ d.sety(-150+34*len(self))
+ self.append(d)
+ def pop(self):
+ d = list.pop(self)
+ d.sety(150)
+ return d
+
+def hanoi(n, from_, with_, to_):
+ if n > 0:
+ hanoi(n-1, from_, to_, with_)
+ to_.push(from_.pop())
+ hanoi(n-1, with_, from_, to_)
+
+def play():
+ onkey(None,"space")
+ clear()
+ hanoi(6, t1, t2, t3)
+ write("press STOP button to exit",
+ align="center", font=("Courier", 16, "bold"))
+
+def main():
+ global t1, t2, t3
+ ht(); penup(); goto(0, -225) # writer turtle
+ t1 = Tower(-250)
+ t2 = Tower(0)
+ t3 = Tower(250)
+ # make tower of 6 discs
+ for i in range(6,0,-1):
+ t1.push(Disc(i))
+ # prepare spartanic user interface ;-)
+ write("press spacebar to start game",
+ align="center", font=("Courier", 16, "bold"))
+ onkey(play, "space")
+ listen()
+ return "EVENTLOOP"
+
+if __name__=="__main__":
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/nim.py b/Lib/turtledemo/nim.py
new file mode 100644
index 0000000..792ba51
--- /dev/null
+++ b/Lib/turtledemo/nim.py
@@ -0,0 +1,226 @@
+""" turtle-example-suite:
+
+ tdemo_nim.py
+
+Play nim against the computer. The player
+who takes the last stick is the winner.
+
+Implements the model-view-controller
+design pattern.
+"""
+
+
+import turtle
+import random
+import time
+
+SCREENWIDTH = 640
+SCREENHEIGHT = 480
+
+MINSTICKS = 7
+MAXSTICKS = 31
+
+HUNIT = SCREENHEIGHT // 12
+WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
+
+SCOLOR = (63, 63, 31)
+HCOLOR = (255, 204, 204)
+COLOR = (204, 204, 255)
+
+def randomrow():
+ return random.randint(MINSTICKS, MAXSTICKS)
+
+def computerzug(state):
+ xored = state[0] ^ state[1] ^ state[2]
+ if xored == 0:
+ return randommove(state)
+ for z in range(3):
+ s = state[z] ^ xored
+ if s <= state[z]:
+ move = (z, s)
+ return move
+
+def randommove(state):
+ m = max(state)
+ while True:
+ z = random.randint(0,2)
+ if state[z] > (m > 1):
+ break
+ rand = random.randint(m > 1, state[z]-1)
+ return z, rand
+
+
+class NimModel(object):
+ def __init__(self, game):
+ self.game = game
+
+ def setup(self):
+ if self.game.state not in [Nim.CREATED, Nim.OVER]:
+ return
+ self.sticks = [randomrow(), randomrow(), randomrow()]
+ self.player = 0
+ self.winner = None
+ self.game.view.setup()
+ self.game.state = Nim.RUNNING
+
+ def move(self, row, col):
+ maxspalte = self.sticks[row]
+ self.sticks[row] = col
+ self.game.view.notify_move(row, col, maxspalte, self.player)
+ if self.game_over():
+ self.game.state = Nim.OVER
+ self.winner = self.player
+ self.game.view.notify_over()
+ elif self.player == 0:
+ self.player = 1
+ row, col = computerzug(self.sticks)
+ self.move(row, col)
+ self.player = 0
+
+ def game_over(self):
+ return self.sticks == [0, 0, 0]
+
+ def notify_move(self, row, col):
+ if self.sticks[row] <= col:
+ return
+ self.move(row, col)
+
+
+class Stick(turtle.Turtle):
+ def __init__(self, row, col, game):
+ turtle.Turtle.__init__(self, visible=False)
+ self.row = row
+ self.col = col
+ self.game = game
+ x, y = self.coords(row, col)
+ self.shape("square")
+ self.shapesize(HUNIT/10.0, WUNIT/20.0)
+ self.speed(0)
+ self.pu()
+ self.goto(x,y)
+ self.color("white")
+ self.showturtle()
+
+ def coords(self, row, col):
+ packet, remainder = divmod(col, 5)
+ x = (3 + 11 * packet + 2 * remainder) * WUNIT
+ y = (2 + 3 * row) * HUNIT
+ return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
+
+ def makemove(self, x, y):
+ if self.game.state != Nim.RUNNING:
+ return
+ self.game.controller.notify_move(self.row, self.col)
+
+
+class NimView(object):
+ def __init__(self, game):
+ self.game = game
+ self.screen = game.screen
+ self.model = game.model
+ self.screen.colormode(255)
+ self.screen.tracer(False)
+ self.screen.bgcolor((240, 240, 255))
+ self.writer = turtle.Turtle(visible=False)
+ self.writer.pu()
+ self.writer.speed(0)
+ self.sticks = {}
+ for row in range(3):
+ for col in range(MAXSTICKS):
+ self.sticks[(row, col)] = Stick(row, col, game)
+ self.display("... a moment please ...")
+ self.screen.tracer(True)
+
+ def display(self, msg1, msg2=None):
+ self.screen.tracer(False)
+ self.writer.clear()
+ if msg2 is not None:
+ self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
+ self.writer.pencolor("red")
+ self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
+ self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
+ self.writer.pencolor("black")
+ self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
+ self.screen.tracer(True)
+
+
+ def setup(self):
+ self.screen.tracer(False)
+ for row in range(3):
+ for col in range(self.model.sticks[row]):
+ self.sticks[(row, col)].color(SCOLOR)
+ for row in range(3):
+ for col in range(self.model.sticks[row], MAXSTICKS):
+ self.sticks[(row, col)].color("white")
+ self.display("Your turn! Click leftmost stick to remove.")
+ self.screen.tracer(True)
+
+ def notify_move(self, row, col, maxspalte, player):
+ if player == 0:
+ farbe = HCOLOR
+ for s in range(col, maxspalte):
+ self.sticks[(row, s)].color(farbe)
+ else:
+ self.display(" ... thinking ... ")
+ time.sleep(0.5)
+ self.display(" ... thinking ... aaah ...")
+ farbe = COLOR
+ for s in range(maxspalte-1, col-1, -1):
+ time.sleep(0.2)
+ self.sticks[(row, s)].color(farbe)
+ self.display("Your turn! Click leftmost stick to remove.")
+
+ def notify_over(self):
+ if self.game.model.winner == 0:
+ msg2 = "Congrats. You're the winner!!!"
+ else:
+ msg2 = "Sorry, the computer is the winner."
+ self.display("To play again press space bar. To leave press ESC.", msg2)
+
+ def clear(self):
+ if self.game.state == Nim.OVER:
+ self.screen.clear()
+
+class NimController(object):
+
+ def __init__(self, game):
+ self.game = game
+ self.sticks = game.view.sticks
+ self.BUSY = False
+ for stick in self.sticks.values():
+ stick.onclick(stick.makemove)
+ self.game.screen.onkey(self.game.model.setup, "space")
+ self.game.screen.onkey(self.game.view.clear, "Escape")
+ self.game.view.display("Press space bar to start game")
+ self.game.screen.listen()
+
+ def notify_move(self, row, col):
+ if self.BUSY:
+ return
+ self.BUSY = True
+ self.game.model.notify_move(row, col)
+ self.BUSY = False
+
+class Nim(object):
+ CREATED = 0
+ RUNNING = 1
+ OVER = 2
+ def __init__(self, screen):
+ self.state = Nim.CREATED
+ self.screen = screen
+ self.model = NimModel(self)
+ self.view = NimView(self)
+ self.controller = NimController(self)
+
+
+mainscreen = turtle.Screen()
+mainscreen.mode("standard")
+mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
+
+def main():
+ nim = Nim(mainscreen)
+ return "EVENTLOOP!"
+
+if __name__ == "__main__":
+ main()
+ turtle.mainloop()
diff --git a/Lib/turtledemo/paint.py b/Lib/turtledemo/paint.py
new file mode 100644
index 0000000..68058ab
--- /dev/null
+++ b/Lib/turtledemo/paint.py
@@ -0,0 +1,50 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_paint.py
+
+A simple eventdriven paint program
+
+- use left mouse button to move turtle
+- middle mouse button to change color
+- right mouse button do turn filling on/off
+ -------------------------------------------
+ Play around by clicking into the canvas
+ using all three mouse buttons.
+ -------------------------------------------
+ To exit press STOP button
+ -------------------------------------------
+"""
+from turtle import *
+
+def switchupdown(x=0, y=0):
+ if pen()["pendown"]:
+ end_fill()
+ up()
+ else:
+ down()
+ begin_fill()
+
+def changecolor(x=0, y=0):
+ global colors
+ colors = colors[1:]+colors[:1]
+ color(colors[0])
+
+def main():
+ global colors
+ shape("circle")
+ resizemode("user")
+ shapesize(.5)
+ width(3)
+ colors=["red", "green", "blue", "yellow"]
+ color(colors[0])
+ switchupdown()
+ onscreenclick(goto,1)
+ onscreenclick(changecolor,2)
+ onscreenclick(switchupdown,3)
+ return "EVENTLOOP"
+
+if __name__ == "__main__":
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/peace.py b/Lib/turtledemo/peace.py
new file mode 100644
index 0000000..63cf7cc
--- /dev/null
+++ b/Lib/turtledemo/peace.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_peace.py
+
+A very simple drawing suitable as a beginner's
+programming example.
+
+Uses only commands, which are also available in
+old turtle.py.
+
+Intentionally no variables are used except for the
+colorloop:
+"""
+
+from turtle import *
+
+def main():
+ peacecolors = ("red3", "orange", "yellow",
+ "seagreen4", "orchid4",
+ "royalblue1", "dodgerblue4")
+
+ reset()
+ s = Screen()
+ up()
+ goto(-320,-195)
+ width(70)
+
+ for pcolor in peacecolors:
+ color(pcolor)
+ down()
+ forward(640)
+ up()
+ backward(640)
+ left(90)
+ forward(66)
+ right(90)
+
+ width(25)
+ color("white")
+ goto(0,-170)
+ down()
+
+ circle(170)
+ left(90)
+ forward(340)
+ up()
+ left(180)
+ forward(170)
+ right(45)
+ down()
+ forward(170)
+ up()
+ backward(170)
+ left(90)
+ down()
+ forward(170)
+ up()
+
+ goto(0,300) # vanish if hideturtle() is not available ;-)
+ return "Done!!"
+
+if __name__ == "__main__":
+ main()
+ mainloop()
diff --git a/Lib/turtledemo/penrose.py b/Lib/turtledemo/penrose.py
new file mode 100644
index 0000000..f73c864
--- /dev/null
+++ b/Lib/turtledemo/penrose.py
@@ -0,0 +1,181 @@
+#!/usr/bin/env python3
+""" xturtle-example-suite:
+
+ xtx_kites_and_darts.py
+
+Constructs two aperiodic penrose-tilings,
+consisting of kites and darts, by the method
+of inflation in six steps.
+
+Starting points are the patterns "sun"
+consisting of five kites and "star"
+consisting of five darts.
+
+For more information see:
+ http://en.wikipedia.org/wiki/Penrose_tiling
+ -------------------------------------------
+"""
+from turtle import *
+from math import cos, pi
+from time import clock, sleep
+
+f = (5**0.5-1)/2.0 # (sqrt(5)-1)/2 -- golden ratio
+d = 2 * cos(3*pi/10)
+
+def kite(l):
+ fl = f * l
+ lt(36)
+ fd(l)
+ rt(108)
+ fd(fl)
+ rt(36)
+ fd(fl)
+ rt(108)
+ fd(l)
+ rt(144)
+
+def dart(l):
+ fl = f * l
+ lt(36)
+ fd(l)
+ rt(144)
+ fd(fl)
+ lt(36)
+ fd(fl)
+ rt(144)
+ fd(l)
+ rt(144)
+
+def inflatekite(l, n):
+ if n == 0:
+ px, py = pos()
+ h, x, y = int(heading()), round(px,3), round(py,3)
+ tiledict[(h,x,y)] = True
+ return
+ fl = f * l
+ lt(36)
+ inflatedart(fl, n-1)
+ fd(l)
+ rt(144)
+ inflatekite(fl, n-1)
+ lt(18)
+ fd(l*d)
+ rt(162)
+ inflatekite(fl, n-1)
+ lt(36)
+ fd(l)
+ rt(180)
+ inflatedart(fl, n-1)
+ lt(36)
+
+def inflatedart(l, n):
+ if n == 0:
+ px, py = pos()
+ h, x, y = int(heading()), round(px,3), round(py,3)
+ tiledict[(h,x,y)] = False
+ return
+ fl = f * l
+ inflatekite(fl, n-1)
+ lt(36)
+ fd(l)
+ rt(180)
+ inflatedart(fl, n-1)
+ lt(54)
+ fd(l*d)
+ rt(126)
+ inflatedart(fl, n-1)
+ fd(l)
+ rt(144)
+
+def draw(l, n, th=2):
+ clear()
+ l = l * f**n
+ shapesize(l/100.0, l/100.0, th)
+ for k in tiledict:
+ h, x, y = k
+ setpos(x, y)
+ setheading(h)
+ if tiledict[k]:
+ shape("kite")
+ color("black", (0, 0.75, 0))
+ else:
+ shape("dart")
+ color("black", (0.75, 0, 0))
+ stamp()
+
+def sun(l, n):
+ for i in range(5):
+ inflatekite(l, n)
+ lt(72)
+
+def star(l,n):
+ for i in range(5):
+ inflatedart(l, n)
+ lt(72)
+
+def makeshapes():
+ tracer(0)
+ begin_poly()
+ kite(100)
+ end_poly()
+ register_shape("kite", get_poly())
+ begin_poly()
+ dart(100)
+ end_poly()
+ register_shape("dart", get_poly())
+ tracer(1)
+
+def start():
+ reset()
+ ht()
+ pu()
+ makeshapes()
+ resizemode("user")
+
+def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
+ global tiledict
+ goto(startpos)
+ setheading(0)
+ tiledict = {}
+ a = clock()
+ tracer(0)
+ fun(l, n)
+ b = clock()
+ draw(l, n, th)
+ tracer(1)
+ c = clock()
+ print("Calculation: %7.4f s" % (b - a))
+ print("Drawing: %7.4f s" % (c - b))
+ print("Together: %7.4f s" % (c - a))
+ nk = len([x for x in tiledict if tiledict[x]])
+ nd = len([x for x in tiledict if not tiledict[x]])
+ print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))
+
+def demo(fun=sun):
+ start()
+ for i in range(8):
+ a = clock()
+ test(300, i, fun)
+ b = clock()
+ t = b - a
+ if t < 2:
+ sleep(2 - t)
+
+def main():
+ #title("Penrose-tiling with kites and darts.")
+ mode("logo")
+ bgcolor(0.3, 0.3, 0)
+ demo(sun)
+ sleep(2)
+ demo(star)
+ pencolor("black")
+ goto(0,-200)
+ pencolor(0.7,0.7,1)
+ write("Please wait...",
+ align="center", font=('Arial Black', 36, 'bold'))
+ test(600, 8, startpos=(70, 117))
+ return "Done"
+
+if __name__ == "__main__":
+ msg = main()
+ mainloop()
diff --git a/Lib/turtledemo/planet_and_moon.py b/Lib/turtledemo/planet_and_moon.py
new file mode 100644
index 0000000..14c4bbc
--- /dev/null
+++ b/Lib/turtledemo/planet_and_moon.py
@@ -0,0 +1,113 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_planets_and_moon.py
+
+Gravitational system simulation using the
+approximation method from Feynman-lectures,
+p.9-8, using turtlegraphics.
+
+Example: heavy central body, light planet,
+very light moon!
+Planet has a circular orbit, moon a stable
+orbit around the planet.
+
+You can hold the movement temporarily by pressing
+the left mouse button with mouse over the
+scrollbar of the canvas.
+
+"""
+from turtle import Shape, Turtle, mainloop, Vec2D as Vec
+from time import sleep
+
+G = 8
+
+class GravSys(object):
+ def __init__(self):
+ self.planets = []
+ self.t = 0
+ self.dt = 0.01
+ def init(self):
+ for p in self.planets:
+ p.init()
+ def start(self):
+ for i in range(10000):
+ self.t += self.dt
+ for p in self.planets:
+ p.step()
+
+class Star(Turtle):
+ def __init__(self, m, x, v, gravSys, shape):
+ Turtle.__init__(self, shape=shape)
+ self.penup()
+ self.m = m
+ self.setpos(x)
+ self.v = v
+ gravSys.planets.append(self)
+ self.gravSys = gravSys
+ self.resizemode("user")
+ self.pendown()
+ def init(self):
+ dt = self.gravSys.dt
+ self.a = self.acc()
+ self.v = self.v + 0.5*dt*self.a
+ def acc(self):
+ a = Vec(0,0)
+ for planet in self.gravSys.planets:
+ if planet != self:
+ v = planet.pos()-self.pos()
+ a += (G*planet.m/abs(v)**3)*v
+ return a
+ def step(self):
+ dt = self.gravSys.dt
+ self.setpos(self.pos() + dt*self.v)
+ if self.gravSys.planets.index(self) != 0:
+ self.setheading(self.towards(self.gravSys.planets[0]))
+ self.a = self.acc()
+ self.v = self.v + dt*self.a
+
+## create compound yellow/blue turtleshape for planets
+
+def main():
+ s = Turtle()
+ s.reset()
+ s.getscreen().tracer(0,0)
+ s.ht()
+ s.pu()
+ s.fd(6)
+ s.lt(90)
+ s.begin_poly()
+ s.circle(6, 180)
+ s.end_poly()
+ m1 = s.get_poly()
+ s.begin_poly()
+ s.circle(6,180)
+ s.end_poly()
+ m2 = s.get_poly()
+
+ planetshape = Shape("compound")
+ planetshape.addcomponent(m1,"orange")
+ planetshape.addcomponent(m2,"blue")
+ s.getscreen().register_shape("planet", planetshape)
+ s.getscreen().tracer(1,0)
+
+ ## setup gravitational system
+ gs = GravSys()
+ sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
+ sun.color("yellow")
+ sun.shapesize(1.8)
+ sun.pu()
+ earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
+ earth.pencolor("green")
+ earth.shapesize(0.8)
+ moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
+ moon.pencolor("blue")
+ moon.shapesize(0.5)
+ gs.init()
+ gs.start()
+ return "Done!"
+
+if __name__ == '__main__':
+ msg = main()
+ print(msg)
+ #mainloop()
diff --git a/Lib/turtledemo/round_dance.py b/Lib/turtledemo/round_dance.py
new file mode 100644
index 0000000..1038361
--- /dev/null
+++ b/Lib/turtledemo/round_dance.py
@@ -0,0 +1,86 @@
+""" turtle-example-suite:
+
+ tdemo_round_dance.py
+
+(Needs version 1.1 of the turtle module that
+comes with Python 3.1)
+
+Dancing turtles have a compound shape
+consisting of a series of triangles of
+decreasing size.
+
+Turtles march along a circle while rotating
+pairwise in opposite direction, with one
+exception. Does that breaking of symmetry
+enhance the attractiveness of the example?
+
+Press any key to stop the animation.
+
+Technically: demonstrates use of compound
+shapes, transformation of shapes as well as
+cloning turtles. The animation is
+controlled through update().
+"""
+
+from turtle import *
+
+def stop():
+ global running
+ running = False
+
+def main():
+ global running
+ clearscreen()
+ bgcolor("gray10")
+ tracer(False)
+ shape("triangle")
+ f = 0.793402
+ phi = 9.064678
+ s = 5
+ c = 1
+ # create compound shape
+ sh = Shape("compound")
+ for i in range(10):
+ shapesize(s)
+ p =get_shapepoly()
+ s *= f
+ c *= f
+ tilt(-phi)
+ sh.addcomponent(p, (c, 0.25, 1-c), "black")
+ register_shape("multitri", sh)
+ # create dancers
+ shapesize(1)
+ shape("multitri")
+ pu()
+ setpos(0, -200)
+ dancers = []
+ for i in range(180):
+ fd(7)
+ tilt(-4)
+ lt(2)
+ update()
+ if i % 12 == 0:
+ dancers.append(clone())
+ home()
+ # dance
+ running = True
+ onkeypress(stop)
+ listen()
+ cs = 1
+ while running:
+ ta = -4
+ for dancer in dancers:
+ dancer.fd(7)
+ dancer.lt(2)
+ dancer.tilt(ta)
+ ta = -4 if ta > 0 else 2
+ if cs < 180:
+ right(4)
+ shapesize(cs)
+ cs *= 1.005
+ update()
+ return "DONE!"
+
+if __name__=='__main__':
+ print(main())
+ mainloop()
diff --git a/Lib/turtledemo/tree.py b/Lib/turtledemo/tree.py
new file mode 100644
index 0000000..9c0b1f7
--- /dev/null
+++ b/Lib/turtledemo/tree.py
@@ -0,0 +1,63 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_tree.py
+
+Displays a 'breadth-first-tree' - in contrast
+to the classical Logo tree drawing programs,
+which use a depth-first-algorithm.
+
+Uses:
+(1) a tree-generator, where the drawing is
+quasi the side-effect, whereas the generator
+always yields None.
+(2) Turtle-cloning: At each branching point the
+current pen is cloned. So in the end there
+are 1024 turtles.
+"""
+from turtle import Turtle, mainloop
+from time import clock
+
+def tree(plist, l, a, f):
+ """ plist is list of pens
+ l is length of branch
+ a is half of the angle between 2 branches
+ f is factor by which branch is shortened
+ from level to level."""
+ if l > 3:
+ lst = []
+ for p in plist:
+ p.forward(l)
+ q = p.clone()
+ p.left(a)
+ q.right(a)
+ lst.append(p)
+ lst.append(q)
+ for x in tree(lst, l*f, a, f):
+ yield None
+
+def maketree():
+ p = Turtle()
+ p.setundobuffer(None)
+ p.hideturtle()
+ p.speed(0)
+ p.getscreen().tracer(30,0)
+ p.left(90)
+ p.penup()
+ p.forward(-210)
+ p.pendown()
+ t = tree([p], 200, 65, 0.6375)
+ for x in t:
+ pass
+ print(len(p.getscreen().turtles()))
+
+def main():
+ a=clock()
+ maketree()
+ b=clock()
+ return "done: %.2f sec." % (b-a)
+
+if __name__ == "__main__":
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/turtle.cfg b/Lib/turtledemo/turtle.cfg
new file mode 100644
index 0000000..bd89a74
--- /dev/null
+++ b/Lib/turtledemo/turtle.cfg
@@ -0,0 +1,10 @@
+width = 800
+height = 600
+canvwidth = 1200
+canvheight = 900
+shape = arrow
+mode = standard
+resizemode = auto
+fillcolor = ""
+title = Python turtle graphics demo.
+
diff --git a/Lib/turtledemo/two_canvases.py b/Lib/turtledemo/two_canvases.py
new file mode 100644
index 0000000..02d89db
--- /dev/null
+++ b/Lib/turtledemo/two_canvases.py
@@ -0,0 +1,52 @@
+#!/usr/bin/env python3
+## DEMONSTRATES USE OF 2 CANVASES, SO CANNOT BE RUN IN DEMOVIEWER!
+"""turtle example: Using TurtleScreen and RawTurtle
+for drawing on two distinct canvases.
+"""
+from turtle import TurtleScreen, RawTurtle, TK
+
+root = TK.Tk()
+cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff")
+cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee")
+cv1.pack()
+cv2.pack()
+
+s1 = TurtleScreen(cv1)
+s1.bgcolor(0.85, 0.85, 1)
+s2 = TurtleScreen(cv2)
+s2.bgcolor(1, 0.85, 0.85)
+
+p = RawTurtle(s1)
+q = RawTurtle(s2)
+
+p.color("red", (1, 0.85, 0.85))
+p.width(3)
+q.color("blue", (0.85, 0.85, 1))
+q.width(3)
+
+for t in p,q:
+ t.shape("turtle")
+ t.lt(36)
+
+q.lt(180)
+
+for t in p, q:
+ t.begin_fill()
+for i in range(5):
+ for t in p, q:
+ t.fd(50)
+ t.lt(72)
+for t in p,q:
+ t.end_fill()
+ t.lt(54)
+ t.pu()
+ t.bk(50)
+
+## Want to get some info?
+
+#print(s1, s2)
+#print(p, q)
+#print(s1.turtles())
+#print(s2.turtles())
+
+TK.mainloop()
diff --git a/Lib/turtledemo/wikipedia.py b/Lib/turtledemo/wikipedia.py
new file mode 100644
index 0000000..73e03d2
--- /dev/null
+++ b/Lib/turtledemo/wikipedia.py
@@ -0,0 +1,65 @@
+""" turtle-example-suite:
+
+ tdemo_wikipedia3.py
+
+This example is
+inspired by the Wikipedia article on turtle
+graphics. (See example wikipedia1 for URLs)
+
+First we create (ne-1) (i.e. 35 in this
+example) copies of our first turtle p.
+Then we let them perform their steps in
+parallel.
+
+Followed by a complete undo().
+"""
+from turtle import Screen, Turtle, mainloop
+from time import clock, sleep
+
+def mn_eck(p, ne,sz):
+ turtlelist = [p]
+ #create ne-1 additional turtles
+ for i in range(1,ne):
+ q = p.clone()
+ q.rt(360.0/ne)
+ turtlelist.append(q)
+ p = q
+ for i in range(ne):
+ c = abs(ne/2.0-i)/(ne*.7)
+ # let those ne turtles make a step
+ # in parallel:
+ for t in turtlelist:
+ t.rt(360./ne)
+ t.pencolor(1-c,0,c)
+ t.fd(sz)
+
+def main():
+ s = Screen()
+ s.bgcolor("black")
+ p=Turtle()
+ p.speed(0)
+ p.hideturtle()
+ p.pencolor("red")
+ p.pensize(3)
+
+ s.tracer(36,0)
+
+ at = clock()
+ mn_eck(p, 36, 19)
+ et = clock()
+ z1 = et-at
+
+ sleep(1)
+
+ at = clock()
+ while any([t.undobufferentries() for t in s.turtles()]):
+ for t in s.turtles():
+ t.undo()
+ et = clock()
+ return "Laufzeit: %.3f sec" % (z1+et-at)
+
+
+if __name__ == '__main__':
+ msg = main()
+ print(msg)
+ mainloop()
diff --git a/Lib/turtledemo/yinyang.py b/Lib/turtledemo/yinyang.py
new file mode 100644
index 0000000..11d1f47
--- /dev/null
+++ b/Lib/turtledemo/yinyang.py
@@ -0,0 +1,49 @@
+#!/usr/bin/env python3
+""" turtle-example-suite:
+
+ tdemo_yinyang.py
+
+Another drawing suitable as a beginner's
+programming example.
+
+The small circles are drawn by the circle
+command.
+
+"""
+
+from turtle import *
+
+def yin(radius, color1, color2):
+ width(3)
+ color("black", color1)
+ begin_fill()
+ circle(radius/2., 180)
+ circle(radius, 180)
+ left(180)
+ circle(-radius/2., 180)
+ end_fill()
+ left(90)
+ up()
+ forward(radius*0.35)
+ right(90)
+ down()
+ color(color1, color2)
+ begin_fill()
+ circle(radius*0.15)
+ end_fill()
+ left(90)
+ up()
+ backward(radius*0.35)
+ down()
+ left(90)
+
+def main():
+ reset()
+ yin(200, "black", "white")
+ yin(200, "white", "black")
+ ht()
+ return "Done!"
+
+if __name__ == '__main__':
+ main()
+ mainloop()